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Many well-known partial differential equations can be written as multisymplectic
systems. Such systems have a structural conservation law from which scalar con-
servation laws can be derived. These conservation laws arise as differential conse-
quences of a 1-form ‘quasi-conservation law,” which is related to Noether’s Theorem.
This paper develops the above framework and uses it to introduce a multisymplectic
structure for differential-difference equations. The shallow water equations and the
Ablowitz-Ladik equations are used to illustrate the general theory. It is found that
conservation of potential vorticity is a differential consequence of two conservation
laws; this surprising result and its implications are discussed.
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1. Introduction

Hamiltonian systems of ordinary differential equations (ODEs) are endowed with
a rich geometrical structure that is associated with the symplectic 2-form. This
structure is masked in the Lagrangian formulation, which is nonlocal. Some partial
differential equations (PDEs) have one or more Hamiltonian formulations (Olver,
1993) but these, like their Lagrangian counterparts, are nonlocal.

Bridges (1997) observed that many PDEs can be written as multisymplectic
systems, which are local and have a distinct symplectic structure associated with
each independent variable. The multisymplectic formulation is useful for the study
of nonlinear waves (Bridges, 1997a), stability and bifurcation analysis (Bridges &
Derks, 2001), and the development of numerical methods (Bridges & Reich, 2001).

For any Hamiltonian ODE, the symplectic structure is preserved on trajectories.
Similarly, every multisymplectic system has a conservation law that involves each of
the symplectic structures. We shall refer to this as the structural conservation law,
because it is associated with the multisymplectic structure rather than the specific
PDE. Other conservation laws have been obtained for some systems by using a
restricted version of Noether’s Theorem (Bridges, 1997a).

The current paper shows how the general (unrestricted) form of Noether’s The-
orem is linked to the structural conservation law for multisymplectic systems.
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This knowledge provides a rationale for generalizing multisymplectic structures
to include differential-difference equations. For brevity, we restrict attention to
differential-difference equations with only two independent variables. (Multisym-
plectic difference equations and their applications to geometric integration will be
treated in a more extensive paper.) As examples, we consider the shallow water
equations and the Ablowitz-Ladik equation, which each have a multisymplectic
formulation with associated conservation laws.

One observation which comes from the analysis has an application in meteo-
rology: conservation of potential vorticity is a differential consequence of two more
fundamental conservation laws. This surprising result and its possible implications
for numerical weather prediction are discussed briefly.

2. The structural conservation law and its consequences

It is helpful to begin by considering some well-known features of the following simple
Hamiltonian system of ODEs:

. 9H(q,p)
-1 9H(a.p)
(9 75) (©) - (ain)- @
p oy
where * denotes the derivative with respect to the independent variable, t. The
Hamiltonian system (2.1) has the symplectic 2-form

k =dp A dg.

Here we use the standard notation for Cartan’s exterior calculus; in particular, d
is the exterior derivative, which maps r-forms to (r 4+ 1)-forms and satisfies the
identity d2 = 0. Consequently the symplectic 2-form is closed, i. e.

ds = 0.

Let D; denote the total derivative with respect to ¢, which treats the dependent
variables and their derivatives as functions of the independent variable:

D=2 i? 52
=t T TPy T

The exterior derivative d commutes with D;; hence, on solutions of (2.1),

H H
Dm:dp/\dq+dp/\dq':—d<aa—q>/\dq+dp/\d<aa—p>:0. (2.2)

In other words, the symplectic 2-form is conserved, irrespective of the function
H(q,p)- This exemplifies the idea of a ‘structural conservation law.’
The symplectic 2-form and its time-derivative are locally exact, and

d{Dt(pdq)} =Dk = 0.
The Poincaré Lemma implies that, locally, there exists a function g(q, p) satisfying

Di(pdg) = dg. (2.3)
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We call such a relationship a ‘1-form quasi-conservation law’. Explicitly,
. . OH
Di(pdq) = pdg+pd(¢) =d <pa—p - H) :

Pulling this relationship back to the base space (replacing each 1-form df(q, p) by
D{f(q,p)} dt) yields

OH
Di(pgdt) = Dy [ p=— — H | dt;
¢(p g di) ¢ (p 9 )

on solutions of (2.1) this amounts to
D:(H)dt =0. (2.4)

Therefore D;(H) = 0 on the trajectories in phase space. In the following, these sim-
ple observations for the Hamiltonian system (2.1) are extended to multisymplectic
systems, with useful consequences.

