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ABSTRACT. This paper introduces a technique for obtaining the conservation
laws of a given scalar partial difference equation with two independent vari-
ables. Unlike methods that are based on N6ther’s Theorem, the new technique
does not use symmetries. Neither does it require the difference equation to have
any special structure, such as a Lagrangian, Hamiltonian, or multisymplectic
formulation. Instead, it uses a discrete analogue of the variational complex.

1. INTRODUCTION

Conservation laws are ubiquitous in applied mathematics. In some cases, they
express conservation of physical quantities. Even when they do not, they are usually
of mathematical interest. Much attention has been given to integrable systems that
have infinite hierarchies of conservation laws, which are related to generalized sym-
metries by Nother’s Theorem. Conservation laws of integrable and nonintegrable
systems can be used in many ways, such as to prove existence and uniqueness
theorems, to derive shock conditions, and to check that numerical methods are
not producing spurious results (at least qualitatively). If a differential equation is
to be approximated using a finite difference method, it seems desirable that the
discretized equation should retain as much of the original structure as possible,
including discrete analogues of the conservation laws. Thus it would be useful to
have a systematic method for constructing conservation laws of a given difference
equation, that does not require the equation to be integrable. The purpose of this
paper is to introduce such a method in the simplest possible context.

No6ther’s Theorem provides the best-known method of constructing conservation
laws of any partial differential equation (PDE) that is the Euler-Lagrange equation
for a variational problem [11]. This method uses variational symmetries, which
form a subset of the set of generalized (or Lie-Bécklund) symmetries of the PDE.
Generalized symmetries of a particular order can be found systematically from
the symmetry condition, which amounts to an overdetermined system of PDEs
(see [1, 12] for a modern introduction). Nother’s Theorem has been extended to
Hamiltonian PDEs [12] and, in a restricted form, to multisymplectic PDEs [2].
However, Nother’s Theorem does not apply to all PDEs, but only to those that
have at least one of the special structures listed above.

Some partial difference equations (PAEs) have a variational formulation. Nother’s
Theorem has been adapted to PAEs [3, 8], but there is a substantial drawback: the
symmetry condition is a functional equation, rather than a system of PDEs. It is
often possible to obtain series solutions of the symmetry condition [4, 9], but such
solutions may be nonlocal or hard to write in closed form. Recently, a method
was developed that uses repeated differentiation to derive overdetermined systems
of PDEs from the symmetry condition [6]. This method usually requires the as-
sistance of computer algebra, but it can yield all symmetries of a given order (in
closed form).
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There is another way to construct conservation laws of a given PDE, that uses
neither symmetries nor any structural properties of the PDE. It is based on the
variational complex [12], which has a homotopy operator. This operator has two
main uses. First, it is used to prove that the complex is exact on topologically
trivial domains. In particular, a function is a conservation law (that is, a total
divergence) if and only if it is in the kernel of the Euler operator. Second, the
homotopy operator provides a systematic means of constructing conservation laws.
The main drawback is that the explicit formula for the homotopy operator is very
cumbersome.

The discrete analogue of the variational complex was discovered recently [7, 10].
A homotopy operator has been found, so for topologically trivial domains (see §2
for details) the complex is exact. At least in principle, it is possible to construct
conservation laws systematically using the homotopy operator, but the complex-
ity of the calculations is even more fearsome than for PDEs! There are two main
reasons for this. First, the space of independent variables is continuous for PDEs
but is discrete for PAEs, so the homotopy operator involves sums rather than inte-
grals. Second, functional equations occur in the discrete case, making the governing
equations more complicated than in the continuous case. It seems likely that a gen-
eral homtopy-based method would have to be implemented as a computer algebra
package; this represents a substantial computational challenge. Nevertheless, the
homotopy operator does not use symmetries or any special structures. In particular,
the PAE need not be integrable.

