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Abstract

Currently, there is much interest in the development of geometric integrators, which

retain analogues of geometric properties of an approximated system. This paper pro-

vides a means of ensuring that finite difference schemes accurately mirror global prop-

erties of approximated systems. To this end, we introduce a cohomology theory for

lattice varieties, on which finite difference schemes and other difference equations are

defined. We do not assume that there is any continuous space, or that a scheme or dif-

ference equation has a continuum limit. This distinguishes our approach from theories

of “discrete differential forms” built on simplicial approximations and Whitney forms,

and from cohomology theories built on cubical complexes. Indeed, whereas cochains on

cubical complexes can be mapped injectively to our difference forms, a bijection may not

exist. Thus our approach generalizes what can be achieved with cubical cohomology.

The fundamental property that we use to prove our results is the natural ordering on the

integers. We show that our cohomology can be calculated from a good cover, just as de

Rham cohomology can. We postulate that the dimension of solution space of a globally

defined linear recurrence relation equals the analogue of the Euler characteristic for the
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lattice variety. Most of our exposition deals with forward differences, but little modifi-

cation is needed to treat other finite difference schemes, including Gauss-Legendre and

Preissmann schemes.
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1 Introduction

The new discipline of geometric integration focuses on the problem of numerically ap-

proximating differential equations while preserving important geometrical structures

[7,15]. Integration schemes have been devised that preserve symplectic and multisym-

plectic structures [12, 30, 31], variational structures, [22], symmetries [6], first inte-

grals [25] and conservation laws [14,26]. In some instances, it is possible to construct

approximations on a Lie group directly [20].

So far, most research in geometric integration has concentrated on the preservation

of local structures. However, in many applications, it is also essential to preserve global

structures. For smooth manifolds, the cohomology of the de Rham complex can be

calculated by well-known techniques. There is much interest in the question of whether

analogues of differential forms exist for spaces that are used in numerical methods, for

such an analogue could produce a test for ensuring that cohomology is preserved by a

numerical approximation.

Cohomology is important to numerical approximation because it encodes topological

information, such as topological invariants, obstructions and monodromy. For instance,

the automatic calculation of topological properties of a mesh in the context of finite

element PDE solvers has been considered [33]. As an example, consider the shallow

water equations in computational meteorology, which have an invariant called potential

vorticity. The evolution of the distribution of potential vorticity over a domain M

largely determines the motion of large-scale weather systems. This is encoded in the

potential vorticity 2-form

Ω = du ∧ dx + dv ∧ dy + fdx ∧ dy

where (u, v) is velocity at position (x, y) and f is the Coriolis parameter, which is

nonzero away from the equator. The topology of the domain M constrains the total

potential vorticity. For instance, if doubly-periodic boundary conditions are imposed,

then the total potential vorticity,

Q :=

∫

M

Ω,

is nonzero. This is because M is topologically equivalent to a 2-torus; the area 2-form

dx∧ dy is closed but not exact. For the same reason, the total potential vorticity Q on

a sphere is nonzero [29], whereas Q can be zero on an annulus or a starshaped domain.

This illustrates the necessity of preserving the cohomology of the original system in any

numerical approximation.

Considerable effort has been focused on analogues of differential forms for com-

putational electromagnetism using the finite element method [1, 3, 4, 13, 16]; see [2]

for a comprehensive discussion of recent results. These involve an analogue to the de

Rham complex that is based on Whitney forms [37] rather than smooth differential

forms. A related approach to the general finite element method uses discrete differen-

tial forms [24,34] which are actually classical simplicial cochains, that is, linear maps
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from the vertices, edges, faces, and so on, to the coefficient field. The de Rham map

yields a classical cochain from a smooth differential form by evaluation or integration

over the vertices, edges and so on. Whitney forms are piecewise linear differential forms

that are interpolations of classical cochains. If ω is a differential form, R is the de Rham

map and W is the Whitney map, then there is a well-defined sense in which WRω is

homotopic to ω; this allows the order of the approximation to be quantified.

It is essential to realize that the term ‘discrete differential form’ does not imply

that the underlying space is discrete. Indeed, the finite element method uses a simpli-

cial approximation to a smooth manifold; the space remains continuous even though

differentiability is lost at boundaries of simplices.

By contrast, finite difference methods are defined in terms of mesh points, without

there being a need for an underlying continuous space. The same is true for difference

equations in general; where such equations are used to model an inherently discrete

process, the imposition of a continuous structure can produce artefacts. A related

philosophical problem was raised by Chard and Shapiro [8], who write of the loss of

physical content by the standard process of taking a continuum limit of the discrete

process and then re-discretizing for the purpose of computation. Further, there is

interest in studying physical systems on discrete space-times (for example, see [38]),

particularly in the context of quantum gravity.

Therefore, to deal with difference equations in a theory that uses only concepts ger-

mane to difference equations themselves, it is necessary to discard the continuous base

space. At first sight this might seem to be disastrous, for most of the familiar and useful

constructions are lost. These include continuity (at least in the usual sense), the tangent

bundle and the exterior derivative; indeed, difference operators are not derivations, that

is, they have no Leibniz product rule. Moreover, loss of continuity means that one must

abandon results for constructions that are based on an underlying continuum, such as

cohomology theories based on cubical simplices [21,27]. In fact, classical cubical chains

can be mapped injectively but not bijectively to their difference analogues (see §6.1).

Consequently, although some theorems from cubical simplex theories can be adapted

to the context of difference equations, they must be reproved without reference to a

continuous space (see Remark 17 of §2.2).

As there exist applications which are both inherently discrete and for which there

are either multiple or no continuum limits, we prove results for the cohomology theory

presented here using only those tools and constructions which pertain to difference

equations themselves, such as the shift operator. We show that by exploiting a single

property of difference equations it is possible to derive analogues of several major results

concerning the de Rham complex. In finite difference methods, mesh points do not

need to be evenly spaced [6], but they are ordered in each direction by an integer

label, at least locally. Instead of dealing with mesh points directly, it is helpful to

regard the independent variables (coordinates) as being p-tuples of integers, where p is

the dimension of the discretized problem. The usual ordering on Z provides sufficient

structure, namely adjacency and orientation, to enable us to derive difference analogues

of chains (§1), exterior algebra, a coboundary operator, the de Rham complex and
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Stokes’ Theorem (§2); each analogue is adapted to a particular finite difference method.

In §3, we construct a homotopy operator to prove that the difference complex is locally

exact. This provides an analogue of the existence of local potentials for curl-free and

divergence-free fields in the smooth theory.

In the continuous case, one can regard a manifold as the result of gluing together

coordinate patches. Similarly, it is possible to glue together pieces of mesh, each of

which has its own coordinate system as above, to form what we call a lattice variety. In

§4, we combine the difference complex with a Čech complex, enabling the cohomology

of a given lattice variety to be calculated. Several examples are presented in §5 and the

paper concludes with some conjectures and open problems (§6). In particular, we give

evidence for a conjecture that the dimension of the solution space of a globally defined

linear recurrence relation equals the analogue of the Euler characteristic for the lattice

variety. As the same quantity appears in the Morse Index Theorem, our conjecture

might be thought to be (in some distant sense) an analogue of the Morse Index theorem

for difference systems on lattice varieties. However, our difference index is not a result

of a discrete Morse theory, such as the one constructed by Forman [9].

2 Difference forms on lattice varieties

The simplest p-dimensional lattice is Z
p, whose points are identified by the labels

n = (n1, . . . , np), ni ∈ Z, i = 1, . . . , p. (1)

These labels provide a coordinate system; points are ordered in the ith direction by

the coordinate ni. Henceforth, in each of our two-dimensional examples, we shall use

n1 = m as the coordinate in the horizontal direction and n2 = n as the coordinate in

the vertical direction.

The natural ordering in Z yields the notions of adjacency and orientation, as well

as the notions of both forward and backward differences. The most important of these

in the construction of a lattice variety is adjacency.

Definition 1 Two points with coordinates m = (m1, . . . , mp) and n = (n1, . . . , np) in

Z
p

are said to be adjacent if and only if

|m− n| :=

p∑

i=1

∣∣ mi − ni
∣∣ = 1.

Remark 2 In the digital topology literature, adjacency is called ‘4-connectedness’ when

p = 2; the notion of ‘8-connectedness’ is not needed here, see for example [23].

