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ABSTRACT. A simple method for determining all discrete point symmetries of
a given differential equation has been developed recently. The method uses
constant matrices that represent inequivalent automorphisms of the Lie algebra
spanned by the Lie point symmetry generators. It may be difficult to obtain
these matrices if there are three or more independent generators, because the
matrix elements are determined by a large system of algebraic equations. This
paper contains a classification of the automorphisms that can occur in the
calculation of discrete symmetries of scalar ordinary differential equations,
up to equivalence under real point transformations. (The results are also
applicable to many partial differential equations.) Where these automorphisms
can be realized as point transformations, we list all inequivalent realizations.
By using this classification as a look-up table, readers can calculate the discrete
point symmetries of a given ordinary differential equation with very little effort.

1. INTRODUCTION

Discrete symmetries of differential equations have many applications. They are
used in the bifurcation analysis of nonlinear systems, in quantum field theory, and
in the numerical solution of boundary value problems [1, 2, 3]. Discrete symme-
tries may also enable one to construct new solutions from a known solution, either
directly or wia an auto-Bécklund transformation. Some discrete symmetries corre-
spond to important geometric properties of the differential equation. For example,
the Chazy equation has a circle of singularities [4]; its discrete symmetries include
inversion in this circle, with the consequence that two apparently different symme-
try reductions produce the same reduced ordinary differential equation (ODE).

The chief obstacle to obtaining discrete symmetries is that the symmetry condi-
tion amounts to a highly-coupled system of nonlinear partial differential equations
(PDEs). In general, this system is intractable; we know of only one nonlinear ODE
for which the symmetry condition has been solved directly [5]. An alternative ap-
proach is to use an ansatz [6]. This has the advantage that the calculations are
tractable; the drawback is that one cannot be sure of finding all discrete symmetries
in a given class.

It is usually easy to find all one-parameter Lie groups of point symmetries of
a given differential equation. This is done by solving the linearized symmetry
condition to obtain the Lie algebra of point symmetry generators. For a simple
introduction to this technique, see [7] or [8]; more detailed accounts are given in [9]

and [10].
Every real ODE of the form
" =w (x,y,y'w..,y(”*l)) , n>2, (1.1)
has a finite-dimensional Lie algebra £ of point symmetry generators, with a basis
Xi = &i(7,9)0: +ni(x,y)0y, i=1,...,R. (1.2)
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The generators in £ can be exponentiated to obtain an R-parameter local Lie
group action on the (z,y) plane. All such local Lie group actions that have no fixed
points are classified, up to equivalence under real point transformations, in [11].
The corresponding Lie algebras of generators are listed by Olver in Tables 1, 3, and
6 of [12]; these tables contain all possible Lie algebras for real scalar ODEs (1.1).

Hydon [13] introduced a simple method for obtaining all discrete point sym-
metries of a given ODE (1.1) with a non-zero Lie algebra (1.2). Every symmetry
induces an automorphism of £, which is a linear transformation of the basis gener-
ators X; that preserves the commutator relations

[Xs, X;] = cf; Xe.

In essence, Hydon’s method classifies all possible automorphisms of £, factoring
out those that are equivalent under the action of any symmetry in the Lie group
generated by £. Then it is possible to obtain the most general realization of the in-
equivalent automorphisms as point transformations. Finally, by substituting these
transformations into the symmetry condition, the user obtains a complete list of in-
equivalent discrete symmetries of the given ODE. The method is outlined in detail
(with a worked example) in §2.

The most difficult part of the calculation is the determination of all inequivalent
real automorphisms. Our aim in writing this paper is to save the reader the work of
doing this. To this end, we have calculated these automorphisms for the Lie algebras
that are listed in Olver’s tables; the results are listed in a look-up table (see §3).
The table includes the most general class of inequivalent point transformations of
the plane (for application to scalar ODEs). The results in §3 are nearly (but not
quite) exhaustive. A few of the Lie algebras listed in Olver’s tables belong to infinite
families. The look-up table includes the first two Lie algebras in each such family,
which are the ones that are most likely to occur in applications. In §4, we comment
on the higher-dimensional Lie algebras in these families.

With the exception of the above infinite families, our classification is complete.
To save space, the results are stated without proof. They can be checked using the
method described in §2. This requires considerable patience and a reliable computer
algebra system; we have used Maple [17] interactively.

Our classification of inequivalent automorphisms is not only applicable to scalar
ODEs; it can also be used where the symmetry generators of a scalar PDE or system
of ODEs constitute one of the Lie algebras in Olver’s tables. Then the realizations
of these automorphisms need not act as transformations on a plane, but they can
be calculated as shown in [14]. This is illustrated in §5.

As the purpose of this paper is to provide a classification, we have not included
examples of the many applications of discrete symmetries. Instead we refer the
reader to [7, 13, 14, 15, 16], where some substantial examples are described.

2. THE CLASSIFICATION METHOD

This section summarizes the ideas behind the classification of the inequivalent
automorphisms of the Lie algebra. Suppose that a diffeomorphism

T:(z,y) = (#(x,9), §(z,y))

is a symmetry of (1.1). For every one-parameter Lie group of symmetries, e
there is an associated Lie group of symmetries, Te¢*¢['~!, whose infinitesimal gen-
erator is

X;
b

X, =TXx,Ir "
In particular, if X; is a generator in the basis (1.2) then

Xi = &(#,9)0: + ni(#,9)0;-
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The generators Xi, i = 1,...,R, belong to £, which is the Lie algebra of all
point symmetry generators. Furthermore, they are linearly independent, so they
constitute a basis for £. Therefore there exists a nonsingular matrix B = (b%) such
that

X;=bX,, i=1,...,R (2.1)

(The usual summation convention is adopted.) By applying (2.1) to the unknown
functions #(z,y) and g(z,y) we obtain a system of 2R determining equations:

Xid = bi&(2,9), Xijy = bym (,9)- (2.2)
The first-order quasilinear PDEs (2.2) can be solved by the method of characteristics
or (if R > 3) by algebraic means. The general solution of the determining equations
depends upon the unknown constants b. and (possibly) some unknown constants
or functions of integration. Every point symmetry of the ODE (1.1) is included
in the general solution, which may also include point transformations that are not

symmetries. At this stage, it is necessary to substitute the general solution (Z, )
into the symmetry condition,

7™ = w (xy . ,g<"*1>) when (1.1) holds. (2.3)

The point symmetries of (1.1) are those solutions of the determining equations that
also satisfy (2.3).

