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Abstract

Background. Experimental work over the past

decade has shown that recirculation in alveoli substan-

tially increases the transport of particles. We have

previously shown that, for nondiffusing passive parti-

cles, this can be understood with the aid of Moffat-

t’s famous corner flow model. Without wall motion,

passive particles recirculate in a regular fashion and

no chaos exists; however, wall motion produces exten-

sive chaotic flow. Aerosols typically do not follow this

flow, instead they diffuse. Here we construct a simple

model to study diffusing particles in the presence of

recirculation.

Method of Approach. We assume all particles are

passive, that is to say they do not alter the underlying

flow significantly. We modify the Lagrangian system

for corner eddies to accommodate diffusing particles.

Particle transport is governed by Langevin equations.

Ensembles of diffusing particles are tracked by numer-

ical integration.

Results. We show that transport of diffusing particles

is enhanced by sufficiently strong underlying recircu-

lation through a mechanism that we call the ‘carousel

effect’. However, as the corner is approached, the re-

circulation rapidly decreases in intensity, favouring

motion by diffusion. Far from the corner’s apex, re-

circulation dominates.

Conclusions. For real alveoli, the model indicates

that transport of aerosols is enhanced by sufficiently

strong recirculation.

Keywords: physiological fluid flows, Lagrangian dy-

namics, diffusing particles

1 Background

The purpose of this paper is to explore the effect of
recirculation on the transport of diffusing particles in
the pulmonary alveolus. Our motivation for this in-
vestigation comes from wanting to quantify the move-
ment of inhaled medicines and pollutants within alve-
oli. This will lead to a better understanding of aerosol
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mixing in these terminal air units. We aim to provide
some insight from mathematics by modelling the mo-
tion of diffusing particles in alveolar flows, which is
impossible to obtain through in vivo experiments. We
shall now give some background about alveolar flow
and the patterns that have been observed through nu-
merical models and experimental studies.

Hundreds of millions of alveoli occupy a single adult
lung [1]. The flow in these bulbous sacs is incompress-
ible and Newtonian. The Reynolds number and the
Womersley number are both much smaller than 1; this
is based upon normal breathing frequencies [2]. Al-
though air moves approximately like a Stokes flow, nu-
merical and experimental observations have indicated
that chaotic advection occurs in the alveoli [3–5].

For our purposes there are three key results, which
have been found by Tsuda and his colleagues. Firstly,
Tsuda et al. [4] constructed a numerical model of alve-
olar flow and determined that, for an alveolus of suffi-
cient depth, recirculation can occur. Secondly, Tsuda
et al. [5] created a series of flow visualization experi-
ments on real alveoli and confirmed that, at the end
of the first inhalation, a recirculation pattern forms.
Thirdly, this pattern of recirculation can be disturbed
on further ventilation, with good mixing of particles
after three or four breathing cycles. These results
suggest that chaotic advection can occur deep in the
lung.

Recently, we have shown mathematically that an un-
derlying pattern of recirculation can lead to chaotic
particle trajectories [6]. This was achieved by focus-
ing on two major features of alveolar flows, name-
ly rotary motion and wall movement. A very simple
mathematical model was built, based on the famous
corner eddies of Moffatt [7]. Figure 1 shows sample
trajectories depicting recirculation in a rigid corner;
the flow is steady, so particle paths follow streamlines
(see Acheson [8] for more details). This flow is per-
turbed by periodically expanding and contracting the
walls. The results are remarkable: the effect of wal-
l motion on recirculation generates regions in which
particle transport is chaotic; elsewhere, the transport
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Figure 1: Moffatt’s corner eddies with corner angle of
20◦. Two eddies are shown; the left-hand eddy and
the right-hand eddy are illustrated by three and five
representative curves, respectively.

Figure 2: Moving the walls perturbs the eddies of Fig.
1. This Poincaré section shows that some of the eight
representative curves have changed in structure.

is regular. Figure 2 gives an example of this structure;
the illustration is a ‘Poincaré section’; which is formed
by plotting each particle’s position as a point after ev-
ery breathing cycle. More detailed figures are includ-
ed in [6]. The structure can be explained by applying
KAM (Kolmogorov-Arnol’d-Moser) theory and other
associated theory from Hamiltonian dynamics [9, 10].

