
Under 
onsideration for publi
ation in Euro. Jnl of Applied Mathemati
s 1How to 
onstru
t the dis
rete symmetries ofpartial di�erential equationsP. E. HYDONDept. of Mathemati
s and Statisti
sUniversity of SurreyGuildford GU2 5XH, UKemail: P.Hydon�surrey.a
.uk(Re
eived 17 Mar
h 2000)This paper introdu
es an algorithm for 
al
ulating all dis
rete point symmetries of a givenpartial di�erential equation with a known nontrivial group of Lie point symmetries. Themethod enables the user to determine the dis
rete symmetries with little more e�ort thanis used to �nd the Lie symmetries. It is used to obtain the dis
rete point symmetries ofBurgers' equation, the spheri
al Burgers' equation, and the Harry-Dym equation. Themethod 
an be extended to some types of nonlo
al symmetry; we derive the quasi-lo
aldis
rete symmetries of a system of PDEs from gas dynami
s.1 Introdu
tionDis
rete symmetries of partial di�erential equations (PDEs) are important for variousreasons. For instan
e, to understand how a system 
hanges its stability, one must �rstknow its dis
rete and 
ontinuous symmetries, in order to apply equivariant bifur
ationtheory 
orre
tly. Dis
rete symmetries involving 
harge 
onjugation, parity 
hange, andtime-reversal play a key rôle in quantum �eld theories. Nonlo
al dis
rete symmetriessu
h as auto-B�a
klund transformations are important in the study of integrable systems.Dis
rete symmetries are also used to simplify the numeri
al 
omputation of solutions ofPDEs, and to 
reate new exa
t solutions from known solutions.Continuous groups of symmetries 
an be 
onstru
ted systemati
ally using Lie's method,whi
h linearizes the determining equations that are satis�ed by all symmetries [1, 6, 8, 10℄.However, for dis
rete symmetries, no su
h linearization is possible. The problem of solv-ing the determining equations dire
tly is usually intra
table; until now, the only othermeans of obtaining dis
rete symmetries has been to use an ansatz (see [2℄). However, thisapproa
h 
an only yield symmetries in the 
lass admitted by the ansatz; a given systemmay have other dis
rete symmetries outside that 
lass.This paper introdu
es a 
onstru
tive te
hnique that uses the Lie point symmetries ofa given system of PDEs to determine all of the dis
rete point symmetries. The methodis easy to use, and 
an be applied to any system whose Lie point symmetries are known(and non-trivial). Most PDEs that arise from mathemati
al models are in this 
ategory.The te
hnique is based on the observation that every point symmetry yields an auto-morphism of the Lie algebra of Lie point symmetry generators. This results in a set of