So far, we have not considered the matrix B in detail. For most Lie algebras, this
matrix is strongly constrained, which greatly simplifies the determining equations
(2.2). Suppose that in the basis (1.2) the commutator relations are

[Xi, X;] = Xk (2.4)

As each X is obtained from X; merely by replacing (z,y) with (Z,9), the new basis
has the commutator relations

(X, X;] = cfjf(k’ (2.5)

with the same structure constants cfj as in (2.4). Hence each symmetry I' induces

an automorphism of the Lie algebra, which is defined by
r:X;—=bx, i=1,...,R; det(B) # 0. (2.6)

By substituting (2.1) into (2.4) and taking (2.5) into account, we obtain the follow-
ing system of nonlinear constraints on the elements of B:

cfr, IO = bt 1<i<j<R, 1<n<R. (2.7)

If £ is abelian the structure constants are all zero, so there are no constraints.
However, most Lie algebras acting on the plane are nonabelian, and the problem of
finding all symmetries can be simplified by first finding all matrices B that satisfy
the constraints. This usually requires computer algebra, because there can be up
to £ R?(R — 1) constraints.
Our aim is to obtain an inequivalent set of discrete symmetries, so we need to
factor out the one-parameter Lie groups generated by each X; in turn. Let
A(jye) = exp {C(j)}, where (C(j))F = k. (2.8)
If T = e%i for some € then B = A(j,¢); further details are given in [7]. Multi-
plication in the symmetry group corresponds to multiplication of the matrices B
that represent the associated automorphisms. Hence, for each j such that C'(j) is
non-zero, the Lie symmetries generated by X; can be factored out as follows. First
replace B by either BA(j, €) or A(j,€)B, then choose € to be a value that simplifies
at least one entry in the new matrix. The aim is to create zeros in the matrix B, in
order to simplify the determining equations and nonlinear constraints. Each matrix
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A(j,€) should be used at most once. However, if C(j) = 0 for some j then A(j,€)
is the identity matrix (for all €). This occurs when X is in the centre of £, which
means that it commutes with every generator. These symmetries induce a trivial
automorphism of £; they can only be factored out once the determining equations
have been solved.

To illustrate the above ideas, consider the ODE

y" =y"~(y")?, (2.9)
whose Lie point symmetries are generated by
X1 :8x, X2 :x8y7 X3 :ay (210)

Although (2.9) is easily solved, it is useful for understanding how to calculate
inequivalent discrete symmetries. The Lie algebra is nonabelian and has a nontrivial
centre, so most aspects of the method can be seen in this simple example. The only
nonzero structure constants are

0?2 = 17 C%l = _17 (211)

so X3 is a basis for the centre of the Lie algebra. The matrices corresponding to
the automorphisms generated by X; and X» are

1 0 0 1 0 €
Al,ey)= | 0 1 —e |, A2,e)=10 1 0
0 0 1 0 0 1
The constraints (2.7) with n = 1 amount to
cibp=0, 1<i<j<3.
These yield only one constraint, which is obtained by setting (¢, 7) = (1,2), namely
by = 0.
Similarly, the n = 2 constraints amount to
b2 =0,

so b3 # 0 (because B is nonsingular). To simplify B further, premultiply it by
A(1,b3/b3) to replace b3 by zero. Then premultiply B by A(2,—b3/b3) to replace
b3 by zero, so that now

BB 0
B=|0b 2 0 |. (2.12)
0 0

We have not yet used the nonlinear constraints with n = 3; the above simplifications
have reduced these constraints to the single equation

bibs — b3by = b. (2.13)
The matrices (2.12) satisfying (2.13) represent the inequivalent automorphisms of
the abstract 3-dimensional Lie algebra whose only nonzero structure constants are

(2.11). To find out which of these automorphisms can be realized as real point
transformations of the plane, we must solve the determining equations,

To Yo 1 0 bt bz
Tk XYy =B |0 % = by bl
Ty Uy 0 1 0 b
Taking (2.13) into account, the general solution of the determining equations is
£=biz,  §=1ibibia® +bibly+e,  bib3 #0, (2.14)

where ¢ is a constant of integration. Note that the determining equations require
that b3 = 0, so not every automorphism can be realized as a point transformation



CLASSIFICATION OF DISCRETE SYMMETRIES 5

of the plane. Now we factor out the one-parameter Lie group generated by Xs,
setting ¢ = 0 for simplicity. Finally, we must check the symmetry condition (2.3)
for the ODE (2.9) to see which of the inequivalent point transformations (2.14) are
symmetries. From (2.14),

N b% b% "

~I1 — b% ylll
(b)?
Substituting these results into the symmetry condition (2.3), we find that either

(@7 :l)) = (x7 y)7
or
(#,9) = (—z, 32> —y).
So the group of inequivalent discrete symmetries of the ODE (2.9) is generated by
Ty (z,y) — (—x, %x2 —y).

This group is isomorphic to Zs, because I'? is the identity transformation.

3. THE CLASSIFICATION

In this section, we present the inequivalent real automorphisms of the Lie alge-
bras of point symmetry generators for ODEs. We also present their realizations as
inequivalent point transformations of the real plane. Commonly, the inequivalent
automorphisms and inequivalent point transformations form finite groups. Where
this occurs, we write down a presentation of the finite group in terms of a minimal
set of generators. For infinite groups, we state a set of generators for the whole
group.