For PAEs with two independent variables, considerable simplification is possible.
This paper introduces the first systematic technique for obtaining conservation laws
for such equations that does not require a Lagrangian or Hamiltonian structure. For
clarity and brevity, we shall restrict attention to scalar PAEs; it is straightforward
(but slightly messy) to extend the technique to systems of PAEs. The structure
of the rest of the paper is as follows: §2 describes the technique and summarizes
the underlying theory. The implementation of the technique is discussed in §3.
To illustrate this, we find conservation laws of a wave equation and the discrete
potential modified Korteweg-deVries equation. To conclude, some extensions of the
technique are outlined in §4. For completeness, the homotopy formula is included
in the Appendix.

2. THE METHOD

The domain of a given PDE can be regarded as a fibre bundle M = X x U,
where X is the base space of independent variables and U is the vertical space,
i. e. the fibre of dependent variables u over each x € X. The direct method for
constructing conservation laws of PDEs requires the domain M to be topologically
trivial, which occurs if each fibre U and the base space X are star-shaped [12].

For a given PAE, we again write the domain as M = X x U, but now X is the
set of integer-valued multi-indices n that label each lattice point. (We assume that
the lattice points are labelled sequentially, without jumps; this does not require the
lattice to be uniform.) The label space X is said to be cube-shaped if, given any
two points ny,ny € X, the PAE is well-defined for each n that lies in the (hyper-)
cube whose opposite corners are n; and ns.

Definition 1. For a given PAE, the domain M = X x U is topologically trivial if
X is cube-shaped and each fibre U is star-shaped.

We restrict attention to domains that are topologically trivial. The reason for
doing this is to exclude ‘holes’ in the lattice, which are points at which the PAE is
singular.
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In this section and in §3, we consider scalar PAEs that are second-order in one
variable. The integer-valued labels (m,n) are the independent variables, and the
value of the dependent variable u at the lattice point (m,n) is denoted by u?,. The
shift operators,

Sm i (myn) = (m+1,0),  Sus (myn) = (m, n+1),

induce the following mappings on the dependent variables:
S T Upy = U1 Sp s ull = ultt,

We assume that the labels have been chosen in such a way that the PAE is of the

form

Wty = w(m, W, U 1), (2.1)

for a given function w and a given integer p. Here each u; denotes all variables of the
form u}*7. We shall always choose p so that j > 0 and (2.1) depends nontrivially
upon at least one of uy,, un, ¢ and up, 5.

The form (2.1) is analogous to Kovalevskaya form for PDEs. It is achieved by
a suitable choice of variables. To illustrate this, consider the discrete potential

modified Korteweg-deVries (dpmKdV) equation:

I+1
airt =gt (YD — (2.2)
e vk, Dugtt —ujy, )

which is not in the required form. However, there is only one second-order term,
which appears on the left-hand side. By choosing the new independent variables
m =k +1 and n = [, the dpmKdV equation is equivalent to

p(m,n)up q —uptl
Uiy = U, (M(m n)ugjl u;”“ , where p(m,n)=v(m-—n,n). (2.3)
) m+1 "~ Ym+1

This PAE has the form (2.1).
A conservation law for the PAE (2.1) is an expression of the form

(S —id)F + (S, —id)G = 0 (2.4)

that is satisfied by all solutions of the equation. Here id is the identity mapping,
and F, G are functions of the dependent and independent variables. A conservation
law is trivial if it holds identically (not just on solutions of the PAE), or if F' and G
both vanish on all solutions of (2.1). We aim to find nontrivial conservation laws,
so we assume without loss of generality that F' and G depend only on m,n and a
finite subset of the variables u,,, u,1+1. Note that the only place where (2.1) can
be substituted into (2.4) is in the term S,,F. Therefore F' must depend upon at
least one of the variables u,, 1. To keep things as simple as possible, we shall only
look for conservation laws for which F' depends on exactly one such variable. By

applying S,, or its inverse repeatedly to (2.4), we may assume that that variable is

iz,
Under the above restriction, the conservation law (2.4) amounts to

(Sm — id)F (m,n, um,u::ffl) + (Sp —1d)G(m,n, 0y, 0me1) =0

on solutions of (2.1). Therefore

(Sn —id)G(m, 0, U, Wint1) = F(myn,up, unih) = F(m+ 1n, Wngr,w),  (2.5)

where w is the right-hand side of the PAE (2.1). This constraint on F and G is
the key to obtaining the conservation laws. It does not involve the shift operator
Sm, so m merely plays the role of a parameter. Therefore (2.5) can be regarded
as a functional difference equation involving one independent variable, n, and two
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dependent variables, u}}, and ;. ;. (Note that all of the variables (u,, upy41) can
be obtained from (uj,,uy, ;) by prolongation, that is, by shifting n.)

