
CONSERVATION LAWS OF PARTIAL DIFFERENCEEQUATIONS WITH TWO INDEPENDENT VARIABLESP. E. HYDONAbstra
t. This paper introdu
es a te
hnique for obtaining the 
onservationlaws of a given s
alar partial di�eren
e equation with two independent vari-ables. Unlike methods that are based on N�other's Theorem, the new te
hniquedoes not use symmetries. Neither does it require the di�eren
e equation to haveany spe
ial stru
ture, su
h as a Lagrangian, Hamiltonian, or multisymple
ti
formulation. Instead, it uses a dis
rete analogue of the variational 
omplex.
1. Introdu
tionConservation laws are ubiquitous in applied mathemati
s. In some 
ases, theyexpress 
onservation of physi
al quantities. Even when they do not, they are usuallyof mathemati
al interest. Mu
h attention has been given to integrable systems thathave in�nite hierar
hies of 
onservation laws, whi
h are related to generalized sym-metries by N�other's Theorem. Conservation laws of integrable and nonintegrablesystems 
an be used in many ways, su
h as to prove existen
e and uniquenesstheorems, to derive sho
k 
onditions, and to 
he
k that numeri
al methods arenot produ
ing spurious results (at least qualitatively). If a di�erential equation isto be approximated using a �nite di�eren
e method, it seems desirable that thedis
retized equation should retain as mu
h of the original stru
ture as possible,in
luding dis
rete analogues of the 
onservation laws. Thus it would be useful tohave a systemati
 method for 
onstru
ting 
onservation laws of a given di�eren
eequation, that does not require the equation to be integrable. The purpose of thispaper is to introdu
e su
h a method in the simplest possible 
ontext.N�other's Theorem provides the best-known method of 
onstru
ting 
onservationlaws of any partial di�erential equation (PDE) that is the Euler-Lagrange equationfor a variational problem [11℄. This method uses variational symmetries, whi
hform a subset of the set of generalized (or Lie-B�a
klund) symmetries of the PDE.Generalized symmetries of a parti
ular order 
an be found systemati
ally fromthe symmetry 
ondition, whi
h amounts to an overdetermined system of PDEs(see [1, 12℄ for a modern introdu
tion). N�other's Theorem has been extended toHamiltonian PDEs [12℄ and, in a restri
ted form, to multisymple
ti
 PDEs [2℄.However, N�other's Theorem does not apply to all PDEs, but only to those thathave at least one of the spe
ial stru
tures listed above.Some partial di�eren
e equations (P�Es) have a variational formulation. N�other'sTheorem has been adapted to P�Es [3, 8℄, but there is a substantial drawba
k: thesymmetry 
ondition is a fun
tional equation, rather than a system of PDEs. It isoften possible to obtain series solutions of the symmetry 
ondition [4, 9℄, but su
hsolutions may be nonlo
al or hard to write in 
losed form. Re
ently, a methodwas developed that uses repeated di�erentiation to derive overdetermined systemsof PDEs from the symmetry 
ondition [6℄. This method usually requires the as-sistan
e of 
omputer algebra, but it 
an yield all symmetries of a given order (in
losed form). 1



2 P. E. HYDONThere is another way to 
onstru
t 
onservation laws of a given PDE, that usesneither symmetries nor any stru
tural properties of the PDE. It is based on thevariational 
omplex [12℄, whi
h has a homotopy operator. This operator has twomain uses. First, it is used to prove that the 
omplex is exa
t on topologi
allytrivial domains. In parti
ular, a fun
tion is a 
onservation law (that is, a totaldivergen
e) if and only if it is in the kernel of the Euler operator. Se
ond, thehomotopy operator provides a systemati
 means of 
onstru
ting 
onservation laws.The main drawba
k is that the expli
it formula for the homotopy operator is very
umbersome.The dis
rete analogue of the variational 
omplex was dis
overed re
ently [7, 10℄.A homotopy operator has been found, so for topologi
ally trivial domains (see x2for details) the 
omplex is exa
t. At least in prin
iple, it is possible to 
onstru
t
onservation laws systemati
ally using the homotopy operator, but the 
omplex-ity of the 
al
ulations is even more fearsome than for PDEs! There are two mainreasons for this. First, the spa
e of independent variables is 
ontinuous for PDEsbut is dis
rete for P�Es, so the homotopy operator involves sums rather than inte-grals. Se
ond, fun
tional equations o