2 P. E. Hydonauxiliary equations that are satis�ed by all point symmetries; these equations are solvableby standard te
hniques. If the Lie algebra is non-abelian, the auxiliary equations may be
onsiderably simpli�ed before they are solved. Typi
ally, the solution 
ontains unknown
onstants or fun
tions of integration. Substituting the solution into the original (nonlin-ear) determining equations, and then fa
toring out the known 
ontinuous symmetries,produ
es a list of all dis
rete point symmetries. The method readily extends to othertypes of symmetries, as is des
ribed elsewhere [4, 5℄.2 The determining equationsConsider a given regular system of PDEs,�(x; u) = 0; (2.1)that involves M dependent variables, u = fu1; : : : uMg, and N independent variables,x = fx1; : : : ; xNg: A di�eomorphism� : (x; u) 7! (x̂(x; u); û(x; u)) (2.2)is a point symmetry of the given system if � maps the set of solutions to itself. Thishappens if �(x̂; û) = 0 when �(x; u) = 0: (2.3)The symmetry 
ondition (2.3) 
an be split into a system of determining equations for(x̂; û). Typi
ally, the determining equations are nonlinear and highly-
oupled, and they
annot be solved by a dire
t approa
h. (Even for ordinary di�erential equations (ODEs),the determining equations are almost always too diÆ
ult to solve. I know of only oneinstan
e in whi
h these equations have been solved dire
tly [9℄; the authors used 
omputeralgebra to produ
e a di�erential Gr�obner basis for the determining equations of a se
ond-order ODE.)Although the dis
rete symmetries of a given PDE 
annot usually be obtained dire
tly,the Lie point symmetries are generally easy to �nd. They are of the formx̂s = xs + ��s(x; u) +O(�2); s = 1; : : : ; N;û� = u� + ���(x; u) +O(�2); � = 1; : : : ;M;and they are obtained by linearizing the symmetry 
ondition about � = 0 (see [1, 6, 8, 10℄for further details). Routines for 
al
ulating Lie point symmetries are available for usewith all major 
omputer algebra pa
kages (see [3℄). Hen
eforth, we shall assume that theLie point symmetries have been found. For simpli
ity, we also assume that the set ofin�nitesimal generators forms an R-dimensional Lie algebra, L, whi
h has a basisXi = �si (x; u)�xs + ��i (x; u)�u� ; i = 1; : : : ; R: (2.4)(The usual summation 
onvention applies.) It is worthwhile 
hoosing a basis in whi
hthe 
ommutator relations [Xi; Xj ℄ = 
kijXk (2.5)are as simple as possible.



Dis
rete symmetries of PDEs 3The one-parameter group of 
ontinuous symmetries generated by Xi is�i(�) = exp(�Xi):Now suppose that � : (x; u) 7! (x̂; û)is any symmetry of the given PDE. Then�̂i(�) = ��i(�)��1 = exp(��Xi��1);is a one-parameter group of 
ontinous symmetries, whi
h is generated byX̂i = �Xi��1:In parti
ular, X̂ix̂s = �Xixs = ��si (x; u) = �si (x̂; û);and similarly, X̂iû� = ��i (x̂; û):Therefore X̂i = �si (x̂; û)�x̂s + ��i (x̂; û)�û� ;and so ea
h X̂i has exa
tly the same fun
tional form as the 
orresponding Xi, butwith (x̂; û) repla
ing (x; u) in (2.4). Thus the transformed generators X̂i; i = 1; : : : ; R
onstitute a basis for L, with exa
tly the same 
ommutator relations as the original basis:[X̂i; X̂j ℄ = 
kijX̂k : (2.6)Ea
h generator in the original basis 
an be written in terms of the new basis as follows:Xi = bliX̂l; i = 1; : : : ; R; (2.7)where det(bli) 6= 0. By substituting (2.7) into (2.5) and taking (2.6) into a

ount, we �ndthat the 
onstants bli satisfy the nonlinear 
onstraints
nlmblibmj = 
kijbnk : (2.8)(The identity 
kji = �
kij implies that it is suÆ
ient to assume that i < j in (2.8); weshall do this hen
eforth.) From (2.7), we obtain a system of R(M +N) �rst-order PDEsfor the M +N unknown fun
tions (x̂; û):Xix̂s = bli�sl (x̂; û); Xiû� = bli��l (x̂; û): (2.9)Every point symmetry of the given PDE ne
essarily satis�es (2.9) for some nonsingularmatrix B = (bli). This system is generally easy to solve using the method of 
hara
ter-isti
s. Moreover, if dim(L) > M +N , it is usually possible to solve (2.9) by eliminatingthe derivatives to obtain algebrai
 equations for (x̂; û).The most straightforward way of determining the dis
rete symmetries is: �rst solve(2.9) for arbitrary B, then 
he
k whi
h of the solutions satis�es the symmetry 
ondition.The 
ontinuous symmetries should be fa
tored out at any 
onvenient stage to produ
ea list of dis
rete symmetries, no two of whi
h are equivalent to one another under anysymmetry in a one-parameter Lie group.