For most Lie algebras, we have used Olver’s choice of basis in Tables 1, 3, and
6 of [12]. Exceptions occur where there exists a basis with fewer nonzero structure
constants than Olver’s basis. Some Lie groups have several realizations as point
transformation groups that cannot be mapped to one another by a real point trans-
formation. (The most extreme example is s[(2), which has four such realizations.)
Where this occurs, we first state the nontrivial commutators and inequivalent auto-
morphisms of the underlying Lie algebra, which are independent of the realizations.
Then we write down the discrete point transformations for each realization in turn.

To use our results, begin by calculating the Lie algebra of Lie point symmetry
generators for the given ODE. If your chosen basis does not coincide with any
of those listed that are of the same dimension, seek a real point transformation
that puts the basis into one of the listed forms. It is usually easy to obtain a
suitable transformation by simplifying the commutators as far as possible. The
given ODE should be written in terms of the new variables if a transformation is
used. Then look up the group of inequivalent realizations as point transformations.
The generators of this group are of the form

Fi : (xay) = (f(xvy)a g(xvy))
for some functions f and g. Substitute
= flx,y), §=gy),

into the symmetry condition (2.3) to find out which of these are symmetries.
For example, to find the inequivalent discrete symmetries of (2.9) quickly, begin
by calculating the Lie algebra (2.10). This Lie algebra is 3d in our classification,
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which states that the inequivalent realizations of automorphisms as point transfor-
mations are of the form

Ty : (z,y) = (biz, 1102 + b1b3y), bibs # 0.

The discrete symmetries are then obtained by substituting (2.14) into the symmetry
condition as shown in §2.

The following notations are used throughout the classification. Arbitrary con-
stants and functions are denoted by ¢; and F; respectively. The most general non-
trivial point transformation for which B is the identity is denoted by I'g. Where
any finite group occurs, the generators I'; satisfy the standard presentation for that
group, which is listed in the Appendix. In referring to Olver’s tables, we state the
integer k and the functions 7; used by Olver where this is necessary.

One-dimensional Lie algebras

la Lie algebra: R

Basis (Olver’s no. 3.1, k = 1):
X1 =0,

Inequivalent automorphisms:
F12X1’—)b%X17 b%;éO
Inequivalent realizations:

Lo :(z,y) = (Fi(x), y+ Fa(x)),  Fi(z) #0, F2(0)=0;

Ty (z,y) — (ac, b%y), bi #0.

Two-dimensional Lie algebras

2a Lie algebra: R?

Basis A (Olver’s no. 3.1, k = 2):
X1 :8y, X2:x8y.

Basis B (Olver’s no. 1.5, k =1, nj(z) = 0):
X1 =0, Xo = 0y.

Nontrivial commutators: The generators commute.

Inequivalent automorphisms:
Ui (X1, X2) = (b1 X1 + 63 X0, by Xy + 03X5), b1b3 — biby # 0.
Inequivalent realizations:
Basis A:
To: (z,y) = (v, y+ Fi(z)),  Fi(0) = F{(0) = 0;
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bibs — biby # 0.

bl — bl blb3 — b2b )

s (@y) = (b§ Sy S g

Basis B:
Ly (z,y) — (b}x + b%y, b%x + bgy)7 b}bg — b%b% #0.

2b Lie algebra: a(l) =R x R
Basis A (Olver’s no. 3.2, k =1):
X1 =0y, Xo = y0y.
Basis B (Olver’s no. 1.5, k =1, nj(x) # 0):
X1 =e 70, Xy =0,.

Nontrivial commutators:

(X1, Xo] = X
Inequivalent automorphisms:
Fl : (X17X2) — (—)(17 XQ)
The group of inequivalent automorphisms is Zs, with I'; = T';.

Inequivalent realizations:

Basis A:
To: (z,y) = (Fi(2), y),  Fi(z) #0;
Ly (z,y) = (2, —y).

Basis B:
Lo : (z,y) — (x—l—cl, C2 —l—e_cly);

[y (xvy) = (xv _y)'

Three-dimensional Lie algebras

3a Lie algebra: a(1) @R
Basis A (Olver’sno. 1.6, k= 1; also 1.7, k= 1,a = 0):
Xlzaz, X2:$8I, ngay
Basis B (Olver’s no. 1.5; k =2, mi(z) = e™%, na2(x) =1):
X1 :6_x8y7 X2 :895, X3 :8y.

Nontrivial commutators:

[X1, Xo] = X;.
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Inequivalent automorphisms:
Ty (X1, X2, X3) = (= Xy, Xo + 03 X3, b3X3), b} # 0.

Inequivalent realizations:
Basis A:

Ty (2,y) = (-, b3y), b3 #0.
Basis B:

Ly (z,y) — (ac +ecp, —e Tty + ng)

3b Lie algebra: a(1) x R

Basis A (Olver’sno. 1.7, k=1,a =1):
X1 = —x@m — yay, X2 = aam X3 = 8@/

Basis B (Olver’s no. 3.2; k = 2):
X1 = —y8y, X2 = 8y, X3 = xay

Nontrivial commutators:

[X1, Xo] = Xy, [X1, X3] = X3.

Inequivalent automorphisms:

[y (X, X, X3) — (X, b3Xo + b3 X3, b3Xo + ngg), babs — babs = —

Inequivalent realizations:

Basis A:
[y (z,y) = (D3z + b3y, b3z + biy), babs — b3b2 = —1.
Basis B:
ng - b§ Y 213 312 _
Fl.($,y)'—> (bg_ngv _bg—bg$>7 b2b3_b2b3__1'

3c Lie algebra: a(1) x R

Basis A (Olver’'sno. 1.7, k=1, a ¢ {0,1}):
X1 = —x@m - Oéyﬁy, X2 = az, X3 = By
Basis B (Olver’s no. 1.5; k =1, n1(x) = €%, n2(x) = e*®, a & {0,1}):
X1 = 81., X2 = 6z8y7 X3 = eo“”ay.

Nontrivial commutators:

(X1, X5] = X, [X1, X3] = aX3.

