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This paper introduces an algorithm for calculating all discrete point symmetries of a given
partial differential equation with a known nontrivial group of Lie point symmetries. The
method enables the user to determine the discrete symmetries with little more effort than
is used to find the Lie symmetries. It is used to obtain the discrete point symmetries of
Burgers’ equation, the spherical Burgers’ equation, and the Harry-Dym equation. The
method can be extended to some types of nonlocal symmetry; we derive the quasi-local
discrete symmetries of a system of PDEs from gas dynamics.

1 Introduction

Discrete symmetries of partial differential equations (PDEs) are important for various
reasons. For instance, to understand how a system changes its stability, one must first
know its discrete and continuous symmetries, in order to apply equivariant bifurcation
theory correctly. Discrete symmetries involving charge conjugation, parity change, and
time-reversal play a key role in quantum field theories. Nonlocal discrete symmetries
such as auto-Bécklund transformations are important in the study of integrable systems.
Discrete symmetries are also used to simplify the numerical computation of solutions of
PDEs, and to create new exact solutions from known solutions.

Continuous groups of symmetries can be constructed systematically using Lie’s method,
which linearizes the determining equations that are satisfied by all symmetries [1, 6, 8, 10].
However, for discrete symmetries, no such linearization is possible. The problem of solv-
ing the determining equations directly is usually intractable; until now, the only other
means of obtaining discrete symmetries has been to use an ansatz (see [2]). However, this
approach can only yield symmetries in the class admitted by the ansatz; a given system
may have other discrete symmetries outside that class.

This paper introduces a constructive technique that uses the Lie point symmetries of
a given system of PDEs to determine all of the discrete point symmetries. The method
is easy to use, and can be applied to any system whose Lie point symmetries are known
(and non-trivial). Most PDEs that arise from mathematical models are in this category.

The technique is based on the observation that every point symmetry yields an auto-
morphism of the Lie algebra of Lie point symmetry generators. This results in a set of
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auxiliary equations that are satisfied by all point symmetries; these equations are solvable
by standard techniques. If the Lie algebra is non-abelian, the auxiliary equations may be
considerably simplified before they are solved. Typically, the solution contains unknown
constants or functions of integration. Substituting the solution into the original (nonlin-
ear) determining equations, and then factoring out the known continuous symmetries,
produces a list of all discrete point symmetries. The method readily extends to other
types of symmetries, as is described elsewhere [4, 5].

2 The determining equations
Consider a given regular system of PDEs,
A(z,u) =0, (2.1)

that involves M dependent variables, u = {u',...u™}, and N independent variables,
r={z',...,2N}. A diffeomorphism

L:(z,u) = (&(x,u),d(z,u)) (2.2)

is a point symmetry of the given system if I' maps the set of solutions to itself. This
happens if
A(z,4) =0 when A(z,u) =0. (2.3)

The symmetry condition (2.3) can be split into a system of determining equations for
(Z,u). Typically, the determining equations are nonlinear and highly-coupled, and they
cannot be solved by a direct approach. (Even for ordinary differential equations (ODEs),
the determining equations are almost always too difficult to solve. I know of only one
instance in which these equations have been solved directly [9]; the authors used computer
algebra to produce a differential Grobner basis for the determining equations of a second-
order ODE.)

Although the discrete symmetries of a given PDE cannot usually be obtained directly,
the Lie point symmetries are generally easy to find. They are of the form

25 = 2° + ¥ (z,u) + O(e?), s=1,...,N,

4% = u® + en? (x,u) + O(e?), co=1,..., M,

and they are obtained by linearizing the symmetry condition about € = 0 (see [1, 6, 8, 10]
for further details). Routines for calculating Lie point symmetries are available for use
with all major computer algebra packages (see [3]). Henceforth, we shall assume that the
Lie point symmetries have been found. For simplicity, we also assume that the set of
infinitesimal generators forms an R-dimensional Lie algebra, £, which has a basis

X; =& (2, u)0ps +nf (2, u)0y, t1=1,...,R. (2.4)

(The usual summation convention applies.) It is worthwhile choosing a basis in which
the commutator relations

[Xi, Xj] = cf; Xk (2.5)

are as simple as possible.
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The one-parameter group of continuous symmetries generated by X; is

Ti(e) = exp(eX;).
Now suppose that

T:(z,u) v~ (Z,0)
is any symmetry of the given PDE. Then

[i(e) = TTi(e)I ™" = exp(el X;T7Y),
is a one-parameter group of continous symmetries, which is generated by
X;=TXx,r .