4 P. E. HydonIf L is non-abelian, 
onsiderable e�ort may be saved by simplifying B before solving(2.9). This is done by 
reating as many zero entries as possible, using the 
onstraints(2.8) and the adjoint a
tion of the 
ontinuous symmetries. The adjoint a
tion of the one-parameter group generated by Xj on the basis fX1; : : : ; XRg is des
ribed by the R� Rmatrix A(j; �) = expf�C(j)g; (2.10)where �C(j)�ki = 
kij :The one-parameter Lie group generated by Xi is equivalent, under the group generatedby Xj , to the group generated by~Xi = Ad�e�Xj�Xi � �A(j; �)�piXp :We 
an rewrite (2.7) as ~Xi = ~bliX̂l ; (2.11)where ~bli = �A(j; �)�pi blp :Therefore (2.11) is equivalent, under the group generated by Xj , toXi = ~bliX̂l: (2.12)The system (2.12) is similar to (2.7), the only di�eren
e being that the matrix B in (2.7)has been repla
ed by A(j; �)B. In the same way, by 
onsidering the adjoint a
tion of thegroup generated by X̂j on the group generated by X̂i, we 
an repla
e B by BA(j; �).These equivalen
e transformations do not a�e
t (2.8). By using ea
h A(j; �) in turn, one
an usually fa
tor out the 
ontinuous symmetries before solving (2.9).In pra
ti
e, it is most e�e
tive to write out the nonlinear 
onstraints (2.8) and tosolve as many as possible immediately. (I re
ommend the use of 
omputer algebra ifdim(L) � 4.) When no further simpli�
ation is possible, try to 
reate an extra zero entryin B by 
arrying out an equivalen
e transformation with a non-diagonal adjoint matrixA(j; �). This simpli�es the remaining nonlinear 
onstraints, and so the pro
edure 
an beiterated. Finally, any diagonal adjoint matri
es are used to res
ale rows or 
olumns of B.The matri
es A(j; �) may be used in any 
onvenient order, but ea
h one should be usedexa
tly on
e. (For ea
h j, the 
hoi
e of a parti
ular � fa
tors out the one-parameter Liegroup generated by Xj .)We shall 
onsider equivalen
e under 
ontinuous symmetries with real-valued param-eters; the inequivalent dis
rete symmetries may have a real or 
omplex a
tion on thevariables (x; u). Ea
h real matrix B that satis�es the nonlinear 
onstraints (2.8) 
orre-sponds to a real automorphism of the Lie algebra. By fa
toring out equivalent matri
esusing the adjoint a
tion of the Lie symmetries, we obtain the (fa
tor) group of inequiv-alent real automorphisms. We then use the symmetry 
ondition (2.3) to determine alldis
rete symmetries asso
iated with ea
h automorphism in this group. The number ofsu
h symmetries depends upon the PDE, whereas the number of inequivalent automor-phisms is determined by the Lie algebra. Consequently there may be automorphisms that



