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onservation laws fordi�erential and di�erential-di�eren
eequationsBy P. E. HydonDept. of Mathemati
s and Statisti
sUniversity of SurreyGuildford GU2 7XH, UKemail: P.Hydon�surrey.a
.ukMany well-known partial di�erential equations 
an be written as multisymple
ti
systems. Su
h systems have a stru
tural 
onservation law from whi
h s
alar 
on-servation laws 
an be derived. These 
onservation laws arise as di�erential 
onse-quen
es of a 1-form `quasi-
onservation law,' whi
h is related to Noether's Theorem.This paper develops the above framework and uses it to introdu
e a multisymple
ti
stru
ture for di�erential-di�eren
e equations. The shallow water equations and theAblowitz-Ladik equations are used to illustrate the general theory. It is found that
onservation of potential vorti
ity is a di�erential 
onsequen
e of two 
onservationlaws; this surprising result and its impli
ations are dis
ussed.Keywords: Multisymple
ti
 systems, partial di�erential equations,di�erential-di�eren
e equations, 
onservation laws, potential vorti
ity1. Introdu
tionHamiltonian systems of ordinary di�erential equations (ODEs) are endowed witha ri
h geometri
al stru
ture that is asso
iated with the symple
ti
 2-form. Thisstru
ture is masked in the Lagrangian formulation, whi
h is nonlo
al. Some partialdi�erential equations (PDEs) have one or more Hamiltonian formulations (Olver,1993) but these, like their Lagrangian 
ounterparts, are nonlo
al.Bridges (1997) observed that many PDEs 
an be written as multisymple
ti
systems, whi
h are lo
al and have a distin
t symple
ti
 stru
ture asso
iated withea
h independent variable. The multisymple
ti
 formulation is useful for the studyof nonlinear waves (Bridges, 1997a), stability and bifur
ation analysis (Bridges &Derks, 2001), and the development of numeri
al methods (Bridges & Rei
h, 2001).For any Hamiltonian ODE, the symple
ti
 stru
ture is preserved on traje
tories.Similarly, every multisymple
ti
 system has a 
onservation law that involves ea
h ofthe symple
ti
 stru
tures. We shall refer to this as the stru
tural 
onservation law,be
ause it is asso
iated with the multisymple
ti
 stru
ture rather than the spe
i�
PDE. Other 
onservation laws have been obtained for some systems by using arestri
ted version of Noether's Theorem (Bridges, 1997a).The 
urrent paper shows how the general (unrestri
ted) form of Noether's The-orem is linked to the stru
tural 
onservation law for multisymple
ti
 systems.Arti
le submitted to Royal So
iety TEX Paper



2 P. E. HydonThis knowledge provides a rationale for generalizing multisymple
ti
 stru
turesto in
lude di�erential-di�eren
e equations. For brevity, we restri
t attention todi�erential-di�eren
e equations with only two independent variables. (Multisym-ple
ti
 di�eren
e equations and their appli
ations to geometri
 integration will betreated in a more extensive paper.) As examples, we 
onsider the shallow waterequations and the Ablowitz-Ladik equation, whi
h ea
h have a multisymple
ti
formulation with asso
iated 
onservation laws.One observation whi
h 
omes from the analysis has an appli
ation in meteo-rology: 
onservation of potential vorti
ity is a di�erential 
onsequen
e of two morefundamental 
onservation laws. This surprising result and its possible impli
ationsfor numeri
al weather predi
tion are dis
ussed brie
y.2. The stru
tural 
onservation law and its 
onsequen
esIt is helpful to begin by 