The general form for a multisymplectic system of PDEs with dependent variables
z* and independent variables m® is

o j BH(Z)
Kij(z)zfa: et

We use the Einstein summation convention in (2.5) and hereafter; total differentia-
tion with respect to m® is denoted by the subscript « after a comma. The following
constraints are usually imposed on the functions K7} (z):

(2.5)

1. the symplectic 2-forms k* = $ K (z) dz* A d27 satisfy ds® = 0 for each «;
2. Kii(z) = —K73,(2).

Note that (2.5) is a generalization of the Hamiltonian ODE system (2.1). The
consequence of the first of the above constraints is that (at least) locally there exist
functions L$(z) such that

. oLy . .1 /OLY HL¢ . )
O — J(Lod) = =L dsinded = = [ =L~ Z2 ) qpi A ded
kY =d(L§ dz?) 550 dz* Adz 5 (62’ 527 ) dz* Adz
Therefore oL o
O B i
Kij = Ozt 023

and so the second constraint is automatically satisfied. In practice, it is usually

fairly easy to construct the functions L§ by inspection; if necessary, they can be

constructed systematically with the aid of a homotopy operator (Olver, 1993).
Bridges (1997b) derived the structural conservation law

K% = 0. (2.6)

By following the argument that was used above for Hamiltonian ODEs, we derive
the 1-form quasi-conservation law:

(L§d7) , =d(L§z], — H(z)), 2.7)

Ne%
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which holds on solutions of the multisymplectic system (2.5).

A set of conservation laws can be found by pulling (2.6) back to the base space
(Bridges et al., 2003). To do this, replace each dz* by z’, dm® and use the anti-
symmetry of the wedge product. If there are n independent variables this yields
in(n — 1) conservation laws:

(Klajzlﬁz{y)a =0, (B < 7). (2.8)

Just as for the Hamiltonian ODE, we can also pull the quasi-conservation law back
to the space of independent variables, obtaining n conservation laws

(Lj‘zfﬁ — L) 85 + H(z)ég) =0, (2.9)
where 65 is the Kronecker delta. The first set of conservation laws (2.8) can be
obtained from (2.9) by cross-differentiation, and therefore it is reasonable to regard
(2.9) as the more fundamental set. However, in some instances the interpretation
of a 2-form law may be more obvious than that of the 1-form laws. To illustrate
this, we find the conservation laws (2.8) and (2.9) for the shallow water equations,
which are the basis for much of meteorology and oceanography.

The shallow water equations are written in the Lagrangian (particle) description.
Let x € R?, u € R? represent the position and velocity of the fluid particles, which
are functions of ¢+ and the Lagrangian ‘label-space’ coordinates m = (m!, m?).
(Note: we use t rather than m? to denote time in this example). The system rotates
with constant angular velocity f/2. The internal energy of the fluid is e(r), where
T is the reciprocal of the fluid depth. Writing 7 in terms of new dependent variables
2t = a:fa, we obtain

T =75 — x3l.

To write the equations of motion in multisymplectic form, we introduce four further
dependent variables

o_ _Oe(r)

Wi T T
[e]3

Then the shallow water equations can be written as the following multisymplectic
system (Bridges et al., 2003):

1 2 1 2 _
—uy+ fry—w; —wi, = 0,
2 1 1 2 _
—Up— fx,t Wy — Wy = 0,
i i .
Ty = u, 1=1,2,
i i s
T, = Ty, t,a=1,2,
de(T)
0 = — + w, ha=1,2
or?
(e
This system is of the form (2.5), with
2t =gt 2% =12, 22 =, 2t =u?, 25 = wy, 2% = wi,
2" =wy, 22 = w3, 2% =zl 210 =23, 2t =2, 2'? =23,
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and

H=1lu u+e(r)+ziw?, where  u-u= (u')? + (u?)°.