Dis
rete symmetries of PDEs 5are not realised as symmetries, and some automorphisms may generate more than onesymmetry. 3 A worked example: the spheri
al Burgers' equationTo illustrate the method, 
onsider the spheri
al Burgers' equation,ut + ut + uux = uxx; (3.1)whi
h has a three-dimensional Lie algebra of point symmetry generators [7℄. These arespanned by X1 = �2t�t � x�x + u�u; X2 = ln t �x + 1t �u; X3 = �x;whose nonzero 
ommutators [Xi; Xj ℄; i < j, are[X1; X2℄ = X2 � 2X3; [X1; X3℄ = X3:Therefore the nonzero stru
ture 
onstants are
212 = 1; 
312 = �2; 
313 = 1; 
221 = �1; 
321 = 2; 
331 = �1:The matri
es C(j) areC(1) = 24 0 0 00 �1 20 0 �1 35 ; C(2) = 24 0 1 �20 0 00 0 0 35 ; C(3) = 24 0 0 10 0 00 0 0 35 :Exponentiating the matri
es � C(j), we obtainA(1; �) = 24 1 0 00 e�� 2�e��0 0 e�� 35 ; A(2; �) = 24 1 � �2�0 1 00 0 1 35 ; A(3; �) = 24 1 0 �0 1 00 0 1 35 :Now we write out the nonlinear 
onstraints,
nlmblibmj = 
kijbnk ; (3.2)for ea
h n in turn. It is usually best to begin with any n for whi
h Xn is not in the sub-algebra spanned by the 
ommutators, be
ause then the nonlinear terms in (3.2) vanish.For n = 1, we obtain 0 = 
kijb1k: (3.3)Substituting (i; j) = (1; 3) into (3.3), we �nd that b13 = 0. Then (i; j) = (1; 2) yieldsb12 = 0. The 3� 3 matrix B is nonsingular, so b11 6= 0.For n = 2, the above results lead to to the 
onstraintsb11b22 = b22 � 2b23; b11b23 = b23:Therefore b23 = 0; b33 6= 0:Finally the remaining 
onstraints (with n = 3) are�2b11b22 + b11b32 = b32 � 2b33; b11b33 = b33;



6 P. E. Hydonthese yield the results b11 = 1; b22 = b33 6= 0:So far, we have been able to simplify B to the following:B = 24 1 b21 b310 b22 b320 0 b22 35 : (3.4)Now we use the adjoint matri
es A(j; �) to simplify the o�-diagonal elements. Note thatBA(2; �) = 24 1 b21 + � b31 � 2�0 b22 b320 0 b22 35 ;so (by 
hoosing � = �b21) this equivalen
e transformation enables us to repla
e b21 byzero. Similarly, postmultiplying B by A(3;�b31) is equivalent to setting b31 = 0. Finally,postmultiplying B by A(1;�b32=(2b22)) gives b32 = 0. In summary, we have fa
tored outthe Lie symmetries by using the adjoint a
tion, and the inequivalent dis
rete symmetriesare those solutions of (2.9), withB = 24 1 0 00 b 00 0 b 35 ; b 6= 0;that also satisfy the symmetry 
ondition. (N.B. The above simpli
ation of B 
ould equallywell be a
hieved by premultiplying B by the adjoint matri
es.)The system (2.9), with B as above, amounts to24 X1t̂ X1x̂ X1ûX2t̂ X2x̂ X2ûX3t̂ X3x̂ X3û 35 = B 24 �2t̂ �x̂ û0 ln t̂ 1=t̂0 1 0 35 = 24 �2t̂ �x̂ û0 b ln t̂ b=t̂0 b 0 35 :This system of �rst-order PDEs has the general solutiont̂ = 
1t; x̂ = b�x+ (ln 
1)tu+ 
3t1=2�; û = b
1u+ 
2t�1=2; (3.5)where ea
h 
i is an arbitrary 
onstant, and 
1 6= 0. All that remains is to substitute (3.5)into the symmetry 
onditionût̂ + û̂t + ûûx̂ = ûx̂x̂ when ut + ut + uux = uxx:(For the sake of brevity, the details of this straightforward 
al
ulation are omitted.) Itturns out that the symmetry 
ondition imposes the further 
onstraintsb2 = 
1 = 1; 
2 = 
3 = 0:Therefore there are two 
lasses of dis
rete symmetries, namely those that are equivalentto �1 : (t; x; u) 7! (t;�x;�u);and those that are equivalent to (�1)2, whi
h is the identity. In other words, the fa
tor