onsidering some well-known features of the following simpleHamiltonian system of ODEs:� 0 �11 0 � � _q_p� =  �H(q;p)�q�H(q;p)�p ! : (2.1)where _ denotes the derivative with respe
t to the independent variable, t. TheHamiltonian system (2.1) has the symple
ti
 2-form� = dp ^ dq:Here we use the standard notation for Cartan's exterior 
al
ulus; in parti
ular, dis the exterior derivative, whi
h maps r-forms to (r + 1)-forms and satis�es theidentity d2 = 0. Consequently the symple
ti
 2-form is 
losed, i. e.d� = 0:Let Dt denote the total derivative with respe
t to t, whi
h treats the dependentvariables and their derivatives as fun
tions of the independent variable:Dt = ��t + _q ��q + _p ��p + : : : :The exterior derivative d 
ommutes with Dt; hen
e, on solutions of (2.1),Dt� = d _p ^ dq + dp ^ d _q = �d��H�q � ^ dq + dp ^ d��H�p � = 0: (2.2)In other words, the symple
ti
 2-form is 
onserved, irrespe
tive of the fun
tionH(q; p). This exempli�es the idea of a `stru
tural 
onservation law.'The symple
ti
 2-form and its time-derivative are lo
ally exa
t, andd�Dt(p dq)	 = Dt� = 0:The Poin
ar�e Lemma implies that, lo
ally, there exists a fun
tion g(q; p) satisfyingDt(p dq) = dg: (2.3)Arti
le submitted to Royal So
iety
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onservation laws 3We 
all su
h a relationship a `1-form quasi-
onservation law'. Expli
itly,Dt(p dq) = _p dq + p d( _q) = d�p�H�p �H� :Pulling this relationship ba
k to the base spa
e (repla
ing ea
h 1-form df(q; p) byDtff(q; p)g dt) yields Dt(p _q dt) = Dt�p�H�p �H� dt;on solutions of (2.1) this amounts toDt(H) dt = 0: (2.4)Therefore Dt(H) = 0 on the traje
tories in phase spa
e. In the following, these sim-ple observations for the Hamiltonian system (2.1) are extended to multisymple
ti
systems, with useful 
onsequen
es.The general form for a multisymple
ti
 system of PDEs with dependent variableszi and independent variables m� isK�ij(z)zj;� = �H(z)�zi : (2.5)We use the Einstein summation 
onvention in (2.5) and hereafter; total di�erentia-tion with respe
t to m� is denoted by the subs
ript � after a 
omma. The following
onstraints are usually imposed on the fun
tions K�ij(z):1. the symple
ti
 2-forms �� = 12K�ij(z) dzi ^ dzj satisfy d�� = 0 for ea
h �;2. K�ij(z) = �K�j i(z).Note that (2.5) is a generalization of the Hamiltonian ODE system (2.1). The
onsequen
e of the �rst of the above 
onstraints is that (at least) lo
ally there existfun
tions L�i (z) su
h that�� = d(L�j dzj) = �L�j�zi dzi ^ dzj = 12 ��L�j�zi � �L�i�zj � dzi ^ dzj :Therefore K�ij = �L�j�zi � �L�i�zj ;and so the se
ond 
onstraint is automati
ally satis�ed. In pra
ti
e, it is usuallyfairly easy to 
onstru
t the fun
tions L�j by inspe
tion; if ne
essary, they 
an be
onstru
ted systemati
ally with the aid of a homotopy operator (Olver, 1993).Bridges (1997b) derived the stru
tural 
onservation law��;� = 0: (2.6)By following the argument that was used above for Hamiltonian ODEs, we derivethe 1-form quasi-
onservation law :�L�j dzj�;� = d �L�j zj;� �H(z)� ; (2.7)Arti
le submitted to Royal So
iety



4 P. E. Hydonwhi
h holds on solutions of the multisymple
ti
 system (2.5).A set of 
onservation laws 
an be found by pulling (2.6) ba
k to the base spa
e(Bridges et al., 2003). To do this, repla
e ea
h dzi by zi;� dm� and use the anti-symmetry of the wedge produ
t. If there are n independent variables this yields12n(n� 1) 
onservation laws:�K�ijzi;�zj;
�;� = 0; (� < 
): (2.8)Just as for the Hamiltonian ODE, we 