In particular,
and similarly,

Therefore

Xi = &(&,4)0+ + ] (&,4)0qe,
and so each X; has exactly the same functional form as the corresponding X;, but
with (#,4) replacing (z,u) in (2.4). Thus the transformed generators X;, i = 1,..., R
constitute a basis for £, with exactly the same commutator relations as the original basis:

(X, X;] = ck Xy (2.6)
Each generator in the original basis can be written in terms of the new basis as follows:
X; =X, i=1,...,R, (2.7)

where det(b}) # 0. By substituting (2.7) into (2.5) and taking (2.6) into account, we find
that the constants bl satisfy the nonlinear constraints

e, DD = by (2.8)
(The identity cfi = —cfj implies that it is sufficient to assume that i < j in (2.8); we
shall do this henceforth.) From (2.7), we obtain a system of R(M + N) first-order PDEs
for the M + N unknown functions (&, @):

X;@% =blef(#,0), X7 = bl (#,4). (2.9)

(2

Every point symmetry of the given PDE necessarily satisfies (2.9) for some nonsingular
matrix B = (bl). This system is generally easy to solve using the method of character-
istics. Moreover, if dim(£) > M + N, it is usually possible to solve (2.9) by eliminating
the derivatives to obtain algebraic equations for (&, ).

The most straightforward way of determining the discrete symmetries is: first solve
(2.9) for arbitrary B, then check which of the solutions satisfies the symmetry condition.
The continuous symmetries should be factored out at any convenient stage to produce
a list of discrete symmetries, no two of which are equivalent to one another under any
symmetry in a one-parameter Lie group.
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If £ is non-abelian, considerable effort may be saved by simplifying B before solving
(2.9). This is done by creating as many zero entries as possible, using the constraints
(2.8) and the adjoint action of the continuous symmetries. The adjoint action of the one-
parameter group generated by X; on the basis {X1,...,Xg} is described by the R x R
matrix

A(j,€) = exp{eC(j)}, (2.10)

where

(0t)! =k

k3
The one-parameter Lie group generated by X; is equivalent, under the group generated
by Xj, to the group generated by

Xi = Ad(eN) X; = (A(j,€)) ] X, -
We can rewrite (2.7) as
X; =0 X, (2.11)
where
b = (A(j,e)) L,
Therefore (2.11) is equivalent, under the group generated by X;, to
X; = 0L X (2.12)

The system (2.12) is similar to (2.7), the only difference being that the matrix B in (2.7)
has been replaced by A(j,€)B. In the same way, by considering the adjoint action of the
group generated by X'j on the group generated by Xi, we can replace B by BA(j,¢€).
These equivalence transformations do not affect (2.8). By using each A(j, €) in turn, one
can usually factor out the continuous symmetries before solving (2.9).

In practice, it is most effective to write out the nonlinear constraints (2.8) and to
solve as many as possible immediately. (I recommend the use of computer algebra if
dim(£) > 4.) When no further simplification is possible, try to create an extra zero entry
in B by carrying out an equivalence transformation with a non-diagonal adjoint matrix
A(j,€). This simplifies the remaining nonlinear constraints, and so the procedure can be
iterated. Finally, any diagonal adjoint matrices are used to rescale rows or columns of B.
The matrices A(j, €) may be used in any convenient order, but each one should be used
exactly once. (For each j, the choice of a particular € factors out the one-parameter Lie
group generated by X;.)

We shall consider equivalence under continuous symmetries with real-valued param-
eters; the inequivalent discrete symmetries may have a real or complex action on the
variables (z,u). Each real matrix B that satisfies the nonlinear constraints (2.8) corre-
sponds to a real automorphism of the Lie algebra. By factoring out equivalent matrices
using the adjoint action of the Lie symmetries, we obtain the (factor) group of inequiv-
alent real automorphisms. We then use the symmetry condition (2.3) to determine all
discrete symmetries associated with each automorphism in this group. The number of
such symmetries depends upon the PDE, whereas the number of inequivalent automor-
phisms is determined by the Lie algebra. Consequently there may be automorphisms that
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are not realised as symmetries, and some automorphisms may generate more than one
symmetry.