Definition 3 A lattice L is any subset of Z
p with the property that every point is

adjacent to at least one other point.

The role of adjacency is similar to that of connectedness for manifolds. Consequently,

the only allowable coordinate changes on L are those that preserve adjacency, namely

translations, rotations by a multiple of π/4 and reflections.

5



Definition 4 A path in a lattice L from n0 to n1 is an ordered set P of points in L,

such that

1. the first point in P is n0;

2. the last point in P is n1;

3. every other point in P is adjacent to its two immediate neighbours in P .

Example 5 Each of the following ordered sets is a path in Z
2 from (3, 3) to (5, 4):

P1 =
(
(3, 3), (3, 4), (4, 4), (4, 3), (5, 3), (5, 4)

)
;

P2 =
(
(3, 3), (4, 3), (5, 3), (5, 4)

)
;

P3 =
(
(3, 3), (3, 4), (4, 4), (5, 4)

)
.

Definition 6 Given a lattice L ⊂ Z
p and a permutation π of the indices 1, . . . p, a

π-ordered path is a path in L for which all changes to the π(i)th coordinate (as one

moves along the path) occur before any changes to the π(i + 1)th coordinate (for each i

in turn). Hence the π(1)th coordinate reaches its final value before any change is made

to the π(2)th coordinate, and so on.

For a particular permutation π, a π-ordered path between two given points may not

exist, because L might lack some of the necessary intermediate points; however, if a

π-ordered path exists, it is unique. In Example 5, the paths P2 and P3 from (3, 3) to

(5, 4) are the (1, 2)-ordered and (2, 1)-ordered paths in Z
2, respectively. Our motivation

for identifying π-ordered paths will be seen in §3, where we prove an analogue of the

Poincaré Lemma by constructing a homotopy operator that uses projection along such

paths. The idea of π-ordered paths is tied to the coordinate system that is used, but

the following definition is independent of the choice of coordinates.

Definition 7 A lattice L ⊂ Z
p is projectable if there exists a point n0 ∈ L and a

permutation π such that, for each n ∈ L, there is a π-ordered path from n to n0.

In the diagram below, we show three examples of lattices in Z
2. Only the one on

the left is projectable. In this instance, we can choose n0 to be the point marked by

a diamond; there is a path from every other point n ∈ L to this point such that the

changes in horizontal coordinate precede changes in the vertical coordinate. The other

two lattices are not projectable: they have no point that can be reached from all other

points along a π-ordered path (for any fixed permutation π).

b

b

b

b b

b b b

b

b

b b

b b

b

b

⋄
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From an algebraic viewpoint, moving between adjacent points amounts to shifting

one of the coordinates by ±1, leaving the other coordinates unchanged. This leads to

the idea of shift maps, which act on objects that are defined on a given lattice L.

Definition 8 For each k ∈ {1, . . . , p}, the kth shift map is defined by:

Sk :





ni 7→ ni + δi
k;

n 7→ n + 1k.
(2)

where 1k is the p-tuple whose only nonzero entry is the kth, which is 1, and where ni is

defined in equation (1).

Let B denote the set of all real-valued (alternatively, complex-valued) functions defined

on Z
p. The shift maps have the following properties:

1. SjSk = SkSj ;

2. Skf(n) = f(n + 1k), for all f ∈ B;

3. Sk(f(n)g(n)) = Sk(f(n))Sk(g(n)) for all f , g ∈ B.

These properties also hold on any lattice L, except that shift maps and their inverses

can only act in directions for which the shifted point belongs to L (otherwise, they are

undefined).

The standard (positive) orientation on Z
p is defined analogously to that for R

p,

where it can be defined in terms of an ordered sequence of the standard basis vectors.

The positive orientation can be represented by the (1, . . . , p)-ordered path O(n0) from

a given point n0 to the point n0 + 11 + · · ·+ 1p. For instance, when p = 2 this path is

O(m0, n0) =
(
(m0, n0), (m0 + 1, n0), (m0 + 1, n0 + 1)

)
.

An orientation defined by any other π-ordered path is then determined by the parity of

the permutation π, namely negative for odd permutations and positive for even. There

is a naturally induced orientation on the cubes comprising the boundary by taking the

relevant subpath. The standard orientation on any lattice L ⊂ Z
p is obtained in the

same way. In our examples, we shall use arrows to indicate this orientation when it is

of particular importance.

2.1 Difference forms and the difference map

Let Ex(p) be the exterior algebra on p symbols, ∆1, . . . , ∆p, with real (or complex)

coefficients, so that

∆i ∧∆i = 0, ∆i ∧∆j = −∆i ∧∆j .

Define the algebra of difference forms to be

p
Ex =

⋃

n∈Zp

Ex(p)
∣∣∣
n

,
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with coefficients in B. Difference r-forms on Z
p are written as ω ∈ p

Ex
r. [Whenever it

is necessary to restrict attention to a particular lattice L ⊂ Z
p we write ω ∈ p

Ex
r(L).]

By analogy with differential forms,

ω =





∑

i1<···<ir

fi1···ir
(n)∆i1 ∧∆i2 ∧ · · · ∧∆ir

, r ≥ 1;

f0(n), r = 0.

(3)

Here f0, fi1···ir
∈ B. The action of the kth shift map on difference forms is defined by

Sk(∆i) = ∆i;

Sk(η ∧ ω) = Sk(η) ∧ Sk(ω), η, ω ∈ p
Ex.

(4)

Definition 9 The difference map ∆ : p
Ex

r → p
Ex

r+1 is defined by

∆(ω) =

p∑

k=1

∆k ∧ (Sk − id)ω. (5)

Note that this map uses forward differences, whereas most finite difference methods

do not. For simplicity, attention is restricted to forward differences until §6, where we

briefly mention some minor changes that enable difference forms to be used far more

widely, for example with backward difference and collocation methods.

The difference map plays the role of the exterior derivative; it has the analogous

properties

i) ∆2 = 0;

ii) ∆(ni) = ∆i.

However, unlike the exterior derivative, the difference map is not a derivation:

∆(η ∧ ω) 6= ∆(η) ∧ ω ± η ∧∆(ω).

The analogue of the de Rham complex, which we call the difference complex , will

be defined in §2.3.

2.2 Lattice varieties and difference chains

Earlier, we introduced the idea of lattice varieties, which are the natural analogues of

manifolds. A manifold is a topological space that can be covered by coordinate charts,

subject to certain conditions (continuity, smoothness, etc.) where charts overlap. For

lattice varieties, continuity is replaced by adjacency. Thus it is natural to adopt the

following working definition of a lattice variety.

Definition 10 A p-dimensional lattice variety L is a set of points that can be covered

by subsets Lα, each of which is mapped by a injection φα to a subset of Z
p that is a

projectable lattice. Furthermore, on any overlap Lα ∩Lβ, the gluing map φα ◦φ
−1
β must

preserve adjacency.
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In §2.2.3, we develop a more detailed definition. However, it is helpful to begin by look-

ing at fundamental cubes (§2.2.1), from which all lattice varieties can be constructed.

From the set-theoretic viewpoint, every lattice is a union of fundamental cubes. The

natural algebraic extension of this idea is that of difference chains, which are formal

sums of fundamental cubes. A lattice, as a union of cubes, is regarded as equivalent to

a formal sum of the cubes with coefficients either ±1, according to their orientation. In

§2.2.2, we use difference chains to state a discrete analogue of Stokes’ Theorem.

2.2.1 Fundamental cubes

A fundamental p-cube is a unit cube in Z
p, together with information concerning what

kinds of forms at each point. The fundamental cubes in dimensions 0, 1 and 2 are as

follows. Usually we shall use a suffix σ as an index that identifies a particular copy of

the fundamental cube. Here, for clarity, we use coordinates (m, n) as indices.

p = 0 C0 =

A single point; only 0-forms can be defined here.

p = 1 C1
m =

m+1m

The forward difference of a function is defined only at m, so 0-forms

and 1-forms are definable there. The arrow indicates the orientation.

p = 2 Take the Cartesian product of C1
m =

m+1m
with C1

n = n

n+1

to get the fundamental 2-cube:

C2
(m,n) =

x

(m,n) (m+1,n)

(m,n+1) (m+1,n+1)

where the orientation is positive, i. e. anticlockwise. (If the coordinates

had been ordered (n, m), the orientation would have been reversed.) The

diamond at (m, n) indicates that r-forms may be defined there for r ≤ 2.