an also pull the quasi-
onservation law ba
kto the spa
e of independent variables, obtaining n 
onservation laws�L�j zj;� � L
j zj;
Æ�� +H(z)Æ���;� = 0; (2.9)where Æ�� is the Krone
ker delta. The �rst set of 
onservation laws (2.8) 
an beobtained from (2.9) by 
ross-di�erentiation, and therefore it is reasonable to regard(2.9) as the more fundamental set. However, in some instan
es the interpretationof a 2-form law may be more obvious than that of the 1-form laws. To illustratethis, we �nd the 
onservation laws (2.8) and (2.9) for the shallow water equations,whi
h are the basis for mu
h of meteorology and o
eanography.The shallow water equations are written in the Lagrangian (parti
le) des
ription.Let x 2 R2 , u 2 R2 represent the position and velo
ity of the 
uid parti
les, whi
hare fun
tions of t and the Lagrangian `label-spa
e' 
oordinates m = (m1;m2).(Note: we use t rather than m3 to denote time in this example). The system rotateswith 
onstant angular velo
ity f=2. The internal energy of the 
uid is e(�), where� is the re
ipro
al of the 
uid depth. Writing � in terms of new dependent variablesxi� = xi;�, we obtain � = x11x22 � x12x21:To write the equations of motion in multisymple
ti
 form, we introdu
e four furtherdependent variables w�i = ��e(�)�xi�Then the shallow water equations 
an be written as the following multisymple
ti
system (Bridges et al., 2003):�u1;t + fx2;t � w11;1 � w21;2 = 0;�u2;t � fx1;t � w12;1 � w22;2 = 0;xi;t = ui ; i = 1; 2;xi;� = xi� ; i; � = 1; 2;0 = �e(�)�xi� + w�i ; i; � = 1; 2:This system is of the form (2.5), withz1 = x1; z2 = x2; z3 = u1; z4 = u2; z5 = w11 ; z6 = w21 ;z7 = w12 ; z8 = w22 ; z9 = x11; z10 = x12; z11 = x21; z12 = x22;Arti
le submitted to Royal So
iety
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onservation laws 5and H = 12u � u+ e(�) + xi�w�i ; where u � u = (u1)2 + (u2)2:The only nonzero 
omponents K�ij with i < j areKt12 = f; Kt13 = Kt24 = K115 = K127 = K216 = K228 = �1:By substituting the results into (2.8) and (2.9), we obtain 
onservation laws. In thefollowing, the potential vorti
ity for the shallow water system isq = f� + x12u1;1 + x22u2;1 � x11u1;2 � x21u2;2 :The dm1 ^ dm2 
omponent of the 2-form 
onservation law (2.6) isq;t = 0: (2.10)In other words, potential vorti
ity is 
onserved by 
uid parti
les. The dt 
omponentof the (pulled ba
k) 1-form quasi-
onservation law des
ribes 
onservation of energy:� 12u � u+ e(�)�;t + (uiw�i );� = 0: (2.11)The remaining 
omponents of the stru
tural 
onservation law are merely label-spa
ederivatives of the energy 
onservation law (2.11), so are of no interest. However, theremaining 
omponents of the 1-form quasi-
onservation law are interesting; they are�u1x11 + u2x21 + fx1x21�;t + �e(�)� 12u � u� fx1u2 + xi1w1i �;1 + (xi1w2i );2 = 0;(2.12)�u1x12 + u2x22 + fx1x22�;t + (xi2w1i );1 + �e(�) � 12u � u� fx1u2 + xi2w2i �;2 = 0:(2.13)Conservation of potential vorti
ity is a di�erential 
onsequen
e of (2.12) and(2.13). At present, it is generally agreed that numeri
al s
hemes should respe
t the
onservation of potential vorti
ity. However, we have just seen that 
uid parti
lesretain potential vorti
ity be
ause they are bound by the 
onservation laws (2.12)and (2.13). Furthermore, potential vorti
ity is not the only information 
ontainedin these 
onservation laws. This raises an intriguing question: would s
hemes thatpreserve (2.12) and (2.13) be more a

urate than those whi
h preserve potentialvorti
ity? A major advantage of using 
