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Abstract

This paper describes symmetries of all integrable difference equations that
belong to the famous Adler-Bobenko-Suris classification. For each equation,
the characteristics of symmetries satisfy a functional equation, which we solve
by reducing it to a system of partial differential equations. In this way, all five-
point symmetries of integrable equations on the quad-graph are found. These
include mastersymmetries, which allow one to construct infinite hierarchies of
local symmetries. We also demonstrate a connection between the symmetries
of quad-graph equations and those of the corresponding Toda type difference
equations.

1 Introduction

Partial difference equations (P∆E’s) on the quad-graph have recently attracted
much interest, especially from the integrable systems community. The first quad-
graphs were derived in the works of Hirota [13, 14]. Since then, Lax pairs have been
derived for these and many other quad-graph equations [6, 7, 21]. Some conservation
laws have recently been discovered [17, 30, 31].

Adler, Bobenko & Suris classified integrable equations on the quad-graph by
using the observation that Lax pairs arise from consistency on the cube [1]. How-
ever, they did not solve all questions about integrability of quad-graph equations.
Recently Hietarinta [11] found an example of a quad-graph equation that has a Lax
pair but lacks the tetrahedron property, so it is not included in [1]. However, it has
recently been shown that this equation can be linearized by a potential transfor-
mation [28]. It is not yet known whether there exists a quad-graph equation that
is consistent on a cube and lacks the tetrahedron property, but is not linearizable.

Symmetries of P∆E’s first appeared as similarity constraints for integrable
lattices. In [23], it is shown that discrete analogues of the Painlevé equations
arise from similarity constraints. Similarity constraints and reductions to dis-
crete Painlevé equations for the cross-ratio, discrete Korteweg-de Vries (dKdV)
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and discrete potential modified Korteweg-de Vries equations were later considered
in [4, 10, 20, 21, 22, 24, 25]. One notable feature of similarity constraints for quad-
graphs is that circle patterns can be formed for certain initial conditions [2, 3, 5, 7].
Recently, Tongas et al. pointed out that the similarity constraints for quad-graph
equations obtained previously are equivalent to characteristics of symmetries [34].
They used an indirect method to discover mastersymmetries and higher-order sym-
metries for the dKdV equation. Symmetries of several other quad-graph equations
have been found in [27, 33].

An alternative approach to symmetries of difference equations (not only in-
tegrable ones) is to try to construct discretizations of differential equations that
retain all Lie point symmetries of the original system [8, 18, 19]. This requires a
non-constant grid; in effect, the original continuous independent variables become
extra dependent variables in the discretized system.

For a given difference equation, whether it is integrable or not, the main prob-
lem in finding symmetries is solving the linearized symmetry condition, which is a
functional equation. Hydon developed a direct method of solving such functional
equations by creating an associated system of differential equations that can be
solved [15, 17]. We have recently improved the efficiency of this method, and have
used it to construct conservation laws of many integrable quad-graph equations
[30, 31]. The advantage of this method is that it gives a complete list of solutions;
the disadvantage is that it requires massive calculations, for which we have used
MAPLE 9.5.

The purpose of this paper is to classify symmetries for all quad-graph equations
that are listed in the classification by Adler, Bobenko & Suris [1].We shall refer to
these equations as the equations from the ABS classification. We list all symmetries
that depend on values of the dependent variable within a 3×3 square. The complete
classification of symmetries is a highly complex task, as some of the ABS equations
are quite complicated. The classification includes mastersymmetries for each of the
ABS equations; these allow the construction of infinite hierarchies of local symme-
tries. Thus we have shown that each of the ABS equations admits infinitely many
symmetries, a property that is characteristic of integrability in continuous systems.

The paper begins with an introduction to the theory that is the basis for our
calculations. In §3, we explain the method of finding local symmetries. §4 lists all
symmetries on the 3× 3 square for equations from the ABS classification; master-
symmetries are given in §5. In §6, we explain the connection between symmetries
of equations from the ABS classification and those of the corresponding Toda type
equations. To illustrate one of the most common applications of symmetries, §7
describes the construction of a group-invariant solution. In the final section, we
draw conclusions and describe some open problems.