The experiments and the models that have been dis-
cussed so far have assumed that particles follow the
alveolar flow. In reality, many inhaled particles do not
do this. Some are small enough to diffuse; others are
large enough to have substantial inertia. The current
paper describes the transport of diffusing particles in
the presence of recirculation. (By concentrating on
these two features we will gain some understanding of
how alveolar recirculation affects aerosol motion. We
do not include wall motion, as diffusion renders KAM
theory inapplicable.)

In §2 the flow field for the non-diffusing particle mod-
el [6, 7] is reviewed and the equations of motion are
described as a Lagrangian system. The model is then
adapted to accommodate diffusing particles, with the
equations of motion expressed as a pair of coupled
Langevin equations (these are Lagrangian equations
of motion that have been adapted for stochastic par-
ticle motion). Results are given in §3.1 showing how
recirculation can affect diffusing particles. In §3.2,

a physical description of the model is used to explain
our results. This leads to the discovery of the ‘carousel
effect’, which allows diffusing particles to hop onto
an eddy and, after a short time, hop off having been
transported much further than could be achieved by
diffusion alone. We also discuss the effects of varying
parameters as well as explaining the physical mech-
anisms in the context of real alveoli. We summarize
our conclusions in §4.

2 Method of Approach

We use carets to denote dimensional variables, which
are removed when variables are non-dimensionalized.

2.1 Reviewing Non-diffusive Particle Mo-
tion

Moffatt formulated a model of Stokes flow of a fluid
bounded by a corner whose walls are fixed with a u-
nidirectional flow occurring far from the corner. He
found that for angles of less than 2φcritical = 146.3◦,
an infinite stream of eddies is produced in the cor-
ner [7]. Here we shall briefly review this model using
the notation and formulation used in [6].

Let û = ûrer + ûθeθ be the velocity field with respect
to plane polar coordinates (r̂, θ). As the corner region
is simply-connected (that is, there are no holes in it)
and the incompressibility condition is

1

r̂
(r̂ûr),r̂ +

1

r̂
(ûθ),θ = 0,

then there exists a streamfunction ψ̂(r̂, θ) such that

ûr = ψ̂,θ/r̂ and ûθ = −ψ̂,r̂. Therefore we can describe
particle motion by the equations

dr̂

dt̂
=

1

r̂
ψ̂,θ, r̂

dθ

dt̂
= −ψ̂,r̂.

The walls are at θ = ±φ0, where the parameter 2φ0 is
the corner angle. To guarantee recirculation it is pre-
sumed that φ0 < φcritical. The boundary conditions
are

ψ̂,θ = 0, ψ̂,r̂ = 0 on θ = ±φ0.

Let a be the lengthscale for a particular eddy and let
ψ0 be the maximum value of |ψ̂| on that eddy. Then
we nondimensionalize as follows:

ψ̂ = ψ0ψ, r̂ = ar, t̂ =
a2

ψ0

t.

The streamfunction is ψ(r, θ), which is explicitly writ-
ten as

ψ = Re
{

Krλf(θ, t)
}

, (1)
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with

f = cos((λ − 2)φ0) cos(λθ) − cos(λφ0) cos((λ − 2)θ),

where the dominant eigenvalue λ, the complex ampli-
tude K and the angle φ0 are all scalars. Throughout
this paper we shall choose K = 1 and φ0 = 20◦.

The boundary conditions yield the eigenvalue equa-
tion

sin(2φ0µ) = −µ sin(2φ0), where µ = λ − 1.

We consider only the flow corresponding to the domi-
nant eigenvalues λ and λ̄ (namely, the pair of eigenval-
ues with smallest positive real part). Moffatt showed
that

λ =

(

1 +
ξ

2φ0

)

+ i

(

η

2φ0

)

,

where ξ ≈ 4 and η is O(1).