ur in the dis
rete 
ase, making the governingequations more 
ompli
ated than in the 
ontinuous 
ase. It seems likely that a gen-eral homtopy-based method would have to be implemented as a 
omputer algebrapa
kage; this represents a substantial 
omputational 
hallenge. Nevertheless, thehomotopy operator does not use symmetries or any spe
ial stru
tures. In parti
ular,the P�E need not be integrable.For P�Es with two independent variables, 
onsiderable simpli�
ation is possible.This paper introdu
es the �rst systemati
 te
hnique for obtaining 
onservation lawsfor su
h equations that does not require a Lagrangian or Hamiltonian stru
ture. For
larity and brevity, we shall restri
t attention to s
alar P�Es; it is straightforward(but slightly messy) to extend the te
hnique to systems of P�Es. The stru
tureof the rest of the paper is as follows: x2 des
ribes the te
hnique and summarizesthe underlying theory. The implementation of the te
hnique is dis
ussed in x3.To illustrate this, we �nd 
onservation laws of a wave equation and the dis
retepotential modi�ed Korteweg-deVries equation. To 
on
lude, some extensions of thete
hnique are outlined in x4. For 
ompleteness, the homotopy formula is in
ludedin the Appendix. 2. The methodThe domain of a given PDE 
an be regarded as a �bre bundle M = X � U ,where X is the base spa
e of independent variables and U is the verti
al spa
e,i. e. the �bre of dependent variables u over ea
h x 2 X . The dire
t method for
onstru
ting 
onservation laws of PDEs requires the domain M to be topologi
allytrivial, whi
h o

urs if ea
h �bre U and the base spa
e X are star-shaped [12℄.For a given P�E, we again write the domain as M = X � U , but now X is theset of integer-valued multi-indi
es n that label ea
h latti
e point. (We assume thatthe latti
e points are labelled sequentially, without jumps; this does not require thelatti
e to be uniform.) The label spa
e X is said to be 
ube-shaped if, given anytwo points n1;n2 2 X , the P�E is well-de�ned for ea
h n that lies in the (hyper-)
ube whose opposite 
orners are n1 and n2.De�nition 1. For a given P�E, the domain M = X �U is topologi
ally trivial ifX is 
ube-shaped and ea
h �bre U is star-shaped.We restri
t attention to domains that are topologi
ally trivial. The reason fordoing this is to ex
lude `holes' in the latti
e, whi
h are points at whi
h the P�E issingular.