2 Symmetries of quad-graph equations

The general form of ABS equations on the quad-graph is

ω(k, l, u0,0, u1,0, u0,1, u1,1, αk, βl) = 0. (1)

Here k and l are independent variables, u0,0 = u(k, l) is a dependent variable that is
defined on the domain Z2. We denote the values of this variable on other points by
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ui,j = u(k + i, l + j) = Si
kS

j
l u0,0, where Sk, Sl are the unit forward shift operators.

The ABS equations contain functions αk = α(k) and βl = β(l) that play the roles
of edge parameters. The transformation

Γ : (k, l, u0,0, u1,0, u0,1, u1,1, αk, βl) 7→ (k, l, û0,0, û1,0, û0,1, û1,1, α̂k, β̂l)

is a symmetry for (1) if

ω(k, l, û0,0, û1,0, û0,1, û1,1, α̂k, β̂l) = 0, (2)

whenever (1) holds. Lie symmetries are obtained by linearizing the symmetry con-
dition about the identity, as follows. We seek one-parameter (local) Lie groups of
symmetries of the form

û0,0 = u0,0 + εη + O(ε2),

α̂k = αk + εξ1(k, αk) + O(ε2), (3)

β̂l = βl + εξ2(l, βl) + O(ε2).

The functions η, ξ1 and ξ2 are components of the characteristic Q of the one-
parameter group. The function η depends on finitely many shifts of u0,0; this is
discussed in the next section. By shifting (3) in the k and l directions we obtain

ûi,j = ui,j + εSi
kS

j
l η + O(ε2),

α̂k+i = αk+i + εξ1(k + i, αk+i) + O(ε2),

β̂l+j = βl+j + εξ2(l + j, βl+j) + O(ε2),

for every i, j ∈ Z. Expanding (2) to first order in ε yields the linearized symmetry
condition

Xω = 0 whenever (1) holds,

where

X = η
∂

∂u0,0

+ (Skη)
∂

∂u1,0

+ (Slη)
∂

∂u0,1

+ (SkSlη)
∂

∂u1,1

+ ξ1
∂

∂αk

+ ξ2
∂

∂βl

. (4)

3 The method

If we were to seek only Lie point symmetries, then η would be of the form

η = η(k, l, u0,0, αk, βl).

However, we shall consider higher symmetries that depend upon the values of the de-
pendent variable on a 3×3 square that is centred on (k, l). By using the quad-graph
equation to eliminate the corner nodes (Figure 1), we simplify η to the following
form:

η = η(k, l, u−1,0, u0,−1, u0,0, u1,0, u0,1, αk, βl). (5)

As η depends on five values of the dependent variable, we call such symmetries
five-point symmetries.
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Figure 1: Form of a five-point symmetry

In fact η can be simplified still further. To show this, we apply a symmetry
generator (4) to (1) and obtain the linearized symmetry condition:

ηωu0,0 + Skηωu1,0 + Slηωu0,1 + SkSlηωu1,1 + ξ1ωαk
+ ξ2ωβl

= 0. (6)

This expression has to be satisfied by all solutions of (1). Let

ū0,0(u1,0, u0,1, u1,1), ū1,0(u0,0, u0,1, u1,1), ū0,1(u0,0, u1,0, u1,1), ū1,1(u0,0, u1,0, u0,1),

denote the result of solving (1) for u0,0, u1,0, u0,1 and u1,1 respectively. In the fol-
lowing, to save space, we suppress the dependence on k, l, αk and βl, and we use
ũ1,1 to denote ū1,1(u0,0, u1,0, u0,1). To write out the linearized symmetry condition
explicitly, we substitute

u−1,0 =ū0,0(u0,0, u−1,1, u0,1),

u0,−1 =ū0,0(u1,−1, u0,0, u1,0),

u2,1 =ū1,1(u1,0, u2,0, ũ1,1),

u1,2 =ū1,1(u0,1, ũ1,1, u0,2),

u1,1 =ũ1,1,

into (6), to obtain

η(ū0,0(u0,0, u−1,1, u0,1), ū0,0(u1,−1, u0,0, u1,0), u0,0, u1,0, u0,1)ωu0,0

+ η(u0,0, u1,−1, u1,0, u2,0, ũ1,1)ωu1,0 + η(u−1,1, u0,0, u0,1, ũ1,1, u0,2)ωu0,1

+ η(u0,1, u1,0, ũ1,1, ū1,1(u1,0, u2,0, ũ1,1), ū1,1(u0,1, ũ1,1, u0,2))ωu1,1 + ξ1ωαk
+ ξ2ωβl