In dimensionless variables, trajectories for particles
that follow the flow are obtained from the Lagrangian
equations of motion

dr

dt
=

1

r

∂ψ

∂θ
,

dθ

dt
= −1

r

∂ψ

∂r
. (2)

These equations adequately describe the motion of
non-diffusing particles. We now show how the motion
of diffusing particles can be modelled.

2.2 Modelling Diffusive Particle Motion

For diffusing particles there are additional terms
added to the velocity field. In cartesian coordinates
x̂ = r̂ cos θ, ŷ = r̂ sin θ, the particle motion is de-
scribed by the Langevin equations

dx̂

dt̂
= ûx(x̂(t̂), ŷ(t̂)) + χ̂1(t̂), (3)

dŷ

dt̂
= ûy(x̂(t̂), ŷ(t̂)) + χ̂2(t̂). (4)

Here χ̂j are stochastic terms with zero mean and co-
variance 〈χ̂i(t̂)χ̂j(t̂ + τ̂)〉 = 2Dδijδ(τ̂), where D is
the molecular diffusivity, δij the Kronecker delta for
i, j = 1, 2 and δ is the Dirac delta function; see
Jones [11] for further details. The velocity compo-
nents are

ûx(x̂(t̂), ŷ(t̂)) = ψ̂,ŷ and ûy(x̂(t̂), ŷ(t̂)) = −ψ̂,x̂,

where ψ̂ is the Moffatt streamfunction written in
cartesian coordinates. To nondimensionalize equa-
tions (3) and (4), use the scalings

x̂ = ax, ŷ = ay, χ̂j =

√

Dψ0

a2
χj ,
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Figure 3: The inner three curves of the right-hand
eddy of Fig. 1. The eddy is bound each side by a sep-
aratrix. The finish line is positioned at the minimum
of the right-hand separatrix.

with the scaling for ψ̂ and t̂ introduced earlier. This
transforms the Langevin equations (3) and (4) to their
nondimensional form; in shorthand these are

dx

dt
= ψ,y +

1√
Pe

χ1,
dy

dt
= −ψ,x +

1√
Pe

χ2, (5)

where Pe = ψ0/D is a local (eddy-based) Péclet num-
ber.

In the results that follow we track particle paths
by numerically integrating either equations (2) when
Pe = 0 or equations (5) when Pe 6= 0 using a fourth-
order Runge-Kutta method with a step size of 0.001
and incorporating a Maruyama adaption [12] for the
contribution from diffusion; see [13,14] for details.

3 Results

3.1 Recirculation Verses Diffusion

Figure 1 shows two eddies when Pe = 0. We shal-
l focus on the right-hand eddy. In particular, we
use the set-up in Fig. 3. In between eddies there
are separatrices; these have been numerically approx-
imated in this figure. The initial positions for par-
ticle trajectories are A = (0.670, 0), B = (0.714, 0)
and C = (0.759, 0), which generate the three inner
curves of the right-hand eddy of Fig. 1. For Pe 6= 0,
we release particle ensembles from points A, B and
C. The ensembles are tracked and the first time that
each particle crosses the finish line (held at x = 0.839,
the x-value of the minimum of the right-hand separa-
trix) is recorded. Once a particle has crossed the fin-
ish line, it no longer participates. Figure 4 illustrates
this for particles released from point A. The particles
were tracked step-wise over a fixed maximum dura-
tion of time (10000 time steps). Figure 5 illustrates
the crossing times for various Pe when particles are
released from point A. We restricted our experiment
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Figure 4: Two example trajectories of particles re-
leased from point A with Pe = 1000 (shown in black
and grey respectively).

to Pe ≥ 1000 as these are typical values of physiolog-
ical interest. Note that as Pe increases, diffusion de-
creases and the number of particles crossing the finish
line decreases. Results for ensembles did not change
significantly when the step size was halved. For an
ensemble of N particles, the sample error is approxi-
mated as 1/

√
N ; see [12] for more details.