The operator S,, — id is a total difference operator (because S,, treats the de-
pendent variables as functions of n). Thus the left-hand side of (2.5) is a total
difference, and so it lies within the kernel of the Euler operator (see [7, 8, 10]
for details). For difference equations whose independent variable is n and whose
dependent variables are (uj,,uy,, ), the Euler operator has two components:

.9
En = Z(Sn) ]W’ (2.6)
j m
E = S,) 7 0 2.7
m+1 — Z( n) ﬁuTﬂ ( . )
i m+1

By applying the Euler operator to (2.5), we obtain the following pair of linear
functional equations for F'.

Em{F(manvumvufn—:pl) - F(m + lvnvum+17w)} = 0, (28)
Epit{F(m,n,up,upm) = F(m + 1,n, upmi1,w)} = 0. (2.9)

This pair of determining equations can be solved using the technique of invariant
differentiation, as described in §3. Next, the function G can be reconstructed, as
the following result shows.

Theorem 1. Suppose that the domain M for a given PAE is topologically trivial.
Then for every solution F of (2.8), (2.9), there exists a function G such that (2.5)
holds.

This theorem holds because the variational complex is exact on topologically
trivial domains. (The proof of that result is long and complicated; details are given
in [7].) In this case, the kernel of the Euler operator is the image of the total
difference operator S, — id. The homotopy operator gives a systematic formula
(which is written down in the Appendix) for constructing G, but it is almost always
far easier to obtain GG by inspection, as we shall do in §3.

Note that if F' solves (2.8) and (2.9), then so does F' 4+ B(m,n) for any function
B(m,n). This freedom merely adds a trivial conservation law, so we shall always
use the simplest possible solutions F'. Indeed, whenever the right-hand side of (2.5)
depends only upon m and n, the conservation law is trivial. Apart from such cases,
there is a conservation law for each linearly independent solution F'.

3. IMPLEMENTATION AND EXAMPLES

Before trying to solve the determining equations, it is necessary to decide how
general to make the function F. The greater the number of variables that F is
allowed to depend upon, the greater is the difficulty of the calculation. On the other
hand, if F is restricted too much then some conservation laws will not be found.
This dilemma is universal — it applies as much to PDEs as to PAEs, and it occurs
in the search for symmetries as well as conservation laws. Usually, a compromise
must be made, based on the limits set by patience and computational power. The
examples in this section were first calculated by hand, then checked with computer
algebra. With the exception of the wave equation in the first example, details
of most calculations are not included, for they are neither brief nor particularly
illuminating!

The method of invariant differentiation has previously been applied to the prob-
lem of obtaining symmetries of difference equations [6]. The symmetry condition,
like each of the above determining equations, is a functional equation. The idea is



CONSERVATION LAWS OF DIFFERENCE EQUATIONS 5

to use it to derive a set of PDEs by repeatedly applying first-order differential op-
erators that eliminate parts of the functional equation at each step. The same idea
can be used to solve the determining equations for F'. The following straightforward
example shows how the method works.

We shall solve the determining equations for the discrete wave equation

Ul = umtt, (3.1
In order to keep the calculations simple, let us seek solutions of the form
F = F(up, upt g ) (3.2)

Then the constraint (2.5) is

(Sn - ld)G(mv n, Um, um+1) = F(u?na u?n+17 um+1) - F(u?n+17 U’:Lnillv U?,;Ll), (33)

and the first determining equation (2.8) amounts to

El(uszuZz+lvuTr:z+l) + F,2(UZ;1,UT¢;‘17UZ¢11 ) - E3(urr:1111vurr:z+lvurr:z) = Ov (34)

where F;, denotes the partial derivative of F with respect to its k*® argument. Each
of the functions in (3.4) takes a different set of arguments. The first function is the
only one that depends upon 4™, so the remaining functions are invariant under
the first-order differential operator &/0u’!. Applying this operator to (3.4) yields

E12(u?n7 u?n+17 u?n+1) =0,
and therefore there exist functions A and B such that
F(z,y,2) = A(z,2) + B(y, 2).