The only nonzero components K7 with i < j are
K)1t2:fa Kf3:K§4:K115:K217:K126:K228:_1-

By substituting the results into (2.8) and (2.9), we obtain conservation laws. In the
following, the potential vorticity for the shallow water system is

_ 1,1 2.2 1.1 2,2
q=fr+mu; +r5u7 —TIUH — TIUS .

The dm! A dm? component of the 2-form conservation law (2.6) is
¢:=0. (2.10)

In other words, potential vorticity is conserved by fluid particles. The d¢t component
of the (pulled back) 1-form quasi-conservation law describes conservation of energy:

(3u-u+te(n)) , + (u'w)a =0. (2.11)

The remaining components of the structural conservation law are merely label-space
derivatives of the energy conservation law (2.11), so are of no interest. However, the
remaining components of the 1-form quasi-conservation law are interesting; they are

+ (zjw?)» = 0;
(2.12)

(u'zy + vzl + fo'zd) .t (zhwi) 1 + (e(r) — Ju-u— frtu® + ziw?) , = 0.
7 T (2.13)
Conservation of potential vorticity is a differential consequence of (2.12) and
(2.13). At present, it is generally agreed that numerical schemes should respect the
conservation of potential vorticity. However, we have just seen that fluid particles
retain potential vorticity because they are bound by the conservation laws (2.12)
and (2.13). Furthermore, potential vorticity is not the only information contained
in these conservation laws. This raises an intriguing question: would schemes that
preserve (2.12) and (2.13) be more accurate than those which preserve potential
vorticity? A major advantage of using constant potential vorticity is that singulari-
ties such as fronts can be dealt with. It remains to be seen whether the conservation
laws (2.12) and (2.13) are as useful as (2.10); however, they are more fundamental

(mathematically speaking) than the conservation of potential vorticity.

(ulxi +ulz? + lez%) .t (6(7') - %u cu— fzlu® + xiwll) L

3. Conservation laws from symmetries

In a seminal paper on multisymplectic systems, Bridges (1997a) demonstrated that
Noether’s Theorem could be applied to the multisymplectic system (2.5) subject to
some constraints on the symmetry group. Most notably, these constraints included
the requirement that H(z) should be invariant under the group action.

In fact, Noether’s Theorem applies in full generality to any multisymplectic
system (2.5), without the need for additional constraints. To see this, all that is
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needed is a variational formulation. It is straightforward to check that (2.5) is the
Euler-Lagrange equation for the variational problem

) / L(z,z") dm,

where
L(z,2) = LSz, — H(z). (3.1)

(Here z(!) denotes the set of first derivatives of z.) Note that the right-hand side of
the quasi-conservation law (2.7) is the exterior derivative of the Lagrangian, L. By
applying Noether’s Theorem to this Lagrangian, we can use variational symmetries
to derive conservation laws for multisymplectic systems.

Let [m, z] denote the set of independent and dependent variables together with
derivatives of z of all orders. The partial differential operator

X = Q’[m, Z] + Da(Qi[ma Z])

dzi,

,

0
0zt
generates variational symmetries of the Lagrangian (3.1) if
XL =B

for some functions B¥[m, z]. Equivalently, X L is in the kernel of the Euler-Lagrange
operator (see Olver, 1993). Note that X acts only on the dependent variables and
their derivatives; every nontrivial symmetry can be written in this form without loss
of generality. Noether’s Theorem states that the variational symmetry generator X
yields the conservation law

(L3Q' - B*)  =0. (3.2)

This result can also be proved directly, by taking the interior product of the gener-
alized vector field X with the 1-form quasi-conservation law (2.7).