By fixing Pe = 10000 and tracking ensembles of 400
particles released from points A, B and C, we could
gauge the importance of the release point. Figure 6
shows the crossing times for the particles. It is clear
that starting further away from the centre of the right-
hand eddy (but not too close to the walls) will encour-
age more particles to cross the finish line. Ensembles
of 200 particles gave similar results, though the output
was not as smooth. Figure 7 illustrates the crossing
times when Pe = 1000. We will discuss these figures
in more detail in §3.2.

The next part of the experiment compares the results
found above with recirculation without diffusion and
then for diffusion without recirculation. For recircu-
lation alone, Fig. 8 illustrates how recirculation time
decreases the closer into the eddy. For diffusion alone,
Fig. 9 illustrates a two-dimensional random walk in
a corner with two reflecting boundaries (at θ = ±φ0)
and one absorbing boundary (the finish line). After
10000 time steps, none of the 200 particles released
from A or B crossed the finish line; for point C, only
1.5% of particles passed the finish line. Decreasing Pe
allows more particles to cross the finish line; see Fig.
10 for an illustration.

Pe = 3000
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Figure 5: Crossing times for ensembles of 400 particles
released from point A.
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Figure 6: The crossing times for 400 particles released
from points A, B and C, with Pe = 10000. Halving
the ensemble size gave similar results.
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Figure 7: The crossing times for 400 particles released
from points A, B and C, with Pe = 1000.
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Figure 8: The time it takes for a particle released from
y = 0 to complete a revolution when diffusion is not
present.
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Figure 9: Two examples of two-dimensional random
walk starting from point C with Pe = 10000 (shown
in black and grey respectively).
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Figure 10: The crossing times for diffusion alone for
400 particles released from points A, B and C, with
Pe = 1000.
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By taking into account Figs 4, 6, 7, 9 and 10, it ap-
pears that introducing recirculation greatly enhances
the transport of diffusing particles.

3.2 Discussion

Figures 6 and 7 will now be explained in more de-
tail. Without diffusion (Fig. 1) particles released
from points A, B and C cannot cross the finish line.
However, adding diffusion creates the opportunity for
particles to cross. With diffusion, it is clear that the
further away a particle initially lies from the centre
of the eddy, the quicker the ensemble will cross the
finish line.

There is also a noticeable stepping occurring for the
point A ensemble; see Fig. 6. (This was also ob-
served for the other release points but the stepping
is not as pronounced.) This stepping indicates that
some of the particles diffuse out and cross the finish
line during the first half-revolution, while the majori-
ty of particles are swept away by the recirculation and
are forced to travel for approximately another revolu-
tion before some can pass the finish line; see also the
single revolution times shown in Fig. 8 for time com-
parisons. After this initial settling, the particles then
more regularly diffuse over the finish line. The effect
is not so exaggerated for points B and C — this pair
of ensembles takes a much longer time to spiral out
to the finish line as they have essentially more ground
to cover.

Figure 11 shows a log plot of the number of particles
that do not cross the finish line; it corresponds with
Fig. 7. The long-term transport behaviour shown in
this plot indicates exponential decay exp(−kt), where
k is the long-term decay rate. The decay rate for par-
ticles released from points A, B and C of Fig. 11 is
k ≈ 0.3. Without recirculation (Fig. 12), the de-
cay rate is k ≈ 0.01, 0.04, 0.06, for points A, B and
C respectively. Therefore, it is clear that the recir-
culation greatly enhances transport of diffusing parti-
cles. This enhanced transport mechanism, which we
call the ‘carousel effect’, encourages particles to dif-
fuse into a recirculation zone for a short time, leaving
the zone having been transported much further than
is possible by diffusion alone. Figure 13 illustrates
this mechanism and Fig. 7 is another example of this
mechanism in practice.

From [6] it is known that when only recirculation is
present, particles travelling on eddies that lie closer to
the apex of the corner move more slowly than those
on eddies lying far away. For instance, the left-hand
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ln(% Particles Not Crossed)

2 4 6 8 10 12
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Figure 11: The percentage of particles with recircu-
lation present and remaining to the left of the finish
line. These were released from points A, B and C,
with Pe = 1000. (Lines of best fit are shown in grey.)
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Figure 12: The percentage of particles that remain to
the left of the finish line. These were released from
points A, B and C, with the same diffusivity as in Fig
11 but without recirculation. (Lines of best fit are
shown in grey.)
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Figure 13: Step 1: Particle goes around on eddy
(carousel). Step 2: Many particles diffuse off the eddy
and cross the finish line.

eddy in the 20◦ corner is around 380 times weaker
than the right-hand eddy. Hence particle paths in the
left-hand eddy will resemble those in the absence of
recirculation.