Dis
rete symmetries of PDEs 7group of inequivalent dis
rete symmetries is isomorphi
 to the 
y
li
 group Z2, and isgenerated by �1.In this example, most automorphisms of the Lie algebra do not generate any dis
retesymmetries. The automorphisms for whi
h b2 = 1 ea
h generate a single dis
rete sym-metry.4 Dis
rete symmetries of the Harry-Dym equation and Burgers' equationGenerally speaking, the 
omplexity of the 
al
ulations that are needed to determine theinequivalent automorphisms of a Lie algebra, L, in
reases with R = dim(L). The systemof nonlinear 
onstraints (2.8) yields up to R2(R�1)=2 separate equations. However, on
ethe set of inequivalent matri
es B has been found, it is usually easy to solve the deter-mining equations (2.9). In this se
tion, we use the method des
ribed above to derive theinequivalent dis
rete symmetries of two well-known PDEs. (The details of the 
al
ulationsthat produ
e the set of inequivalent automorphisms are outlined in the Appendix.)The Harry-Dym equation, ut = u3uxxx; (4.1)has a �ve-dimensional Lie algebra L of point symmetry generators [3℄. The basisX1 = �x; X2 = x�x + u�u; X3 = x2�x + 2xu�u;X4 = �t; X5 = t�t � u3�u;has the following non-zero stru
ture 
onstants 
kij ; i < j:
112 = 1; 
213 = 2; 
323 = 1; 
445 = 1: (4.2)After solving the 
onstraints (2.8) and using the adjoint matri
es to fa
tor out the Liesymmetries (see Appendix), we �nd that eitherB = diagf�; 1; �; �; 1g; (4.3)or B = 266664 0 0 � 0 00 �1 0 0 0� 0 0 0 00 0 0 � 00 0 0 0 1 377775 ; (4.4)here �; � are ea
h either 1 or �1. Therefore there are eight inequivalent real automor-phisms of the Lie algebra. The general solution of (2.9) ist̂ = �t; x̂ = �x; û = 
1u;if B is of the form (4.3); otherwiset̂ = �t; x̂ = ��x ; û = 
1ux2 :By substituting ea
h of these results into the symmetry 
ondition, we �nd that the fa
tor



8 P. E. Hydongroup of inequivalent real dis
rete symmetries is isomorphi
 to Z2
 Z2; it is generatedby �1 : (x; t; u) 7! (�x;�t; u);�2 : (x; t; u) 7! (� 1x; t; ux2 ):The group of inequivalent 
omplex dis
rete symmetries is the dire
t produ
t of the abovegroup with the Z3 group generated by�3 : (x; t; u) 7! (x; t; e2�i=3u):The mappings �1 and �3 
orrespond to (4.3) with � = � = �1 and � = � = 1 respe
-tively, whereas �2 
orresponds to (4.4) with � = � = 1. In this example, the automor-phisms with � = �� are not realized as point symmetries. Note that ea
h of the dis
retepoint symmetries generated by �3 
orresponds to the trivial automorphism bli = Æli, sothe inequivalent automorphisms with � = � ea
h generate three 
omplex symmetries.So far, we have only seen examples in whi
h the inequivalent dis
rete symmetries formeither a 
y
li
 group or a dire
t produ
t of su
h groups. However, some PDEs have amore 
ompli
ated stru
ture. Burgers' equation,ut + uux = uxx; (4.5)has a �ve-dimensional Lie algebra of point symmetry generators [7℄, with a basisX1 = �x; X2 = �t; X3 = x�x + 2t�t � u�u;X4 = 2t�x + 2�u; X5 = 4tx�x + 4t2�t + 4(x� tu)�u: (4.6)After simpli�
ation of the matrix B (as detailed in the Appendix), the possible inequiv-alent automorphisms are B = diagf�a; �; 1; a; �g (4.7)and B = 266664 0 0 0 �a 00 0 0 0 �0 0 �1 0 0�a 0 0 0 00 � 0 0 0 377775 ; (4.8)where � is either 1 or �1, and a is a real 
onstant. By solving (2.9) and 
he
king tosee whi
h of the solutions are symmetries, we obtain the following result. The inequiv-alent 
omplex dis
rete symmetries of Burgers' equation form a group of order 8 that isisomorphi
 to the quaternion group Q2; it is generated by�1 : (x; t; u) 7! (�ix;�t; iu);�2 : (x; t; u) 7! � x2t ;� 14t ; 2(tu� x)� :(The inequivalent real dis
rete symmetries are generated by �2; they form the 
y
li
group Z4.)