onstant potential vorti
ity is that singulari-ties su
h as fronts 
an be dealt with. It remains to be seen whether the 
onservationlaws (2.12) and (2.13) are as useful as (2.10); however, they are more fundamental(mathemati
ally speaking) than the 
onservation of potential vorti
ity.3. Conservation laws from symmetriesIn a seminal paper on multisymple
ti
 systems, Bridges (1997a) demonstrated thatNoether's Theorem 
ould be applied to the multisymple
ti
 system (2.5) subje
t tosome 
onstraints on the symmetry group. Most notably, these 
onstraints in
ludedthe requirement that H(z) should be invariant under the group a
tion.In fa
t, Noether's Theorem applies in full generality to any multisymple
ti
system (2.5), without the need for additional 
onstraints. To see this, all that isArti
le submitted to Royal So
iety



6 P. E. Hydonneeded is a variational formulation. It is straightforward to 
he
k that (2.5) is theEuler-Lagrange equation for the variational problemÆ Z L(z; z(1)) dm;where L(z; z(1)) = L�j zj;� �H(z): (3.1)(Here z(1) denotes the set of �rst derivatives of z.) Note that the right-hand side ofthe quasi-
onservation law (2.7) is the exterior derivative of the Lagrangian, L. Byapplying Noether's Theorem to this Lagrangian, we 
an use variational symmetriesto derive 
onservation laws for multisymple
ti
 systems.Let [m; z℄ denote the set of independent and dependent variables together withderivatives of z of all orders. The partial di�erential operatorX = Qi[m; z℄ ��zi +D�(Qi[m; z℄) ��zi;�generates variational symmetries of the Lagrangian (3.1) ifXL = B�;�for some fun
tions B�[m; z℄. Equivalently,XL is in the kernel of the Euler-Lagrangeoperator (see Olver, 1993). Note that X a
ts only on the dependent variables andtheir derivatives; every nontrivial symmetry 
an be written in this form without lossof generality. Noether's Theorem states that the variational symmetry generator Xyields the 
onservation law �L�j Qj �B��;� = 0: (3.2)This result 
an also be proved dire
tly, by taking the interior produ
t of the gener-alized ve
tor �eld X with the 1-form quasi-
onservation law (2.7).As parti
ular appli
ation of Noether's Theorem, note that every multisymple
-ti
 system (2.5) is invariant under the group of translations in ea
h independentvariable m�. The 
orresponding symmetry generators areX� = zi;� ��zi + zi;�� ��zi;� :Then X�L = L;� and so Noether's Theorem yields�L�j zj;� � LÆ���;� = 0;whi
h are the 
onservation laws (2.9) that were obtained by pulling the quasi-
onservation law ba
k to the base spa
e. Therefore the stru
tural 
onservation law
an be regarded as a di�erential 
onsequen
e of the 
onservation laws 
orrespondingto translational invarian
e in the independent variables.Arti
le submitted to Royal So
iety
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onservation laws 74. Multisymple
ti
 di�erential-di�eren
e equationsSo far, we have established that every multisymple
ti
 system of PDEs is an Euler-Lagrange equation, where the Lagrangian L is �rst-order and is linear the deriva-tives. Furthermore, the interior produ
t of any variational symmetry generator Xwith the one-form quasi-
onservation law gives the 
onservation law that 
orre-sponds to X a

ording to Noether's Theorem. These fa
ts may be used to intro-du
e a multisymple
ti
 stru
ture for di�erential-di�eren
e equations, and to obtain
onservation laws. For brevity, we shall adopt the approa
h of 
onsidering only thesimplest 
lass of problems, be