In the context of real alveoli, our results imply that an
underlying pattern of recirculation could, if sufficient-
ly strong enough, enhance the transport of diffusing
particles. This, in turn, would enhance mixing. Al-
though our model is very simple, it does indicate that
the effect of diffusion in a recirculatory flow can make
a considerable difference to whether a particle is re-
tained in the alveolus or not.

From a qualitative viewpoint, increasing the angle of
the corner (up to the critical angle) will do two things
to the relative recirculations of eddy sequences: it
will increase the relative sizes and increase the rel-
ative strengths [7]. However, as the Péclet number
is eddy-based, neighbouring eddies will feel the ef-
fect of diffusion in a scaled sense. (For an arbitrary
fixed corner angle in the eddy-generating regime, the
right-hand eddy will be, say, X times stronger than
its left-hand neighbour and this is reflected in ψ0. So
by fixing D, the Péclet number of the right-hand ed-
dy will be larger than that of its left-hand neighbour
by about a factor of X.) Increasing the value of K
will increase the speed of particles. By exchanging
constant K with K(t), it is possible to make the flow
past the corner alternating, which would then incor-
porate a periodic bidirectional flow. By doing so, the
impact of diffusion would be altered. Another factor
to consider would be the effect of wall motion. For
the corner model, diffusion with very large Pe would
blur the structures depicted in the Poincaré section
of Fig. 2. As Pe decreases, diffusion completely hides
the structures.

4 Conclusions

We have identified an enhanced transport mechanis-
m, called the carousel effect. For sufficiently strong
recirculation, particles are able to diffuse into a re-
circulation zone for some time and then to leave it
having being transported much further than is pos-
sible by diffusion alone. This mechanism may play
an important part in mixing and retention of aerosols
deep in the lung.
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Figure Captions — For Production Pur-

poses Only

Figure 1: Moffatt’s corner eddies with corner angle
of 20◦. Two eddies are shown; the left-hand eddy and
the right-hand eddy are illustrated by three and five
representative curves, respectively.

Figure 2: Moving the walls perturbs the eddies of
Fig. 1. This Poincaré section shows that some of the
eight representative curves have changed in structure.

Figure 3: The inner three curves of the right-hand
eddy of Fig. 1. The eddy is bound each side by a sep-
aratrix. The finish line is positioned at the minimum
of the right-hand separatrix.

Figure 4: Two example trajectories of particles re-
leased from point A with Pe = 1000 (shown in black
and grey respectively).

Figure 5: Crossing times for ensembles of 400 parti-
cles released from point A.

Figure 6: The crossing times for 400 particles re-
leased from points A, B and C, with Pe = 10000.
Halving the ensemble size gave similar results.

Figure 7: The crossing times for 400 particles re-
leased from points A, B and C, with Pe = 1000.

Figure 8: The time it takes for a particle released
from y = 0 to complete a revolution when diffusion is
not present.

Figure 9: Two examples of two-dimensional random
walk starting from point C with Pe = 10000 (shown
in black and grey respectively).

Figure 10: The crossing times for diffusion alone for
400 particles released from points A, B and C, with
Pe = 1000.
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Figure 11: The percentage of particles with recircu-
lation present and remaining to the left of the finish
line. These were released from points A, B and C,
with Pe = 1000. (Lines of best fit are shown in grey.)

Figure 12: The percentage of particles that remain
to the left of the finish line. These were released from
points A, B and C, with the same diffusivity as in Fig
11 but without recirculation. (Lines of best fit are
shown in grey.)

Figure 13: Step 1: Particle goes around on eddy
(carousel). Step 2: Many particles diffuse off the eddy
and cross the finish line.
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