Dis
rete symmetries of PDEs 9Rational symmetries, su
h as those generated by �2 in the above example, typi
ally 
or-respond to a Weyl re
e
tion of an sl(2) subalgebra. For Burgers' equation, the subalgebraspanned by X2, X3, and X5 is isomorphi
 to sl(2). The Harry-Dym equation (4.1) alsohas dis
rete rational symmetries asso
iated with the sl(2) subalgebra Span(X1; X2; X3).5 Nonlo
al dis
rete symmetriesThe method 
an readily be extended to deal with other types of symmetry, providedthat the in�nitesimal generators form a Lie algebra. Consider the following system ofequations from gas dynami
s (see [7℄ for details):qs � vy = 0; vs + py = 0; ps + 3pq vy = 0: (5.1)Note that the �rst equation of (5.1) implies the existen
e of a potential, �, su
h thatq = �y; v = �s: (5.2)The system (5.1) has a eight-dimensional Lie algebra, L, of quasi-lo
al symmetry gener-ators: X1 = �s; X2 = s�s � p�p + q�q + ���;X3 = �y; X4 = y�y + p�p � q�q ;X5 = �v + s��; X6 = v�v + p�p + q�q + ���;X7 = ��; X8 = s2�s + (� � sv)�v � 3sp�p + sq�q + s���:The quasi-lo
al generators are point symmetry generators for the extended system (5.1),(5.2). Therefore we 
an use the new method to determine the inequivalent dis
rete quasi-lo
al symmetries of (5.1). For brevity, we state the main results without giving details oftheir derivation, whi
h follows the pattern laid down in the previous examples.Note that X1; : : : ; X6, with � proje
ted out, generate point symmetries of (5.1). Thespan of these generators is a Lie subalgebra that is isomorphi
 to the dire
t sum ofthree 
opies of the two-dimensional aÆne algebra a(1). There are forty-eight inequivalentmatri
es B asso
iated with this subalgebra. Eight of these matri
es are diagonal, ea
h one
orresponding to a lo
al dis
rete symmetry of the system. The other forty matri
es, whi
hinvolve nontrivial permutations of the a(1) subalgebras, do not generate symmetries ofthe system.To �nd the dis
rete quasi-lo
al symmetries of (5.1), �rst 
al
ulate the automorphismsof the eight-dimensional Lie algebra L. Then use the symmetry 
ondition for the extendedsystem (5.1), (5.2), to obtain all inequivalent dis
rete symmetries by the usual method.These quasi-lo
al dis
rete symmetries form a group of order 16, whi
h is generated by�1 : (s; y; v; p; q; �) 7! ��1s ; y; �� sv;�s3p;�qs;��s� ;�2 : (s; y; v; p; q; �) 7! (�s; y;�v; p; q; �);�3 : (s; y; v; p; q; �) 7! (s;�y;�v; p; q;��):The eight inequivalent dis
rete lo
al point symmetries are generated by �21, �2, and �3.



