
CLASSIFICATION OF DISCRETE SYMMETRIES OFORDINARY DIFFERENTIAL EQUATIONSF. E. LAINE-PEARSON AND P. E. HYDONAbstra
t. A simple method for determining all dis
rete point symmetries ofa given di�erential equation has been developed re
ently. The method uses
onstant matri
es that represent inequivalent automorphisms of the Lie algebraspanned by the Lie point symmetry generators. It may be diÆ
ult to obtainthese matri
es if there are three or more independent generators, be
ause thematrix elements are determined by a large system of algebrai
 equations. Thispaper 
ontains a 
lassi�
ation of the automorphisms that 
an o

ur in the
al
ulation of dis
rete symmetries of s
alar ordinary di�erential equations,up to equivalen
e under real point transformations. (The results are alsoappli
able to many partial di�erential equations.) Where these automorphisms
an be realized as point transformations, we list all inequivalent realizations.By using this 
lassi�
ation as a look-up table, readers 
an 
al
ulate the dis
retepoint symmetries of a given ordinary di�erential equation with very little e�ort.1. Introdu
tionDis
rete symmetries of di�erential equations have many appli
ations. They areused in the bifur
ation analysis of nonlinear systems, in quantum �eld theory, andin the numeri
al solution of boundary value problems [1, 2, 3℄. Dis
rete symme-tries may also enable one to 
onstru
t new solutions from a known solution, eitherdire
tly or via an auto-B�a
klund transformation. Some dis
rete symmetries 
orre-spond to important geometri
 properties of the di�erential equation. For example,the Chazy equation has a 
ir
le of singularities [4℄; its dis
rete symmetries in
ludeinversion in this 
ir
le, with the 
onsequen
e that two apparently di�erent symme-try redu
tions produ
e the same redu
ed ordinary di�erential equation (ODE).The 
hief obsta
le to obtaining dis
rete symmetries is that the symmetry 
ondi-tion amounts to a highly-
oupled system of nonlinear partial di�erential equations(PDEs). In general, this system is intra
table; we know of only one nonlinear ODEfor whi
h the symmetry 
ondition has been solved dire
tly [5℄. An alternative ap-proa
h is to use an ansatz [6℄. This has the advantage that the 
al
ulations aretra
table; the drawba
k is that one 
annot be sure of �nding all dis
rete symmetriesin a given 
lass.It is usually easy to �nd all one-parameter Lie groups of point symmetries ofa given di�erential equation. This is done by solving the linearized symmetry
ondition to obtain the Lie algebra of point symmetry generators. For a simpleintrodu
tion to this te
hnique, see [7℄ or [8℄; more detailed a

ounts are given in [9℄and [10℄.Every real ODE of the formy(n) = ! �x; y; y0; : : : ; y(n�1)� ; n � 2; (1.1)has a �nite-dimensional Lie algebra L of point symmetry generators, with a basisXi = �i(x; y)�x + �i(x; y)�y ; i = 1; : : : ; R: (1.2)1We gratefully a
knowledge the support of the NuÆeld Foundation.1



2 F. E. LAINE-PEARSON AND P. E. HYDONThe generators in L 
an be exponentiated to obtain an R-parameter lo
al Liegroup a
tion on the (x; y) plane. All su
h lo
al Lie group a
tions that have no �xedpoints are 
lassi�ed, up to equivalen
e under real point transformations, in [11℄.The 
orresponding Lie algebras of generators are listed by Olver in Tables 1, 3, and6 of [12℄; these tables 
ontain all possible Lie algebras for real s
alar ODEs (1.1).Hydon [13℄ introdu
ed a simple method for obtaining all dis
rete point sym-metries of a given ODE (1.1) with a non-zero Lie algebra (1.2). Every symmetryindu
es an automorphism of L, whi
h is a linear transformation of the basis gener-ators Xi that preserves the 
ommutator relations[Xi; Xj ℄ = 
kijXk:In essen
e, Hydon's method 
lassi�es all possible automorphisms of L, fa
toringout those that are equivalent under the a
tion of any symmetry in the Lie groupgenerated by L. Then it is possible to obtain the most general realization of the in-equivalent automorphisms as point transformations. Finally, by substituting thesetransformations into the symmetry 
ondition, the user obtains a 
omplete list of in-equivalent dis
rete symmetries of the given ODE. The method is outlined in detail(with a worked example) in x2.The most diÆ
ult part of the 
al
ulation is the determination of all inequivalentreal automorphisms. Our aim in writing this paper is to save the reader the work ofdoing this. To this end, we have 
al
ulated these automorphisms for the Lie algebrasthat are listed in Olver's tables; the results are listed in a look-up table (see x3).The table in
ludes the most general 
lass of inequivalent point transformations ofthe plane (for appli
ation to s
alar ODEs). The results in x3 are nearly (but notquite) exhaustive. A few of the Lie algebras listed in Olver's tables belong to in�nitefamilies. The look-up table in
ludes the �rst two Lie algebras in ea
h su
h family,whi
h are the ones that are most likely to o

ur in appli
ations. In x4, we 
ommenton the higher-dimensional Lie algebras in these families.With the ex
eption of the above in�nite families, our 
lassi�
ation is 
omplete.To save spa
e, the results are stated without proof. They 
an be 
he
ked using themethod des
ribed in x2. This requires 
onsiderable patien
e and a reliable 
omputeralgebra system; we have used Maple [17℄ intera
tively.Our 
lassi�
ation of inequivalent automorphisms is not only appli
able to s
alarODEs; it 
an also be used where the symmetry generators of a s
alar PDE or systemof ODEs 
onstitute one of the Lie algebras in Olver's tables. Then the realizationsof these automorphisms need not a
t as transformations on a plane, but they 
anbe 
al
ulated as shown in [14℄. This is illustrated in x5.As the purpose of this paper is to provide a 
lassi�
ation, we have not in
ludedexamples of the many appli
ations of dis
rete symmetries. Instead we refer thereader to [7, 13, 14, 15, 16℄, where some substantial examples are des
ribed.2. The 
lassifi
ation methodThis se
tion summarizes the ideas behind the 
lassi�
ation of the inequivalentautomorphisms of the Lie algebra. Suppose that a di�eomorphism� : (x; y) 7! �x̂(x; y); ŷ(x; y)�is a symmetry of (1.1). For every one-parameter Lie group of symmetries, e�Xi ,there is an asso
iated Lie group of symmetries, �e�Xi��1, whose in�nitesimal gen-erator is X̂i = �Xi��1:In parti
ular, if Xi is a generator in the basis (1.2) thenX̂i = �i(x̂; ŷ)�x̂ + �i(x̂; ŷ)�ŷ:



CLASSIFICATION OF DISCRETE SYMMETRIES 3The generators X̂i; i = 1; : : : ; R, belong to L, whi
h is the Lie algebra of allpoint symmetry generators. Furthermore, they are linearly independent, so they
onstitute a basis for L. Therefore there exists a nonsingular matrix B = (bli) su
hthat Xi = bliX̂l; i = 1; : : : ; R: (2.1)(The usual summation 
onvention is adopted.) By applying (2.1) to the unknownfun
tions x̂(x; y) and ŷ(x; y) we obtain a system of 2R determining equations :Xix̂ = bli�l(x̂; ŷ); Xiŷ = bli�l(x̂; ŷ): (2.2)The �rst-order quasilinear PDEs (2.2) 
an be solved by the method of 
hara
teristi
sor (if R � 3) by algebrai
 means. The general solution of the determining equationsdepends upon the unknown 
onstants bli and (possibly) some unknown 
onstantsor fun
tions of integration. Every point symmetry of the ODE (1.1) is in
ludedin the general solution, whi
h may also in
lude point transformations that are notsymmetries. At this stage, it is ne
essary to substitute the general solution (x̂; ŷ)into the symmetry 
ondition,ŷ(n) = ! �x̂; ŷ; : : : ; ŷ(n�1)� when (1.1) holds. (2.3)The point symmetries of (1.1) are those solutions of the determining equations thatalso satisfy (2.3).So far, we have not 
onsidered the matrix B in detail. For most Lie algebras, thismatrix is strongly 
onstrained, whi
h greatly simpli�es the determining equations(2.2). Suppose that in the basis (1.2) the 
ommutator relations are[Xi; Xj ℄ = 
kijXk: (2.4)As ea
h X̂i is obtained from Xi merely by repla
ing (x; y) with (x̂; ŷ), the new basishas the 
ommutator relations [X̂i; X̂j ℄ = 
kijX̂k; (2.5)with the same stru
ture 
onstants 
kij as in (2.4). Hen
e ea
h symmetry � indu
esan automorphism of the Lie algebra, whi
h is de�ned by� : Xi 7! bliXl; i = 1; : : : ; R; det(B) 6= 0: (2.6)By substituting (2.1) into (2.4) and taking (2.5) into a

ount, we obtain the follow-ing system of nonlinear 
onstraints on the elements of B:
nlmblibmj = 
kijbnk ; 1 � i < j � R; 1 � n � R: (2.7)If L is abelian the stru
ture 
onstants are all zero, so there are no 
onstraints.However, most Lie algebras a
ting on the plane are nonabelian, and the problem of�nding all symmetries 
an be simpli�ed by �rst �nding all matri
es B that satisfythe 
onstraints. This usually requires 
omputer algebra, be
ause there 
an be upto 12R2(R � 1) 
onstraints.Our aim is to obtain an inequivalent set of dis
rete symmetries, so we need tofa
tor out the one-parameter Lie groups generated by ea
h Xj in turn. LetA(j; �) = exp��C(j)	; where �C(j)�ki = 
kij : (2.8)If � = e�Xj for some � then B = A(j; �); further details are given in [7℄. Multi-pli
ation in the symmetry group 
orresponds to multipli
ation of the matri
es Bthat represent the asso
iated automorphisms. Hen
e, for ea
h j su
h that C(j) isnon-zero, the Lie symmetries generated by Xj 
an be fa
tored out as follows. Firstrepla
e B by either BA(j; �) or A(j; �)B, then 
hoose � to be a value that simpli�esat least one entry in the new matrix. The aim is to 
reate zeros in the matrix B, inorder to simplify the determining equations and nonlinear 
onstraints. Ea
h matrix



4 F. E. LAINE-PEARSON AND P. E. HYDONA(j; �) should be used at most on
e. However, if C(j) = 0 for some j then A(j; �)is the identity matrix (for all �). This o

urs when Xj is in the 
entre of L, whi
hmeans that it 
ommutes with every generator. These symmetries indu
e a trivialautomorphism of L; they 
an only be fa
tored out on
e the determining equationshave been solved.To illustrate the above ideas, 
onsider the ODEy000 = y00 � (y00)2; (2.9)whose Lie point symmetries are generated byX1 = �x ; X2 = x�y ; X3 = �y : (2.10)Although (2.9) is easily solved, it is useful for understanding how to 
al
ulateinequivalent dis
rete symmetries. The Lie algebra is nonabelian and has a nontrivial
entre, so most aspe
ts of the method 
an be seen in this simple example. The onlynonzero stru
ture 
onstants are
312 = 1; 
321 = �1; (2.11)so X3 is a basis for the 
entre of the Lie algebra. The matri
es 
orresponding tothe automorphisms generated by X1 and X2 areA(1; �) = 24 1 0 00 1 ��0 0 1 35 ; A(2; �) = 24 1 0 �0 1 00 0 1 35 :The 
onstraints (2.7) with n = 1 amount to
kijb1k = 0; 1 � i < j � 3:These yield only one 
onstraint, whi
h is obtained by setting (i; j) = (1; 2), namelyb13 = 0:Similarly, the n = 2 
onstraints amount tob23 = 0;so b33 6= 0 (be
ause B is nonsingular). To simplify B further, premultiply it byA(1; b32=b33) to repla
e b32 by zero. Then premultiply B by A(2;�b31=b33) to repla
eb31 by zero, so that now B = 24 b11 b21 0b12 b22 00 0 b33 35 : (2.12)We have not yet used the nonlinear 
onstraints with n = 3; the above simpli�
ationshave redu
ed these 
onstraints to the single equationb11b22 � b21b12 = b33: (2.13)The matri
es (2.12) satisfying (2.13) represent the inequivalent automorphisms ofthe abstra
t 3-dimensional Lie algebra whose only nonzero stru
ture 
onstants are(2.11). To �nd out whi
h of these automorphisms 
an be realized as real pointtransformations of the plane, we must solve the determining equations,24 x̂x ŷxxx̂y xŷyx̂y ŷy 35 = B 24 1 00 x̂0 1 35 = 24 b11 b21x̂b12 b22x̂0 b33 35 :Taking (2.13) into a

ount, the general solution of the determining equations isx̂ = b11x; ŷ = 12b11b21x2 + b11b22y + 
; b11b22 6= 0; (2.14)where 
 is a 
onstant of integration. Note that the determining equations requirethat b12 = 0, so not every automorphism 
an be realized as a point transformation