CONSERVATION LAWS OF DIFFERENCE EQUATIONS 3In this se
tion and in x3, we 
onsider s
alar P�Es that are se
ond-order in onevariable. The integer-valued labels (m;n) are the independent variables, and thevalue of the dependent variable u at the latti
e point (m;n) is denoted by unm. Theshift operators,Sm : (m;n) 7! (m+ 1; n); Sn : (m;n) 7! (m; n+ 1);indu
e the following mappings on the dependent variables:Sm : unm 7! unm+1; Sn : unm 7! un+1m :We assume that the labels have been 
hosen in su
h a way that the P�E is of theform un+pm+2 = !(m;n;um;um+1); (2.1)for a given fun
tion ! and a given integer p. Here ea
h ui denotes all variables of theform un+ji . We shall always 
hoose p so that j � 0 and (2.1) depends nontriviallyupon at least one of unm, unm+1 and unm+2.The form (2.1) is analogous to Kovalevskaya form for PDEs. It is a
hieved bya suitable 
hoi
e of variables. To illustrate this, 
onsider the dis
rete potentialmodi�ed Korteweg-deVries (dpmKdV) equation:ul+1k+1 = ulk  �(k; l)ulk+1 � ul+1k�(k; l)ul+1k � ulk+1! ; (2.2)whi
h is not in the required form. However, there is only one se
ond-order term,whi
h appears on the left-hand side. By 
hoosing the new independent variablesm = k + l and n = l, the dpmKdV equation is equivalent toun+1m+2 = unm �(m;n)unm+1 � un+1m+1�(m;n)un+1m+1 � unm+1! ; where �(m;n) = �(m� n; n): (2.3)This P�E has the form (2.1).A 
onservation law for the P�E (2.1) is an expression of the form(Sm � id)F + (Sn � id)G = 0 (2.4)that is satis�ed by all solutions of the equation. Here id is the identity mapping,and F;G are fun
tions of the dependent and independent variables. A 
onservationlaw is trivial if it holds identi
ally (not just on solutions of the P�E), or if F and Gboth vanish on all solutions of (2.1). We aim to �nd nontrivial 
onservation laws,so we assume without loss of generality that F and G depend only on m;n and a�nite subset of the variables um, um+1. Note that the only pla
e where (2.1) 
anbe substituted into (2.4) is in the term SmF . Therefore F must depend upon atleast one of the variables um+1. To keep things as simple as possible, we shall onlylook for 
onservation laws for whi
h F depends on exa
tly one su
h variable. Byapplying Sn or its inverse repeatedly to (2.4), we may assume that that variable isun+pm+1.Under the above restri
tion, the 
onservation law (2.4) amounts to(Sm � id)F (m;n;um; un+pm+1) + (Sn � id)G(m;n;um;um+1) = 0on solutions of (2.1). Therefore(Sn � id)G(m;n;um;um+1) = F (m;n;um; un+pm+1)� F (m+ 1; n;um+1; !); (2.5)where ! is the right-hand side of the P�E (2.1). This 
onstraint on F and G isthe key to obtaining the 
onservation laws. It does not involve the shift operatorSm, so m merely plays the role of a parameter. Therefore (2.5) 
an be regardedas a fun
tional di�eren
e equation involving one independent variable, n, and two



4 P. E. HYDONdependent variables, unm and unm+1. (Note that all of the variables (um;um+1) 
anbe obtained from (unm; unm+1) by prolongation, that is, by shifting n.)The operator Sn � id is a total di�eren
e operator (be
ause Sn treats the de-pendent variables as fun
tions of n). Thus the left-hand side of (2.5) is a totaldi�eren
e, and so it lies within the kernel of the Euler operator (see [7, 8, 10℄for details). For di�eren
e equations whose independent variable is n and whosedependent variables are (unm; unm+1), the Euler operator has two 
omponents:Em = Xj (Sn)�j ��un+jm ; (2.6)Em+1 = Xj (Sn)�j ��un+jm+1 : (2.7)By applying the Euler operator to (2.5), we obtain the following pair of linearfun
tional equations for F .Em�F (m;n;um; un+pm+1)� F (m+ 1; n;um+1; !)	 = 0 ; (2.8)Em+1�F (m;n;um; un+pm+1)� F (m+ 1; n;um+1; !)	 = 0 : (2.9)This pair of determining equations 
an be solved using the te
hnique of invariantdi�erentiation, as des
ribed in x3. Next, the fun
tion G 
an be re
onstru
ted, asthe following result shows.Theorem 1. Suppose that the domain M for a given P�E is topologi
ally trivial.Then for every solution F of ( 2.8), ( 2.9), there exists a fun
tion G su
h that ( 2.5)holds.This theorem holds be
ause the variational 
omplex is exa
t on topologi
allytrivial domains. (The proof of that result is long and 
ompli
ated; details are givenin [7℄.) In this 
ase, the kernel of the Euler operator is the image of the totaldi�eren
e operator Sn � id. The homotopy operator gives a systemati
 formula(whi
h is written down in the Appendix) for 
onstru
ting G, but it is almost alwaysfar easier to obtain G by inspe
tion, as we shall do in x3.Note that if F solves (2.8) and (2.9), then so does F +B(m;n) for any fun
tionB(m;n). This freedom merely adds a trivial 
onservation law, so we shall alwaysuse the simplest possible solutions F . Indeed, whenever the right-hand side of (2.5)depends only upon m and n, the 
onservation law is trivial. Apart from su
h 
ases,there is a 
onservation law for ea
h linearly independent solution F .3. Implementation and examplesBefore trying to solve the determining equations, it is ne
essary to de
ide howgeneral to make the fun
tion F . The greater the number of variables that F isallowed to depend upon, the greater is the diÆ
ulty of the 
al
ulation. On the otherhand, if F is restri
ted too mu
h then some 
onservation laws will not be found.This dilemma is universal { it applies as mu
h to PDEs as to P�Es, and it o