= 0. (7)

By differentiating (7) with respect to u−1,1 and u1,−1, we obtain the necessary
condition

ωu0,0

∂2

∂u−1,1∂u1,−1
η(ū0,0(u0,0, u−1,1, u0,1), ū0,0(u1,−1, u0,0, u1,0), u0,0, u1,0, u0,1) = 0. (8)

The coefficient of η is nonzero, so the solution of (8) shows that η can be split
into the sum of two functions which have a simpler form than (5). New conditions
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for η can be obtained, for instance, by differentiating (7) with respect to u−1,0 and
u0,−1. Taken together, all such conditions give a system of PDE’s with the following
solution

ηcross(k, l, u−1,0, u0,−1, u0,0, u1,0, u0,1, αk, βl) =

ηk(k, l, u−1,0, u0,0, u1,0, αk, βl) + ηl(k, l, u0,−1, u0,0, u0,1, αk, βl),

where ηk and ηl are functions which have to be found. Therefore we have demon-
strated that η is of the form ηcross, which is the sum of the terms in the k and l
direction separately. Similarly it is possible to show that for any higher-order sym-
metry generator, if η is simplified to depend only on values on a cross, it consists
of two separate terms in the k and l direction respectively.

We now explain the method for calculating the characteristics Q for a given
quad-graph equation. By substituting ηcross into (7) we obtain the following deter-
mining equation for ηk, ηl, ξ1 and ξ2 (again, we suppress k, l, αk, βl for brevity).

(ηk(ū0,0(u0,0, u−1,1, u0,1), u0,0, u1,0) + ηl(ū0,0(u1,−1, u0,0, u1,0), u0,0, u0,1))ωu0,0

+ (ηk(u0,0, u1,0, u2,0) + ηl(u1,−1, u1,0, ū1,1))ωu1,0

+ (ηk(u−1,1, u0,1, ū1,1) + ηl(u0,0, u0,1, u0,2)ωu0,1 + (ηk(u0,1, ū1,1, ū1,1(u1,0, u2,0, ū1,1))
+ ηl(u1,0, ū1,1, ū1,1(u0,1, ū1,1, u0,2)))ωu1,1 + ξ1ωαk

+ ξ2ωβl
= 0. (9)

To solve this functional equation we use an idea which is described in [30, 31],
namely we reduce it to a PDE. By differentiating (9) with respect to u2,0 we obtain

ωu1,0

∂

∂u2,0

ηk(u0,0, u1,0, u2,0) + ωu1,1

∂

∂u2,0

ηk(u0,1, ū1,1, ū1,1(u1,0, u2,0, ū1,1)) = 0. (10)

This is a functional-differential equation, but it contains fewer sets of arguments
than (9) does. The first term can be eliminated by dividing by ωu1,0 and then
differentiating with respect to u0,1, to obtain

∂

∂u0,1

(
ωu1,1

ωu1,0

∂

∂u2,0

ηk(u0,1, ū1,1, ū1,1(u1,0, u2,0, ū1,1))

)
= 0.

After making the substitution

u0,0 = ū0,0, u2,0 = Skū1,0,

we get a PDE for the function ηk and solve it. The constraints for the function ηl

can be found in a similar way.
So far, we have differentiated the determining equations (9) twice; this has cre-

ated a hierarchy of functional-differential equations that every five-point symmetry
must satisfy. The unknown functions ηk, ηl, ξ1 and ξ2 can be found completely by
going up the hierarchy, a step at a time, to determine more constraints. As the
constraints are solved sequentially, more and more information is gained about the
functions. At the highest stage, the determining equation is satisfied.
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4 Five-point symmetries of integrable equations

on the quad-graph

In this section we present all five-point symmetries for integrable equations on the
quad-graph that are listed in [1]; these were found by the method described in the
previous section.

