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Abstract. This paper deals with conservation laws for all integrable difference
equations that belong to the famous Adler-Bobenko-Suris classification. All
inequivalent three-point conservation laws are found, as are three five-point
conservation laws for each equation. We also describe a method of generating
conservation laws from known ones; this method can be used to generate higher-
order conservation laws from those that are listed here.

1. Introduction

Generally speaking, it is much harder to calculate conservation laws for difference

equations than for differential equations, because one has to solve a complicated

functional equation rather than a system of overdetermined partial differential

equations. The first systematic technique for obtaining all conservation laws of a

given type was introduced by Hydon [5], who found all three-point conservation

laws of the discrete potential modified Korteweg-de Vries (dpmKdV) equation.

This technique was improved in [7] and used to find all three- and five-point

conservation laws of the discrete Korteweg-de Vries (dKdV) equation. Rasin &

Hydon also classified all three-point conservation laws for a family of integrable

difference equations due to Nijhoff, Quispel & Capel, showing that every equation

from this class has at least two nontrivial conservation laws [8]. The existence

of three-point conservation laws was also used to derive conditions under which

nonautonomous dKdV and dpmKdV equations are integrable [11].

Having found an practical direct approach to obtaining and classifying

conservation laws, we set out to discover the conservation laws of all integrable

quad-graph equations that are listed in the famous classification by Adler, Bobenko

& Suris [1]. These are the primary examples of integrable difference equations;

they are the focus of much current research. In particular, there is interest

in nonautonomous quad-graph equations. Integrability conditions have been

investigated [10, 11], as have reductions to ordinary difference equations [2], or

to a series of q-discrete Painlevé equations [3]. This encouraged us to include

nonautonomous quad-graph equations in our analysis.
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In the current paper, we present a complete classification of all three-point

conservation laws for each of the ABS equations. In addition, three five-point

conservation laws for each quad-graph are found. The existence of infinitely many

conservation laws is a key feature of continuous integrable equations. We suggest

that this question can be studied for integrable quad-graphs in the same way as

for continuous equations: the action of a symmetry on a given conservation law

can yield another conservation law [6]. This approach uses high-order symmetries

of the ABS equations, which have recently been found [9].

The structure of this paper is as follows: §2 describes the direct method for

calculating conservation laws of quad-graph equations. §3 lists all three-point

conservation laws for each equation in the ABS classification; three five-point

conservation laws for each ABS equation are given in §4. The method that allows

to generate a new law from the known one is described in §5. We conclude in §6
with a brief discussion of some open problems.

2. The method

The general form of a scalar P∆E on the quad-graph is:

P (k, l, u0,0, u1,0, u0,1, u1,1) = 0. (1)

Here k and l are independent variables and u0,0 = u(k, l) is a dependent variable

that is defined on the domain Z2. We denote the values of this variable on other

points by ui,j = u(k + i, l + j) = Si
kS

j
l u0,0, where Sk, Sl are the unit forward shift

operators in k and l respectively.

A conservation law for any quad-graph equation (1) is an expression of the

form

(Sk − id)F + (Sl − id)G = 0 (2)

that is satisfied by all solutions of the equation. Here the functions F and G are

the components of the conservation law and id is the identity mapping.

A conservation law is trivial if it holds identically (not just on solutions of

the P∆E), or if F and G both vanish on all solutions of (1). For three-point

conservation laws, the components F and G are of the form

F = F (k, l, u0,0, u0,1), G = G(k, l, u0,0, u1,0). (3)

We use the method of calculating conservation laws described in [7, 8], which

works as follows. The three-point conservation laws can be determined directly

by substituting (1) into

F (k+1, l, u1,0, u1,1)−F (k, l, u0,0, u0,1)+G(k, l+1, u0,1, u1,1)−G(k, l, u0,0, u1,0) = 0,(4)

and solving the resulting functional equation. Suppose that (1) can be solved for

u1,1 as follows:

u1,1 = ω(k, l, u0,0, u1,0, u0,1).

