
Under consideration for publication in J. Fluid Mech. 1

Particle transport in a moving corner

By F. E. LAINE -PEARSON 1
AND P. E. HYDON1

1Department of Mathematics and Statistics, University of Surrey, Guildford, GU2 7XH, UK

E-mail: f.laine-pearson@surrey.ac.uk p.hydon@surrey.ac.uk

(Received ?? and in revised form ??)

This paper describes particle transport in Stokes flow in a two-dimensional corner whose

walls oscillate, which is a simple model for particle transport in the pulmonary alveoli.

Formally speaking, the wall motion produces a perturbation to the well-known Moffatt

corner eddies. However, this ‘perturbation’ is dominant as the corner is approached. The

motion of particles is regular near to the corner. Far from the corner, chaotic motion

within the main part of the flow is restricted to very small regions. We deduce that there

is competition between the far-field motion that generates eddies and the wall motion.

The relative strengths of these two motions determines whether a given particle moves

regularly or chaotically. Consequently, there is an intermediate region in which chaotic

transport is maximized.

1. Introduction

This mathematical study is motivated by an ongoing investigation into particle motion

in the lung, led by Tsuda, that combines physiological, mathematical and computational

studies of chaos in alveoli. These are cavities in the lower airway walls in which recir-

culation can occur. Tsuda et al. (1995) examined the effects of cyclic expansion and

contraction of alveolar walls on fluid flow in such a cavity by developing a numerical
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model. It was observed that low Reynolds number alveolar flow can be extremely com-

plex; it was presumed that the alveolated duct structure and its time-dependent motion

induced this complexity. In a related study, Haber et al. (2000) developed an analyti-

cal model of a cyclically expanding and contracting spherical alveolus and its vicinity.

Their results supported the observation that there is a level of complexity of particle

mixing in this region of the lungs. Moreover, the geometric features of structural alve-

olation and rhythmic expansion were attributed as the mechanism for chaotic mixing

of particles. The numerical simulations of Henry et al. (2002) quantified the effects of

cyclic expansion and contraction of an alveolated duct upon particle motion in the mod-

el alveoli. Lagrangian tracking of fluid particles indicated that the trajectories exhibit

unpredictable stretched and folded patterns. These observations led Tsuda et al. (2002)

to hypothesize that chaotic flow can occur in alveolated airways, and that this can result

in flow-induced aerosol mixing and deposition deep in the lung. Tsuda’s group tested

this hypothesis by performing flow visualization experiments in excised animal lungs.

They ventilated lungs with ultra-low viscosity, polymerizable, Newtonian fluids of two

colours. Each lung was first filled with white fluid, then ventilated with blue fluid for

a number of cycles, ensuring that the Reynolds number remained low throughout the

experiment. Then ventilation was halted and the fluids were polymerized to make casts

that showed the final position of fluid particles. Recirculation had occurred in many alve-

oli, and that there was substantial mixing of the fluids after just two cycles of inspiration

and expiration.

The current paper investigates the mechanism by which chaotic particle motion can

occur in a two-dimensional cavity with recirculating fluid, when the cavity expands and

contracts periodically. We restrict attention to Stokes flow, which is the flow regime that

operates in the alveoli. Furthermore, it is assumed that particles move passively with
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the fluid. As for boundary conditions, we chose a simple shape that admits recirculation,

namely a corner region. This study aims to qualify the phenomena occurring when re-

circulating particles are affected by rhythmic wall motion and this will be achieved by

drawing from the mathematical theory developed for Hamiltonian dynamical systems.

Corner flows – and their three-dimensional counterparts – have been considered in the

literature by many authors, including Moffatt (1964); Liu & Joseph (1978); Weidman

& Calmidi (1999); Shankar (2000); Chetan et al. (2005). The seminal work on Stokes

flow in a corner is Moffatt (1964), which demonstrated that a sequence of eddies can be

generated by a flow past the corner, provided that the angle between the walls of the

corner does not exceed 2φcritical ≈ 146.3◦. As the corner is approached, successive eddies

are of decreasing size and greatly decreasing intensity. Each eddy is at least 350 times

weaker than its larger neighbour.

Corner eddies can be generated in a triangular container of viscous fluid when a cylin-

der is rotated anywhere inside it. Moffatt hypothesized that it should be straightforward

to observe one eddy, but that to observe a sequence of them might present insurmount-

able experimental difficulties. Fifteen years later, Taneda (1979) realized two eddies in

succession.