The ABS equations depend on two arbitrary functions α = αk and β = βl. First
we shall consider symmetries of autonomous equations (α and β are constants);
non-autonomous cases will be discussed later. We use the same titles for equations
as were used in [1], except that Q4 is given in the equivalent form due to Hietarinta
[12]. The equations from the ABS classification are

Q1 : α(u0,0 − u0,1)(u1,0 − u1,1)− β(u0,0 − u1,0)(u0,1 − u1,1) + δ2αβ(α− β) = 0,

Q2 : α(u0,0 − u0,1)(u1,0 − u1,1)− β(u0,0 − u1,0)(u0,1 − u1,1)

+ αβ(α− β)(u0,0 + u1,0 + u0,1 + u1,1)− αβ(α− β)(α2 − αβ + β2) = 0,

Q3 : (β2 − α2)(u0,0u1,1 + u1,0u0,1) + β(α2 − 1)(u0,0u1,0 + u0,1u1,1)

− α(β2 − 1)(u0,0u0,1 + u1,0u1,1)− δ2(α2 − β2)(α2 − 1)(β2 − 1)/(4αβ) = 0,

Q4 : sn(α)(u0,0u1,0 + u0,1u1,1)− sn(β)(u0,0u0,1 + u1,0u1,1)− sn(α− β)(u0,0u1,1 + u1,0u0,1)

+ sn(α− β)sn(α)sn(β)(1 + K2u0,0u1,0u0,1u1,1) = 0,

H1 : (u0,0 − u1,1)(u1,0 − u0,1) + β − α = 0,

H2 : (u0,0 − u1,1)(u1,0 − u0,1) + (β − α)(u0,0 + u1,0 + u0,1 + u1,1) + β2 − α2 = 0,

H3 : α(u0,0u1,0 + u0,1u1,1)− β(u0,0u0,1 + u1,0u1,1) + δ2(α2 − β2) = 0,

A1 : α(u0,0 + u0,1)(u1,0 + u1,1)− β(u0,0 + u1,0)(u0,1 + u1,1)− δ2αβ(α− β) = 0,

A2 : (β2 − α2)(u0,0u1,0u0,1u1,1 + 1) + β(α2 − 1)(u0,0u0,1 + u1,0u1,1)

− α(β2 − 1)(u0,0u1,0 + u0,1u1,1) = 0.

Here sn(α) = sn(α; K) is a Jacobi elliptic function with modulus K. All five-point
symmetries for these equation are listed in Table 1. In these tables cn(α) = cn(α; K)
and dn(α) = dn(α; K) are Jacobi elliptic functions with modulus K. In [7] it was
shown that when K = 0, equation Q4 is equivalent to the case Q3δ=1. When K = 0,
all symmetries for equation Q4 are equivalent to the symmetries for equation Q3δ=1.
We omit the details of our calculations, because they are massive and it is impossible
to present them in any suitable form. Five-point symmetries for H1, H3δ=0 and
Q1δ=0 have already appeared in [4, 10, 20, 21, 22, 23, 24, 25, 27, 33, 34].

Note that each equation from the ABS classification has two nonpoint symme-
tries in the k direction and two nonpoint symmetries in the l direction. In each
case, one of these symmetries in the k direction depends explicitly on k; in the next
section, we denote this symmetry by Xkm. The other symmetry in the k direc-
tion does not depend on k; we will denote it by Xk. Similarly, we will denote the
nonpoint symmetries in the l direction by Xlm and Xl.

So far we have seen symmetries only for autonomous equations, for which α and
β are constants. The same point symmetries occur even when α and β are not
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constant. However, there are no other five-point symmetries in the k (respectively
l) direction if α (respectively β) is not constant.
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5 Mastersymmetries

For continuous integrable systems, Fuchssteiner [9] has explained the link between
mastersymmetries and symmetries that are linear in the independent variables.
Furthermore, [34] showed that the dKdV equation also has mastersymmetries that
are linear in the independent variables. For each of the ABS equations with constant
α and β, the generators Xkm and Xlm have this property, which suggests that they
may be mastersymmetries. An algebraic approach to mastersymmetries gives the
following criterion [29, 32].

Definition 1. A symmetry Xm is a mastersymmetry for the symmetry X if it
satisfies

[Xm, X] 6= 0, [[Xm, X] , X] = 0. (11)

Here [·, ·] denotes the commutator.

By checking these properties for all symmetries from Table 1 we find that Xkm

is a mastersymmetry for Xk and Xlm is a mastersymmetry for Xl for each equation
in the ABS classification. Therefore we can obtain a hierarchy of symmetries in the
k direction:

Xk1 = [Xkm, Xk] , Xk2 = [Xkm, Xk1 ] , ..., Xkn+1 = [Xkm, Xkn ] .