CLASSIFICATION OF DISCRETE SYMMETRIES 5of the plane. Now we fa
tor out the one-parameter Lie group generated by X3,setting 
 = 0 for simpli
ity. Finally, we must 
he
k the symmetry 
ondition (2.3)for the ODE (2.9) to see whi
h of the inequivalent point transformations (2.14) aresymmetries. From (2.14), ŷ00 = b21b11 + b22b11 y00;ŷ000 = b22(b11)2 y000:Substituting these results into the symmetry 
ondition (2.3), we �nd that either(x̂; ŷ) = (x; y);or (x̂; ŷ) = �� x; 12x2 � y�:So the group of inequivalent dis
rete symmetries of the ODE (2.9) is generated by�1 : (x; y) 7! �� x; 12x2 � y�:This group is isomorphi
 to Z2, be
ause �21 is the identity transformation.3. The 
lassifi
ationIn this se
tion, we present the inequivalent real automorphisms of the Lie alge-bras of point symmetry generators for ODEs. We also present their realizations asinequivalent point transformations of the real plane. Commonly, the inequivalentautomorphisms and inequivalent point transformations form �nite groups. Wherethis o

urs, we write down a presentation of the �nite group in terms of a minimalset of generators. For in�nite groups, we state a set of generators for the wholegroup.For most Lie algebras, we have used Olver's 
hoi
e of basis in Tables 1, 3, and6 of [12℄. Ex
eptions o

ur where there exists a basis with fewer nonzero stru
ture
onstants than Olver's basis. Some Lie groups have several realizations as pointtransformation groups that 
annot be mapped to one another by a real point trans-formation. (The most extreme example is sl(2), whi
h has four su
h realizations.)Where this o

urs, we �rst state the nontrivial 
ommutators and inequivalent auto-morphisms of the underlying Lie algebra, whi
h are independent of the realizations.Then we write down the dis
rete point transformations for ea
h realization in turn.To use our results, begin by 
al
ulating the Lie algebra of Lie point symmetrygenerators for the given ODE. If your 
hosen basis does not 
oin
ide with anyof those listed that are of the same dimension, seek a real point transformationthat puts the basis into one of the listed forms. It is usually easy to obtain asuitable transformation by simplifying the 
ommutators as far as possible. Thegiven ODE should be written in terms of the new variables if a transformation isused. Then look up the group of inequivalent realizations as point transformations.The generators of this group are of the form�i : (x; y) 7! �f(x; y); g(x; y)�for some fun
tions f and g. Substitutex̂ = f(x; y); ŷ = g(x; y);into the symmetry 
ondition (2.3) to �nd out whi
h of these are symmetries.For example, to �nd the inequivalent dis
rete symmetries of (2.9) qui
kly, beginby 
al
ulating the Lie algebra (2.10). This Lie algebra is 3d in our 
lassi�
ation,



6 F. E. LAINE-PEARSON AND P. E. HYDONwhi
h states that the inequivalent realizations of automorphisms as point transfor-mations are of the form�1 : (x; y) 7! �b11x; 12b11b21x2 + b11b22y�; b11b22 6= 0:The dis
rete symmetries are then obtained by substituting (2.14) into the symmetry
ondition as shown in x2.The following notations are used throughout the 
lassi�
ation. Arbitrary 
on-stants and fun
tions are denoted by 
i and Fi respe
tively. The most general non-trivial point transformation for whi
h B is the identity is denoted by �0. Whereany �nite group o

urs, the generators ��i satisfy the standard presentation for thatgroup, whi
h is listed in the Appendix. In referring to Olver's tables, we state theinteger k and the fun
tions �i used by Olver where this is ne
essary.One-dimensional Lie algebras1a Lie algebra: RBasis (Olver's no. 3.1, k = 1): X1 = �y:Inequivalent automorphisms :�1 : X1 7! b11X1; b11 6= 0:Inequivalent realizations :�0 : (x; y) 7! �F1(x); y + F2(x)�; F 01(x) 6= 0; F2(0) = 0;�1 : (x; y) 7! �x; b11y�; b11 6= 0:Two-dimensional Lie algebras2a Lie algebra: R2Basis A (Olver's no. 3.1, k = 2):X1 = �y; X2 = x�y :Basis B (Olver's no. 1.5, k = 1; �01(x) = 0):X1 = �x; X2 = �y:Nontrivial 
ommutators : The generators 
ommute.Inequivalent automorphisms :�1 : (X1; X2) 7! �b11X1 + b21X2; b12X1 + b22X2�; b11b22 � b21b12 6= 0:Inequivalent realizations :Basis A: �0 : (x; y) 7! �x; y + F1(x)�; F1(0) = F 01(0) = 0;



CLASSIFICATION OF DISCRETE SYMMETRIES 7�1 : (x; y) 7! �b11x� b12b22 � b21x ; b11b22 � b21b12b22 � b21x y�; b11b22 � b21b12 6= 0:Basis B: �1 : (x; y) 7! �b11x+ b12y; b21x+ b22y�; b11b22 � b21b12 6= 0:2b Lie algebra: a(1) = R n RBasis A (Olver's no. 3.2, k = 1):X1 = �y; X2 = y�y:Basis B (Olver's no. 1.5, k = 1; �01(x) 6= 0):X1 = e�x�y; X2 = �x:Nontrivial 
ommutators : [X1; X2℄ = X1:Inequivalent automorphisms :�1 : (X1; X2) 7! (�X1; X2):The group of inequivalent automorphisms is Z2, with ��1 = �1.Inequivalent realizations :Basis A: �0 : (x; y) 7! (F1(x); y); F 01(x) 6= 0;�1 : (x; y) 7! (x; �y):Basis B: �0 : (x; y) 7! �x+ 
1; 
2 + e�
1y�;�1 : (x; y) 7! (x; �y):Three-dimensional Lie algebras3a Lie algebra: a(1) � RBasis A (Olver's no. 1.6, k = 1; also 1.7, k = 1; � = 0):X1 = �x; X2 = x�x; X3 = �y:Basis B (Olver's no. 1.5; k = 2; �1(x) = e�x; �2(x) = 1):X1 = e�x�y; X2 = �x; X3 = �y:Nontrivial 
ommutators : [X1; X2℄ = X1:



8 F. E. LAINE-PEARSON AND P. E. HYDONInequivalent automorphisms :�1 : (X1; X2; X3) 7! ��X1; X2 + b32X3; b33X3�; b33 6= 0:Inequivalent realizations :Basis A: �1 : (x; y) 7! �� x; b33y�; b33 6= 0:Basis B: �1 : (x; y) 7! �x+ 
1; �e�
1y + b32x�:3b Lie algebra: a(1) n RBasis A (Olver's no. 1.7, k = 1; � = 1):X1 = �x�x � y�y; X2 = �x; X3 = �y:Basis B (Olver's no. 3.2; k = 2):X1 = �y�y; X2 = �y; X3 = x�y :Nontrivial 
ommutators :[X1; X2℄ = X2; [X1; X3℄ = X3:Inequivalent automorphisms :�1 : (X1; X2; X3) 7! �X1; b22X2 + b32X3; b23X2 + b33X3�; b22b33 � b32b23 = �1:Inequivalent realizations :Basis A: �1 : (x; y) 7! �b22x+ b23y; b32x+ b33y�; b22b33 � b32b23 = �1:Basis B: �1 : (x; y) 7! �b22x� b23b33 � b32x ; � yb33 � b32x�; b22b33 � b32b23 = �1:3
 Lie algebra: a(1) n RBasis A (Olver's no. 1.7, k = 1; � 62 f0; 1g):X1 = �x�x � �y�y; X2 = �x; X3 = �y:Basis B (Olver's no. 1.5; k = 1; �1(x) = ex; �2(x) = e�x; � 62 f0; 1g):X1 = �x; X2 = ex�y; X3 = e�x�y:Nontrivial 
ommutators :[X1; X2℄ = X2; [X1; X3℄ = �X3:Inequivalent automorphisms :�1 : (X1; X2; X3) 7! �X1; �X2; b33X3�; b33 6= 0:



CLASSIFICATION OF DISCRETE SYMMETRIES 9Also, if � = �1 only, �2 : (X1; X2; X3) 7! ��X1; X3; X2�:Inequivalent realizations :Basis A: �1 : (x; y) 7! �� x; b33y�; b33 6= 0:Also, if � = �1 only, �2 : (x; y) 7! �y; x�:Basis B: �1 : (x; y) 7! �x+ 
1; �e�
1y + 
2�:Also, if � = �1 only, �2 : (x; y) 7! �� x; y�:3d Lie algebra: R n R2Basis (Olver's no. 1.5; k = 2; �1(x) = x; �2(x) = 1):X1 = �x; X2 = x�y ; X3 = �y:Inequivalent automorphisms :�1 : (X1; X2; X3) 7! �b11X1 + b21X2; b12X1 + b22X2; (b11b22 � b21b12)X3�;where b11b22 � b21b12 6= 0.Inequivalent realizations :�1 : (x; y) 7! �b11x; 12b11b21x2 + b11b22y�; b11b22 6= 0:3e Lie algebra: R n R2Basis A (Olver's no. 1.8, k = 1):X1 = �x�x � (x+ y)�y; X2 = �x; X3 = �y:Basis B (Olver's no. 1.5; k = 1; �1(x) = ex; �2(x) = xex):X1 = �x; X2 = ex�y; X3 = xex�y:Nontrivial 
ommutators :[X1; X2℄ = X2; [X1; X3℄ = X2 +X3:Inequivalent automorphisms :�1 : (X1; X2; X3) 7! �X1; b33X2; b33X3�; b33 6= 0:Inequivalent realizations :Basis A: �1 : (x; y) 7! �b33x; b33y�; b33 6= 0:



10 F. E. LAINE-PEARSON AND P. E. HYDONBasis B: �0 : (x; y) 7! �x; y + 
1�;�1 : (x; y) 7! �x; b33y�; b33 6= 0:3f Lie algebra: R n R2Basis A (Olver's no. 6.1, � > 0):X1 = �(�x+ y)�x + (x� �y)�y; X2 = �x; X3 = �y:Basis B (Olver's no. 1.5; k = 1; �1(x) = e�x 
os(x); �2(x) = e�x sin(x); � > 0):X1 = �x; X2 = e�x 
os(x)�y ; X3 = e�x sin(x)�y :Nontrivial 
ommutators :[X1; X2℄ = �X2 �X3; [X1; X3℄ = X2 + �X3:Inequivalent automorphisms :�1 : (X1; X2; X3) 7! �X1; etX2; etX3�; t 2 [0; 2��):Inequivalent realizations :Basis A: �1 : (x; y) 7! �etx; ety�; t 2 [0; 2��):Basis B: �0 : (x; y) 7! �x+ n�; (�1)nen��y + 
1�; n 2 Z;�1 : (x; y) 7! �x; ety�; t 2 [0; 2��):3g Lie algebra: R n R2Basis A (Olver's no. 6.1, � = 0):X1 = �y�x + x�y; X2 = �x; X3 = �y:Basis B (Olver's no. 1.5; k = 1; �1(x) = 
os(x); �2(x) = sin(x)):X1 = �x; X2 = 
os(x)�y ; X3 = sin(x)�y :Nontrivial 
ommutators :[X1; X2℄ = �X3; [X1; X3℄ = X2:Inequivalent automorphisms :�1 : (X1; X2; X3) 7! �X1; etX2; etX3�; t 2 R;�2 : (X1; X2; X3) 7! ��X1; �X2; X3�:Inequivalent realizations :



CLASSIFICATION OF DISCRETE SYMMETRIES 11Basis A: �1 : (x; y) 7! �etx; ety�; t 2 R;�2 : (x; y) 7! �� x; y�:Basis B: �0 : (x; y) 7! �x+ n�; (�1)ny + 
1�; n 2 Z;�1 : (x; y) 7! �x; ety�; t 2 R;�2 : (x; y) 7! �� x; �y�:3h Lie algebra: sl(2)Basis A (Olver's no. 1.1):X1 = �x; X2 = x�x � y�y; X3 = x2�x � 2xy�y:Basis B (Olver's no. 1.2):X1 = �x; X2 = x�x � y�y; X3 = x2�x � (2xy + 1)�y:Basis C (Olver's no. 6.3):X1 = �x; X2 = x�x + y�y; X3 = (x2 � y2)�x + 2xy�y:Basis D (Olver's no. 3.3):X1 = �y; X2 = y�y; X3 = y2�y:Nontrivial 
ommutators :[X1; X2℄ = X1; [X1; X3℄ = 2X2; [X2; X3℄ = X3:Inequivalent automorphisms :�1 : (X1; X2; X3) 7! ��X1; X2; �X3�;�2 : (X1; X2; X3) 7! �X3; �X2; X1�:The group of inequivalent automorphisms is Z2
Z2, with ��1 = �1; ��2 = �2.Inequivalent realizations :Basis A: �0 : (x; y) 7! �x; 
1y�;�1 : (x; y) 7! �� x; y�;�2 : (x; y) 7! �� 1x ; x2y� :Basis B: �0 : (x; y) 7! �x+ 1y ; �y� ;�1 : (x; y) 7! �� x;�y�;



12 F. E. LAINE-PEARSON AND P. E. HYDON�2 : (x; y) 7! �� 1x ; x2y + x� :This group of realizations is Z2
Z2
Z2, with ��1 = �1; ��2 = �2; ��3 = �0.Basis C: �0 : (x; y) 7! �x; �y�;�1 : (x; y) 7! �� x; y�;�2 : (x; y) 7! �� xx2 + y2 ; yx2 + y2� :This group of realizations is Z2
Z2
Z2, with ��1 = �1; ��2 = �2; ��3 = �0.Basis D: �0 : (x; y) 7! �F1(x); y�; F 01(x) 6= 0;�1 : (x; y) 7! �x;�y�;�2 : (x; y) 7! �x ; �1y� :3i Lie algebra: so(3)Basis (Olver's no. 6.3):X1 = y�x � x�y; X2 = 12 (1 + x2 � y2)�x + xy�y; X3 = xy�x + 12 (1� x2 + y2)�y :Inequivalent automorphisms :All automorphisms are equivalent to the identity.Inequivalent realizations :�0 : (x; y) 7! �� xx2 + y2 ; � yx2 + y2� :This group of realizations is Z2, with ��1 = �0.Four-dimensional Lie algebras4a Lie algebra: a(1) � a(1)Basis A (Olver's no. 1.9, k = 1):X1 = �x; X2 = x�x; X3 = �y; X4 = y�y:Basis B (Olver's no. 1.6; k = 2; �1(x) = ex; �2(x) = e�x; � 6= 1):X1 = e�x�y; X2 = 11� ���x + y�y�; X3 = ex�y; X4 = 1�� 1��x + �y�y�:Nontrivial 
ommutators :[X1; X2℄ = X1; [X3; X4℄ = X3:



CLASSIFICATION OF DISCRETE SYMMETRIES 13Inequivalent automorphisms :�1 : (X1; X2; X3; X4) 7! �X3; X4; �X1; X2�;�2 : (X1; X2; X3; X4) 7! �X1; X2; �X3; X4�:The group of inequivalent automorphisms is D(4), with ��1 = �1; ��2 = �2.Inequivalent realizations :Basis A: �1 : (x; y) 7! �� y; x�;�2 : (x; y) 7! �x; �y�:This group of realizations is D(4), with ��1 = �1; ��2 = �2.Basis B: �1�2 : (x; y) 7! �� x; �e�(�+1)xy�;�21 : (x; y) 7! �x; �y�:This group of realizations is Z2
Z2, with ��1 = �1�2; ��2 = �21.4b Lie algebra: a(1) n R2Basis (Olver's no. 1.7, k = 2; � 6= 2):X1 = �x; X2 = x�x + �y�y; X3 = �y; X4 = x�y :Inequivalent automorphisms :�1 : (X1; X2; X3; X4) 7! ��X1; X2; b33X3; �b33X4�; b33 6= 0:Also, if � = 0,�2 : (X1; X2; X3; X4) 7! �X4; �X2 + b32X3; X3; �X1�:Inequivalent realizations :�1 : (x; y) 7! �� x; b33y�; b33 6= 0:Note that �2 is not realizable.4
 Lie algebra: a(1) n R2Basis (Olver's no. 1.7, k = 2; � = 2):X1 = �x; X2 = x�x + 2y�y; X3 = �y; X4 = x�y :Inequivalent automorphisms :�1 : (X1; X2; X3; X4) 7! �b11X1 + b41X4; X2; �X3; b14X1 + b44X4�;where b11b44 � b41b14 = �1.Inequivalent realizations :�1 : (x; y) 7! �b11x; 12b11b41x2 � y�; b11 6= 0:



14 F. E. LAINE-PEARSON AND P. E. HYDON4d Lie algebra: R2 n R2Basis A (Olver's no. 6.4):X1 = y�x � x�y; X2 = x�x + y�y; X3 = �y; X4 = �x:Basis B (Olver's no. 1.6; k = 2; �1(x) = 
osx; �2(x) = sinx):X1 = �x; X2 = y�y; X3 = 
osx�y ; X4 = sinx�y :Nontrivial 
ommutators :[X1; X3℄ = �X4; [X1; X4℄ = X3; [X2; X3℄ = �X3; [X2; X4℄ = �X4:Inequivalent automorphisms :�1 : (X1; X2; X3; X4) 7! ��X1; X2; X3; �X4�:The group of inequivalent automorphisms is Z2, with ��1 = �1.Inequivalent realizations :Basis A: �1 : (x; y) 7! �� x; y�:This group of realizations is Z2, with ��1 = �1.Basis B: �0 : (x; y) 7! �x+ n�; (�1)ny�; n 2 Z;�1 : (x; y) 7! �� x; y�:4e Lie algebra: R2 nR2Basis (Olver's no. 1.6, k = 2; �1(x) = 1; �2(x) = x):X1 = �x; X2 = y�y; X3 = �y; X4 = x�y :Inequivalent automorphisms :�1 : (X1; X2; X3; X4) 7! �b11X1; X2; �X3; � 1b11X4�; b11 6= 0:Inequivalent realizations :�1 : (x; y) 7! �b11x; �y�; b11 6= 0:4f Lie algebra: R n (R n R2)Basis (Olver's no. 1.8, k = 2):X1 = �x; X2 = x�x + (x2 + 2y)�y; X3 = �y; X4 = x�y:Inequivalent automorphisms :�1 : (X1; X2; X3; X4) 7! �b11X1; X2; (b11)2X3; b11X4�; b11 6= 0:



CLASSIFICATION OF DISCRETE SYMMETRIES 15Inequivalent realizations :�1 : (x; y) 7! �b11x; (b11)2y�; b11 6= 0:4g Lie algebra: sl(2)� RBasis A (Olver's no. 1.3):X1 = �x; X2 = x�x � 12y�y; X3 = x2�x � xy�y; X4 = y�y:Basis B (Olver's no. 1.10; k = 1):X1 = �x; X2 = x�x; X3 = x2�x; X4 = �y:Nontrivial 
ommutators :[X1; X2℄ = X1; [X1; X3℄ = 2X2; [X2; X3℄ = X3:Inequivalent automorphisms :�1 : (X1; X2; X3; X4) 7! ��X1; X2; �X3; b44X4�; b44 6= 0;�2 : (X1; X2; X3; X4) 7! �X3; �X2; X1; X4�:Inequivalent realizations :Basis A: �0 : (x; y) 7! �x; �y�;�1 : (x; y) 7! �� x; y�;�2 : (x; y) 7! �� 1x; xy� :This group of realizations is D(4), with ��1 = �2; ��2 = �1.Basis B: �1(b44) : (x; y) 7! �� x; b44y�; b44 6= 0;�2 : (x; y) 7! �� 1x; y� :Five-dimensional Lie algebras5a Lie algebra: sa(2) = sl(2)n R2Basis A (Olver's no. 6.5):X1 = y�x; X2 = 12 (x�x � y�y); X3 = �x�y; X4 = �x; X5 = �y:Basis B (Olver's no. 1.10; k = 2):X1 = �x; X2 = x�x + 12y�y; X3 = x2�x + xy�y; X4 = �y; X5 = �x�y:Nontrivial 
ommutators :[X1; X2℄ = X1; [X1; X3℄ = 2X2; [X2; X3℄ = X3; [X1; X5℄ = �X4;