Inequivalent automorphisms:
Ty (X1, X2, X3) = (X1, —Xo, B3X3), b3 # 0.
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Also, if « = —1 only,
FZ : (X17X27X3) = (_X17 X37 XZ)

Inequivalent realizations:
Basis A:

I‘lz(ac,y)r—>(—x, bgy), bs #0.
Also, if & = —1 only,

Ty (z,y) — (y, x)

Basis B:

Ly (z,y) = (z+e, —e Y+ ).
Also, if & = —1 only,

Dy (2,y) = (=2, 9).

3d Lie algebra: R x R?

Basis (Olver’s no. 1.5; k =2, m(z) =z, na(z) = 1):
X1 :61, X2:1'6y, X3 :6y

Inequivalent automorphisms:

Iy (X17X27X3) — (bin + b%XQ, b%Xl + ngQ, (b%bg — b%bé))(g)7
where b1b3 — b2b3 # 0.
Inequivalent realizations:

[yt (z,y) — (biz, 1bib7a” + bib3y), bibs # 0.

3e Lie algebra: R x R?
Basis A (Olver’s no. 1.8, k =1):
X1 = —20; — (z +y)d,, Xo = 0y, X3 = 0y.
Basis B (Olver’s no. 1.5; k =1, m1(z) = €%, n2(x) = xe®):
X1 = az, X2 = eway, X3 = xexay.

Nontrivial commutators:

(X1, X5] = X, [X1,X3] = Xo + X5.

Inequivalent automorphisms:

Ty (X1, Xo, X3) = (X1, b3X0, 03X5), b3 # 0.

Inequivalent realizations:
Basis A:
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Basis B:
FO : (xvy) = (xv y+01);

Ty (z,y) — (ac, bgy), b3 # 0.

3f Lie algebra: R x R?

Basis A (Olver’s no. 6.1, a > 0):
X1 = —(ax +y)0; + (v — ay)0y, X5 = 0,, X3 = 0,.

Basis B (Olver’s no. 1.5; k = 1, n1(z) = e®* cos(x), n2(z) = e**sin(x), a > 0):
X1 = 0y, Xy = €%" cos(z)dy, X3 = e sin(z)0y.

Nontrivial commutators:

[X1,X5] = aXs — X3, [X1,X3] = Xo 4+ aXs.

Inequivalent automorphisms:

ry: (Xl,X2,X3) — (Xl, eth, eth), t e [0,271’0[).

Inequivalent realizations:
Basis A:
[y :(z,y) = (e'z, e'y), t € 10,2ma).

Basis B:
Lo : (z,y) = (z+nm, (-1)""™y + 1), n € 7Z;

Ti:(z,y) = (z, e'y),  te€0,2ma).

3g Lie algebra: R x R?

Basis A (Olver’s no. 6.1, a = 0):
X1 = —yaz +$8y, X2 = az, X3 = 6y

Basis B (Olver’s no. 1.5; k =1, n1(x) = cos(z), n2(x) = sin(z)):
X1 =04, Xy = cos(z)dy, X3 = sin(x)0,.

Nontrivial commutators:

[X17X2] = _X37 [X17X3] = X2'

Inequivalent automorphisms:

[y (X1, Xo, X3) = (X1, €8 Xy, €' X)), teR;
Fz . (Xl,Xg,Xg) = (—Xl, —Xz, X3)

Inequivalent realizations:
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Basis A:

t

Ty (z,y) — (e x, ety)7 teR;

Ly (z,y) = (-2, y).
Basis B:
Lot (a,y) = (@4+nm (<) +cr),  nel;

1—‘1 :($7y)|_> ($, ety)7 tER,

Ly (z,y) — (—x, —y).

3h Lie algebra: s((2)

Basis A (Olver’s no. 1.1):
X1 =0, Xo = 20, — yOy, X3 =220, — 2xy0,.

Basis B (Olver’s no. 1.2):
X1 =0, Xo=20, —ydy, X3=20, — (2vy+1)9,.

Basis C' (Olver’s no. 6.3):
X, =0,, Xo =20, + y0y, X3 = (ac2 - yZ)BI + 22y0,.
Basis D (Olver’s no. 3.3):
X1 = 8117 X2 = y8y7 X3 = y28y

Nontrivial commutators:

X1, X5] = Xy, [X1, X3] = 2X,, [Xs, X3] = X3.

Inequivalent automorphisms:

Fl : (Xl,Xg,Xg) — (—Xl, X2, —Xg);

F2 : (X17X27X3) = (X37 _X27 Xl)

The group of inequivalent automorphisms is Zs @ Zo, with [=Ty, Ty =T,

Inequivalent realizations:

Basis A:
To : (z,y) = (2, a1y);
1—‘1 : (xvy) = (—$, y)7
1 2
Ly :(z,y) = (——7 T y)
T
Basis B:

11
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1
Ty (x,y) — (——, x2y+x).
x

This group of realizations is Zo @ Zo & Zo, with [ =Ty, Ty =Ty I3=T,.
Basis C:
Lo : (2,y) = (2, —y);

Fl : (xay) = (_xay);

T Y
s : (z, »—>(— , )
2 (l’y) 1’2+y2 l'2+y2

This group of realizations is Zo @ Zo & Zo, with [ =Ty, Ty =Ty I3=T,.
Basis D:
Lo : (z,y) = (Fi(x),y),  Fi(x) #0;

Fl : (xvy) = (xv_y);

Ty (z,y) — (x, —;)

3i Lie algebra: s0(3)

Basis (Olver’s no. 6.3):

X1 =ydy —20,, Xo= %(1 + 22 —y?)d, + zydy, X3 =ayd, + %(1 -2+ y2)8y.
Inequivalent automorphisms:

All automorphisms are equivalent to the identity.

Inequivalent realizations:

. z Y
FO‘(x,y)'_) (_x2+y27 _x2+y2)'

This group of realizations is Zs, with Ty = Ty.

Four-dimensional Lie algebras

4a Lie algebra: a(1) @ a(1)

Basis A (Olver’s no. 1.9, k =1):
X1 :895, X2 :x&h )(3:81/7 X4:y8y.