ause the generalizations are obvious but notation-ally 
umbersome. Therefore attention is restri
ted to equations whose dependentvariables zi are fun
tions of two variables only, namely t 2 R and n 2 Z.The forward shift operator S : n! n+ 1 a
ts on fun
tions of n as follows:S : f(n)! Sf(n) = f(n+ 1) = f(Sn);and therefore S�f(n)g(n)� = �Sf(n)��Sg(n)�:Hen
eforth, we omit the argument n ex
ept where it is needed for 
larity. Theforward di�eren
e and ba
kward di�eren
e operators are respe
tively �+ = S � idand �� = S�1�+ = id � S�1, where id is the identity map. Unlike Dt, thesedi�eren
e operators are not derivations; however, they satisfy the useful identity�+ �fS�1g� = ��+f� g + f ���g� :The adjoint of the forward shift operator is the ba
kward shift: S� = S�1, be
ause1Xn=�1 �Sf(n)�g(n) = 1Xn=�1 f(n)�S�1g(n)�;provided that these series 
onverge. Consequently (�+)� = ���.In the following, we use the notation zj+ and zj� to denote �+zj and ��zjrespe
tively. Consider the variational problemÆ Z 1Xn=�1L dt = 0: (4.1)The simplest type of �rst-order Lagrangian that is linear in derivatives and di�er-en
es is of the form L = Lj(z)zj;t +Rj(z)zj+ �H(z); (4.2)where Lj(z), Rj(z), and H(z) are given fun
tions. The Euler-Lagrange equationobtained by varying zi is�L�zi �Dt� �L�zi;t����� �L�zi+� = 0:When this is written out expli
itly and simpli�ed, it amounts to the followingmultisymple
ti
 di�erential-di�eren
e equation:Kij(z)zj;t + �Rj(z)�zi zj+ ����Ri(z)� = �H(z)�zi ; (4.3)Arti
le submitted to Royal So
iety



8 P. E. Hydonwhere Kij(z) = �Lj(z)�zi � �Li(z)�zj :By analogy with the 
ontinuous 
ase, the 1-form quasi-
onservation law is derivedby taking the exterior derivative of L and using (4.3) to obtainDt�Lj(z) dzj�+�+�S�1�Rj(z)� dzj� = dL: (4.4)Taking the exterior derivative of (4.4) yields the stru
tural 
onservation lawDt�12Kij(z) dzi ^ dzj�+�+�S�1��Rj(z)�zi � d(S�1zi) ^ dzj� = 0: (4.5)By 
onstru
tion, the 2-form en
losed in bra
es in (4.5) is 
losed, be
ause it is exa
t.The di�eren
e term in the stru
tural 
onservation law would not have been easy to�nd by dire
t extrapolation from the 
ontinuous multisymple
ti
 system, be
ause itis not antisymmetri
 in (i; j). By 
onstru
tion, it gives a 
ontinuous multisymple
ti
system in the limit as the lines of 
onstant n 
oales
e. Most importantly, be
auseit 
omes from a variational problem, Noether's Theorem (for di�erential-di�eren
eequations) is retained. The di�erential operatorX = Qi[t; n; z℄ ��zi +Dt(Qi[t; n; z℄) ��zi;t +�+(Qi[t; n; z℄) ���+(zi)generates variational symmetries of (4.1) ifXL = Bt;t +�+Bnfor some fun
tions Bt[t; n; z℄ and Bn[t; n; z℄. Here [t; n; z℄ denotes dependen
e ont, n, z, and shifts and derivatives of z. Taking the interior produ
t of X and the1-form quasi-
onservation law yields (by Noether's Theorem) the 
onservation lawDt �Lj(z)Qj �Bt�+�+ �S�1�Rj(z)�Qj �Bn� = 0: (4.6)Every multisymple
ti
 system (4.3) is invariant under translations in t, whi
h arevariational symmetries, so Noether's Theorem gives the 
onservation lawDt �H(z)�Rj(z)zj+�+�+ �S�1�Rj(z)�zj;t� = 0: (4.7)Unlike the 
ontinuous 
ase, there is no lo
al 
onservation law 
orresponding to in-varian
e under translations in the se
ond independent variable, be
ause su
h trans-lations 
annot be made in�nitesimally. (For information on nonlo
al symmetries ofdi�eren
e equations, see Levi & Winternitz (1993,1996).)In many 
ontinuous multisymple
ti
 systems (in
luding the shallow water equa-tions) all 