Then (4) amounts to

F (k +1, l, u1,0, ω)−F (k, l, u0,0, u0,1)+G(k, l +1, u0,1, ω)−G(k, l, u0,0, u1,0) = 0.(5)
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In order to solve this functional equation we have to reduce it to a system of partial

differential equations. To do this, first eliminate functional terms F (k+1, l, u1,0, ω)

and G(k, l + 1, u0,1, ω) by applying each of the following (commuting) differential

operators to (5):

L1 =
∂

∂u0,1

−
ωu0,1

ωu0,0

∂

∂u0,0

, L2 =
∂

∂u1,0

−
ωu1,0

ωu0,0

∂

∂u0,0

,

where ωui,j
denotes ∂ω

∂ui,j
. The operators L1 and L2 differentiate with respect to

u0,1 and u1,0 respectively, keeping ω fixed, so

L1 (F (k + 1, l, u1,0, ω)) = 0 , L2 (G(k, l + 1, u0,1, ω)) = 0.

This procedure does not depend upon the form of ω; it can be applied equally to

any quad-graph equation. Applying L1 and L2 to (5) yields

L1L2

(
F (k, l, u0,0, u0,1) + G(k, l, u0,0, u1,0)

)
= 0. (6)

If (6) is divided by the factor that multiplies a particular derivative of

G(k, l, u0,0, u1,0) and is then differentiated with respect to u0,1, we obtain a

functional differential equation which is independent of that derivative. This

process is repeated for each derivative of G(k, l, u0,0, u1,0) and finally for

G(k, l, u0,0, u1,0) itself; this produces a PDE for F (k, l, u0,0, u0,1). If the coefficients

involve u1,0, the PDE can be split into a system of PDEs.

Further information about F may be found by substituting

u1,0 = Ω(k, l, u0,0, u0,1, u1,1)

into (4). Here u1,0 = Ω is another representation of (1). Then (4) amounts to

F (k +1, l, Ω, u1,1)−F (k, l, u0,0, u0,1)+G(k, l+1, u0,1, u1,1)−G(k, l, u0,0, Ω) = 0.(7)

We eliminate the terms F (k + 1, l, Ω, u1,1) and G(k, l, u0,0, Ω) by applying each of

the following (commuting) differential operators to (7):

L3 =
∂

∂u0,1

−
Ωu0,1

Ωu0,0

∂

∂u0,0

, L4 =
∂

∂u1,1

−
Ωu1,1

Ωu0,0

∂

∂u0,0

.

This yields

L3L4

(
− F (k, l, u0,0, u0,1) + G(k, l + 1, u0,1, u1,1)

)
= 0.

This equation can also be reduced to a system of partial differential equations for

F (k, l, u0,0, u0,1) which (typically) is different from obtained previously.

Having differentiated the determining equation for a conservation law several

times, we have created a hierarchy of functional differential equations that every

three-point conservation law must satisfy. The functions F and G can be

determined completely by going up the hierarchy, a step at a time, to determine

the constraints that these equations place on the unknown functions. As the

constraints are solved sequentially, more and more information is gained about

the functions. At the highest stage, the determining equation (5) is satisfied, and

the only remaining unknowns are the constants that multiply each conservation

law. This is a straightforward but very lengthy process; for brevity, we shall omit

the details of these calculations in our analysis of the ABS equations.
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3. Three-point conservation laws for integrable equations on the

quad-graph

In this section we present all three-point conservation laws for integrable equations

on the quad-graph that are listed in [1]; these were found by the method described

in the previous section.

The ABS equations depend on two arbitrary functions α = α(k) and β = β(l).

The equations from the ABS classification are as follows; for convenience, we have

used the form of Q4 that was discovered by Hietarinta [4].