Basis B (Olver’s no. 1.6; k =2, n(z) = €%, n2(x) = e*®, a #1):

1 1
Xi = ey, X =1 (am + yay), Xy ="y Xi=—= (aw + ayay).

Nontrivial commutators:

[X1, Xo] = X1, [X3, X4] = X3.
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Inequivalent automorphisms:

Ty (X, Xo, X3, Xg) = (X3, Xy, =X, Xp);

F2 : (Xl,Xz,Xg,X4) — (Xl, Xz, —Xg, X4)

The group of inequivalent automorphisms is D(4), with Ty = T'y, Ty = I's.

Inequivalent realizations:

Basis A:
I‘1 : (xvy) = (_ya $),

Ly (z,y) = (2, —y).
This group of realizations is D(4), with I'y = T'y, Ty = T'5.
Basis B:
Dy (z,y) — (— z, —e_(o‘+1)’”y);

1"% Cx,y) = (x, —y).

This group of realizations is Zs @ Zs, with Ty = I';Ty, Ty = I'?.

4b Lie algebra: a(1) x R?

Basis (Olver’s no. 1.7, k =2, a # 2):
X1 =0y, Xo=20, +aydy, X3=20,, Xi4=u0,.

Inequivalent automorphisms:
Ty : (X1, Xo, X3, Xy) = (= Xy, Xo, D3X5, —b3X4), b3 #0.
Also, if a =0,
Ty @ (X1, Xo, X3, Xy) = (Xay —Xo + 3 X5, X3, —X1).

Inequivalent realizations:
I‘lz(ac,y)r—>(—x, bgy), b3 # 0.

Note that I's is not realizable.

4c Lie algebra: a(1) x R?

Basis (Olver’s no. 1.7, k =2, a =2):
X1 =0z, Xo=u0; +2y0,, X3=0, X4i=ua0,

Inequivalent automorphisms:

Ty (X1, Xo, X3, X4) = (01 X7 + 01Xy, Xo, — X3, b X1 +b3Xy),
where blbj — by = —1.
Inequivalent realizations:

Tyt (z,y) — (biz, $bjbiz® —y), bi #0.

13
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4d Lie algebra: R? x R?
Basis A (Olver’s no. 6.4):
X1 =y0, —x0y, Xo=20,+y0y, X3=0,, X4=0,
Basis B (Olver’s no. 1.6; k =2, n1(z) = cosz, nz2(x) =sinzx):

X1 = 8967 X2 = yay, X3 = COS$ay7 X4 = sinxay.

Nontrivial commutators:

[X1, X5] = =Xy, [X0,Xy] = X35, [Xp, X5]=-X5, [Xp, Xy]=—X,.
Inequivalent automorphisms:
I'y: (Xl,XQ,Xg,X4) — (— Xl, Xz, X3, —X4).
The group of inequivalent automorphisms is Z», with I'; = T';.

Inequivalent realizations:
Basis A:
Ty (z,y) — (—x, y).
This group of realizations is Zs, with Ty = T;.
Basis B:
To: (z,y) — (x + nm, (—1)";1/), n € 7

I‘1 : (xvy) = (_xv y)

4e Lie algebra: R? x R?

Basis (Olver’s no. 1.6, k =2, mi(z) =1, na(z) = x):
X1 :az, X2 :yay, ngay, X4 :xay

Inequivalent automorphisms:

1
Fl : (X17X27X37X4) = (binv X27 _X37 _b_1X4>7 b% ;é 0
1

Inequivalent realizations:

I‘1 : (xvy) = (b%xv _y)7 b% 7& 0.

4f Lie algebra: R x (R x R?)

Basis (Olver’s no. 1.8, k = 2):
X, =0,, Xo=ux0,+ 2>+ 2y)0y, X3=0,, Xi=uzd,.

Inequivalent automorphisms:

I‘1 : (X17X27X37X4) = (b%Xla X27 (b%)2X37 b%X4)7 b% 7& 0.
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Inequivalent realizations:
Fl : (x,y) = (b%xv (b%)zy)v b% ;é 0.

4g Lie algebra: s[(2) ® R
Basis A (Olver’s no. 1.3):
X1 =0, Xo=20,— %yay, X5 = 229, — xy0y, X4 =y0y.
Basis B (Olver’s no. 1.10; k = 1):
X1 :E)z, X2 :x@z, X3 :1'283“ X4:6y

Nontrivial commutators:

[X1,X5] = Xy, [X1, X3] = 2X>, [Xs, X3] = X3.
Inequivalent automorphisms:
Ty : (X1, Xo, X3, X4) = (= X1, Xo, —X3, 01Xy),  bi#0;
F2 : (Xl,Xz,Xg,X4) — (Xg, —XQ, Xl, X4)
Inequivalent realizations:
Basis A:
Lo : (z,y) = (2, —y);

Ly (z,y) = (=2, y);

Ly (z,y) — (—%,xy).

This group of realizations is D(4), with 'y = T'y, Ty = Ty.
Basis B:
Fl(bi)(xvy)'_) (—$, biy)v bi#ov

Ly (z,y) — (—%,y).

Five-dimensional Lie algebras

5a Lie algebra: sa(2) = s[(2) x R?
Basis A (Olver’s no. 6.5):
X1 = yax, X2 = %($ax — yay), X3 = —x8y7 X4 = 895, X5 = 8y
Basis B (Olver’s no. 1.10; k = 2):
X1 =0, Xo=uz0,+ %yay, X3 =220, +aydy, Xi=20,, Xs=-—20,.

Nontrivial commutators:

[X1, Xo] = X4, [X1, X3] = 2X5, [X2, X3] = X3, (X1, X5] = - Xy,
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(X, X4] = —5 X4, [Xo, X5] = 5 X5, (X3, Xu] = X5.