16 F. E. LAINE-PEARSON AND P. E. HYDON[X2; X4℄ = � 12X4; [X2; X5℄ = 12X5; [X3; X4℄ = X5:Inequivalent automorphisms :�1 : (X1; X2; X3; X4; X5) 7! �X1; X2; X3; etX4; etX5�; t 2 R;�2 : (X1; X2; X3; X4; X5) 7! ��X1; X2; �X3; X4; �X5�;�3 : (X1; X2; X3; X4; X5) 7! �X3; �X2; X1; X5; �X4�:Inequivalent realizations :Basis A: �1 : (x; y) 7! �etx; ety�; t 2 R;�2 : (x; y) 7! �x; �y�;�3 : (x; y) 7! �� y; x�:Basis B: �1 : (x; y) 7! �x; ety�; t 2 R;�2 : (x; y) 7! �� x; y�;�3 : (x; y) 7! �� 1x ; yx� :5b Lie algebra: sl(2)� a(1)Basis (Olver's no. 1.11, k = 1):X1 = �x; X2 = x�x; X3 = x2�x; X4 = �y; X5 = y�y:Inequivalent automorphisms :�1 : (X1; X2; X3; X4; X5) 7! ��X1; X2; �X3; X4; X5�;�2 : (X1; X2; X3; X4; X5) 7! �X3; �X2; X1; X4; X5�;�3 : (X1; X2; X3; X4; X5) 7! �X1; X2; X3; �X4; X5�:The group of inequivalent automorphisms is Z2
Z2
Z2, with��1 = �1; ��2 = �2; ��3 = �3:Inequivalent realizations : �1 : (x; y) 7! �� x; y�;�2 : (x; y) 7! �� 1x ; y� ;�3 : (x; y) 7! �x; �y�:This group of realizations is Z2
Z2
Z2, with��1 = �1; ��2 = �2; ��3 = �3:



CLASSIFICATION OF DISCRETE SYMMETRIES 175
 Lie algebra: (a(1) � R) n R2Basis (Olver's no. 1.9, k = 2):X1 = �x; X2 = x�x; X3 = y�y; X4 = �y; X5 = x�y :Inequivalent automorphisms :�1 : (X1; X2; X3; X4; X5) 7! �X5; �X2; X2 +X3; X4; �X1�;�2 : (X1; X2; X3; X4; X5) 7! �X1; X2; X3; �X4; �X5�:The group of inequivalent automorphisms is D(4), with ��1 = �1; ��2 = �2.Inequivalent realizations : �21 : (x; y) 7! �� x; y�;�2 : (x; y) 7! �x; �y�:This group of realizations is Z2
Z2, with ��1 = �21; ��2 = �2.Six-dimensional Lie algebras6a Lie algebra: a(2) = (sl(2)� R) nR2Basis A (Olver's no. 6.6):X1 = y�x; X2 = 12 (x�x � y�y); X3 = �x�y;X4 = �x; X5 = �y; X6 = x�x + y�y:Basis B (Olver's no. 1.11; k = 2):X1 = �x; X2 = x�x + 12y�y; X3 = x2�x + xy�y;X4 = �y; X5 = �x�y; X6 = y�y:Nontrivial 
ommutators :[X1; X2℄ = X1; [X1; X3℄ = 2X2; [X2; X3℄ = X3;[X1; X5℄ = �X4; [X2; X4℄ = � 12X4; [X2; X5℄ = 12X5;[X3; X4℄ = X5; [X4; X6℄ = X4; [X5; X6℄ = X5:Inequivalent automorphisms :�1 : (X1; X2; X3; X4; X5; X6) 7! ��X1; X2; �X3; X4; �X5; X6�;�2 : (X1; X2; X3; X4; X5; X6) 7! �X3; �X2; X1; X5; �X4; X6�:The group of inequivalent automorphisms is D(4), with ��1 = �2; ��2 = �1.Inequivalent realizations :Basis A: �1 : (x; y) 7! �x; �y�;



18 F. E. LAINE-PEARSON AND P. E. HYDON�2 : (x; y) 7! �� y; x�:This group of realizations is D(4), with ��1 = �2; ��2 = �1.Basis B: �1 : (x; y) 7! �� x; y�;�2 : (x; y) 7! �� 1x ; yx� :This group of realizations is D(4), with ��1 = �2; ��2 = �1.6b Lie algebra: sl(2)� sl(2)Basis (Olver's no. 1.4):X1 = �x; X2 = x�x; X3 = x2�x; X4 = �y; X5 = y�y; X6 = y2�y:Inequivalent automorphisms :�1 : (X1; X2; X3; X4; X5; X6) 7! �X4; X5; X6; �X3; �X2; �X1�;�2 : (X1; X2; X3; X4; X5; X6) 7! ��X4; X5; �X6; X3; �X2; X1�;�3 : (X1; X2; X3; X4; X5; X6) 7! �X4; X5; X6; X1; X2; X3�:The group of inequivalent automorphisms is dih(Z4
Z4), with��1 = �1; ��2 = �2; ��3 = �3:Inequivalent realizations : �1 : (x; y) 7! �1y ; x� ;�2 : (x; y) 7! �� 1y ; �x� ;�3 : (x; y) 7! �y; x�:This group of realizations is dih(Z4
 Z4), with��1 = �1; ��2 = �2; ��3 = �3:6
 Lie algebra: so(3; 1)Basis (Olver's no. 6.7):X1 = �x; X2 = �y; X3 = x�x + y�y; X4 = y�x � x�y;X5 = (x2 � y2)�x + 2xy�y; X6 = 2xy�x + (y2 � x2)�y :Inequivalent automorphisms :�1 : (X1; X2; X3; X4; X5; X6) 7! (X1; �X2; X3; �X4; X5; �X6);�2 : (X1; X2; X3; X4; X5; X6) 7! (X5; �X6; �X3; �X4; X1; �X2):The group of inequivalent automorphisms is Z2
Z2, with ��1 = �1; ��2 = �2.



CLASSIFICATION OF DISCRETE SYMMETRIES 19Inequivalent realizations : �1 : (x; y) 7! �x; �y�;�2 : (x; y) 7! �� xx2 + y2 ; yx2 + y2� :This group of realizations is Z2
Z2, with ��1 = �1; ��2 = �2.Eight-dimensional Lie algebras8a Lie algebra: sl(3)Basis (Olver's no. 6.8):X1 = �x; X2 = �y; X3 = x�x; X4 = y�x; X5 = x�y ;X6 = y�y; X7 = x2�x + xy�y; X8 = xy�x + y2�y:Inequivalent automorphisms :�1 : (X1; X2; X3; X4; X5; X6; X7; X8) 7! (X5; X2;�X3; X7;�X1; X3 +X6;�X4; X8);�2 : (X1; X2; X3; X4; X5; X6; X7; X8) 7! (X8; X7;�X6;�X4;�X5;�X3; X2; X1);�3 : (X1; X2; X3; X4; X5; X6; X7; X8) 7! (X7; X8;�X3;�X5;�X4;�X6; X1; X2):The group of inequivalent automorphisms is S(4)
Z2, with��1 = �1; ��2 = �2; ��3 = �3:Inequivalent realizations : �1�3 : (x; y) 7! �xy ; �1y� ;�2�3 : (x; y) 7! �y; x�:This group of realizations is S(4), with ��1 = �1�3; ��2 = �2�3.4. Lie algebras with ideals of arbitrary dimensionNine 
lasses of ve
tor �elds on the real plane yield Lie algebras of arbitrary dimen-sion. The general form of all Lie algebras in any one 
lass is the same, apart froman ideal of arbitrary dimension k that is isomorphi
 to Rk . In �ve 
lasses, this idealhas a basis Xi = xi�1�y; i = 1; : : : ; k: (4.1)For these 
lasses, we have already dealt with the 
ases k = 1 and k = 2 in x3.If k � 3, the following inequivalent automorphisms and realizations always o

ur.There are no other automorphisms or realizations when k = 3 or k = 4, and we
onje
ture that the same is true for all k � 5. (At present, we know of no way ofproving this 
onje
ture.)Lie algebra: a(1) n Rk