The purpose of the current paper is to investigate the qualitative nature of particle

transport when an externally-driven antisymmetric Stokes flow in a corner of angle less

than 2φcritical is perturbed by wall motion. The flow field is described in §2. In §3, the

equations of motion for a passive particle are written as a Hamiltonian system. This

formulation plays an important part in revealing the behaviour of particle trajectories,

and gives some insight into the requirements for the breakup of recirculating particle

paths, as discussed in §4.
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2. The Flow Field

2.1. Steady flow in the unperturbed corner

Throughout the paper, we use carets to denote dimensional variables; these are removed

when variables are nondimensionalized.

Moffatt (1964) considered two-dimensional Stokes flow in a rigid corner, which is in-

duced by an arbitrary flow past the corner at a large distance. In plane polar coordinates

(r̂, θ), the Stokes equation for the streamfunction ψ̂(r̂, θ), namely ∇4ψ̂ = 0, admits sep-

arated solutions of the form ψ̂ = Re{r̂λ0f(θ;λ0)}. If the walls are at θ = ±φ0 then the

boundary conditions are

ψ̂,r̂ = ψ̂,θ = 0 at θ = ±φ0 ;

the comma denotes partial differentiation. For antisymmetric flow with λ0 6∈ {0, 1, 2},

which occurs in corner eddies,

f(θ;λ0) = K0[cos((λ0 − 2)φ0) cos(λ0θ) − cos(λ0φ0) cos((λ0 − 2)θ)],

where K0 is a complex constant that is determined by conditions far from the corner.

The eigenvalues λ0 are related to the angle φ0 by

(λ0 − 2) tan((λ0 − 2)φ0) = λ0 tan(λ0φ0), (2.1)

which is trigonometrically equivalent to

sin(2φ0µ0) = −µ0 sin(2φ0), where µ0 = λ0 − 1.

Moffatt showed that every eigenvalue is complex if φ0 < φcritical, and thus the flow is

a sequence of eddies. Following Moffatt, we consider only the flow corresponding to the

dominant eigenvalues λ0 and λ0 (in other words, the pair of eigenvalues with smallest

positive real part). Here

λ0 =

(

1 +
ξ

2φ0

)

+ i

(

η

2φ0

)

,
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where ξ ≈ 4 and η is O(1). Note that as φ0 tends to zero, λ0R ≡ Re{λ0} grows rapidly.

The range of values of r̂ for which the Stokes approximation is valid is given by the

condition

Re =
Dr̂ λ0R

ν
≪ 1,

where Re is the Reynolds number based on distance from the corner, ν is the kinematic

viscosity of the fluid, and D is a dimensional constant such that f(θ;λ0)/D is of order

unity. As λ0R is positive, inertial forces are negligible for sufficiently small r̂. From here

on, such a flow is referred to as ‘Moffatt flow’. Figure 1 illustrates typical particle paths

in Moffatt flow. The initial conditions are spaced out along the line y = 0. The particles

on the right-hand eddy move clockwise, while the particles on the left-hand eddy move

anticlockwise. Consequently, a separatrix lies between these two eddies; it is a curved

line that is attached to each wall. Moffatt flow has an infinite sequence of eddies in the

corner, which have been generated by the far-field flow. Each eddy lies in its own cell,

whose boundaries are the walls of the corner and a separatrix on either side. The pair of

eddies of figure 1 have been chosen specifically so that the two distinct types of behaviour

that appear when the walls are moved can be clearly observed (see later figures).

2.2. Quasi-Steady Flow

Now consider what happens when the steady flow is perturbed by a periodic wall motion

that keeps the maximum angle of the corner less than 2φcritical. Let û = ûrer+ûθeθ be the

velocity field with respect to the steady frame coordinates (r̂, θ). The incompressibility

condition in cylindrical polar coordinates is

1

r̂
(r̂ûr),r̂ +

1

r̂
(ûθ),θ = 0.
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Figure 1. Top: Moffatt flow when 2φ0 = 20◦ and K0 = 1/2π. Eight initial conditions along

y = 0 (each marked by a circle) have been evolved; each trajectory is composed of 2000 points.

Two consecutive eddies are shown. As the flow is steady, particle paths coincide with streamlines

(see Acheson 1990). Bottom: The speed (s) of the eight particles of Moffatt flow when 2φ0 = 20◦

and K0 = 1/2π are tracked for t = 0 . . . 10, where t relates to the ‘nondimensionalized time’

of the quasi-steady flow. Note that the highest five curves represent particles belonging to the

right-hand eddy, while the lower line represents three particles in the left-hand eddy (the three

curves here coincide for this scale). Scanning from left to right of the top figure, and reading

from bottom to top of the bottom figure, the periods of the particles are approximately 1717,

1038, 731, 68.1, 18.7, 7.8, 4.2, 2.3 time units, respectively.