Inequivalent automorphisms:

Fl : (X17X27X37X47X5) = (X17 X27 X37 etX47 €tX5), te ]Ra
FZ : (X17X27X37X47X5) = (_Xh X27 _X37 X47 _X5)7
FS : (X17X27X37X47X5) = (X37 _X27 X17 X57 _X4)

Inequivalent realizations:

Basis A:
Ti:(z,y) = (efz, ely), teR
Tyt (z,y) = (2, —y);
Ls:(z,y) = (—y, ).
Basis B:

I‘1 :(xvy)'_) (xv ety)a tE]R;

F2 : (xvy) = (_xv y)a

Fg:(x,y)H(—i, %)

5b Lie algebra: s((2) & a(1)
Basis (Olver’s no. 1.11, k =1):
X1 :81-7 X2 :x&h X3 :x28x, X4 :8y7 X5 :yay.

Inequivalent automorphisms:

Fl : (X17X27X37X47X5) = (_ X17 X27 _X37 X47 X5)7

F2 : (X17X27X37X47X5) = (X37 _X27 X17 X47 X5)a

FS : (X17X27X37X47X5) — (Xh X27 X37 _X47 XS)
The group of inequivalent automorphisms is Zo @ Zo & Zo, with

fl :F17 f2:F27 f3:F3.

Inequivalent realizations:

Dt () e (—,);
D)o (-2 0):

T : (z,y) = (z, —y).
This group of realizations is Zo ® Zs ® Zo, with

fl :F17 f2:F27 f3:F3.
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5¢ Lie algebra: (a(1) ® R) x R?
Basis (Olver’s no. 1.9, k = 2):
X1 :81-7 X2 :x&“ X3 :y8y7 X4 :8y7 X5 :xBy.
Inequivalent automorphisms:
Fl : (X17X27X37X47X5) = (X57 _X27 X2 +X37 X47 _X1)7
F2 : (X17X27X37X47X5) = (Xh X27 X37 _X47 _X5)
The group of inequivalent automorphisms is D(4), with Ty = TI'y, Ty = I's.
Inequivalent realizations:
I3 (z,y) = (-2, 9);
Ly (z,y) — (x, —y).

This group of realizations is Zs @ Zs, with Ty = T'?, Ty = I's.

Six-dimensional Lie algebras

6a Lie algebra: a(2) = (s[(2) ® R) x R?
Basis A (Olver’s no. 6.6):
X1 =y0,, X5 = %(ac@z —y0y), X3 = —x0y,
X4 = E)z, X5 = E)y, X6 = $8I + yf)y

Basis B (Olver’s no. 1.11; k = 2):
X1 = E)z, X2 = $8I + %yc‘)y, X3 = 1‘261 + xyf)y,

X4 = ay, X5 = —xc')y, X6 = yf)y

Nontrivial commutators:

(X1, Xo] = X, [X1, X3] = 2Xo, [X2, X3] = X3,

(X1, X5] = — X4, (X3, X4] = —5 X4, (X3, X5] = $ X5,

[X37X4] :X57 [X47X6] :X47 [X57X6] :X5'

Inequivalent automorphisms:
Fl : (X17X27X37X47X57X6) = (_ X17 X27 _X37 X47 _X57 X6)7
F2 : (X17X27X37X47X57X6) = (X37 _X27 X17 X57 _X47 Xﬁ)

The group of inequivalent automorphisms is D(4), with Ty = T'y, Ty = T';.

Inequivalent realizations:
Basis A:
Ty (2,y) = (2, —y);
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Ly (z,y) = (—y, ).
This group of realizations is D(4), with I'; = T'y, Ty = Ty.
Basis B:

Ly () = (=2, y);

Ib:(ac,y)r—)(—%, %)

This group of realizations is D(4), with 'y = T'y, Ty = Ty.

6b Lie algebra: s((2) @ sl(2)
Basis (Olver’s no. 1.4):
X1 :az, X2 :$8I, X3 :$28I, X4 :ay, X5 :yf)y, X6 :y28y

Inequivalent automorphisms:

Ty : (X1, X2, X3, Xy, X5, Xg) = (X4, X5, Xg, —X3, =X, —X1);

Ty : (X1, Xo, X3, X4, X5, Xg) = (= Xu, X5, —Xe, X3, —X2, X1);

D3 : (X1, X, X3, X4, X5, X6) — (X4, X5, Xo, X1, Xo, X3).

The group of inequivalent automorphisms is dih(Z4 @ Z4), with

fl :F17 f2:F27 f3:F3.

Inequivalent realizations:

Lo = (=5 =)

FS : (xay) = (yv l‘)
This group of realizations is dih(Z4 ® Z4), with
fl :F17 f2:F27 f3:F3.

6c Lie algebra: s0(3,1)
Basis (Olver’s no. 6.7):
X1 =0z Xo=0y, X3=x0,+y0y, Xi=y0,— 10y,
Xs = (2% —y*)0s +20y0y,  Xe = 22y0, + (y° — 2°)0,.
Inequivalent automorphisms:
Fl : (Xl,XQ,Xg,X4,X5,X6) — (Xl, —Xz, X3, —X4, X5, _Xﬁ);
FQ : (X17X27X37X47X57X6) = (X57 _X67 _X37 _X47 X17 _X2)

The group of inequivalent automorphisms is Zs @ Z2, with [=Ty, Ty =T,
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Inequivalent realizations:

1"1 : (azy) = (xv _y)§

. z Y
F2‘(x7y)H (_x2+y27 x2+y2)'

This group of realizations is Zy ® Zs, with I'y = 'y, Ty = Is.

Eight-dimensional Lie algebras

8a Lie algebra: sl(3)

Basis (Olver’s no. 6.8):
X1 :az, X2:8y, ngxaz, X4:yE)z, X5:$8y,

X6 = Y0y, X, =220, + Y0y, Xg = 2y0, + y28y.

Inequivalent automorphisms:

Fl . (Xl,XQ,Xg,X4,X5,X6,X7,X8) — (X5,X2,—X3,X7,—X1,X3 +X6,—X4,X8);
FQ : (XhX27X37X4,X57X6,X77X8) — (X87X77 _X67_X47_X57 —X37X2,X1);
FS : (X17X27X37X47X57X67X77X8) = (X77X87 _X37_X57_X47 _X67X17X2)~

The group of inequivalent automorphisms is S(4) ® Zs, with
fl :F17 f2:F27 f3:F3.