ursin the sear
h for symmetries as well as 
onservation laws. Usually, a 
ompromisemust be made, based on the limits set by patien
e and 
omputational power. Theexamples in this se
tion were �rst 
al
ulated by hand, then 
he
ked with 
omputeralgebra. With the ex
eption of the wave equation in the �rst example, detailsof most 
al
ulations are not in
luded, for they are neither brief nor parti
ularlyilluminating!The method of invariant di�erentiation has previously been applied to the prob-lem of obtaining symmetries of di�eren
e equations [6℄. The symmetry 
ondition,like ea
h of the above determining equations, is a fun
tional equation. The idea is



CONSERVATION LAWS OF DIFFERENCE EQUATIONS 5to use it to derive a set of PDEs by repeatedly applying �rst-order di�erential op-erators that eliminate parts of the fun
tional equation at ea
h step. The same idea
an be used to solve the determining equations for F . The following straightforwardexample shows how the method works.We shall solve the determining equations for the dis
rete wave equationunm+2 = un+1m : (3.1)In order to keep the 
al
ulations simple, let us seek solutions of the formF = F (unm; un+1m ; unm+1): (3.2)Then the 
onstraint (2.5) is(Sn � id)G(m;n;um;um+1) = F (unm; un+1m ; unm+1)� F (unm+1; un+1m+1; un+1m ); (3.3)and the �rst determining equation (2.8) amounts toF;1(unm; un+1m ; unm+1) + F;2(un�1m ; unm; un�1m+1)� F;3(un�1m+1; unm+1; unm) = 0; (3.4)where F;k denotes the partial derivative of F with respe
t to its kth argument. Ea
hof the fun
tions in (3.4) takes a di�erent set of arguments. The �rst fun
tion is theonly one that depends upon un+1m , so the remaining fun
tions are invariant underthe �rst-order di�erential operator �=�un+1m . Applying this operator to (3.4) yieldsF;12(unm; un+1m ; unm+1) = 0;and therefore there exist fun
tions A and B su
h thatF (x; y; z) = A(x; z) +B(y; z):Substituting this result into (3.4), we obtainA;1(unm; unm+1) +B;1(unm; un�1m+1)�A;2(un�1m+1; unm)� B;2(unm+1; unm) = 0: (3.5)This 
ompletes the �rst step of the redu
tion. Now we iterate, keeping going untilboth determining equations are satis�ed. The fun
tional equation (3.5) is simpli�edby di�erentiation with respe
t to unm+1:A;12(unm; unm+1)�B;12(unm+1; unm) = 0:Therefore B(y; z) = A(z; y) + �(y) + �(z);for some fun
tions � and �. Then (3.5) redu
es to�0(unm)� �0(unm) = 0;whose general solution is �(z) = �(z) + 
;where 
 is an arbitrary 
onstant. So, from the �rst determining equation, we havefound thatF (unm; un+1m ; unm+1) = A(unm; unm+1) +A(unm+1; un+1m ) + �(un+1m ) + �(unm+1) + 
:Without loss of generality, we 
an set � and 
 to be zero (rede�ning the arbitraryfun
tion A if ne
essary). Perhaps surprisingly, the se
ond determining equation(2.9), whi
h amounts toF;3(unm; un+1m ; unm+1)� F;2(un�1m+1; unm+1; unm)� F;1(unm+1; un+1m+1; un+1m ) = 0; (3.6)is satis�ed by F (unm; un+1m ; unm+1) = A(unm; unm+1) + A(unm+1; un+1m ); (3.7)