10 P. E. HydonAs in the previous examples, there is an sl(2) subalgebra, whi
h gives rise to the rationalsymmetries. Here the nonlo
al generator X8 is part of that subalgebra, and therefore therational symmetries are nonlo
al.The new method 
an deal with a wide range of symmetries, both lo
al and nonlo
al.Work is in progress on extending the method to auto-B�a
klund transformations andequivalen
e transformations.Appendix: Details of 
al
ulationsHere we outline the steps that lead to the matri
es B for the Harry-Dym equation andfor Burgers' equation. On
e these matri
es have been found, it is easy to re
over thedis
rete symmetries asso
iated with ea
h matrix by solving the determining equations(2.9). In ea
h 
ase, the Lie algebra is �ve-dimensional, and the determining equations
an be solved algebrai
ally.For a �ve-dimensional Lie algebra, there are up to 50 nonlinear 
onstraints (2.8);we shall refer to this set of nonlinear 
onstraints as NC. Clearly, it is advisable to use
omputer algebra to 
arry out these 
al
ulations. At any stage, there are two 
hoi
esopen to us. Either we 
an solve part of NC to obtain one or more of the bli, or we maytry to simplify B by multiplying it by a previously-unused matrix A(j; �) and 
hoosing �appropriately. On
e either of these operations have been 
arried out, the set NC shouldbe simpli�ed. This pro
ess is iterated until no further 
onstraints remain. In order topresent the 
al
ulations in a 
on
ise form, we shall not write down the set NC. (Theinterested reader should use 
omputer algebra to write down this set.) Instead, we listthe 
on
lusions in the order in whi
h they are found. Ex
ept where indi
ated, these
on
lusions are drawn dire
tly from NC (taking into a

ount the information that wealready have).Harry-Dym equationFor the Harry-Dym equation, the stru
ture 
onstants (4.2) yieldA(1; �) = 266664 1 0 0 0 0�� 1 0 0 0�2 �2� 1 0 00 0 0 1 00 0 0 0 1 377775 ; A(2; �) = 266664 e� 0 0 0 00 1 0 0 00 0 e�� 0 00 0 0 1 00 0 0 0 1 377775 ;
A(3; �) = 266664 1 2� �2 0 00 1 � 0 00 0 1 0 00 0 0 1 00 0 0 0 1 377775 ; A(4; �) = 266664 1 0 0 0 00 1 0 0 00 0 1 0 00 0 0 1 00 0 0 �� 1 377775 ;



Dis
rete symmetries of PDEs 11A(5; �) = 266664 1 0 0 0 00 1 0 0 00 0 1 0 00 0 0 e� 00 0 0 0 1 377775 :To begin with, NC in
ludes the equationsb51 = b52 = b53 = b54 = 0;therefore b55 6= 0 (be
ause the matrix B is nonsingular). This leads tob41 = b42 = b43 = 0;
onsequently b44 6= 0 and hen
e b55 = 1. Now premultiply B by A(4; b45=b44) to repla
e b45by zero. At this stage, there are two 
ases that must be examined in turn.Suppose that b11 6= 0. Premultiply B by A(1; b12=b11) to repla
e b12 by zero. Then NCyields the following results: b22 = 1; b13 = b14 = b15 = 0;b23 = b24 = b25 = b34 = b35 = 0; b33 = 1=b11:Premultiply B by A(3;�b21=2) to repla
e b21 by zero. Thenb31 = b32 = 0:So far we have used the non-diagonal adjoint matri
es to simplify B to the formB = 266664 b11 0 0 0 00 1 0 0 00 0 1=b11 0 00 0 0 b44 00 0 0 0 1 377775 :Premultiply B by A(2;� ln jb11j) to repla
e b11 by � = �1. Premultiply B by A(5;� ln jb44j)to repla
e b44 by � = �1. This 
ompletes the derivation of (4.3).The only remaining possibility is that b11 = 0. In this 
ase, NC leads tob12 = b21 = 0:Therefore b31 6= 0, and hen
eb22 = �1; b14 = b15 = b24 = b25 = b34 = b35 = 0; b13 = 1=b31:Premultiply B by A(1; b32=b31) to repla
e b32 by zero. Hen
eb23 = b33 = 0:So far we have redu
ed B toB = 266664 0 0 b31 0 00 �1 0 0 01=b31 0 0 0 00 0 0 b44 00 0 0 0 1 377775 :