Inequivalent realizations:

s (z,y) — (%, —;) ;

F2F3 : (xvy) = (yv $)
This group of realizations is S(4), with I'; = I'1T's, [y = [2T3.

4. LIE ALGEBRAS WITH IDEALS OF ARBITRARY DIMENSION

Nine classes of vector fields on the real plane yield Lie algebras of arbitrary dimen-
sion. The general form of all Lie algebras in any one class is the same, apart from
an ideal of arbitrary dimension & that is isomorphic to R¥. In five classes, this ideal
has a basis

X; =219, i=1,... .k (4.1)

For these classes, we have already dealt with the cases ¥ = 1 and k£ = 2 in §3.
If £ > 3, the following inequivalent automorphisms and realizations always occur.
There are no other automorphisms or realizations when & = 3 or k = 4, and we
conjecture that the same is true for all £ > 5. (At present, we know of no way of
proving this conjecture.)

Lie algebra: a(1) x R¥
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Basis (Olver’s no. 1.7, k > 3):
X; =271, i=1,...k, X1 = 0z, Xpyo = 20y + aydy.

Inequivalent automorphisms:
Dyt (Xiy Xpg1s Xig2) = (1701 X5, —Xpgrs X)), by #0.
Also, if a =k,
Tyt (X, Xjprs Xp2) = (X, Xpr + bF o X, Xipn),
or, if @ =0,

L% (Xi, Xky1, Xega) = (Xiy Xivr, Xigo + bpyaXa).

Inequivalent realizations:
I‘lz(ac,y)r—>(—x, b%y), b%;é().
Also, if a =k,
Ty (z,y) — (x, Y+ %bﬁ_lxk),
Note that I'y is not realizable for bj_ , # 0.

Lie algebra: R x (R x RF)
Basis (Olver’s no. 1.8, k > 3):

Xi:x'_law i1=1,...,k, Xi+1 =0z, Xpao :x8x+(ky+x’“)8y.

Inequivalent automorphisms:

Ty o (Xi, Xt Xpg2) = (007X, 05 Xkq1, Xpga), b # 0.

Inequivalent realizations:
Ly (z,y) = (biz, (0D)"y), b5 #0.

Lie algebra: (a(1) ® R) x R
Basis (Olver’s no. 1.9, k > 3):
Xi=2"10,, i=1,....k, Xp11 =0z, Xpgyo=20s, Xpiz=uy0,.
Inequivalent automorphisms:
Ty (X, Xets Xego, Xpeps) = (1)1 X, Xjpa, Xpgo, Xigs);
Tyt (X, Xpg1, Xeyo, Xngs) = (= Xiy Xpgry Xgo, Xiys).
The group of inequivalent automorphisms is Zy @ Zs, with T'y = T';, Ty = Is.

Inequivalent realizations:

Ly (z,y) e (-2, y);

Ly (z,y) — (x, —y).

This group of realizations is Zy ® Zs, with I'y = T';, Ty = Is.
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Lie algebra: s[(2) x R¥

Basis (Olver’s no. 1.10, k > 3):
X;=2"19,, i=1,... .k, Xpy1 = Op,

Xiyo = 20, + 5(k — 1)y, Xiys = 220 + (k — 1)2yd,.

Inequivalent automorphisms:

Ty (Xi, Xpgrs Xegos Xis) = (01X5, Xigr, Xpgo, Xiys), by #0;
Ty 0 (X, Xia 1, Xpgo, Xpeps) = (A1) Xy, —Xqr, Xpgo, —Xpps);
T3t (X, X1, X, Xigs) = (=1 Xpy1—iy Xy —Xpso, Xig1)-

Inequivalent realizations:

Ty (z,y) = (z,0ly) b #0;

Dy :(z,y) = (=2, y);

8=

Ty : (2,y) = (— , (—x)l_’“y)
Lie algebra: (s/(2) ® R) x R
Basis (Olver’s no. 1.11, k > 3):
X; =219, i=1,... k, X1 = O,
Xpyo =20, + 2(k — 1)ydy, Xpysz =220, + (k — Daydy, Xpta =y0,.

Inequivalent automorphisms:

Tyt (X, Xty Xeo, Xirss Xpra) = (1)1 X5, —Xpp1, Xpyo, —Xprs, Xpta);

Ty ¢ (Xiy Xbt1s Xig2, Xers, Xpra) = (1) 7 X1y Xirs, — X2, Xpg1, Xppa)-
Also, if £ is odd,
T3 (X, Xiv1s Xiro, Xirs, Xewa) = (= Xiy Xiyry KXoy, Xips, Xipa).-
If k is even, the group of inequivalent automorphisms is D(4), with
[ =0y, T=TIy.
Otherwise, the group is Zs ® Zs ® Zs, with
=T, I[h=TI, TI3=Ts

Inequivalent realizations:

Also, if k is odd,
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If k is even, this group of realizations is D(4), with
[ =Ty TIy=TIy.
Otherwise, the group is Zs ® Zs ® Zs, with
=Ty, Ty=Ty, T3=T;.

So far, we have have discussed only five out of the nine classes with an ideal of
arbitrary dimension. In the other four classes, the R* ideal has a basis

Xi :’Iﬁ($)ay7 1= 17...714,'7 (42)

where the functions n;(z) are constrained only by the requirement that the Lie
algebra is closed. For k£ = 1 and k = 2, this constraint is sufficient to allow us to
include all four classes in §3. However, for each k > 3, a complete classification
of inequivalent automorphisms is possible for only two of the four classes. We do
not include any of these classifications, which have numerous special cases and are
very lengthy. If necessary, the automorphisms and realizations can be calculated
as shown in §2, once a basis for the Lie algebra is known. We end by describing a
simple choice of basis for each of the remaining four classes of Lie algebras.