As particular application of Noether’s Theorem, note that every multisymplec-
tic system (2.5) is invariant under the group of translations in each independent
variable m?. The corresponding symmetry generators are

P9 a0
B 9zt B 9zt
,a

Then XgL = L g and so Noether’s Theorem yields

J —
(£52h —Log) =0,
which are the conservation laws (2.9) that were obtained by pulling the quasi-
conservation law back to the base space. Therefore the structural conservation law
can be regarded as a differential consequence of the conservation laws corresponding
to translational invariance in the independent variables.
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4. Multisymplectic differential-difference equations

So far, we have established that every multisymplectic system of PDEs is an Euler-
Lagrange equation, where the Lagrangian L is first-order and is linear the deriva-
tives. Furthermore, the interior product of any variational symmetry generator X
with the one-form quasi-conservation law gives the conservation law that corre-
sponds to X according to Noether’s Theorem. These facts may be used to intro-
duce a multisymplectic structure for differential-difference equations, and to obtain
conservation laws. For brevity, we shall adopt the approach of considering only the
simplest class of problems, because the generalizations are obvious but notation-
ally cumbersome. Therefore attention is restricted to equations whose dependent
variables z; are functions of two variables only, namely ¢ € R and n € Z.
The forward shift operator S : n — n + 1 acts on functions of n as follows:

S f(n) = Sf(n) = f(n+1) = f(Sn),
and therefore
S(f(n)g(n)) = (Sf(n))(Sg(n)).
Henceforth, we omit the argument n except where it is needed for clarity. The
forward difference and backward difference operators are respectively At = S —id
and A~ = S7'AT = id — S~!, where id is the identity map. Unlike Dy, these
difference operators are not derivations; however, they satisfy the useful identity

AT (fS7tg) = (AT f) g+ f(Ag).

The adjoint of the forward shift operator is the backward shift: S* = S~!, because

o0

S (Sfm)em) = S fn)(SMgn),

n=-—oo0 n=-—o0o

provided that these series converge. Consequently (A*)* = —A~.
In the following, we use the notation z} and z? to denote ATz/ and A~z7
respectively. Consider the variational problem

5/ i Ldt=0. (4.1)

n=—oo

The simplest type of first-order Lagrangian that is linear in derivatives and differ-
ences is of the form ' '

L= Lj(2)), + Ry(2)2, — H(z), (4.2)
where L;(z), R;(z), and H(z) are given functions. The Euler-Lagrange equation
obtained by varying 2° is

oL oL oL
— —Dy | — ) — A” — ) =0.
9zi <Bzft> <82§L>
When this is written out explicitly and simplified, it amounts to the following
multisymplectic differential-difference equation:
aRj(Z) j

Kij(2)2), + 2y — AT (Ri(z)) =

(4.3)
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where

BLj (Z) 8Lz (Z)
Kij(z) = 8z Bz

By analogy with the continuous case, the 1-form quasi-conservation law is derived
by taking the exterior derivative of L and using (4.3) to obtain

D, (Lj(z) dzj) +AF (5*1 (R;(2)) dzj) = dL. (4.4)
Taking the exterior derivative of (4.4) yields the structural conservation law
D, (%Kij(z) dz' A dzj) + A {51 (%) d(S™2Y) A dzj} =0. (4.5

By construction, the 2-form enclosed in braces in (4.5) is closed, because it is exact.
The difference term in the structural conservation law would not have been easy to
find by direct extrapolation from the continuous multisymplectic system, because it
is not antisymmetric in (7, j). By construction, it gives a continuous multisymplectic
system in the limit as the lines of constant n coalesce. Most importantly, because
it comes from a variational problem, Noether’s Theorem (for differential-difference
equations) is retained. The differential operator
X = Q'[t,n, 2] i + Dy(Q'[t,n,2)) i + AT(Q'[t, n, 2]) L
0z 0z} OAT(2%)
generates variational symmetries of (4.1) if
XL = Bft + ATB"

for some functions Bt[t,n,z] and B"[t,n,z]. Here [t,n,z] denotes dependence on
t, n, z, and shifts and derivatives of z. Taking the interior product of X and the
1-form quasi-conservation law yields (by Noether’s Theorem) the conservation law

Dy (Lj(z)@Q — B') + A" (S7'(R;(2))Q’ — B") = 0. (4.6)

Every multisymplectic system (4.3) is invariant under translations in ¢, which are
variational symmetries, so Noether’s Theorem gives the conservation law

D; (H(z) - Rj(z)zi) N (5—1 (Rj(z))zft) —0. (4.7)

Unlike the continuous case, there is no local conservation law corresponding to in-
variance under translations in the second independent variable, because such trans-
lations cannot be made infinitesimally. (For information on nonlocal symmetries of
difference equations, see Levi & Winternitz (1993,1996).)