From here on, we shall state only the maximum order rmax of difference forms that can

be defined at a point in a lattice; difference forms of all orders r < rmax can also be

defined at that point.

Addition of fundamental cubes (and, more generally, difference chains) is defined in

exactly the same way as the addition of chains is in the continuous case. As usual, a

minus sign is used when the orientation is reversed.
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Key Rule: If a difference form can be defined at a point, it remains defined

there when other fundamental cubes are added.

For example,

(i)
(m+1,n)(m,n)

+ (m+1,n)

(m+1,n+1)

=
(m,n) (m+1,n)

(m+1,n+1)

(ii)
(m+1,n)(m,n)

− (m,n)

(m,n+1)

=
(m,n) (m+1,n)

(m,n+1)

In example (ii) above, there is no diamond at (m, n) because the square is incomplete;

even though the forward difference can be taken in each direction, 2-forms cannot

properly be defined there and so the set of 2-forms at such a point is {0}. Thus, the

action of ∆ on a 1-form at (m, n) is zero for this lattice.

Definition 11 The corner of a fundamental p-cube at which p-forms can be defined

will be denoted the south west corner. The remaining points will be denoted collectively

as TopRight points.

(If we had used backward differences, p-forms would only be definable at the north

east corner; all other points would be referred to as BottomLeft points. We use a

geographical description only for points at which all r-forms (r ≤ p) can be defined.)

The above definition will later be extended to lattice varieties (see Definition 21). The

TopRight points turn out to have an important role in the proofs in §4.

Figure 1 shows a lattice with two points removed. Its component fundamental cubes

are easily identified, bearing in mind the Key Rule above. The only points at which

2-forms can be defined are marked by diamonds; all other points are TopRight points.

2.2.2 Difference chains

A useful algebraic approach extends addition of fundamental cubes to include all integer

coefficients. This is the natural way to prove the analogue of Stokes’ Theorem, which

we state in this section.

Definition 12 A difference p-chain is a formal linear sum of fundamental p-cubes with

integer coefficients.

The boundary of a difference p-chain Cp is denoted by ∂Cp. The boundary operator

∂ is a linear operator that maps p-chains to (p− 1)-chains. In particular, the boundary

10



Figure 1: Lattice with two points removed

b b b

b

b

b

b

b

b

b

b b

b

×

×

Key:

zero form two form defined

one form defined in direction indicated

× point removed

of a fundamental cube Cp is defined recursively as follows. Regard Cp as Cp−1 × C1;

then

∂Cp = (∂Cp−1)× C1 + (−1)p−1Cp−1 × ∂C1.

(A non-recursive formula given by Fulton ( [11], p. 333) is also easily adapted to the

discrete case.) The recursive method of calculating the boundary yields the following

results for the fundamental cubes that are listed in §2.2.1:

∂C0
σ = 0

∂C1
σ =

m+1
−

m

∂C2
σ =

(m+1,n)(m,n)
+ (m+1,n)

(m+1,n+1)

−
(m+1,n+1)(m,n+1)

− (m,n)

(m,n+1)

(6)

Note that

∂(∂C2
σ)) = 0.
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For a general difference p-chain, the boundary can be calculated by summing the

boundaries of the component fundamental p-cubes. For any p-chain that is an oriented

lattice regarded as a union of fundamental p-cubes each of which has the positive ori-

entation, and is thus represented as a sum of the component cubes with coefficients all

equal to +1, the internal boundaries cancel out. (Each internal boundary is common

to two of the p-cubes; each is counted once with the coefficient +1 and once with the

coefficient −1.)

To state Stokes’ Theorem, all that remains is to define the difference analogue of

the integral of an r-form over an r-chain.

Definition 13 Given an r-chain Cr,

Cr =
∑

σ

aσCr
σ, aσ ∈ Z,

and an r-form of the form

ω = F (n1, . . . , nr)∆1 ∧ · · · ∧∆r

the oriented sum of ω over Cr is defined to be

∑

Cr

ω =
∑

σ

aσF (n1(σ), . . . , nr(σ))

provided that ω is defined at (n1(σ), . . . , nr(σ)). This definition is extended to arbitrary

r-forms by linearity.

For example,

p Cp ω
∑

Cp ω

0
a

F F (a)

1
a b c d

F∆m F (a) + F (b) + F (c)

Theorem: ‘Stokes’ Theorem for difference forms’ Let Cp be a finite p-chain and

let ω be a (p− 1)-form. Then ∑

Cp

∆ω =
∑

∂Cp

ω.

Consequently
∑

∂Cp ω = 0 if ω is closed. The theorem is proved by applying Definition

13 to both sides of the equation.

12



2.2.3 Lattice varieties

The building blocks of a p-dimensional lattice variety L are the fundamental cubes in

Z
p
, which are glued together along boundaries (of dimension p− 1). It is necessary to

ensure that adjacency is preserved (together with orientation for an orientable lattice

variety). The boundary of L is the sum of the boundaries of the cubes in L. For example,

the cube corner shown below consists of three two-cells glued together; the diamonds

show where two-forms are defined, the square where only a zero-form is defined.

A corner of a cube’s surface

b b

b

Rather than working solely with fundamental p-cubes, it is helpful to glue together

larger pieces of lattice. We shall join p-dimensional projectable lattices together pairwise,

allowing only intersections that respect adjacency and orientation. Each disjoint piece of

the intersection is either an overlap (of dimension p) or part of a boundary (of dimension

p− 1).

If adjacency is respected but orientation is not, it is possible to construct non-

orientable lattice varieties such as a discrete version of the Möbius strip. Except for a

brief discussion in §6, we shall deal only with orientable lattice varieties henceforth. It

is possible to respect orientation while violating adjacency (see §6.3.3); in the context

of numerical methods, this situation occurs if a mesh is refined locally but not globally.

For simplicity, we do not allow this.

The gluing process may be described formally as follows.

Definition 14 A subset Lα ⊂ L and a map

φα : supp(φ) = Lα 7→ Z
p

is said to be a coordinate chart on L if φ is injective and φ(Lα) is a projectable lattice.

Definition 15 Given two such charts on L, we say that the gluing map (or coordinate

change map)

φα ◦ φ−1
β : φβ(supp(φα) ∩ supp(φβ))→ Z

p

13



is admissible if for any two points x1 and x2, φα(x1) is adjacent to φα(x2) if and only

if φβ(x1) is adjacent to φβ(x2).

In other words, admissible gluing maps maintain adjacency. However, we need more

than a cover of L with admissible gluing maps. Since a variety is constructed out of

charts, then for a forward difference to be defined at some point, it must be defined in

some Lα which contains it. It is not enough that “the dots are all there”.

Thus the φα also encode which difference forms are defined where in the Lα. Dif-

ference forms can only be calculated in co-ordinates. Thus we take the difference forms

on Lα to be those highest dimensional forms definable on φα(Lα). If a point in L lies

in several Lα, we may take the highest dimensional form that can be defined there. We

assume this in the examples that follow.

Example 16 Consider the 2-dimensional lattice variety L = L1 ∪ L2 in Figure 2; its

points cover one corner of a 3×3×3 lattice cube. (We have distorted the cube somewhat,

for ease of viewing. Note that although we have shaded the cells in L1 to indicate the

points that are in L1, the 2-dimensional surfaces spanning the vertices are not present

in the lattice variety, nor are the edges that are drawn to show the existence of difference

1-forms.) If we take the co-ordinates on L1 and L2 to be such that their lower left cubes

are the unit cube in Z
2, that is, 2-forms are defined at their lower left-most points, then

a 2-form at ⋄ is not defined in either L1 or L2 and is thus undefined in L. Indeed,

L1 ∩ L2 has two components. It turns out that the cohomology of this lattice variety is

not that of a disc, but that of an annulus. We will see in §6 that this example illustrates

an important difference between lattice varieties and cubical cochains.

Figure 2: Cautionary example 1.

L2

L1

Key: ⋄ two-form undefined
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While a lattice variety is constructed from projectable lattices glued together, and

these determine what forms are defined where, we need our covers to satisfy a particular

property in order to calculate the cohomology of the variety.