Q1 : α(u0,0 − u0,1)(u1,0 − u1,1)− β(u0,0 − u1,0)(u0,1 − u1,1) + δ2αβ(α− β) = 0,

Q2 : α(u0,0 − u0,1)(u1,0 − u1,1)− β(u0,0 − u1,0)(u0,1 − u1,1)

+ αβ(α− β)(u0,0 + u1,0 + u0,1 + u1,1)− αβ(α− β)(α2 − αβ + β2) = 0,

Q3 : (β2 − α2)(u0,0u1,1 + u1,0u0,1) + β(α2 − 1)(u0,0u1,0 + u0,1u1,1)

− α(β2 − 1)(u0,0u0,1 + u1,0u1,1)− δ2(α2 − β2)(α2 − 1)(β2 − 1)/(4αβ) = 0,

Q4 : sn(α)(u0,0u1,0 + u0,1u1,1)− sn(β)(u0,0u0,1 + u1,0u1,1)− sn(α− β)(u0,0u1,1 + u1,0u0,1)

+ sn(α− β)sn(α)sn(β)(1 + K2u0,0u1,0u0,1u1,1) = 0,

H1 : (u0,0 − u1,1)(u1,0 − u0,1) + β − α = 0,

H2 : (u0,0 − u1,1)(u1,0 − u0,1) + (β − α)(u0,0 + u1,0 + u0,1 + u1,1) + β2 − α2 = 0,

H3 : α(u0,0u1,0 + u0,1u1,1)− β(u0,0u0,1 + u1,0u1,1) + δ2(α2 − β2) = 0,

A1 : α(u0,0 + u0,1)(u1,0 + u1,1)− β(u0,0 + u1,0)(u0,1 + u1,1)− δ2αβ(α− β) = 0,

A2 : (β2 − α2)(u0,0u1,0u0,1u1,1 + 1) + β(α2 − 1)(u0,0u0,1 + u1,0u1,1)

− α(β2 − 1)(u0,0u1,0 + u0,1u1,1) = 0.

Here sn(α) = sn(α; K) is a Jacobi elliptic function with modulus K. Without loss

of generality, the parameter δ is restricted to the values 0 and 1.

All three-point conservation laws for these equations are listed in Table 1. We

omit the details of our calculations, which were carried out using the computer

algebra system Maple; they are very complex and it is impossible to present them

in any suitable form. Three-point conservation laws for H1, H3δ=0 and Q1δ=0

have already appeared in [5, 7, 8]. One conservation law for Q4 involves the

following Jacobi elliptic functions with modulus K:

cn(α) = cn(α; K), ns(α) = ns(α; K), dn(α) = dn(α; K).

Note that in all three-point conservation laws for ABS equations, the

component F does not depend upon α and G does not depend upon β. Therefore

the conservation laws from Table 1 are valid for all functions α = α(k) and

β = β(l).
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u0,1

u−1,0
u0,0

u1,0

u0,−1

Figure 1: Form of a five-point conservation law

4. Five-point conservation laws

The simplest higher conservation laws are defined on five points (Figure 1). The

functions F and G are of the form

F = F (k, l, u0,−1, u−1,0, u0,0, u0,1), G = G(k, l, u0,−1, u−1,0, u0,0, u1,0). (8)

Therefore the determining equation for the five-point conservation laws is

F (k + 1, l, u1,−1, u0,0, u1,0, u1,1)− F (k, l, u0,−1, u−1,0, u0,0, u0,1) +

G(k, l + 1, u0,0, u−1,1, u0,1, u1,1)−G(k, l, u0,−1, u−1,0, u0,0, u1,0) = 0. (9)

Shifted versions of each quad-graph equation are used to eliminate u−1,1, u1,−1 and

u1,1.

For H1, we have previously shown that there are three five-point conservation

laws, apart from those that are equivalent to three-point conservation laws

[7]. In the current investigation, the direct method also yields three five-point

conservation laws for H3δ=0.