12 P. E. HydonThe only non-diagonal adjoint matrix that we have not yet used is A(3; �). When B ismultiplied by this matrix, new nonzero entries are produ
ed if � 6= 0. Thus the simplestB is obtained by setting � = 0. Now premultiply B by A(2;� ln jb31j) to repla
e b31 by� = �1, and by A(5;� ln jb44j) to repla
e b44 by � = �1. This 
ompletes the derivation of(4.4).Burgers' equationFor Burgers' equation, the nonzero stru
ture 
onstants 
kij ; i < j, 
orresponding to thebasis (4.6) are
113 = 1; 
415 = 2; 
223 = 2; 
124 = 2; 
325 = 4; 
434 = 1; 
535 = 2:By exponentiating the matri
es C(j), we obtainA(1; �) = 266664 1 0 0 0 00 1 0 0 0�� 0 1 0 00 0 0 1 00 0 0 �2� 1 377775 ; A(2; �) = 266664 1 0 0 0 00 1 0 0 00 �2� 1 0 0�2� 0 0 1 00 4�2 �4� 0 1 377775 ;
A(3; �) = 266664 e� 0 0 0 00 e2� 0 0 00 0 1 0 00 0 0 e�� 00 0 0 0 e�2� 377775 ; A(4; �) = 266664 1 0 0 0 02� 1 0 0 00 0 1 � 00 0 0 1 00 0 0 0 1 377775 ;

A(5; �) = 266664 1 0 0 2� 00 1 4� 0 4�20 0 1 0 2�0 0 0 1 00 0 0 0 1 377775 :At this stage, it is not immediately obvious how to solve any single equation in NC, be-
ause the stru
ture 
onstants yield a system of 
onstraints that is quite highly-
oupled.(By 
onstrast, the Lie algebra of the Harry-Dym equation is the dire
t sum of an sl(2)subalgebra and an a(1) subalgebra, and some 
onstraints are de
oupled.) Note thatSpan(X2;X3;X5) is an sl(2) Lie subalgebra, as is Span(X1;X2;X3) in the Lie algebraof the Harry-Dym equation. Therefore, by analogy with the 
lassi�
ation for the Harry-Dym equation, we treat the 
ases b22 6= 0 and b22 = 0 separately.Suppose that b22 6= 0. Premultiply B by A(2; b23=2b22) to repla
e b23 by zero. Then NCyields b33 = 1; b21 = b24 = b25 = b31 = b34 = b35 = 0;b51 = b54 = b14 = b15 = 0; b55 = 1=b22:Therefore b44 6= 0. Premultiply B by A(5;�b41=2b44) to repla
e b41 by zero; as a result ofthis, we require that b11 6= 0. Thenb32 = b42 = b52 = b53 = 0:



Dis
rete symmetries of PDEs 13Premultiply B by A(1; b13=b11) to repla
e b13 by zero. From NC,b45 = 0:Premultiply B by A(4;�b43=b44) to repla
e b43 by zero. Thereforeb12 = 0; b11 = b22b44:Finally, premultiply B by A(3;�(ln jb22j)=2) to repla
e B by (4.7).To 
omplete the 
lassi�
ation, we now 
onsider the 
ase b22 = 0. NC yieldsb23 = b32 = b21 = b31 = b24 = b34 = b51 = b11 = b54 = 0:Consequently b25 6= 0, b41 6= 0 and b14 6= 0, and thereforeb33 = �1; b52 = 1=b25; b12 = 0:Premultiply B by A(2; b44=2b41) to repla
e b44 by zero. Thenb53 = b35 = b55 = b45 = 0:Premultiply B by A(1; b43=b41) to repla
e b43 by zero. Hen
eb15 = 0:Premultiply B by A(4;�b13=b14) to repla
e b13 by zero. Thusb42 = 0; b14 = �b41b25:The matrix a
quires new nonzero entries when it is multiplied by A(5; �) if � 6= 0, so we
hoose � = 0 to obtain the simplest possible B. Finally, premultiply B by A(3; (ln jb25j)=2)to obtain (4.8). Referen
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