Lie algebra: R x R*

Basis (Olver’s no. 1.5, k > 3):
Xz:nl(x)a:lh 221,7]{?, Xk+1 :810 (43)

Lie algebra: R? x RF

Basis (Olver’s no. 1.6, k > 3):

Xi=ni(2)0y, i=1,...,k, Xit1 = Oq, Xit2 = y0,. (4.4)
For (4.3) and (4.4), the Lie algebra is closed if and only if
for some matrix T' = (tf ). If all eigenvalues of T are real, the commutator relations
may be simplified by using a basis in which T is in Jordan normal form. If some
eigenvalues are complex, a real 2 x 2 block Jordan form can be achieved on the space

spanned by the corresponding generalized eigenvectors, as follows. If A = u + iv is
an eigenvalue of multiplicity L, then so is its complex conjugate, A\* = yu—iv. Then

far—1(z) = 2l 7let cos(va), flor () = 27l sin(v), l=1,...,L,
produce the required real block. A further slight simplification may be achieved by
rescaling . These simplifications have been used in §3 to determine the results for
k<2
Lie algebra: R¥

Basis (Olver’s no. 3.1, k > 3):

Lie algebra: R x R*
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Basis (Olver’s no. 3.2, k > 3):
Xi :nz(x)ay, Z: 17,k7 Xk+1 :yay (46)

The Lie algebras (4.5) and (4.6) are closed for all functions n;(z). The only possible
simplification is obtained by introducing new variables

a}:n?—(x) = Yy
771(96)7 771(96).

Therefore, without loss of generality, we can restrict attention to Lie algebras with

m(z) =1, () = .

Even so, for k > 3, the functions n;(x), i > 3, can be arbitrary. Therefore it is
only possible to find the inequivalent automorphisms and realizations once these
functions are known.

5. CONCLUSION

The classification that is presented in §3 enables the reader to obtain all in-
equivalent discrete symmetries of a given scalar ODE whose Lie algebra of point
symmetries is known. If the Lie algebra is not included in §3, because it belongs
to a family that has ideals of arbitrary dimension, the results in §4 should be used.
A wide range of applications of this method can be found in Hydon’s papers that
were cited in the introduction.

Earlier, we stated that the classification of inequivalent automorphisms of a
particular Lie algebra can be useful for PDEs and systems of differential equations
that have that Lie algebra. To illustrate this, consider Burgers’ equation,

Up + Uy = Ugy, (5.1)

which has a five-dimensional Lie algebra of point symmetry generators that is iso-
morphic to sa(2), which is the Lie algebra 5a in §3. One basis in which the structure
constants are the same as in 5a is

X1 = —%8t, X2 = %$8m + t@t - %u&“

X3 = —2t20, — 2t20; + 2(tu — )0y, X4 =0,, X5 =2td, +20,. (5.2)
From 5a, the inequivalent real automorphisms of this Lie algebra are generated by

Tyt (X1, Xo, X3, X4, X5) = (X1, Xo, X3, e’ Xy, X X5), AER
Ty (X1, Xo, X3, X4, X5) = (— X1, Xo, —X3, Xy, —X5);

FS : (X17X27X37X47X5) = (X37 _X27 X17 X57 _X4)

Note that the Lie group generated by (5.2) is transitive in (z, ¢, u)-space, whereas the
Lie group generated by each basis in 5a is only two-dimensional. Therefore there
is no point transformation mapping either realization in 5a to the realization of
the inequivalent discrete transformations for Burgers’ equation. Consequently, it is
necessary to calculate this realization directly from the analogue of the determining
equations (2.2). Each generator in the basis (5.2) is of the form

Xi = fl(xv ta u)am + Ti(l’, tv u)at + nz(xv ta u)au )
so the determining equations are

Xii = 0ia(#,6,a), Xit =bm(i,ta), Xia=m(#,i,a)
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where the coefficients b} can be read off from each T; in turn. By solving the
determining equations for (&,%,), we find that each of the generators [ can be
realized as a point transformation, as follows:

Ly (z,t,u) — (e>‘9177t,e>‘u)7 AER,
Dy :(z,t,u) — (x, —t, —u);

z 1
I 2 e —tw)) .
3 (x7t7u) = < 2t7 4t7 ($ tu))

This is the complete list of real point transformations that produce automorphisms
of the Lie algebra spanned by (5.2), up to equivalence under the adjoint action of
the one-parameter subgroups. At this stage, we must check to see which of the
above transformations are symmetries of Burgers’ equation. It turns out that I’y
does not generate symmetries of Burgers’ equation (expect in the trivial case A = 0).
Furthermore, neither I's nor I';I's generate symmetries. However, I's generates a
four-element, group of discrete symmetries which is isomorphic to Z4. These are
the inequivalent real discrete symmetries of Burgers’ equation.

For many differential equations the inequivalent discrete symmetries are all real-
valued. Burgers’ equation is an exception; its inequivalent complex-valued discrete
symmetries form a group of order 8 that is isomorphic to the quaternion group @2
(see [14] for details).

APPENDIX
The following standard presentations of finite groups are used in the main text.
Here 1 denotes the identity element.

Cyclic group and its direct products

This group has two elements.

Z2®Z2 : f2 = f2 = ]., F1F2 = F2F1.

This group has four elements.

To@To® T T2 =T3=T%=1, all generators commute.
This group has eight elements.
Dihedral groups

D(4) . f4 = f‘g = ]., fzfl = f‘%fz

This group has eight elements.
dih(Zy @2y : T'=T4=T2=1, [oF =Ty, TDyfy =3y, Tyl = D3Ty.
This group has thirty-two elements.

Symmetric group and its direct products

S@)y: Ti=Ti=1, ([1Ty)3=1.

This group has twenty-four elements.
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5(4) ® Z2 : 1:‘4 = 1:‘2 = f‘g = 17 (F1F2)3 = 17 flf‘g = f‘gf‘h f‘2f3 = f3f‘2.
This group has forty-eight elements.

(1]
2]
(3]

(4]
(5]

(6]
(7]
(8]
(9]
[10]
1]
(12]
(13]
(14]
(15]

[16]

(17]
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