20 F. E. LAINE-PEARSON AND P. E. HYDONBasis (Olver's no. 1.7, k � 3):Xi = xi�1�y; i = 1; : : : ; k; Xk+1 = �x; Xk+2 = x�x + �y�y:Inequivalent automorphisms :�1 : (Xi; Xk+1; Xk+2) 7! �(�1)i�1b11Xi; �Xk+1; Xk+2�; b11 6= 0:Also, if � = k,�2 : (Xi; Xk+1; Xk+2) 7! �Xi; Xk+1 + bkk+1Xk; Xk+2�;or, if � = 0, �02 : (Xi; Xk+1; Xk+2) 7! �Xi; Xk+1; Xk+2 + b1k+2X1�:Inequivalent realizations :�1 : (x; y) 7! �� x; b11y�; b11 6= 0:Also, if � = k, �2 : (x; y) 7! �x; y + 1k bkk+1xk�;Note that �02 is not realizable for b1k+2 6= 0.Lie algebra: R n (R n Rk )Basis (Olver's no. 1.8, k � 3):Xi = xi�1�y; i = 1; : : : ; k; Xk+1 = �x; Xk+2 = x�x + (ky + xk)�y:Inequivalent automorphisms :�1 : (Xi; Xk+1; Xk+2) 7! �(b44)k+1�iXi; b44Xk+1; Xk+2�; b44 6= 0:Inequivalent realizations :�1 : (x; y) 7! �b44x; (b44)ky�; b44 6= 0:Lie algebra: (a(1) � R) n RkBasis (Olver's no. 1.9, k � 3):Xi = xi�1�y; i = 1; : : : ; k; Xk+1 = �x; Xk+2 = x�x; Xk+3 = y�y:Inequivalent automorphisms :�1 : (Xi; Xk+1; Xk+2; Xk+3) 7! �(�1)i�1Xi; Xk+1; Xk+2; Xk+3�;�2 : (Xi; Xk+1; Xk+2; Xk+3) 7! ��Xi; Xk+1; Xk+2; Xk+3�:The group of inequivalent automorphisms is Z2
Z2, with ��1 = �1; ��2 = �2.Inequivalent realizations : �1 : (x; y) 7! �� x; y�;�2 : (x; y) 7! �x; �y�:This group of realizations is Z2
Z2, with ��1 = �1; ��2 = �2.



CLASSIFICATION OF DISCRETE SYMMETRIES 21Lie algebra: sl(2)n RkBasis (Olver's no. 1.10, k � 3):Xi = xi�1�y; i = 1; : : : ; k; Xk+1 = �x;Xk+2 = x�x + 12 (k � 1)y�y; Xk+3 = x2�x + (k � 1)xy�y:Inequivalent automorphisms :�1 : (Xi; Xk+1; Xk+2; Xk+3) 7! �b11Xi; Xk+1; Xk+2; Xk+3�; b11 6= 0;�2 : (Xi; Xk+1; Xk+2; Xk+3) 7! �(�1)i�1Xi; �Xk+1; Xk+2; �Xk+3�;�3 : (Xi; Xk+1; Xk+2; Xk+3) 7! �(�1)i�1Xk+1�i; Xk+3; �Xk+2; Xk+1�:Inequivalent realizations :�1 : (x; y) 7! �x; b11y� b11 6= 0;�2 : (x; y) 7! �� x; y�;�3 : (x; y) 7! �� 1x ; (�x)1�ky�:Lie algebra: (sl(2) � R) n RkBasis (Olver's no. 1.11, k � 3):Xi = xi�1�y; i = 1; : : : ; k; Xk+1 = �x;Xk+2 = x�x + 12 (k � 1)y�y; Xk+3 = x2�x + (k � 1)xy�y; Xk+4 = y�y:Inequivalent automorphisms :�1 : (Xi; Xk+1; Xk+2; Xk+3; Xk+4) 7! �(�1)i�1Xi; �Xk+1; Xk+2; �Xk+3; Xk+4�;�2 : (Xi; Xk+1; Xk+2; Xk+3; Xk+4) 7! �(�1)i�1Xk+1�i; Xk+3; �Xk+2; Xk+1; Xk+4�:Also, if k is odd,�3 : (Xi; Xk+1; Xk+2; Xk+3; Xk+4) 7! ��Xi; Xk+1; Xk+2; Xk+3; Xk+4�:If k is even, the group of inequivalent automorphisms is D(4), with��1 = �2; ��2 = �1:Otherwise, the group is Z2
Z2
Z2, with��1 = �1; ��2 = �2; ��3 = �3:Inequivalent realizations : �1 : (x; y) 7! �� x; y�;�2 : (x; y) 7! �� 1x ; (�x)1�ky�:Also, if k is odd, �3 : (x; y) 7! �x; �y�:



22 F. E. LAINE-PEARSON AND P. E. HYDONIf k is even, this group of realizations is D(4), with��1 = �2; ��2 = �1:Otherwise, the group is Z2
Z2
Z2, with��1 = �1; ��2 = �2; ��3 = �3:So far, we have have dis
ussed only �ve out of the nine 
lasses with an ideal ofarbitrary dimension. In the other four 
lasses, the Rk ideal has a basisXi = �i(x)�y ; i = 1; : : : ; k; (4.2)where the fun
tions �i(x) are 
onstrained only by the requirement that the Liealgebra is 
losed. For k = 1 and k = 2, this 
onstraint is suÆ
ient to allow us toin
lude all four 
lasses in x3. However, for ea
h k � 3, a 
omplete 
lassi�
ationof inequivalent automorphisms is possible for only two of the four 
lasses. We donot in
lude any of these 
lassi�
ations, whi
h have numerous spe
ial 
ases and arevery lengthy. If ne
essary, the automorphisms and realizations 
an be 
al
ulatedas shown in x2, on
e a basis for the Lie algebra is known. We end by des
ribing asimple 
hoi
e of basis for ea
h of the remaining four 
lasses of Lie algebras.Lie algebra: R n RkBasis (Olver's no. 1.5, k � 3):Xi = �i(x)�y ; i = 1; : : : ; k; Xk+1 = �x: (4.3)Lie algebra: R2 n RkBasis (Olver's no. 1.6, k � 3):Xi = �i(x)�y ; i = 1; : : : ; k; Xk+1 = �x; Xk+2 = y�y: (4.4)For (4.3) and (4.4), the Lie algebra is 
losed if and only if�0i(x) = tji�j(x); i = 1; : : : ; k;for some matrix T = (tji ). If all eigenvalues of T are real, the 
ommutator relationsmay be simpli�ed by using a basis in whi
h T is in Jordan normal form. If someeigenvalues are 
omplex, a real 2�2 blo
k Jordan form 
an be a
hieved on the spa
espanned by the 
orresponding generalized eigenve
tors, as follows. If � = �+ i� isan eigenvalue of multipli
ity L, then so is its 
omplex 
onjugate, �� = �� i�. Then~�2l�1(x) = xL�le�x 
os(�x); ~�2l(x) = xL�le�x sin(�x); l = 1; : : : ; L;produ
e the required real blo
k. A further slight simpli�
ation may be a
hieved byres
aling x. These simpli�
ations have been used in x3 to determine the results fork � 2.Lie algebra: RkBasis (Olver's no. 3.1, k � 3):Xi = �i(x)�y ; i = 1; : : : ; k: (4.5)Lie algebra: R n Rk



CLASSIFICATION OF DISCRETE SYMMETRIES 23Basis (Olver's no. 3.2, k � 3):Xi = �i(x)�y ; i = 1; : : : ; k; Xk+1 = y�y: (4.6)The Lie algebras (4.5) and (4.6) are 
losed for all fun
tions �i(x). The only possiblesimpli�
ation is obtained by introdu
ing new variables~x = �2(x)�1(x) ; ~y = y�1(x) :Therefore, without loss of generality, we 
an restri
t attention to Lie algebras with�1(x) = 1; �2(x) = x:Even so, for k � 3, the fun
tions �i(x); i � 3, 
an be arbitrary. Therefore it isonly possible to �nd the inequivalent automorphisms and realizations on
e thesefun
tions are known. 5. Con
lusionThe 
lassi�
ation that is presented in x3 enables the reader to obtain all in-equivalent dis
rete symmetries of a given s
alar ODE whose Lie algebra of pointsymmetries is known. If the Lie algebra is not in
luded in x3, be
ause it belongsto a family that has ideals of arbitrary dimension, the results in x4 should be used.A wide range of appli
ations of this method 
an be found in Hydon's papers thatwere 
ited in the introdu
tion.Earlier, we stated that the 
lassi�
ation of inequivalent automorphisms of aparti
ular Lie algebra 
an be useful for PDEs and systems of di�erential equationsthat have that Lie algebra. To illustrate this, 
onsider Burgers' equation,ut + uux = uxx; (5.1)whi
h has a �ve-dimensional Lie algebra of point symmetry generators that is iso-morphi
 to sa(2), whi
h is the Lie algebra 5a in x3. One basis in whi
h the stru
ture
onstants are the same as in 5a isX1 = � 12�t; X2 = 12x�x + t�t � 12u�u;X3 = �2tx�x � 2t2�t + 2(tu� x)�u; X4 = �x; X5 = 2t�x + 2�u: (5.2)From 5a, the inequivalent real automorphisms of this Lie algebra are generated by�1 : (X1; X2; X3; X4; X5) 7! �X1; X2; X3; e�X4; e�X5�; � 2 R;�2 : (X1; X2; X3; X4; X5) 7! ��X1; X2; �X3; X4; �X5�;�3 : (X1; X2; X3; X4; X5) 7! �X3; �X2; X1; X5; �X4�:Note that the Lie group generated by (5.2) is transitive in (x; t; u)-spa
e, whereas theLie group generated by ea
h basis in 5a is only two-dimensional. Therefore thereis no point transformation mapping either realization in 5a to the realization ofthe inequivalent dis
rete transformations for Burgers' equation. Consequently, it isne
essary to 
al
ulate this realization dire
tly from the analogue of the determiningequations (2.2). Ea
h generator in the basis (5.2) is of the formXi = �i(x; t; u)�x + �i(x; t; u)�t + �i(x; t; u)�u ;so the determining equations areXix̂ = bli�l(x̂; t̂; û); Xit̂ = bli�l(x̂; t̂; û); Xiû = bli�l(x̂; t̂; û);
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oeÆ
ients bli 
an be read o� from ea
h �j in turn. By solving thedetermining equations for (x̂; t̂; û), we �nd that ea
h of the generators �j 
an berealized as a point transformation, as follows:�1 : (x; t; u) 7! �e�x; t; e�u�; � 2 R;�2 : (x; t; u) 7! �x;�t;�u�;�3 : (x; t; u) 7! �� x2t ;� 14t ; 2(x� tu)� :This is the 
omplete list of real point transformations that produ
e automorphismsof the Lie algebra spanned by (5.2), up to equivalen
e under the adjoint a
tion ofthe one-parameter subgroups. At this stage, we must 
he
k to see whi
h of theabove transformations are symmetries of Burgers' equation. It turns out that �1does not generate symmetries of Burgers' equation (expe
t in the trivial 
ase � = 0).Furthermore, neither �2 nor �1�2 generate symmetries. However, �3 generates afour-element group of dis
rete symmetries whi
h is isomorphi
 to Z4. These arethe inequivalent real dis
rete symmetries of Burgers' equation.For many di�erential equations the inequivalent dis
rete symmetries are all real-valued. Burgers' equation is an ex
eption; its inequivalent 
omplex-valued dis
retesymmetries form a group of order 8 that is isomorphi
 to the quaternion group Q2(see [14℄ for details). AppendixThe following standard presentations of �nite groups are used in the main text.Here 1 denotes the identity element.Cy
li
 group and its dire
t produ
tsZ2 : ��21 = 1:This group has two elements.Z2
Z2 : ��21 = ��22 = 1; ��1��2 = ��2��1:This group has four elements.Z2
Z2
Z2 : ��21 = ��22 = ��23 = 1; all generators 
ommute:This group has eight elements.Dihedral groups D(4) : ��41 = ��22 = 1; ��2��1 = ��31��2:This group has eight elements.dih(Z4
Z4) : ��41 = ��42 = ��23 = 1; ��2��1 = ��1��2; ��3��1 = ��31��3; ��3��2 = ��32��3:This group has thirty-two elements.Symmetri
 group and its dire
t produ
tsS(4) : ��41 = ��22 = 1; (��1��2)3 = 1:This group has twenty-four elements.
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Z2 : ��41 = ��22 = ��23 = 1; (��1��2)3 = 1; ��1��3 = ��3��1; ��2��3 = ��3��2:This group has forty-eight elements.Referen
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