6 P. E. HYDONfor any di�erentiable fun
tion A. Therefore (3.7) is the general solution of thedetermining equations that is of the form (3.2); here A is an arbitrary fun
tion.From (3.3), we obtain(Sn � id)G(m;n;um;um+1) = A(unm; unm+1)�A(un+1m ; un+1m+1);and hen
e (by inspe
tion) G = �A(unm; unm+1):Summarizing these results, we have obtained an in�nite set of independent 
onser-vation laws,(Sm � id)fA(unm; unm+1) +A(unm+1; un+1m )g+ (Sn � id)f�A(unm; unm+1)g = 0:(3.8)Although this may seem surprising, it is analogous to 
onservation laws for thewave equation ut = �ux :For every non
onstant fun
tion A(u), there is a 
onservation law�A(u)�t + �A(u)�x = 0:The above example is parti
ularly easy, be
ause the PDEs are found after verylittle di�erentiation. In general, information from both determining equations isneeded to obtain redu
tions (see [6℄ for a detailed dis
ussion of invariant di�erenti-ation). In the next example, the solutions of the determining equations are statedwithout the details of their derivation.To �nd 
onservation laws of the dis
rete potential modi�ed Korteweg-deVries(dpmKdV) equation, ul+1k+1 = ulk  �(k; l)ulk+1 � ul+1k�(k; l)ul+1k � ulk+1! ; (3.9)write it in the form (2.3):un+1m+2 = unm �(m;n)unm+1 � un+1m+1�(m;n)un+1m+1 � unm+1! ; where �(m;n) = �(m� n; n): (3.10)We shall seek solutions of the determining equations that are of the formF = F (m;n; unm; un+1m ; un+1m+1); F;5 6� 0: (3.11)(This level of generality is 
lose to the limit of what 
an be a
hieved by hand inone hour; with the aid of 
omputer algebra, one 
ould seek solutions of greatergenerality.)Papageorgiou et al. [13℄ have shown that the singularities of the dpmKdV are
on�ned if and only if � is separable, i. e.�(k; l) = �(k)�(l) (3.12)for some fun
tions � and �. (Singularity 
on�nement is an indi
ation that a givendis
rete system is integrable [5℄.) The determining equations have no solutions ofthe form (3.11) unless (3.12) holds, in whi
h 
ase there are four linearly independent



CONSERVATION LAWS OF DIFFERENCE EQUATIONS 7solutions:F 1 = un+1m+1�(Sn�)un+1m � unm� � ;F 2 = 1un+1m+1 � Sn�un+1m � 1�unm� ;F 3 = 1un+1m+1 �un+1mSn� � �unm�+ un+1m+1� 1(Sn�)un+1m � �unm� ;F 4 = (�1)m( 1un+1m+1 �un+1mSn� � �unm�� un+1m+1� 1(Sn�)un+1m � �unm�) ;where Sn� = �(m� n� 1); � = �(n):For F = F 1, the 
orresponding G = G1 
an be re
onstru
ted from (2.5), whi
h(with � = �(m� n)) amounts to(Sn � id)G1 = un+1m+1�(Sn�)un+1m � unm� ��unm ��unm+1 � un+1m+1��un+1m+1 � unm+1!��un+1m+1 � unm+1� �= un+1m+1�(Sn�)un+1m � unm� �� unm �unm+1 � un+1m+1� != (Sn � id)(�unmunm+1):Therefore G1 = �unmunm+1:Similarly, the remaining 
omponents of the other three 
onservation laws areG2 = �unmunm+1 ;G3 = 1� � unmunm+1 + unm+1unm � ;G4 = (�1)m� � unmunm+1 � unm+1unm � :Finally, the four 
onservation laws 
an be rewritten in their original variables, asfollows: (Sk � id)(�ulkul+1k� ) + (Sl � id)��ulkulk+1	 = 0;(Sk � id)(� 1�ulkul+1k ) + (Sl � id)( �ulkulk+1) = 0;(Sk � id)(�� ul+1kulk + ulkul+1k !) + (Sl � id)( 1�  ulkulk+1 + ulk+1ulk !) = 0;(Sk � id)((�1)k+l� ul+1kulk � ulkul+1k !) +(Sl � id) ( (�1)k+l�  ulkulk+1 � ulk+1ulk !) = 0:



8 P. E. HYDON4. Con
lusions and extensions of the te
hniqueThe te
hnique presented in this paper is a pra
ti
al way of determining the
onservation laws of a given form. The method of invariant di�erentiation enablesthe user to obtain 
losed-form solutions of the determining equations. On
e thesesolutions have been found, the re
onstru
tion of the 
onservation law is usually easy.The most 
ompli
ated part of the te
hnique is the derivation of PDEs by invariantdi�erentiation, but this is not diÆ
ult if a reliable 
omputer algebra system is used.For brevity, several restri
tions were imposed that are not needed for the te
h-nique to su

eed. For example, there is no reason why F should not depend uponmore than one of the variables um+1; in that 
ase, n-shifts of ! will appear in sev-eral parts of the determining equations. It is also easy to generalize the te
hniqueto systems of P�Es. If there are q dependent variables then the Euler operator has2q 
omponents; these are of the form (2.6) or (2.7), where u is repla
ed by ea
hdependent variable in turn. After the 2q determining equations have been solved,the re
onstru
tion of the 
onservation law is straightforward. We have restri
tedattention to se
ond-order equations, but the te
hnique works just as well for higher-order P�Es. Then F should be 
hosen so that SmF is 
hanged when the left-handside of the P�E is repla
ed by the right-hand side.The only real obsta
le to allowing more than two independent variables is the
omplexity of the 
al
ulations. It is still possible to write down a set of determiningequations for one of the unknown fun
tions in the 
onservation law, but (unless thisfun
tion is heavily restri
ted) 
omputer algebra is an essential tool for solving them.Furthermore, the re
onstru
tion of the 
onservation law may not be obvious, asthere will be more than one fun
tion to �nd. If all else fails, the homotopy formulawill produ
e a re
onstru
tion, but the 
al
ulations are usually messy. In [12℄, Olverin
ludes the following 
omment in his dis
ussion of 
onservation laws for PDEs. \Inpra
ti
e, it is often easier to determine the divergen
e form dire
tly by inspe
tion,using [the homotopy formula℄ only as a last resort." The same is true for P�Es.Appendix: The homotopy formulaHere we present the homotopy formula for the 
lass of P�Es des
ribed in the mainbody of the paper. For details of the general homotopy operator for P�Es withmore independent or dependent variables, readers should 
onsult [7℄. If
 = 
(m;n;um;um+1)is in the kernel of the Euler operator (2.6), (2.7) then(Sn � id)G = 
 (A:1)is solved as follows. Introdu
e the higher Euler operators,Eim = Xj�i �ji�S�jn ��un+jm ;Eim+1 = Xj�i �ji�S�jn ��un+jm+1 :Then G = Z 1�=0 ��1K(
)���u 7!�u d�+ n�1Xk=n0 
���u 7!0 (A:2)solves (A.1), whereK(
) =Xi�1(Sn � id)i�1 �unmEim(
) + unm+1Eim+1(
)� : (A:3)



CONSERVATION LAWS OF DIFFERENCE EQUATIONS 9In the homotopy formula (A.2), n0 is any 
onvenient referen
e value of n, and thenotation u 7! �u means that ea
h un+jm+i is repla
ed by �un+jm+i. Some 
are is neededif 
 is singular when u 7! 0, but this is not a major diÆ
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