oeÆ
ientsK�ij are 
onstants, so ea
h L�j (z) is linear. If the fun
tions Rj(z)are linear then (4.3) simpli�es, as follows. Suppose thatRj(z) =Mijzi;where ea
h Mij is 
onstant. Then the multisymple
ti
 system (4.3) redu
es toKij(z)zj;t +Mijzj+ �Mjizj� = �H(z)�zi : (4.8)Arti
le submitted to Royal So
iety
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onservation laws 9The stru
tural 
onservation law for the simpli�ed system (4.8) isDt� 12Kij(z) dzi ^ dzj�+�+�Mij d(S�1zi) ^ dzj� = 0; (4.9)and the 
onservation law (4.7) be
omesDt �H(z)�Mijzizj+�+�+ �Mij(S�1zi)zj;t� = 0: (4.10)In a pioneering paper, Maeda (1980) introdu
ed a symple
ti
 stru
ture for ordi-nary di�eren
e equations. The dis
rete part of the simpli�ed multisymple
ti
 sys-tem (4.8) is a generalization of Maeda's stru
ture (whi
h 
orresponds to parti
ular
hoi
es of Mij).As an appli
ation of the multisymple
ti
 di�erential-di�eren
e stru
ture, 
on-sider the Ablowitz-Ladik equation,iut + (1 + juj2) ��+��u�+ 2 juj2u = 0; (4.11)whi
h is integrable (Ablowitz & Ladik, 1976). In terms of the variablesz1 = <fug; z2 = =fug; z3 = z1+; z4 = z2+;the Ablowitz-Ladik equation amounts to the multisymple
ti
 system (4.8), whereH(z) = (z1)2 + (z2)2 � ln�1 + (z1)2 + (z2)2	+ 12�(z3)2 + (z4)2	;the only nonzero 
oeÆ
ients Kij(z) and Mij areK12 = �K21 = �1 + (z1)2 + (z2)2	�1; M31 =M42 = 1:Having identi�ed the multisymple
ti
 formulation of the Ablowitz-Ladik equation,we 
an immediately write down the 
onservation law (4.10). In terms of the original
omplex variable u, (4.10) amounts toDt � juj2 � ln�1 + juj2	� 12 j�+uj2 �+�+ �<���(u)u;t	 � = 0: (4.12)To the best of my knowledge, the 
onservation law (4.12) is new. Other 
onservationlaws 
an be obtained from (4.6) provided that X generates variational symmetries.Some higher symmetries of the Ablowitz-Ladik equation have re
ently been 
om-puted by G�okta�s & Hereman, 1998. For further dis
ussion of lo
al symmetries ofdi�erential-di�eren
e equations, see Quispel et al. (1992).5. Con
lusionsFor any multisymple
ti
 system of PDEs, the two-forms �� are 
losed and satisfy thestru
tural 
onservation law ��;� = 0. From this starting-point, we have shown thatthe stru
tural 
onservation law is a di�erential 
onsequen
e of a quasi-
onservationlaw that is 
onne
ted with Noether's Theorem. Furthermore, we have also seenthat every multisymple
ti
 system of PDEs 
an be written as the Euler-Lagrangeequations for a Lagrangian that is �rst-order and linear in the derivatives. Byreversing the line of argument, we have 
onstru
ted a multisymple
ti
 stru
ture forArti
le submitted to Royal So
iety



10 P. E. Hydona dis
rete independent variable that shares almost all of the important features ofthe 
ontinuous multisymple
ti
 stru
ture. The generalization to multiple dis
retevariables is obvious: simply add these variables to the Lagrangian, whilst retainingthe property that the Lagrangian is �rst-order and linear in all di�eren
es andderivatives.For brevity, most of this paper has been devoted to developing the general theoryof multisymple
ti
 systems. Nevertheless, for ea
h of the appli
ations that we have
onsidered, the multisymple
ti
 formulation gives new information. Appli
ation ofthe dis
rete multisymple
ti
 stru
ture to numeri
al integration will be 
onsideredin a separate paper. It remains to be seen whether this stru
ture is as useful as its
ontinuous 
ounterpart for stability analysis.A
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