Substituting this result into (3.4), we obtain

A (uiy g y) + B (un un ) = A (up iy, up) = Bo(up, g, up,) = 0. (3.5)
This completes the first step of the reduction. Now we iterate, keeping going until
both determining equations are satisfied. The functional equation (3.5) is simplified
by differentiation with respect to uy, ,:

A2 (g, U p1) — Bz (U, g5 up,) = 0.

Therefore
By, z) = A(z,y) + a(y) + B(2),
for some functions o and 3. Then (3.5) reduces to
o' (up,) — B’ (up,) =0,
whose general solution is
B(z) = a(z) +c,
where c¢ is an arbitrary constant. So, from the first determining equation, we have
found that
F (g up™ g 1) = Ay, ) + Alugy s up™) + alup™) + a(up, ) + e

Without loss of generality, we can set a and ¢ to be zero (redefining the arbitrary
function A if necessary). Perhaps surprisingly, the second determining equation
(2.9), which amounts to

Fy3(unm7unm+17unm+1) - F,2(“nm]—117unm+17unm) - F,l(u%+17unm—:-117unm+l) =0, (3.6)

is satisfied by

F(up, upt g, ) = Alug, up, ) + Alug, g, un™), (3.7)
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for any differentiable function A. Therefore (3.7) is the general solution of the
determining equations that is of the form (3.2); here A is an arbitrary function.
From (3.3), we obtain

(Sn - ld)G(mv n,Um, um+1) = A(u?nv u?n+1) - A(u?n+17 unm—i-_i-ll)v

and hence (by inspection)
G = —A(ul, ulhp)-

Summarizing these results, we have obtained an infinite set of independent conser-
vation laws,

(S — 1d){A(upy, i) + Ay, upt™) Y+ (Sn = 1d){=A(up,, up, )} = 0.
(3.8)

Although this may seem surprising, it is analogous to conservation laws for the
wave equation

Ut = —Ug -

For every nonconstant function A(u), there is a conservation law

(AW), + (Aw)), = 0.

The above example is particularly easy, because the PDEs are found after very
little differentiation. In general, information from both determining equations is
needed to obtain reductions (see [6] for a detailed discussion of invariant differenti-
ation). In the next example, the solutions of the determining equations are stated
without the details of their derivation.

To find conservation laws of the discrete potential modified Korteweg-deVries
(dpmKdV) equation,

1
ul+1 = uic V(k7 l)ugﬂ_l — Uk+1 ) (39)
kel v(k, l)uic+1 — “ZH

write it in the form (2.3):

m,n)u”  , —uhl
uptl, = ull, p(m, n) nmjll ;”H ,  where pu(m,n)=v(m-—mn,n). (3.10)
,u(m, n)um+1 — Ui

We shall seek solutions of the determining equations that are of the form
F= F(manvu?nau?nquufntgl)v F,5 5—/: 0. (311)

(This level of generality is close to the limit of what can be achieved by hand in
one hour; with the aid of computer algebra, one could seek solutions of greater
generality.)

Papageorgiou et al. [13] have shown that the singularities of the dpmKdV are
confined if and only if v is separable, i. e.

v(k,1) = a(k)B(1) (3.12)

for some functions a and . (Singularity confinement is an indication that a given
discrete system is integrable [5].) The determining equations have no solutions of
the form (3.11) unless (3.12) holds, in which case there are four linearly independent
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solutions:
n+1 ( n+1 %
m+1 ﬁ )
n+1 ( n+1 - n ) )
m+1 6“’
n+1
1 1 ?
Zﬂl Sna TN (Spaum u,
n+1
n _&L>_MH<__L___£)
+1 m+1 F1 )
?n+1 (Spa)um up,
where

Spa =a(m—n—1), B = B(n).