As the corner region is simply connected, there exists a stream function ψ̂(r̂, θ, t̂) such

that ûr = ψ̂,θ /r̂ and ûθ = −ψ̂,r̂. Therefore particle motion is described by the equations

dr̂

dt̂
=

1

r̂
ψ̂,θ , r̂

dθ

dt̂
= −ψ̂,r̂ .
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The walls are at θ = ±φ, where

φ = φ0[1 + ǫ sin(ωt̂)];

here ω is the frequency of oscillation and 0 6 ǫ < 1. Therefore the boundary conditions

are

ψ̂,θ = 0, ψ̂,r̂ = ∓ǫφ0ωr̂ cos(ωt̂) on θ = ±φ.

To nondimensionalize the problem, let

t =
ωt̂

2π
, r =

r̂

a
, ψ =

ψ̂

a2ω
,

where a is a convenient length scale. We discuss our choice of a at the end of this section.

Define α2 = a2ω/ν to be the Womersley number. Provided that α2/2π ≪ 1, unsteady

inertia can be neglected and the flow is quasi-steady. Thus the combined flow is simply a

superposition of Moffatt flow and the flow generated through wall motion alone (which

we shall call the squeeze flow for brevity). Hence ψ = ψM + ψW , where ψM is the non-

dimensional Moffatt streamfunction for a corner whose walls are at θ = ±φ, and where

ψW is the non-dimensional streamfunction associated with the flow driven by the wall

motion. Specifically,

ψM (r, θ, t) = KRe
{

rλ[cos((λ − 2)φ) cos(λθ) − cos(λφ) cos((λ − 2)θ)]
}

, (2.2)

where λ, which is time dependent, and φ satisfy

(λ − 2) tan((λ − 2)φ) = λ tan(λφ). (2.3)

As for the steady flow, only the dominant eigenvalues are considered. The amplitude

K depends on the far-field flow and is assumed to be a real constant for this investiga-

tion. The solution (2.2) satisfies ψM ,θ = ψM ,r = 0 on the walls. Therefore the nonzero
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boundary condition produced by the wall motion generates the squeeze flow

ψW (r, θ, t) = −ǫφ0

(

r2

2

)

cos(2πt)

[

sin(2θ) − 2θ cos(2φ)

sin(2φ) − 2φ cos(2φ)

]

, (2.4)

which is described in Moffatt (1964). According to Moffatt & Duffy (1980), this de-

scribes the Stokes flow produced by wall motion when 2φ < tan(2θ) and r is not too

large. Although the squeeze flow is unsteady, the acceleration terms in the Navier-Stokes

equations are negligible in the region near the corner for which

∣

∣

∣

∣

dφ

dt̂

∣

∣

∣

∣

r̂2

ν
≪ 1, that is, ǫφ0α

2r2 ≪ 1.

We restrict attention to this region from here on, so that the combined flow is quasi-

steady. Convective inertia is negligible provided that Re is sufficiently small.

The squeeze flow is integrable, which can be observed by numerically tracking particles

during a half-cycle and noting that they faithfully retrace their paths during the next

half-cycle. Moreover, particle motion in the squeeze flow satisfies

1

2π

dr

dt
=

1

r

∂ψW

∂θ
and

1

2π

dθ

dt
= −

1

r

∂ψW

∂r
.

Therefore

dr

dθ
= −

r

2

[

2 cos(2θ) − 2 cos(2φ)

sin(2θ) − 2θ cos(2φ)

]

(2.5)

and

dθ

dt
= 2πǫφ0 cos(2πt)

[

sin(2θ) − 2θ cos(2φ)

sin(2φ) − 2φ cos(2φ)

]

. (2.6)

As φ is a function of t it follows that φ can be written as a function of θ by solving

the first-order differential equation (2.6). Substituting this into equation (2.5) gives a

first-order differential equation, which can be integrated (in principle) to obtain a first

integral. The flow ψW is integrable essentially because of the reversibility of steady Stokes

flow. The adapted Moffatt flow (Moffatt flow for ǫ 6= 0) is not integrable; moreover this

flow cannot occur independently as it does not satisfy the moving boundary conditions.
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Figure 2. A Poincaré section of particle motion in the perturbed flow; 2φ0 = 20◦, K = 1/2π

and ǫ = 0.001. Eighteen initial conditions have been evolved — eight of which are the original

initial conditions for ǫ = 0, while another ten have been chosen for further detail; each regular

trajectory is composed of 2000 points.

Formally, the squeeze flow and the modification to the Moffatt flow caused by the wall

motion combine to produce an O(ǫ) perturbation to the steady Moffatt flow. However,

the steady Moffatt flow diminishes far more rapidly than the squeeze flow as the corner

is approached. To a first approximation, for 2φ0 the decay is O(r1+ξ/2φ0) where ξ ≈ 4.

[For example, 2φ0 = 20◦ the decay is O(r13), and for 2φ0 = 60◦ the decay is O(r5).]