Similarly, there is a hierarchy of symmetries in the l direction:

Xl1 = [Xlm, Xl] , Xl2 = [Xlm, Xl1 ] , ..., Xln+1 = [Xlm, Xln ] .

As an example, consider the autonomous equation Q1δ=0. The commutator of
symmetries X7 and X5 gives us a new symmetry:

X9 =
(u1,0 − u0,0)

2(u0,0 − u−1,0)
2

(u1,0 − u−1,0)2

(
1

u2,0 − u0,0

+
1

u0,0 − u−2,0

)
∂u0,0 . (12)

This symmetry cannot be reduced to any lower-order symmetry, for its character-
istic depends on u2,0, u−2,0. The symmetry (12) lies on a line of five points; if we
apply the mastersymmetry a second time we will obtain an expression which lies
on a seven-point line, and so on. The same situation occurs for each of the ABS
equations, namely the order of a symmetry increases by two each time one applies
a mastersymmetry, creating hierarchies with the following dependencies:

Xkn = ηkn(u−n,0, u−n+1,0, ..., un−1,0, un,0)∂u0,0 ,
Xln = ηln(u0,−n, u0,−n+1, ..., u0,n−1, u0,n)∂u0,0 .

6 Symmetries of Toda type equations

The connection between integrable quad-graph equations and Toda type systems
is now well-known [1, 6, 7]; we can use it to transform symmetries of quad-graph
equations into symmetries of the corresponding Toda type systems. A Toda system
can be obtained from any equation in the ABS classification

ω(k, l, u0,0, u1,0, u0,1, u1,1, α, β) = 0 (13)
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by the substitution

u0,1 = S−1
k ũ1,1, u1,0 = S−1

l ũ1,1, u−1,0 = ū0,1(u−1,−1, u0,−1, u0,0). (14)

Here, we are using the notation introduced in §3. Note: it is necessary to make
the substitution u−1,0 = ū0,1(u−1,−1, u0,−1, u0,0) after the substitution u0,1 = S−1

k ũ1,1

because equation (13) does not depend on u−1,0.
We have verified that each of listed symmetries for the ABS classification can

be transformed to a symmetry for the corresponding Toda type system by the
substitution (14).

As an example consider the Toda type system that corresponds to the au-
tonomous equations H1 and Q1δ=0:

1

u1,1 − u0,0

− 1

u−1,1 − u0,0

− 1

u1,−1 − u0,0

+
1

u−1,−1 − u0,0

= 0. (15)

The characteristics of symmetries for (15) can be obtained by transformation of the
characteristics of the symmetries for H1 and Q1δ=0 by (14). Note that for H1 and
Q1δ=0 the substitutions (14) are different.

The point symmetries stay the same after substitution (14) for both H1 and
Q1δ=0; they are

X1 = ∂u0,0 , X2 = (−1)k+l∂u0,0 , X3 = u0,0∂u0,0 ,
X4 = (−1)k+lu0,0∂u0,0 , X5 = u0,0

2∂u0,0 .
(16)

(We have omitted the components ξ1 and ξ2, because (15) does not depend on α or
β.) The commutators of (16) yield one more symmetry generator:

X6 = (−1)k+lu0,0
2∂u0,0 .

The rescaled remaining five-point symmetries of H1 transform by (14) to

X7 =
(u0,0 − u−1,−1)(u1,−1 − u0,0)

u1,−1 − u−1,−1

∂u0,0 ,

X8 =
(u0,0 − u−1,−1)(u−1,1 − u0,0)

u−1,1 − u−1,−1

∂u0,0 ,

X9 =
k(u0,0 − u−1,−1)(u1,−1 − u0,0)

u1,−1 − u−1,−1

∂u0,0 ,

X10 =
l(u0,0 − u−1,−1)(u−1,1 − u0,0)

u−1,1 − u−1,−1

∂u0,0 .

The same result is obtained from the symmetries for Q1δ=0. The Toda system (15)
also has mastersymmetries. As expected, X9 is the mastersymmetry for X7 and X10

is the mastersymmetry for X8. Two hierarchies of the local symmetries therefore
can be constructed.