3 A worked example: the spherical Burgers’ equation

To illustrate the method, consider the spherical Burgers’ equation,
u
ur + n + Uty = Ugy, (3.1)

which has a three-dimensional Lie algebra of point symmetry generators [7]. These are
spanned by

1
X1 :—2t8t—xf)z+u8u, Xg:lntam-l-;&“ X3 :am,
whose nonzero commutators [X;, X;], i < j, are
[X17X2]:X2—2X3, [Xl,Xg]:Xg.

Therefore the nonzero structure constants are

C%2 =1, 0?2 = -2, C?S =1, 031 = -1, 031 =2, Cgl =-1
The matrices C(j) are
0 0 0 0 1 -2 0 01
cy={0 -1 2|, C2=100 0], C@B=|000
0 0 -1 00 O 0 00
Exponentiating the matrices e C'(j), we obtain
1 0 0 1 € —2¢ 1 0 €
Al,e)=| 0 e 2 ¢ |, A(2,¢)=| 0 1 0 , AB,e)=|10 1 0
0 0 e 00 1 0 0 1
Now we write out the nonlinear constraints,
iU = by, (3.2)

for each n in turn. It is usually best to begin with any n for which X, is not in the sub-
algebra spanned by the commutators, because then the nonlinear terms in (3.2) vanish.
For n = 1, we obtain

0= cfib;. (3.3)
Substituting (i,j) = (1,3) into (3.3), we find that b3 = 0. Then (i,j) = (1,2) yields
b3 = 0. The 3 x 3 matrix B is nonsingular, so b} # 0.
For n = 2, the above results lead to to the constraints

DIBZ = 12— 202, bR =2,
Therefore

b3 =0, b3 # 0.
Finally the remaining constraints (with n = 3) are

—2b1b3 + bib5 = b5 — 2b3,  bib} = bi;
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these yield the results
bl =1, b3 = b3 £ 0.

So far, we have been able to simplify B to the following:

(16
B=|0 b2 b |. (3.4)
Lo o o]

Now we use the adjoint matrices A(j,€) to simplify the off-diagonal elements. Note that

1 b+e b3 —2€
BA(2,e)=| 0 b3 b3 ,
0 0 b3
so (by choosing € = —b?) this equivalence transformation enables us to replace b? by

zero. Similarly, postmultiplying B by A(3,—b3) is equivalent to setting b3 = 0. Finally,
postmultiplying B by A(1,—b3/(203)) gives b3 = 0. In summary, we have factored out
the Lie symmetries by using the adjoint action, and the inequivalent discrete symmetries
are those solutions of (2.9), with

100
B=|0 b 0], b0,
00 b

that also satisfy the symmetry condition. (N.B. The above simplication of B could equally
well be achieved by premultiplying B by the adjoint matrices.)
The system (2.9), with B as above, amounts to

Xit Xi@ Xia -2t —& @ -2t —& a
Xot Xoi Xot | =B| 0 1Int 1/t |=| 0 blnt b/t
Xt Xzi  Xad 0 1 0 0 b 0
This system of first-order PDEs has the general solution
R b
t=ct, T = b(x+ (lncl)tu+03t1/2), = —U,+02t_1/2, (35)
C1

where each ¢; is an arbitrary constant, and ¢; # 0. All that remains is to substitute (3.5)
into the symmetry condition

A

. TR . U
a; + ? + Ul = Uszs when ug + n + Uy = Ugy.

(For the sake of brevity, the details of this straightforward calculation are omitted.) It
turns out that the symmetry condition imposes the further constraints
b2201:1, 02203:0.
Therefore there are two classes of discrete symmetries, namely those that are equivalent
to
IS (tvxvu) = (tv -, —U),

and those that are equivalent to (I';)?, which is the identity. In other words, the factor
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group of inequivalent discrete symmetries is isomorphic to the cyclic group Zs, and is
generated by T';.

In this example, most automorphisms of the Lie algebra do not generate any discrete
symmetries. The automorphisms for which > = 1 each generate a single discrete sym-
metry.