For F = F!, the corresponding G = G! can be reconstructed from (2.5), which
(with & = a(m — n)) amounts to

Su=idG = i (Saaput - )

n n+1 n
n O‘ﬁ“mﬁ-l m+1 n+1 um-l—l
Uy | —F 7 au —
ﬁ n+1 n m—+1 ﬁ
Q U’m+1 m+1

un un++11
+1 +1 m
i (Saoput =) i (g =

= (Sp —id)(aumup, i q).

m“Ym—+1

Therefore
1 n,n
G = aupty, .

Similarly, the remaining components of the other three conservation laws are

9 «
G u”mum+1
G3 — l (i + %) ,
@ \Upt1 u,
ot — =nm < U, _“%4—1).
o' Uy i1 ul,

Finally, the four conservation laws can be rewritten in their original variables, as
follows:

l,,01+1
(Sk—id){—T} + (S —id) {aukul,,} =0,

1 «
(S —id){ ————— + (S—id)s —— =0,
B%UL“ ku5c+1
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4. CONCLUSIONS AND EXTENSIONS OF THE TECHNIQUE

The technique presented in this paper is a practical way of determining the
conservation laws of a given form. The method of invariant differentiation enables
the user to obtain closed-form solutions of the determining equations. Once these
solutions have been found, the reconstruction of the conservation law is usually easy.
The most complicated part of the technique is the derivation of PDEs by invariant
differentiation, but this is not difficult if a reliable computer algebra system is used.

For brevity, several restrictions were imposed that are not needed for the tech-
nique to succeed. For example, there is no reason why F' should not depend upon
more than one of the variables u,,1; in that case, n-shifts of w will appear in sev-
eral parts of the determining equations. It is also easy to generalize the technique
to systems of PAEs. If there are ¢ dependent variables then the Euler operator has
2¢ components; these are of the form (2.6) or (2.7), where u is replaced by each
dependent variable in turn. After the 2¢ determining equations have been solved,
the reconstruction of the conservation law is straightforward. We have restricted
attention to second-order equations, but the technique works just as well for higher-
order PAEs. Then F should be chosen so that S, F' is changed when the left-hand
side of the PAE is replaced by the right-hand side.

The only real obstacle to allowing more than two independent variables is the
complexity of the calculations. It is still possible to write down a set of determining
equations for one of the unknown functions in the conservation law, but (unless this
function is heavily restricted) computer algebra is an essential tool for solving them.
Furthermore, the reconstruction of the conservation law may not be obvious, as
there will be more than one function to find. If all else fails, the homotopy formula
will produce a reconstruction, but the calculations are usually messy. In [12], Olver
includes the following comment in his discussion of conservation laws for PDEs. “In
practice, it is often easier to determine the divergence form directly by inspection,
using [the homotopy formula] only as a last resort.” The same is true for PAEs.

APPENDIX: THE HOMOTOPY FORMULA

Here we present the homotopy formula for the class of PAEs described in the main
body of the paper. For details of the general homotopy operator for PAEs with
more independent or dependent variables, readers should consult [7]. If

Q=Q(m,n, um, W)
is in the kernel of the Euler operator (2.6), (2.7) then
(Sp —id)G =0 (A1)

is solved as follows. Introduce the higher Euler operators,

i N ooy 9
- 5 ()

jzi
. j .0
, = S, —
m—+1 g <Z> n 81#;_]1
Then
1 n—1
= AIK(Q dA Q A2
¢ A=0 ( ) U =AU + k;o u —0 ( )

solves (A.1), where

K(Q) = Y (Sn —id)"" [up, By () + upyy By ()] (A.3)

i>1
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In the homotopy formula (A.2), ng is any convenient reference value of n, and the

notation u — Au means that each u"mtfz is replaced by Au

n+j

mai Some care is needed

if Q is singular when u +— 0, but this is not a major difficulty.
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