Definition 17 We say a cover L = {Lα |α ∈ A} of a p-dimensional lattice variety L

is valid if for every lattice point P ∈ L there is an α = α(P ) such that any p-form

definable at P is definable in Lα.

Example 18 An invalid cover of a 1-cell. The 1-form at the point P is defined in

neither L1 nor L2.

L2L1

P

Definition 19 A lattice variety L may be defined as a collection of charts {(Lα, φα)}

such that L = ∪αLα, the cover L = {Lα} is valid, and whenever φα ◦ φ−1
β is defined,

then it is admissible.

Example 20 Two lattice varieties modelling the 2-sphere are depicted below. The lines

indicate adjacency only; there are no edges or faces in lattice varieties.

“Pillow” model of a 2-sphere
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“Cube” model of a 2-sphere

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

(For simplicity, back faces are not indicated.)

Those points in a lattice variety of dimension p where a p-form cannot be defined

is an important set. Because domains add when we glue lattices together, we may

generalize Definition 11 and define the TopRight of a lattice L as follows.

Definition 21 The TopRight points of a lattice variety of dimension p are those where

in no Lα containing that point is a p-form defined.

Example 22 For the two-dimensional annular lattice shown below, the TopRight points

with respect to the standard chart (given by the obvious inclusion into Z
2) are marked

with a diamond. Changing the chart, for example by rotating the lattice before inclusion,

will result in a different set of TopRight points.

⋄ ⋄ ⋄ ⋄ ⋄ ⋄ ⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄
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Definition 23 At any point n ∈ L where forms of dimension higher than q (say) are

not defined, we set
p
Ex(L)|n ≡ {0}, p ≥ q.

Remark 24 There is a strong visual analogy between cubical complexes and lattice

varieties (regarded as a sum of fundamental cubes). As the following example shows,

the correspondence can only be taken so far.

Example 25 Cautionary example 2. On the left a smooth 2-dimensional cubical cell

has its boundary identified to a point ∗ (the equator is for visualization only). The result

is S2, which is still 2-dimensional. On the right, the four lattice points are identified

to a point. The 2-difference form is necessarily lost and the result is zero-dimensional.

This example shows that problems occur when there are “not enough dots”.

*

x

Identification of boundary points for smooth (left) and discrete (right) 2-cells

2.3 The difference complex

Difference forms and the difference operator are defined on lattice varieties in the usual

way, via the coordinate system provided by the charts. The de Rham complex for

differential forms has a difference analogue, which arises from the property ∆2 = 0.

Definition 26 A difference r-form ω is closed if ∆(ω) = 0 and is exact if there exists

a (r − 1)-form η such that ω = ∆(η). We call η a difference potential for ω.

Clearly, every exact r-form is closed; we shall prove that the converse is true (for r ≥ 1)

on projectable lattices.

Definition 27 The difference complex is

0→ R→ p
Ex

0 ∆
→ p

Ex
1 ∆
→ · · ·

∆
→ p

Ex
p ∆
→ 0. (7)

For any lattice variety L, the cohomology groups are

Hr
∆(L) =

{closed r-forms on L}

{exact r-forms on L}
=

ker∆
∣∣
Exr(L)

im∆
∣∣
Exr−1(L)

.

17



For r = 0, the dimension of the group H0
∆(L) (regarded as a vector space) is the number

of distinct connected pieces in L. In §3, we shall prove a generalization of the following

result, which was proved in Hydon & Mansfield (2004).

Theorem For any p ≥ 1, there exists a homotopy operator H on Z
p

such that

H(∆ω) + ∆H(ω) = ω

for every r-form (r ≥ 1) ω defined on Z
p
. Consequently ω is closed (∆ω = 0) if and

only if it is exact. Therefore

H0
∆(Z

p
) ∼= R, (constant functions on Z

p
) ;

Hr
∆(Z

p
) ∼= 0, r ≥ 1.

Our generalization of the homotopy operator provides one means of constructing

the cohomology groups. In §5.1, we calculate the cohomology groups for the following

example.

Example 28 The punctured planar lattice

For L = Z
2
\ {(0, 0)}, consider the 1-forms

ωc|(m,n) =





c∆2, if n = 0 and m ≤ −1

0 otherwise

where c is constant. In the portion of the lattice L shown, the form equals c∆2 on the

diamonds and is zero on dots. The missing point is marked by ×.

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

×⋄ ⋄ ⋄

Clearly, (S1 − id)ωc is zero wherever it is defined. Thus ωc is closed, but if c 6= 0

then it is not exact. This can be seen by trying to find a pre-image by “integrating”

around the hole. In fact,

H1
∆(Z

2
\ {(0, 0)}) = {ωc : c ∈ R}

∼= R

so the punctured lattice has cohomology which is isomorphic to the de Rham cohomology

of R
2
\ {(0, 0)}.
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3 Local exactness

Local exactness of the de Rham complex is the same as local existence of potentials.

In R
3, for instance, if a field has zero curl then locally it is a gradient; if it has zero

divergence then locally it is a curl. Here we prove local exactness for the difference

complex.

For a manifold, the Poincaré Lemma states that every closed r-form is exact on a

starshaped domain D if r ≥ 1. The proof uses integration along the ray between a

fixed point x0 ∈ D and an arbitrary point x ∈ D. For lattice varieties, a different

approach is needed, because points on most rays are not adjacent. Instead, a homotopy

operator is formed by projecting in each direction in turn, reducing the dimension of the

problem by one at each stage. Consequently, the replacement for a starshaped domain

is a projectable lattice. The difference analogue of the Poincaré Lemma is as follows.

Lemma 29 The difference complex (7) is exact on every projectable lattice L; hence

ker∆
∣∣

pExr(L)
= im∆|pExr−1(L), r = 1, . . . p− 1,

and ker∆|pEx0(L) = R.

3.1 Homotopy operators

We prove Lemma 29 by constructing a homotopy operator H : p
E

r(L)→ p
E

r−1(L) that

satisfies

H(∆ω) + ∆H(ω) = ω, ω ∈ p
E

r(L), r = 1, . . . , p. (8)

All 0-forms are mapped to zero by H . To begin with, consider the simplest case, in

which the lattice L is one-dimensional and connected (so that it is projectable); set

p = r = 1 and ω = f(n1)∆1. Clearly ω is closed for arbitrary f(n1), so we must find a

homotopy operator H : 1
E

1(L)→ 1
E

0(L) such that

∆
(
H(ω)

)
= ω, (9)

for all functions f(n1). Let H(ω) = g(n1); then (9) amounts to

(
S − id

)
g(n1) = f(n1),

whose solution is g(n1) = g(n1
0) + h1(ω), where

h1

(
f(n1)∆1

)
=





n1−1∑
k=n1

0

f(k) : n1 > n1
0,

0 : n1 = n1
0,

−
n1

0−1∑
k=n1

f(k) : n1 < n1
0.

19



and n1
0 ∈ L is an arbitrary fixed point. The arbitrary constant g(n1

0) is annihilated by

∆, so we discard it. Hence a suitable homotopy operator for p = 1 is H = h1. Now

consider ω ∈ 1
Ex

0(L), so that ω = f(n1) for some function f . Then

H∆(ω) + ∆H(ω) = h1({f(n1 + 1)− f(n1)}∆1)

= f(n1)− f(n1
0)

= ω − ω
∣∣
n1=n1

0

.

(10)

In particular, if ω ∈ ker∆ then the left-hand side of (10) vanishes, so

ω = ω
∣∣
n1=n1

0

.

Consequently Lemma 29 holds for p = 1. We now develop homotopy operators for

higher-dimensional lattices, by combining operators similar to h1 with projection op-

erators and using induction on p. Let L be a p-dimensional projectable lattice. For

simplicity, we shall assume that there is a (p, p − 1, . . . , 1)-ordered path from every

point n = (n1, . . . , np) ∈ L to a particular point n0 = (n1
0, . . . , n

p
0) ∈ L. Hence, for each

n, the lattice L contains the points

(n1, n2, . . . , np−1, k), for all k ∈ Z between np
0 and np,

(n1, n2, . . . , np−2, k, np
0), for all k ∈ Z between np−1

0 and np−1,

...
...

(k, n2
0, . . . , n

p−1
0 , np

0), for all k ∈ Z between n1
0 and n1.