4 Discrete symmetries of the Harry-Dym equation and Burgers’ equation

Generally speaking, the complexity of the calculations that are needed to determine the
inequivalent automorphisms of a Lie algebra, £, increases with R = dim(£). The system
of nonlinear constraints (2.8) yields up to R?(R—1)/2 separate equations. However, once
the set of inequivalent matrices B has been found, it is usually easy to solve the deter-
mining equations (2.9). In this section, we use the method described above to derive the
inequivalent discrete symmetries of two well-known PDEs. (The details of the calculations
that produce the set of inequivalent automorphisms are outlined in the Appendix.)
The Harry-Dym equation,

U = Uy, (4.1)

has a five-dimensional Lie algebra £ of point symmetry generators [3]. The basis

X1 =0, Xo=2a0,+ud,, X3=ax20,+2zudy,,

Xy =0, X5=1t0— gam

has the following non-zero structure constants cfj, 1< J:

chh=1, ¢3=2, =1, cz=1 (42)

After solving the constraints (2.8) and using the adjoint matrices to factor out the Lie
symmetries (see Appendix), we find that either

B = diag{a,1,a, 3,1}, (4.3)
or
0 0 a 0 O
0 -1 0 0 O
B=|a 0 00 0]; (4.4)
0O 0 0 B8 0
0O 0 0 0 1

here a, 8 are each either 1 or —1. Therefore there are eight inequivalent real automor-
phisms of the Lie algebra. The general solution of (2.9) is

S0

= St, T = az, i = cru,
if B is of the form (4.3); otherwise

t:ﬁt7 f,i':_—, ﬁ:—2
€T X

By substituting each of these results into the symmetry condition, we find that the factor
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group of inequivalent real discrete symmetries is isomorphic to Zs ® Zo; it is generated
by

Fl : (x7t7u) = (_x7 _t7u)7

1 U
I (ac,t,u) = (_57 t, ?)
The group of inequivalent complex discrete symmetries is the direct product of the above
group with the Zj3 group generated by

D3 (z,t,u) — (z,t,e2™/3u).

The mappings I'; and I's correspond to (4.3) with « = f§ = —1 and o = § = 1 respec-
tively, whereas 'y corresponds to (4.4) with @ = § = 1. In this example, the automor-
phisms with f = —a are not realized as point symmetries. Note that each of the discrete
point symmetries generated by I's corresponds to the trivial automorphism b} = 6%, so
the inequivalent automorphisms with a = f each generate three complex symmetries.

So far, we have only seen examples in which the inequivalent discrete symmetries form
either a cyclic group or a direct product of such groups. However, some PDEs have a
more complicated structure. Burgers’ equation,

Up + Uy = Ugpg, (4.5)
has a five-dimensional Lie algebra of point symmetry generators [7], with a basis
X1 :az, ngat, X3:1'61+2t6t—uau,

Xy = 2t0, +20,, X5 =4txd, + 4t°0; + 4(x — tu)0,. (4.6)

After simplification of the matrix B (as detailed in the Appendix), the possible inequiv-
alent automorphisms are

B = diag{aa, a, 1,a,a} (4.7)
and
0 0 0 —a O
0 0 0 0 «a
B=|0 0 -1 0 0], (4.8)
aa 0 O 0 0

0O a 0 0 O

where « is either 1 or —1, and a is a real constant. By solving (2.9) and checking to
see which of the solutions are symmetries, we obtain the following result. The inequiv-
alent complex discrete symmetries of Burgers’ equation form a group of order 8 that is
isomorphic to the quaternion group @-; it is generated by

Ty (x,t,u) — (—ix, —t,iu),

T 1
Dy (z,t,u) — (ﬂ’_ﬂ’ 2(tu—x)> .

(The inequivalent real discrete symmetries are generated by I's; they form the cyclic
group Zy.)
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Rational symmetries, such as those generated by I's in the above example, typically cor-
respond to a Weyl reflection of an s{(2) subalgebra. For Burgers’ equation, the subalgebra
spanned by X», X3, and X; is isomorphic to s[(2). The Harry-Dym equation (4.1) also
has discrete rational symmetries associated with the s[(2) subalgebra Span(X;, Xo, X3).

5 Nonlocal discrete symmetries

The method can readily be extended to deal with other types of symmetry, provided
that the infinitesimal generators form a Lie algebra. Consider the following system of
equations from gas dynamics (see [7] for details):

3
gs — vy =0, vs +py =0, ps + zpvy =0. (5.1)

Note that the first equation of (5.1) implies the existence of a potential, @, such that
q= ¢y7 U= ¢s- (52)

The system (5.1) has a eight-dimensional Lie algebra, £, of quasi-local symmetry gener-
ators:
X1 :83, Xg:sas—p3p+q3q+¢8¢,
X3 = 0y, X4 =y0Oy + p0p — q0q,
X5 :81,+s8¢7 X¢ = v0, +p8p+q8q+¢8¢,
X7 = 0y, Xg = 5%05 + (¢ — sv)0y — 33P0y + 5q0y + 5¢0y.