In many continuous multisymplectic systems (including the shallow water equa-
tions) all coefficients K7} are constants, so each L$ (z) is linear. If the functions R;(z)
are linear then (4.3) simplifies, as follows. Suppose that

Rj(z) = M;;z",
where each M;; is constant. Then the multisymplectic system (4.3) reduces to

OH (z)
0zt

Kij (Z)Z,Jt + Ml]Zi — MJZZJ, = (4.8)
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The structural conservation law for the simplified system (4.8) is
Dy (L K;j(z) dz' Ad2?) + AT (My; d(S7'2") Ade?) =0, (4.9)
and the conservation law (4.7) becomes
Dy (H(z) - Mijzizi) +A* (Mij(S*lzi)zf't) = 0. (4.10)

In a pioneering paper, Maeda (1980) introduced a symplectic structure for ordi-
nary difference equations. The discrete part of the simplified multisymplectic sys-
tem (4.8) is a generalization of Maeda’s structure (which corresponds to particular
choices of M;;).

As an application of the multisymplectic differential-difference structure, con-
sider the Ablowitz-Ladik equation,

iug + (14 [u?) (ATA ) + 2 |u?u =0, (4.11)

which is integrable (Ablowitz & Ladik, 1976). In terms of the variables

2t = R{u}, 2% = {u}, 23 =21, 2t =27,

the Ablowitz-Ladik equation amounts to the multisymplectic system (4.8), where
H(z) = (2")? 4+ (%) =1In {1 + (M) + (22)2} + %{(23)2 + (z4)2};
the only nonzero coefficients K;;(z) and M;; are

K12 :—K21 = {1+(Zl)2+(22)2}71, M31 :M42:1.
Having identified the multisymplectic formulation of the Ablowitz-Ladik equation,

we can immediately write down the conservation law (4.10). In terms of the original
complex variable u, (4.10) amounts to

Dy (Jul> =In{1+[ul’} — L|ATu?) + AT (R{A" @) u,}) = 0. (4.12)

To the best of my knowledge, the conservation law (4.12) is new. Other conservation
laws can be obtained from (4.6) provided that X generates variational symmetries.
Some higher symmetries of the Ablowitz-Ladik equation have recently been com-
puted by Goktag & Hereman, 1998. For further discussion of local symmetries of
differential-difference equations, see Quispel et al. (1992).

5. Conclusions

For any multisymplectic system of PDEs, the two-forms x* are closed and satisfy the
structural conservation law ¢, = 0. From this starting-point, we have shown that
the structural conservation law is a differential consequence of a quasi-conservation
law that is connected with Noether’s Theorem. Furthermore, we have also seen
that every multisymplectic system of PDEs can be written as the Euler-Lagrange
equations for a Lagrangian that is first-order and linear in the derivatives. By
reversing the line of argument, we have constructed a multisymplectic structure for
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10 P. E. Hydon

a discrete independent variable that shares almost all of the important features of
the continuous multisymplectic structure. The generalization to multiple discrete
variables is obvious: simply add these variables to the Lagrangian, whilst retaining
the property that the Lagrangian is first-order and linear in all differences and
derivatives.

For brevity, most of this paper has been devoted to developing the general theory
of multisymplectic systems. Nevertheless, for each of the applications that we have
considered, the multisymplectic formulation gives new information. Application of
the discrete multisymplectic structure to numerical integration will be considered
in a separate paper. It remains to be seen whether this structure is as useful as its
continuous counterpart for stability analysis.
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