It is helpful to use a formal analogue of the interior product of a vector field and a

differential form, by defining operators ∂niy : j
Ex

r(L) → j
Ex

r−1(L) by the relations

∂niy ∆k = δi
k, where δ is the Kronecker symbol. This is extended to all difference forms

by linearity and the product rule. Let hi : j
Ex

r(L)→ j
Ex

r−1(L) be defined by

hi(ω) =





ni−1∑
k=ni

0

(∂niy ω)
∣∣
ni=k

: ni > ni
0,

0 : ni = ni
0,

−
ni

0−1∑
k=ni

(∂niy ω)
∣∣
ni=k

: ni < ni
0.

(11)

Roughly speaking, hi(ω) sums the r-form ω along the 1-chain obtained by varying the

ith coordinate from ni
0 to ni, while leaving the other coordinates unchanged. Therefore

we call the operators hi summation operators. Define the projection maps

Πj : j
Ex

r(L)→ j−1
Ex

r(L), Πj(ω) = ω
∣∣
nj=n

j
0
,∆j=0

(12)

and note that

Πr ◦Πr+1 ◦ · · · ◦Πpω = 0 (13)
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for all ω ∈ p
Ex

r(L), r ≥ 1. Our assumption that (p, p − 1, . . . , 1)-ordered paths exist

enables us to project first in the np-direction, then in the np−1-direction and so on, down

to n1 last. This allows us to construct the homotopy map by induction on the number of

edges needed to get to n (that is, on the dimension of the lattice). There is no essential

loss of generality in doing this, for the resulting homotopy operator can be adapted to

other projectable lattices merely by using the projection maps and summation operators

in the required order.

Theorem 30 Under the above assumptions on the domain of definition L of ω ∈
p
Ex

r(L), whose coefficients are functions in B, let

h(ω) = hp(ω) +

p−1∑

i=1

hi (Πi+1 ◦Πi+2 ◦ · · · ◦Πpω) . (14)

Then

HB(ω) =





h(ω) ω ∈ p
Ex

r(L), r > 0

ω
∣∣
n=n0

ω ∈ p
Ex

0(L)
(15)

is a homotopy operator for the complex p
Ex(L) over B.

Example 31 If p = 2 then for 1-forms ω = α(n1, n2)∆1 + β(n1, n2)∆2 the homotopy

map is

h(ω) = h2(ω) + h1(Π2(ω)) = h2(ω) + h1(α(n1, n2
0)∆1)

whereas for 2-forms ω = f(n1, n2)∆1 ∧∆2 the homotopy map is

h(ω) = h2(ω) + h1(Π2(ω)) = h2(ω).

Notes:

1. If r ≥ 1 then, from (13), the sum in (14) need only be taken from i = r to i = p−1.

2. If ω̃ = Πpω then

h(ω) = hp(ω) + h(ω̃) (16)

Proof: It is sufficient to prove that

h(∆ω) + ∆h(ω) = ω −Π1 ◦ · · · ◦Πpω. (17)

To see this, note that if ω ∈ p
Ex

r(L) and r ≥ 1 then, by (13), Π1 ◦ · · · ◦ Πpω = 0 and

thus HB = h is a homotopy map. To show exactness at p
Ex

0(L), we need to show that

h(∆ω) + ω
∣∣
n=n0

= ω

for ω ∈ p
Ex

0(L). But this is precisely (17), because

ω ∈ p
Ex

0(L) =⇒ h(ω) = 0, Π1 ◦ · · · ◦Πpω = ω
∣∣
n=n0

.
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The proof of (17) is by induction on p. First note that if ω ∈ 1
Ex

0(L) then ω = f(n1)

for some function f , and therefore

h(∆ω) + ∆h(ω) = h({f(n1 + 1)− f(n1)}∆1)

= f(n1)− f(n1
0)

= ω − ω
∣∣
n1=n1

0

= ω −Π1ω.

(18)

Also if ω ∈ p
Ex

p(L) then ω is a multiple of the p-form ∆1∧∆2∧· · ·∧∆p and so Πpω = 0

and ∆ω = 0. Hence

h(∆ω) + ∆h(ω) = ∆hp(ω)

= ω

= ω −Π1 ◦ · · · ◦Πpω.

(19)

Now fix r < p and suppose that HB is a homotopy operator for all p′ < p. We set

ω̃ = Πp(ω) and observe that ω̃ ∈ p−1
Ex

r(L); the induction hypothesis implies that

h(∆ω̃) + ∆h(ω̃) = ω̃ −Π1 ◦ · · · ◦Πp−1ω̃ (20)

The last term is nonzero only if r = 0. Note that

Πp(∆ω) = Πp(
∑p

j=1 ∆j ∧ (Sj − id)ω)

=
∑p−1

j=1 ∆j ∧ (Sj − id)(Πpω)

= ∆ω̃

and so, from (16),

h(∆ω) = hp(∆ω) + h(Πp(∆ω))

= hp(∆ω) + h(∆ω̃).

Also from (16),

∆h(ω) = ∆hp(ω) + ∆h(ω̃),

and therefore, using (20),

h(∆ω) + ∆h(ω) = hp(∆ω) + ∆hp(ω) + ω̃ −Π1 ◦Π2 ◦ · · · ◦Πp−1ω̃

= hp(∆ω) + ∆hp(ω) + Πp(ω)−Π1 ◦Π2 ◦ · · · ◦Πpω.

So to prove the correctness of the homotopy formula, we need only show that

hp(∆ω) + ∆hp(ω) = ω −Πpω.
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This can be verified by direct calculation, as follows.

hp(∆ω) +∆hp(ω)

= ∂npy(∆p ∧ ω)− (∂npy(∆p ∧ ω))
∣∣
np=n

p
0

+ ∆p ∧ (∂npy ω)

= ω − ω
∣∣
np=n

p
0
,∆p=0

= ω −Πpω

as required, where we have used the identity

∂npy(∆j ∧ η) + ∆j ∧ (∂npyη) = δp
j η.

Equations (18) and (19) show that (17) holds for p = r if r ≥ 1 and for p = 1 if r = 0.

By induction, (17) holds for all p, r, as required. �

4 From local to global

As for de Rham cohomology of a manifold, the difference cohomology of a lattice variety

may be calculated in terms of the “pattern of intersections” of a “good cover”, a notion

formalised in the definition of the Čech cohomology of the cover. We follow the line of

argument in Weil’s celebrated proof [36], as expounded in [5], pointing out the relevant

technical differences.

As a corollary, we show that if the cover of a space and its lattice approximation has

the same Čech cohomology, then the ∆-cohomology will match the smooth de Rham

cohomology in a well-defined way. There are, however, limits to the analogy with the

smooth case, which the examples show. In the next section, we calculate examples using

the techniques developed in this section.

4.1 The Čech difference operator

The purpose of the Čech difference operator is to measure when forms defined locally

can be “glued” or pieced together to make forms with extended domains.

Let Lα, α ∈ A, be a finite collection of lattices composed of sums of cells. In our

application, these will be the pieces that comprise a lattice variety. Denote

Lα0
∩ Lα1

by Lα0α1

Lα0
∩ Lα1

∩ Lα2
by Lα0α1α2

and so forth, and let
∐

denote disjoint union.
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The inclusions ıi : Lα0···αi···αj
→ Lα0···α̂i···αj

give rise to the sequence

∐
Lα

ı0←
ı1←

∐
Lα0α1

ı0←
ı1←
ı2←

∐
Lα0α1α2

←

←

←

←

· · ·

These in turn give rise to a sequence of restrictions of difference forms

⊕
Ex

∗(Lα)

δ0→
δ1→

⊕
Ex

∗(Lα0α1
)

δ0→
δ1→
δ2→

· · ·

where, for example,

δ0 : Ex
∗(Lα1α2

)→ Ex
∗(Lα0α1α2

)

Definition 32 The Čech difference operator

δ :
⊕

Ex
∗(Lα0···αp

)→
⊕

Ex
∗(Lα0···αp+1

)

is defined for each integer p ≥ 0. If ω ∈
⊕

Ex
∗(Lα0···αp

) has components

ωα0···αp
∈ Ex

q(Lα0···αp
)

then δω has components

(δω)α0···αp+1
=

p+1∑

i=0

(−1)iωα0···α̃i···αp+1

∣∣
Lα0···αp+1

Important Remark 33 The key difference to the smooth case is that here, the re-

striction sets to zero any inappropriate forms at points which are TopRight points in

the range space.