The quasi-local generators are point symmetry generators for the extended system (5.1),
(5.2). Therefore we can use the new method to determine the inequivalent discrete quasi-
local symmetries of (5.1). For brevity, we state the main results without giving details of
their derivation, which follows the pattern laid down in the previous examples.

Note that Xi,...,Xs, with ¢ projected out, generate point symmetries of (5.1). The
span of these generators is a Lie subalgebra that is isomorphic to the direct sum of
three copies of the two-dimensional affine algebra a(1). There are forty-eight inequivalent
matrices B associated with this subalgebra. Eight of these matrices are diagonal, each one
corresponding to a local discrete symmetry of the system. The other forty matrices, which
involve nontrivial permutations of the a(1) subalgebras, do not generate symmetries of
the system.

To find the discrete quasi-local symmetries of (5.1), first calculate the automorphisms
of the eight-dimensional Lie algebra £. Then use the symmetry condition for the extended
system (5.1), (5.2), to obtain all inequivalent discrete symmetries by the usual method.
These quasi-local discrete symmetries form a group of order 16, which is generated by

1 qa ¢
Fl : (87y7v7p7q7¢) = <_;7y7¢_ Sv7_83p7_g7_;> )

F? : (57y7U7p7q7¢) = (_sayv_vapvqa¢)7

[y (Sv Y, v,p,q, ¢) = (Sv -Y,—v,pq, _¢)
The eight inequivalent discrete local point symmetries are generated by I'?, I's, and I's.
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As in the previous examples, there is an s[(2) subalgebra, which gives rise to the rational
symmetries. Here the nonlocal generator Xg is part of that subalgebra, and therefore the
rational symmetries are nonlocal.

The new method can deal with a wide range of symmetries, both local and nonlocal.
Work is in progress on extending the method to auto-Bicklund transformations and
equivalence transformations.

Appendix: Details of calculations

Here we outline the steps that lead to the matrices B for the Harry-Dym equation and
for Burgers’ equation. Once these matrices have been found, it is easy to recover the
discrete symmetries associated with each matrix by solving the determining equations
(2.9). In each case, the Lie algebra is five-dimensional, and the determining equations
can be solved algebraically.

For a five-dimensional Lie algebra, there are up to 50 nonlinear constraints (2.8);
we shall refer to this set of nonlinear constraints as NC. Clearly, it is advisable to use
computer algebra to carry out these calculations. At any stage, there are two choices
open to us. Either we can solve part of NC to obtain one or more of the b, or we may
try to simplify B by multiplying it by a previously-unused matrix A(j, ¢) and choosing e
appropriately. Once either of these operations have been carried out, the set NC should
be simplified. This process is iterated until no further constraints remain. In order to
present the calculations in a concise form, we shall not write down the set NC. (The
interested reader should use computer algebra to write down this set.) Instead, we list
the conclusions in the order in which they are found. Except where indicated, these
conclusions are drawn directly from NC (taking into account the information that we
already have).

Harry-Dym equation

For the Harry-Dym equation, the structure constants (4.2) yield

1 0 0 0 O e 0 0 00
- 1 0 0 O 0O 1 0 00
Al,e)=| €& -2 1 0 0 |, A2,e)=| 0 0 e 0 0|,
0 0 0 1 0 0O 0 0 10
0 0 0 0 1 0O 0 0 01
1 2 ¢ 0 0 10 0 0 O
0 1 € 00 01 0 0 O
AB,9)=]0 0 1 00|, A4eo=|001 0 0],
0 0 0 10 000 1 0
0 0 0 0 1 0 0 0 — 1
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100 0 0
0100 0
A(G,e)=|0 0 1 0 0
000 e 0
000 0 1

To begin with, NC includes the equations
b = b = 15 = b, = 0;
therefore b2 # 0 (because the matrix B is nonsingular). This leads to
b= b = b4 = 0;

consequently b # 0 and hence b2 = 1. Now premultiply B by A(4,b3/b}) to replace bi
by zero. At this stage, there are two cases that must be examined in turn.