For the other equations, the complexity of the calculations has prevented

us from solving the determining equation (9) directly when F and G are of the

form (8). However, for each of the equations H1 and H3δ=0, the three five-point

conservation laws can be written in the form

F1 = F (k, l, u−1,0, u0,0, u0,1), G1 = G(k, l, u−1,0, u0,0, u1,0),

F2 = F (l, k, u0,−1, u0,0, u1,0), G2 = G(l, k, u0,−1, u0,0, u0,1),

F3 = kF1 + lF2, G3 = kG1 + lG2.

This suggests that, for each of the remaining ABS equations, we should seek a

five-point conservation law of the form

F = F (k, l, u−1,0, u0,0, u0,1), G = G(k, l, u−1,0, u0,0, u1,0). (10)
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By substituting (10) into (2) we obtain a determining equation that is simpler

than (9):

F (k + 1, l, u0,0, u1,0, u1,1)− F (k, l, u−1,0, u0,0, u0,1) +

G(k, l + 1, u−1,1, u0,1, u1,1)−G(k, l, u−1,0, u0,0, u1,0) = 0. (11)

Shifted versions of the quad-graph equation are used to eliminate u−1,1 and u1,1.

By using the direct method to solve (11) we found one five-point conservation

law for Q1δ=0,1, Q3δ=0, H2, H3δ=1, A1δ=0,1, A2. Let

F1 = Fs(k, l, u−1,0, u0,0, u0,1), G1 = Gs(k, l, u−1,0, u0,0, u1,0) (12)

be the solution of (11) for an ABS equation. All ABS equations are invariant

under the transformation

k → l̃, l → k̃.

Therefore each of the above equations has a second five-point conservation law,

F2 = Fs(l, k, u0,−1, u0,0, u0,1), G2 = Gs(l, k, u0,−1, u0,0, u1,0). (13)

For equations Q2, Q3δ=1 and Q4, we could not solve the simplified

determining equation (11) directly. However, we observed that each of the other

ABS equations has two five-point conservation laws of the form:

F1 = −S−1
k (−1)k+lG̃ + f(u−1,0, u0,0, u0,1),

G1 = S−1
k (−1)k+lG̃− a ln(u1,0 − u−1,0),

F2 = S−1
l (−1)k+lF̃ + a ln(u0,1 − u0,−1),

G2 = −S−1
l (−1)k+lF̃ − f(u0,−1, u0,0, u1,0). (14)

Here f is a function and a is a constant; furthermore, F̃ and G̃ are components

of a three-point conservation law of the same equation, of the form

F̃ = (−1)k+l ln(. . .), G̃ = (−1)k+l ln(. . .). (15)

Table 1 shows that most equations from the ABS classification have a three-point

conservation law of the form (15); the only exceptions are H1, H3δ=0, whose

five-point conservation laws we have already found. Therefore we have sought two

five-point conservation laws that can be written in the form (14) for each of the

remaining equations Q2, Q3δ=1 and Q4. By substituting F1, G1 from (14) into

(2) we obtain the determining equation for f and a. For each of Q2, Q3δ=1 and

Q4, this determining equation can be solved by the direct method.

So far we have described how to find two five-point conservation laws for all

ABS equations. Our results for H1 and H3δ=0 suggest that other equations from

the ABS classification may have a third conservation law that is related to the

other two as follows:

F3 = kF1 + lF2, G3 = kG1 + lG2. (16)
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We find that in (16) the two conservation laws must be written in the form

F1 = −SlS
−1
k (−1)k+lG̃− S−1

k (−1)k+lG̃ + a1f(u−1,0, u0,0, u0,1) + a2,

G1 = (−1)k+lG̃ + S−1
k (−1)k+lG̃− a3 ln(u1,0 − u−1,0),

F2 = (−1)k+lF̃ + S−1
l (−1)k+lF̃ + a3 ln(u0,1 − u0,−1),

G2 = −SkS
−1
l (−1)k+lF̃ − S−1

l (−1)k+lF̃ − a1f(u0,−1, u0,0, u1,0) + a2. (17)

Here F̃ , G̃ and f are the same as in (14), and the constants ai can be found by

substituting (16) into (2). The terms SlS
−1
k (−1)k+lG̃ and SkS

−1
l (−1)k+lF̃ depend

on u−1,1, u1,−1, which do not lie on the cross (8); these variables can be eliminated

by shifted versions of the quad-graph equation.