Theorem 34 The Čech difference operator δ satisfies δ2 = 0

Example 35 For the lattice covers shown, we give the Čech difference operator.

24



(i)

L0

L1
L01

ω = (ω0, ω1), (δω)01 = (ω1 − ω0)|L01

(ii)

L0 L1

L2

L012

ω = (ω01, ω12, ω02), (δω)012 = (ω12 − ω02 + ω01)|L012

Theorem 36 The sequence

⊕
Ex

i(Lα)
δ
−→

⊕
Ex

i(Lαβ)
δ
−→

⊕
Ex

i(Lαβγ) · · · (21)

is exact for each i.

The proof of exactness of the Čech sequence requires a partition of unity, {ρα},

∑
ρα = 1, supp(ρα) ⊆ Lα

For ω ∈
⊕

Ex
i(Lα0···αp

), define

(Kω)α0···αp−1
=

∑

α

ραωαα0···αp−1
.

Then

δK + Kδ = id (22)

except perhaps at TopRight points in the range spaces where the restriction maps send

some forms to zero. To ensure (22) is valid for all points, so that K is a homotopy
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operator for the sequence (21), the functions ρα must take the value 1 at any point P

such that

ω|Lα
(P ) 6= ω|Lαβ

(P ).

Such a point is shown in the next Figure, where P is a TopRight point in Lα but not

Lα ∪ Lβ.

•
P

Lα

Lβ

For example, if ω(P ) = a∆1 + b∆2 in Lβ , then ω|Lαβ
= a∆1, because ∆2 is not defined

at P in Lαβ. This constraint on the ρ poses no difficulties as unlike the smooth case,

the partition functions need not be continuous.

Example 37 Example 11(ii) cont. Suppose

δ(ω12, ω02, ω01) = (ω12 − ω02 + ω01)|L012
= 0,

then there exist ω0 ∈ Ex
i(L0), ω1 ∈ Ex

i(L1) and ω2 ∈ Ex
i(L2) such that

ω12 = ω1 − ω2

ω01 = ω1 − ω0

ω02 = ω0 − ω2

Theorem 38 The Čech difference operator δ and the difference operator ∆ commute,

that is,

∆δ = δ∆.

This follows as the smooth case, except at TopRight points, where the restrictions ensure

commutativity.

4.2 Čech cochains

For a lattice variety L with cover {Lα |α ∈ A}, where A is the index set for the cover,

let L denote the set {Lα0α1···αr
| r ∈ N, αi ∈ A}. Further, let Li = {Lα0α1···αi

}.

For a set S, let

〈S〉
R

= {
∑

ass | s ∈ S, as ∈ R}

be the set of formal sums of the elements of S with coefficients in R.
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Definition 39 Čech cochains are defined as

Či(L) = {f : 〈Li〉 → R}, i ∈ N

The Čech p-cochains can be viewed as constant valued degree zero ∆-forms on the p+1

intersections. Let s denote the injection map,

s : Či(L)→ ⊕Ex
0(Lα0α1···αi

).

The maps δ : Či → Či+1 are then restrictions of the Čech difference operator given in

Definition 32 above to the ∆ forms with which they are identified via the map s, so

that sδ = δs. Note also that ∆ ◦ s = 0, because the image of s is locally constant.

Definition 40 The Čech cohomology groups of L are defined to be

Ȟi(L) =
ker δ|Či(L)

im δ|Či−1(L)

Given a particular cover of L, once the Lα and their intersections are known, the

Čech cohomology of L is easily worked out. This first example is a simple expository

one for the sake of completeness.

Example 41 Consider the following diagram of lattices and their intersections,

L1

L6

L16

L5

L56

L25

L2

L12
L23

L3

L34

L4
L45

In this example, Č0 ∼= R
6

and Č1 ∼= R
7
. The Čech sequence is

0 −→ Č0 δ
−→ Č1 −→ 0,
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where

δ =




L1 L2 L3 L4 L5 L6

L12 1 −1 0 0 0 0

L23 0 1 −1 0 0 0

L34 0 0 1 −1 0 0

L45 0 0 0 1 −1 0

L25 0 1 0 0 −1 0

L56 0 0 0 0 1 −1

L16 1 0 0 0 0 −1




Let χα be the characteristic function for Lα, which is the function that takes the value

1 on Lα and is zero elsewhere. Then

Ȟ0(L) = ker δ =

6∑

j=1

χj

and

Ȟ1(L) = Č1/im δ

∼= 〈χ12 + χ25 + χ56 + χ16, χ12 + χ23 + χ34 + χ45 + χ56 + χ16〉R

These may be calculated in a symbolic computing environment using commands for the

kernel, transpose and column space on the matrix form of δ.

In §2, we stressed the need for a valid cover of the lattice variety. Consider the variety

shown in Figure 2 in §2.3.3. As L1∩L2 has two components, the Čech cohomology is the

same as a two-dimensional annulus, which is not isomorphic to that of a corner. Thus

the Čech cohomology captures the fact that there is a central point at which 2-forms

are not defined.

4.3 The Čech-∆ double complex

The double complex we describe in this section is the “Divide and Conquer” method

for calculating cohomology groups, pioneered by Weil [36].

Let L be a lattice variety with cover {Lα}.

Definition 42 If the cover L of L is not only valid but has the property that each

Lα0···αr
has trivial ∆-cohomology, we say that L is a good cover of L.

Example 43 The cover of the pillow model of the cube consisting of the front and back

faces, is not a good cover. The intersection is a one dimensional annular lattice which

has nontrivial ∆ cohomology.

Good covers of the punctured plane, the annular lattice and the cube model of the

sphere will be given in §5.

Define r : Ex
i(L)→

⊕
Ex

i(Lα), by

r(ω) = (ω|L0
, ω|L1

, . . . ).
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Then r∆ = ∆r. Combining results from the previous discussions, we find that the fol-

lowing diagram is commutative, where ∆ on a direct sum is assumed to act component-

wise.

...
...

...
...

...

↑∆ ↑∆ ↑∆ ↑∆

0 → Ex
2(L)

r
−→

⊕
Ex

2(Lα)
δ
−→

⊕
Ex

2(Lαβ)
δ
−→

⊕
Ex

2(Lαβγ)
δ
−→

↑∆ ↑∆ ↑∆ ↑∆

0 → Ex
1(L)

r
−→

⊕
Ex

1(Lα)
δ
−→

⊕
Ex

1(Lαβ)
δ
−→

⊕
Ex

1(Lαβγ)
δ
−→

↑∆ ↑∆ ↑∆ ↑∆

0 → Ex
0(L)

r
−→

⊕
Ex

0(Lα)
δ
−→

⊕
Ex

0(Lαβ)
δ
−→

⊕
Ex

0(Lαβγ)
δ
−→

↑ ↑ s ↑ s ↑ s

0 → Č0 δ
−→ Č1 δ

−→ Č2 δ
−→

↑ ↑ ↑

0 0 0

The first important point is that those parts of the columns above the long horizontal

line are exact by definition of a good cover. Those parts of the rows above the line are

exact as they are the Čech sequences. The second important point is that the kernels

of the ∆ in the leftmost column are, by definition, the global ∆-forms.

The complex is used to construct a global ∆-form from a Čech form and vice versa.

As an example, consider now the descent diagram for p = 2 beginning on the left with

ω ∈ Ex
2(L):

0 = ∆(ω) 0

↑∆ ↑∆

ω ∈ Ex
2(L)

r
−→ (ω|L0

, . . . ) −→ 0

↑∆ ↑

(η0, η1, . . . )
δ
→ (ξ01, . . . )

δ
→ 0

↑∆ ↑

(χ01, . . . )
δ
→ (φ012, . . . )

δ
→ 0

↑ s

φ ∈ Č2 δ
→ 0

Assume that ∆ω = 0, that is, ω is a closed ∆-form. As each ω|Lα
is closed on Lα

which has trivial ∆-cohomology, we use the relevant homotopy operator to obtain ηα
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on Lα such that ∆(ηα) = ω|Lα
. Applying δ to (η0, η1, . . . ) yields ξ = (ξ01, . . . ), say.