In the same way, each Toda system for the other quad-graph equations has
mastersymmetries that can be obtained from the mastersymmetries of the corre-
sponding quad-graph equations.

Note that the five-point symmetries for (15) lie on the same five-point cross on
which the Toda system is defined (Figure 2), not on the one which is in Figure 1.
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u−1,−1

u−1,1

u0,0

u1,−1

u1,1

Figure 2: Five-point symmetries for (15)

7 Similarity solutions

One way of finding similarity solutions of quad-graph equations was considered in [2,
3, 5, 7]. The authors define three initial points, from which they construct symmetric
initial conditions for a given quad-graph equation. This approach typically yields
an integrable map.

Another approach is to reduce the number of variables by requiring that the so-
lution is invariant under the symmetries generated by a characteristic. This method
is widely used for continuous systems [16, 26], and has been applied to the dKdV
equation in [34].

We shall illustrate the method by seeking nonzero solutions of H3δ=0 that are
invariant under the symmetries generated by

Q = Q4 − aQ2 =
u0,0(u1,0 + u−1,0)

u1,0 − u−1,0

− au0,0, a > 1.

The general solution of the invariance condition Q = 0 (with u0,0 6= 0) is

u0,0 = (f1(l) + (−1)kf2(l))

(√
a + 1

a− 1

)k

, (17)

where f1 and f2 are arbitrary functions. By substituting (17) into H3δ=0 we find
that

f1(l) = c1(−1)lf2(l),

where c1 is an arbitrary constant. If c2
1 6= 1 then f2 satisfies the following ordinary

difference equation:

α
√

a2 − 1

(
f2(l + 1)

f2(l)

)2

+ 2aβ
f2(l + 1)

f2(l)
+ α

√
a2 − 1 = 0, (18)

which yields a large family of exact solutions, including

u0,0 = (c̄1 + c2(−1)k+l)

(√
a + 1

a− 1

)k(
aβ +

√
α2 + a2β2 − a2α2

α
√

a2 − 1

)l

,
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where c̄1 = c1c2.
If c1 = ±1 then there are no further constraints, so there are two families of

invariant solutions

u0,0 = f2(l)
(
(−1)l ± (−1)k

)(√a + 1

a− 1

)k

. (19)

These belong to the following degenerate class of solutions of H3δ=0:

u0,0 = F (k, l)
(
(−1)l ± (−1)k

)
, (20)

where F is an arbitrary function.

8 Conclusion and discussion

The main result of this work is the derivation of the complete set of five-point
symmetries for equations from the ABS classification. We found all symmetries by
a generalization of the method which is described in [15]. This confirms that this
method can be used in a systematic way without making restrictive assumptions
about the form of symmetries.

The symmetries that we have found have various applications. For instance,
symmetries can be used to obtain group-invariant reductions that lead to exact
solutions of the quad-graph equations. We have only considered a single example
of such a reduction (for H3δ=0). However we have shown that all ABS equations
have infinitely many symmetries, any of which could be used to construct invariant
solutions. Five-point and other higher symmetries can also be used for the gener-
ation of new conservation laws. It is notable that all equations from [1] have four
five-point symmetries that have similar forms.

Mastersymmetries for integrable equations on the quad-graph have been derived.
These mastersymmetries allow us to construct infinite hierarchies of local symme-
tries. It is important to allow mastersymmetries to act on α and β; otherwise the
mastersymmetries for Q3 and Q4 would not have been found. The existence of
mastersymmetries shows the similarity of structures for continuous and difference
equations.

We have discussed the relation between the symmetries of quad-graph equations
and symmetries for Toda type systems. We have also verified that for each symmetry
of the integrable quad-graph equation there is a corresponding symmetry of the
related Toda type system. It is not yet known whether this relationship is true for
all symmetries of integrable quad-graph equations.

Our work raises an important question about symmetries for nonautonomous
quad-graph equations. Why are there no five-point symmetries in the k direction
when α = αk and five-point symmetries in the l direction when β = βl? Is it
possible that there are no nonpoint local symmetries of any order?
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Painlevé VI equation. Stud. Appl. Math. 106, 3 (2001), 261–314.

[25] Nijhoff, F. W., and Walker, A. J. The discrete and continuous Painlevé
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