The results of the above are summarized in Table 2, in which we list the

generators F̄i and Ḡi of the five-point conservation laws for each of the ABS

equations. The corresponding conservation laws are

(F1, G1) = (F̄1, Ḡ1),

(F2, G2) = (F̄2, Ḡ2),

(F3, G3) = (kF̄1 + lF̄2, kḠ1 + lḠ2).

In Table 2 we use Fn and Gn to denote the components of nth three-point

conservation law for the same equation as given in Table 1. For Q4 alone, we

have presented the result without eliminating u−1,1, u1,−1, as this is far shorter

than the result after elimination.

All of the three-point conservation laws apply to nonautonomous equations,

for which α and β are not constants. However, each equation from the ABS

classification has only one five-point conservation law whose component G does

not depend upon α and one five-point conservation law for which F does not

depend upon β. Consequently, if exactly one of α and β is constant then only one

of the five-point conservation laws survives. If neither α nor β is constant, none

of the above conservation laws hold.
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Ḡ
2

=
(−

1)
k
+

l G
4
−

S
−

1
l

(−
1)

k
+

l F
4
−

2
ln

((
u

1
,0
−

u
0
,−

1
)(

α
(u

0
,0
−

u
0
,−

1
)
+

β
(u

1
,0
−

u
0
,0

))
),

Q
1 δ

=
1

F̄
1

=
−

ln
((

u
0
,1
−

u
0
,0

+
β
)(

u
0
,0
−

u
−

1
,0
−

α
)(

u
0
,1
−

u
−

1
,0
−

α
+

β
)−

1
(α

(u
0
,1
−

u
0
,0

)
+

β
(u

0
,0
−

u
−

1
,0

))
−

1
),

Ḡ
1

=
ln

((
u

1
,0
−

u
0
,0

+
α
)(

u
0
,0
−

u
−

1
,0
−

α
)(

u
1
,0
−

u
−

1
,0

)−
2
),

F̄
2

=
−

ln
((

u
0
,0
−

u
0
,−

1
−

β
)(

u
0
,1
−

u
0
,0

+
β
)(

u
0
,1
−

u
0
,−

1
)−

2
),

Ḡ
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Ḡ
2

=
−

S
k
S
−

1
l

(−
1)

k
+

l F
1
−

S
−

1
l

(−
1)

k
+

l F
1
−

2
ln

((
sn

(α
−

β
)2

(1
+

K
2
sn

(β
)2

sn
(α

)2
)
−

sn
(β

)2
−

sn
(α

)2
)u

1
,0

u
0
,−

1
+

sn
(α

)s
n(

β
)(

u
2 1
,0

+
u

2 0
,−

1
−

sn
(α

−
β
)2

(1
+

K
2
u

2 1
,0

u
2 0
,−

1
))

),

H
1

F̄
1

=
−

ln
(u

0
,1
−

u
−

1
,0

),
F̄

2
=
−

ln
(u

0
,1
−

u
0
,−

1
),

Ḡ
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Ḡ
1

=
(−

1)
k
+

l G
4

+
S
−

1
k

(−
1)

k
+
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+
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+
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Ḡ
2

=
(−
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+
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−
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β
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0
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)
−
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0
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1
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A
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1)
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G
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−

1
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0
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0
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1
,0
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2
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Ḡ
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=
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+

l (
G

1
+
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+
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−

1
k
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+
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G
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+
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)
−
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1
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1)
k
+
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+
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−
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l
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+
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F

1
+
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)
+
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0
,1
−

u
0
,−

1
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2

=
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1)
k
+

l (
G

1
+
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2
)
−
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−