By commutativity of the diagram, each component of ξ is closed on its domain. Thus,

there exists for each ξαβ , a χαβ , such that on Lαβ , ∆(χαβ) = ξαβ . Taking δ(χ01, . . . )

yields

φ = (φ012, . . . ) ∈
⊕

Ex
0(Lα0α1α2

)

such that ∆(φ) = 0 and δ(φ) = 0.

As zero-forms in ker∆ are just constants, it follows that φ can be identified with a

Čech cocycle,

φ : 〈{Lαβγ}〉R → R, φ(Lαβγ) = φαβγ .

Standard algebraic arguments are used to prove the following theorem.

Theorem 44 A ∆ p-cocycle produces a Čech p-cocycle via the descent diagram. More-

over, exact ∆ cocycles are mapped to exact Čech cocycles.

As the Čech cohomology is easy to compute, we would like to use it to compute the

∆-cohomology of the lattice variety. To this end, we reverse the descent procedure to

obtain an ascent procedure. Instead of using the homotopy maps for exact ∆ sequences

(the columns), we now use those for the exact Čech sequences (the rows). Then a

standard argument yields the following theorem.

Theorem 45 If L is a good cover for the lattice variety L, then

Hp

∆
(L) ∼= Ȟp(L).

5 Examples

We now look at three examples to demonstrate the process of finding the ∆-cohomology

from the Čech cohomology.

5.1 The punctured plane

Consider the cover of the punctured plane given below.
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×

b

b

b

L2

L1

L3 L23

L13 L12

The diagram shows a good cover L for the “punctured plane” L = Z
2
\ {(0, 0)}.

The origin (marked by a cross) is removed, and we have shown only the points that

surround it (at all other points, 2-forms can be defined). The double intersections are

along the lines, as marked, and there are no triple intersections. It should be noted that

no 2-form at (0,−1) can be defined. As in §2, points where 2-forms are definable are

marked by diamonds, points where only 1-forms are definable are marked by discs.

The Čech cohomology of L is

Ȟi(L) = 0, i ≥ 2

Ȟ1(L) ∼= 〈η〉
R

Ȟ0(L) ∼= R (constant 0-forms)

(23)

where η|L13
= 1 and η|L23

= η|L12
= 0.

The ascent diagram is

0 0

↑ ↑

Ex
1 ∋ ω −→ ∆(χ) → 0

∆ ↑ ↑

χ
δ
−→ s(η) → 0

s ↑

η ∈ Č1 → 0

(24)
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The first step is to find a pre-image χ, under δ, of s(η), which is the constant 0-form

(0, 1, 0) ∈ Ex
0(L12)⊕ Ex

0(L13)⊕ Ex
0(L23). We may take

χ = (χ1, χ2, χ3) ∈ Ex
0(L1)⊕ Ex

0(L2)⊕ Ex
0(L3),

to be

χ1 ≡ 0, χ2 ≡ 0

and

χ3(n1, n2) =





0 (n1, n2) ∈ L3 \ L13

1 (n1, n2) ∈ L13

The next step is to calculate ∆χ, which is done component-wise. We have ∆χ1 =

∆χ2 ≡ 0, while

∆χ3(n1, n2) =





0 (n1, n2) ∈ L1 \ L13

−∆2 (n1, n2) ∈ L13

We now observe that ∆χ is the component wise restriction of a global closed 2-form ω,

given by

ω(n1, n2) =





0 (n1, n2) ∈ L \ L13

−∆2 (n1, n2) ∈ L13

To see this, first note that ω|L1
≡ 0, because 1-forms on the top boundary of L1 may

involve ∆1 only, the restriction sets any ∆2 terms to zero. Secondly, ∆ω ≡ 0 because

2-forms are not defined at (0,−1).

We remark that taking χ3, which is defined on L3, to be

χ3(n1, n2) =





0 n1, n2 > 0

1 n2 = 0,−1

yields a representative for H1
∆

which is more obviously both closed and the restriction

of a global form, such as that shown in Example 19 in §2.4. Our choice of a good cover

and pre-image highlights some of the subtleties of calculations with difference forms

which are not present in the smooth case.

Different covers, different representatives η of Ȟ1 and different pre-images of η all

yield different representatives of H1(L). However, the difference of any two representa-

tives of H1(L) is an exact form.

5.2 An annular lattice

A good cover of the annular lattice L shown below consists of three lattice pieces, Lα,

α = 1, 2, 3, as in the diagram, with no triple intersections. (The edges and shading are

included only to make the picture clear.) We assume that the co-ordinates on the Lα
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are standard so that 2-forms are defined at the lower left points of every cube. The

Čech cohomology of L is the same as that for the punctured plane, given in equation

(23).

L1

L3

L2

The ascent diagram is the same as given in (24) in §4.1. For variety, we take a

different representative of Ȟ1, which takes the value 1 on L23 and is zero elsewhere.

The first step is to find a pre-image χ, under δ, of s(η), which is the constant 0-form

(0, 0, 1) ∈ Ex
0(L12)⊕ Ex

0(L13)⊕ Ex
0(L23). We may take

χ = (χ1, χ2, χ3) ∈ Ex
0(L12)⊕ Ex

0(L13)⊕ Ex
0(L23),

to be

χ2 ≡ 1, χ3 ≡ 0

and χ1, which is defined on L1, is given diagrammatically by

b

b

b

b

b

b

b

b

b

b

b

b

b b b

1

1

1

1

1

1

0 0 0

00 0

χ1 =

1 1 1

The next step is to calculate ∆χ component wise. This yields,

∆χ2 ≡ 0, ∆χ3 ≡ 0

and
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b

b

b

b

b

b

b

b

b

b

b

b

b b b

0

−∆2

0

-∆2

0

-∆2

0 0 0

00 0

0 0 0

∆χ1 =

We can now see that ∆χ is the restriction onto components of a global form ω,

because on the intersections Lij , the values of the ∆χi are identical. This form is

closed but not exact 1-form, because we began with a closed but not exact Čech 1-form.

−∆2 −∆2 −∆2

b b b

The global 2-form ω; the value at unmarked points is zero.

5.3 The lattice sphere

The cube model of the two-dimensional lattice sphere was pictured in Example 20

(§2.3.3). Suppose the cover is given as: L1 is the top face, L5 is the bottom face,

while L2, L3 and L4 wrap around the “belly”. The intersections Lij are given below,

followed by a diagram of the triple intersections. This example shows another significant

difference from the smooth case, which is that the intersections do not need to have the

same dimension as the original variety.
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L12

L24

L14

L13

L25

L34

L23

L35

L45

L124

L123

L134

L345
L235

L245

The triple intersections, labelled on the double intersection skeleton.

b

b

b

b

b

b

From the intersections of the cover, it is simple to calculate the Čech cohomology of

L,

Ȟi =





0, i 6= 0, 2

R i = 0, 2
.

We now construct a closed but not exact difference 2-form via the ascent procedure.

The ascent diagram for p = 2 is given in §3.3.

Step 1 A representative of Ȟ2 is given by φ134 = 1 on L134 and zero else.

Step 2 Construct a preimage χ ∈ ⊕Ex
0(Lαβ) under δ of η. This may be taken to be zero
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on all Lαβ except L34, where it is as follows:

χ34 =

1





L134

...

0





...

L345

Indeed,

(δχ)134 = (χ34 − χ14 − χ13)|134

= 1

(δχ)235 = (χ35 − χ25 − χ23)|235

= 0

and so forth.

Step 3 Calculate the components of ξ = ∆χ:

∆χ34 =

0




•(L134)
...

∆2 •

0





...

•(L345)

and zero elsewhere.

Step 4 Calculate the components of a preimage, η, under δ of ∆χ in ⊕Ex
1(Li). This can

be taken to be zero on all Li for i 6= 4, and on L4 is given in the figure following;
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• P L4

η(P ) = −∆2, and is zero elsewhere

Step 5 Calculate ∆η ∈ ⊕Ex
2(Li). This is zero on all Li for i 6= 4, and equals ∆1 ∧∆2 at

the point P in L4 (see figure above).

• We can now see that ∆η is a restriction of a global 2-form,

ω =





∆1 ∧∆2 at P

0 elsewhere

(Recall that restrictions on TopRight points of components are zero if forms of the

appropriate dimension are not otherwise definable).

The overall result is,

H2
∆

(LS2) ∼= 〈ω〉
R

H1
∆

(LS2) = 0

H0
∆

(LS2) ∼= R

where the zero-forms are the constant forms.