Suppose that bl # 0. Premultiply B by A(1,b}/b}) to replace by by zero. Then NC
yields the following results:

b3 = 1; by = b} = by = 0;
Bot=t == =0,  1=1/b}.
Premultiply B by A(3,—b3/2) to replace b by zero. Then
b3 = b3 =0.
So far we have used the non-diagonal adjoint matrices to simplify B to the form

B0 0 0 0

01 0 0 0
B=|0 0 1/Bt 0 0
00 0 b0
00 0 0 1

Premultiply B by A(2, —In |b}|) to replace b} by a = £1. Premultiply B by A(5, — In|b}])
to replace bj by B = £1. This completes the derivation of (4.3).
The only remaining possibility is that b} = 0. In this case, NC leads to

by = b7 = 0.
Therefore b7 # 0, and hence
by = —1; by = bs = b3 = b2 = b3 = b} = 0; by = 1/03.
Premultiply B by A(1,b3/b3) to replace b3 by zero. Hence

b3 = b3 =0.
So far we have reduced B to
0 0 b 0 0
0 -1 0 0 O
B=|1/t 0 0 0 0
0 0 0 b O
0 0O 0 0 1
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The only non-diagonal adjoint matrix that we have not yet used is A(3,¢). When B is
multiplied by this matrix, new nonzero entries are produced if € # 0. Thus the simplest
B is obtained by setting ¢ = 0. Now premultiply B by A(2, —In|b}|) to replace b3 by
a = +1, and by A(5,—1In |b}|) to replace bj by 3 = £1. This completes the derivation of
(4.4).

Burgers’ equation

k

For Burgers’ equation, the nonzero structure constants ¢;;, ¢ < j, corresponding to the

basis (4.6) are
1 _ 4 _ 2 _ _ _ _ 5 _
ci3=1, =2, 3=2, =2, ¢33=4, cy=1 c3=2

By exponentiating the matrices C'(j), we obtain

1 00 0 O 1 0 00
0 1.0 O O 0 1 0 00
A(l,e)=| —e 01 0 0|, A(2,¢) = 0 -2 1 0 0],
0O 00 1 O —2¢ 0 0 1 0
0 0 0 -2 1 0 42 —4e 0 1
e 0 0 O 0 1 0 0 0O
0 e* 0 0 0 2¢ 1 0 0 O
AB, =10 0 1 0 0 |, A4e=|0 01 € 0],
0 0 0 e°¢ 0 0 0010
0 0 0 0 e2 0 0 0 01
1 0 0 2 O
0 1 4e 0 4¢
AG, =0 0 1 0 2
00 0 1 O

At this stage, it is not immediately obvious how to solve any single equation in NC, be-
cause the structure constants yield a system of constraints that is quite highly-coupled.
(By constrast, the Lie algebra of the Harry-Dym equation is the direct sum of an s{(2)
subalgebra and an a(l) subalgebra, and some constraints are decoupled.) Note that
Span(Xs, X3,X;5) is an sl(2) Lie subalgebra, as is Span(Xj, X2, X3) in the Lie algebra
of the Harry-Dym equation. Therefore, by analogy with the classification for the Harry-
Dym equation, we treat the cases b3 # 0 and b3 = 0 separately.

Suppose that b3 # 0. Premultiply B by A(2,b3/2b3) to replace b3 by zero. Then NC
yields

b3 =1; b = b3 = b = b} = b} = b3 =0;
by =b) =0by=0b=0;  bZ=1/b3.
Therefore b} # 0. Premultiply B by A(5,—b}/2b}) to replace b] by zero; as a result of
this, we require that b} # 0. Then
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Premultiply B by A(1,b3/bt) to replace b} by zero. From NC,

b: = 0.

Premultiply B by A(4,—bi/b}) to replace b3 by zero. Therefore

by =0;  bi = b3bj.

Finally, premultiply B by A(3,—(In|b3])/2) to replace B by (4.7).
To complete the classification, we now consider the case b2 = 0. NC yields

B = b = B2 = bF = b = b3 = = b = b = 0.

Consequently b2 # 0, bf # 0 and b} # 0, and therefore

by = —1; by = 1/bZ; by = 0.

Premultiply B by A(2,b3/2b}) to replace b} by zero. Then

by = b = b = b = 0.

Premultiply B by A(1,b3/b}) to replace b3 by zero. Hence

b: = 0.

Premultiply B by A(4, —bi/b}) to replace b3 by zero. Thus

=0 b= -2,

The matrix acquires new nonzero entries when it is multiplied by A(5,¢€) if € # 0, so we
choose € = 0 to obtain the simplest possible B. Finally, premultiply B by A(3, (In [b2])/2)
to obtain (4.8).
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