1
l

(−
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k
+

l (
F

1
+

F
2
)
−

2
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((
(α

−
β
)2
−
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1
,0
−

u
0
,−

1
)2

)(
β
(u

1
,0

+
u

0
,0

)
−

α
(u

0
,0

+
u

0
,−

1
))

2
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A
2
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=
(−

1)
k
+
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F

1
+
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2
)
−

S
−

1
k

(−
1)
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+
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G

1
+

G
2
)
+
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((
α
u

0
,1
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β
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1
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)(
β
u

0
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−

1
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)(
α
(1
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β
2
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0
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−

1
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2
)
+

(α
2
−

β
2
)u

0
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u
0
,1

))
2
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Ḡ
1

=
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1)
k
+
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G

1
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G
2
)
+

S
−

1
k

(−
1)

k
+

l (
G

1
+

G
2
)
−

8
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(u
1
,0
−
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−

1
,0

),
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2

=
(−

1)
k
+

l (
F

1
+

F
2
)
+

S
−

1
l

(−
1)

k
+

l (
F

1
+
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2
)
+

8
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0
,1
−
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0
,−

1
),

Ḡ
2

=
(−

1)
k
+

l (
G

1
+

G
2
)
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−

1
l

(−
1)

k
+
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F

1
+
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2
)
−

2
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((
β
u

1
,0
−

α
u
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,−
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α
u

1
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−
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u
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1
)(

β
(1
−
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2
)u

1
,0
−
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1
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(1
−
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2
)
+
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2
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2
)u

0
,0

u
1
,0

))
2
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5. High-order conservation laws

New conservation laws can be obtained by applying the generator of a five-point

symmetry repeatedly to a known conservation law [6]. For instance, let us consider

equation H1. By applying the infinitesimal generator [9]

X =
k

u1,0 − u−1,0

∂u0,0 − ∂α

to the conservation law

F = − ln (u0,1 − u−1,0) , G = ln (u1,0 − u−1,0) ,

then adding a trivial conservation law, we obtain

Fn = −{(u0,0 − u−2,0)(u0,1 − u−1,0)}−1, Gn = {(u0,0 − u−2,0)(u1,0 − u−1,0)}−1.

At present, there is no proof that this method will always yield a new conservation

law (that cannot be reduced to a known or trivial one); however, we do not know

of any counterexamples.

From [9] we know that each equation from the ABS classification has

symmetries in the k and l directions. By applying symmetries in the k direction

to a conservation law with component F in the k direction we also obtain a

conservation law with component F in the k direction. In this way we might

construct an infinite hierarchy of conservation laws with component F in the k

direction and another hierarchy of conservation laws with component G in the l

direction.

6. Conclusion and some open problems

All three-point conservation laws for all equations from the ABS classification have

been found. For each of these equations we found three five-point conservation

laws. We have used the direct method [5, 7, 8] as far as possible to calculate

conservation laws, as this guarantees that all conservation laws of a particular type

have been found. However, for all but two of the ABS equations, it was necessary

to supplement the direct method with extra hypotheses, based on the results that

we had obtained so far. This hybrid approach led to the discovery that each of the

ABS equations (for constant α and β) has three five-point conservation laws. If

only one of α and β is constant then we can find only one five-point conservation

law. It seems likely that these are the only five-point conservation laws, but we

cannot yet be certain that this is so.

The technique which generates a conservation law from a known one was

shown. So far it is the only technique which may give an infinite number of

conservation laws. This technique is easy to use, but it does not guarantee that

new conservation law cannot be reduced to a known or trivial one. Therefore we

cannot say that ABS equations have an infinite number of conservation laws.

Our work rises an important question about conservation laws for

nonautonomous quad-graph equations. Why are there no five-point conservation
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laws with G in the k direction when α = α(k) and five-point conservation laws

with F in the l direction when β = β(l)? In case of symmetries we have a very

similar situation [9]; there are no five-point symmetries in the k direction when

α = α(k) or five-point symmetries in the l direction when β = β(l). We think

it likely that the answer to one of these questions will lead to the answer to the

other one.
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