6 Discussion, conjectures and open problems

6.1 Comparison with cubical cochain theories

It is not hard to see that there is an injective map from the space of cubical complexes

and their cochains to the space of lattice varieties and difference forms. For example,

looking at the two lattice models in Example 20, it is clear that if one interpolates

lines (1-cells) between adjacent vertices and 2-cells between adjacent lines, then one has

two cubical simplicial models of the 2-sphere. Cubical chains are formal linear sums of

cubical cells over some coefficient field, and cubical cochains are linear maps from the
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space of chains into the coefficient field. Thus a 2-cochain assigns a value to each 2-cell,

a 1-cochain assigns a value to each edge and a 0-chain assigns a value to each vertex.

For each p-cell σ, with south west corner vσ, we can construct a difference p-form from

the cubical p-cochain ω; the value of this p-form at vσ is ω(σ)∆i1 ∧∆i2 ∧ · · ·∆ip
, where

the ij label the coordinate directions of σ.

This injective map shows that there are no examples of discretized smooth spaces

and forms that are missed by our theory. Moreover, this map commutes with the

coboundary operators, so the cohomology groups are isomorphic.

However, the converse is false; not all difference forms can be obtained as the image

of a cubical cochain. One can see this by noting that the image difference form has the

property that every south west corner with p adjacent lattice points in the direction of

the relevant shift operators has a difference p-form defined on it. As Example 16 shows,

this is false for lattice varieties in general. Lattice points may have difference forms

defined on them up to the dimension of the variety, but they don’t have to have them

all.

We can summarize the discussion here and in the Introduction as follows.

• Lattice varieties need not be discretizations of a smooth space. There is no notion

of an analogous tangent structure.

• The proofs and results in this paper do not assume that there exists a continuous

space for which the lattice variety is a cubical chain approximation.

• The set of cubical cochains on a cubical complex maps injectively into the set of

difference forms on lattice varieties, but not onto.

• There are analogues of exterior algebra, exterior derivative and Stokes’ Theorem.

The exterior difference (coboundary) operator does not satisfy the product rule

(it is not a derivation) so proofs and constructions for difference forms cannot be

inferred directly from those for smooth forms.

• Local potentials exists for the analogue of curl-free and divergence-free forms.

• Combinatorial notions such as the analogue of an open cover and a Čech complex

on that cover can be used to study cohomology of difference forms on lattice

varieties.

6.2 Conjectures concerning discrete index theorems

The Morse Index theorem relates the Euler characteristic of a manifold to features of

the solution of a generic vector field on it, specifically to the indices of the vector field

about its critical points (see for example [10], §14.3e). In this section we conjecture a

result for generic linear equations on lattice varieties, relating the Euler characteristic

of a lattice variety to an index (which we define) of the generic solution of the generic

equation.

Suppose that you want to solve, globally, a 4-point scheme Ω, defined locally as

Ω : 0 = aun,m + bun+1,m + cun,m+1 + dun+1,m+1 (25)
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with abcd 6= 0, on a 2-dimensional lattice variety. For simplicity, we consider only linear

equations.

We demonstrate the kinds of calculations involved by considering solutions of (25)

on the cube model of a sphere. In the diagram below, we have omitted the lattice points

on the faces of the model, for simplicity.

Begin with generic initial data defined on the points in the 1-dimensional sublattice

variety shown as darkened lines in the left most sphere in the diagram. Then the

equation can be solved at points in the bottom, left and front faces by sequentially

solving for u in the direction of the arrows on the left most sphere. This yields values

for um,n on the 1-dimensional sublattice (shown as darkened lines) of the middle sphere

model in the figure. Continuing solving for u (in the direction of the arrows drawn on

the middle sphere) on the top, right and back faces, we obtain compatibility conditions

on the initial data coming from the need to have u well-defined on that sublattice of

the third lattice model shown as darkened lines in the diagram.

A careful count reveals that regardless of the number of 2-cubes that make up the

lattice sphere and regardless of the position of the initial data,

♯initial conditions− ♯compatibility conditions ≡ 2.

Conjecture 46 Let L be a lattice model for a boundary-free manifold and let Ω = 0 be

a generic linear equation defined on L. Define the index S(Ω) to be

S(Ω) = ♯initial conditions − ♯compatibility conditions

for the generic solution, that is, the solution with arbitrary initial conditions. Then

S(Ω) =
∑

(−1)i dimHi

∆(L). (26)

We may take the right hand side of equation (26) to define the Euler Characteristic

of L by direct analogy with the result for smooth manifolds,

χ(M) =
∑

(−1)i dimHi

de Rham(M).
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We remark that the conjecture is not true for lattice models with a boundary, such as

an annular lattice.

One can look at the Čech cohomology with local coefficients in the same way as for

smooth manifolds, because the same constructions will hold (see [5], §10). If we take

local coefficients on Lα = Lα0···αp
to be the vector space Sα of solutions of the linear

equation Ω = 0 on Lα, then Sα forms a pre-sheaf Σ = Σ(Ω) on L. Moreover,

χ(L, Σ) :=
∑

(−1)iȞi(L, Σ)

=
∑

(−1)iČi(L, Σ)

=
∑

(−1)i
(∑

|α|=i dimSα

)

follows from standard arguments.

Conjecture 47 Let Ω be a generic linear equation on a lattice model L of a manifold

perhaps with boundary. Then

χ(L, Σ(Ω)) = S(Ω).

6.3 What is special about the south west?

So far, the south west point of a fundamental p-cube is distinguished as the only point

where a p-form is definable.

If instead of forward difference we want to use a backward difference or a consistent

collocation, the entire theory above can be developed for different models of the basic

fundamental cube. Simply, one fixes points at which the various forms are defined. In

the diagram below, on the left is shown a fundamental 2-cube for a backward difference,

while on the right an example is shown of a fundamental 2-cell for a collocation scheme.

The right hand cell has no TopRight points, so the proofs for such a model are sim-

pler than those we have presented. Gauss-Legendre, Marker and Cell and Preissmann

schemes all have a fundamental model for what is defined where in a fundamental cube,

and thus these schemes can be studied using the methods described.

6.4 Open problems

6.4.1 Independence from the good cover

In the smooth theory, one proves that the Čech forms are independent of the particular

cover of the manifold used to calculate them by proving stability under refinement of
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the cover. As any two covers have a common refinement, independence follows. We do

not have any such theory yet for lattice varieties. One conjecture would be that any

two lattice models of the same manifold have the same cohomology, provided there are

sufficient numbers of points.

6.4.2 Non-orientable lattice varieties

We leave open the problem of generalizing the methods used here to allow for lattice

approximations of non-orientable manifolds. It is not hard to imagine a lattice approx-

imation of a Möbius band, for example. They are excluded from the theory described

here, as their construction necessarily violates the condition to respect the orientation

inherited from Z
p

when pieces of lattice are glued together to form a lattice variety.

One interesting possibility is to find the analogue of a “twisted differential form” or

pseudoform, see for example ( [10], §2.8).

6.4.3 Localized refinements

A common numerical technique is that of the localized refinement of a mesh. This

is used to obtain more accurate information where the functions being calculated are

rapidly changing. An open problem is how to adapt the constructions given in this

article to cover meshes such as in the diagram. They are not covered by the theory

described here as they violate the adjacency condition stipulated in the lattice variety

construction.

Using different scale meshes violates the adjacency condition.

6.4.4 Functorial properties

An open problem is to complete the difference form constructions described in this

article to a fully functorial theory. This requires a discussion of mappings between

lattice varieties, and of the associated maps they generate between cohomologies of the

underlying spaces.

7 Conclusions

There is a strong analogy between global difference (∆) forms of a lattice model of a

manifold M , and smooth de Rham forms for M , by virtue of their relationship to a

cover or decomposition of the underlying spaces. We have shown how to compute ∆

forms effectively. Our definitions do not rely on the existence of any underlying smooth

space or continuous limit; therefore they make sense in the absence of any such model.
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The framework that we have described makes it possible to compute the cohomology

of a given lattice variety. Consequently one can check whether or not the cohomology

of a finite difference approximation is isomorphic to that of the continuous system that

is being approximated. Furthermore, it is now possible to determine the cohomology of

discrete systems that have no natural continuous limit. Many problems remain open,

as described in §6. Our purpose in this paper has been to lay foundations.
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