By contrast, the squeeze flow is O(r2). Consequently, for r < 1, the ‘perturbation’ to

the steady Moffatt flow has an increasingly great effect as r → 0. For instance, in the

right-hand eddy of figure 2, the perturbation is small in the central region, and has an

increasing effect in the outer region where r is smaller for much of the particle’s motion.

There is no intrinsic length scale for the steady Moffatt flow. However, when the wall
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motion is added, the two motions are of comparable size only in a limited range of values

of r̂. Therefore the appropriate length scale a is the order of magnitude of these values.

In dimensionless terms this ensures that the two motions are comparable for r = O(1).

3. Particle Motion in the Perturbed Flow

For any two-dimensional flow with a streamfunction ψ(r, θ, t) that is nondimensional-

ized as above, particle trajectories are obtained from the Lagrangian equations of motion

1

2π

dr

dt
=

1

r

∂ψ

∂θ
,

1

2π

dθ

dt
= −

1

r

∂ψ

∂r
.

These equations can be written as a Hamiltonian system for R = r2 and θ, as follows:

dR

dt
= −

∂H

∂θ
,

dθ

dt
=

∂H

∂R
, (3.1)

where the Hamiltonian H is

H(R, θ, t) = −4πψ(R1/2, θ, t).

In particular, in the absence of wall motion, the Hamiltonian is

H0(R, θ) = −4π lim
ǫ→0

ψM (R1/2, θ, t).

The system

dR

dt
= −

∂H0

∂θ
,

dθ

dt
=

∂H0

∂R
, (3.2)

is integrable; H0 is conserved during a particle’s motion. Consequently there exist action-

angle coordinates in terms of which the flow on each streamline is a steady rotation.

For the moving corner, the Hamiltonian is H = H0 + H1, where

H1(R, θ, t) = −4πψM (R1/2, θ, t) − 4πψW (R1/2, θ, t) − H0(R, θ).

Note that H1 vanishes as ǫ → 0. Formally, H1 is of order ǫ provided that

λ = λ0 + O(ǫ).
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The Hamiltonian H has been constructed in this way so that ideas from KAM (Kolmogorov-

Arnol’d-Moser) theory can be consulted. KAM theory is a methodology of how to ap-

proach certain problems in perturbation theory that are linked with small devisors. Al-

though there are many variants of the KAM theorem, it is the classical KAM theorem,

which is concerned with the stability of motions in Hamiltonian systems constructed

from slightly perturbed integrable Hamiltonian systems, that will be referred to as the

‘KAM theorem’ here. For H, H0 is the integrable part, which is essentially ψM evaluated

at ǫ = 0, while H1 is some nonintegrable perturbation, which accounts for the additional

terms generated by the perturbation parameter ǫ through ψW and the compensation of

ψM to ǫ 6= 0. An assumption of the theory is that ǫ ≪ 1.

The KAM theorem implies that, if ǫ is sufficiently small, most particles will remain on

closed curves (called KAM tori) that are only slight perturbations of the original stream-

lines. However, some streamlines break up, in accordance with the Poincaré-Birkhoff the-

orem, to form chains of ‘islands’ bounded by KAM tori which are surrounded by chaotic

trajectories. Within each island the same types of structure occur in a self-similar man-

ner. As the perturbation increases, KAM tori break up to form Cantor sets called cantori,

and the chaotic regions increase in size. For even larger perturbations, all KAM tori are

destroyed.

The KAM theorem is explained in detail in Lichtenberg & Lieberman (1992); a simple

overview can be found in Tabor (1989). Since Aref’s famous paper on chaotic advection

[Aref (1984)], KAM and Poincaré-Birkhoff fixed-point theorems have found many uses to

describe the break-up of particle paths into self-similar structures within Lagrangian fluid

mechanics. For larger perturbations, this geometry disintegrates to chaotic advection of

particles as can be witnessed, for example, within a fixed rectangular cavity at moderate

Reynolds numbers, which has been described by Ottino (1989) and Horner et al. (2002).
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Figures 2 to 4 show Poincaré sections of particle trajectories, which are constructed by

plotting particle positions at t = 0, 1, 2, . . . , 1999. Each figure shows several trajectories.

The equations of motion have been integrated numerically using an explicit fourth-order

Runge-Kutta scheme with a step size of 0.01; there is no obvious change in the figures

when the step size is halved. Figures 2 and 3 show how the trajectories change as ǫ is

increased from 0.001 to 0.5 for a corner with 2φ0 = 20◦. For 2φ0 = 60◦, figure 4 shows the

qualitative differences between ǫ = 0 and ǫ = 0.1. Within the assumptions of this study,

these examples are qualitatively typical for particle transport in a moving corner. As the

parameter values for these illustrations are representative, attention will be restricted

to describing the nature of particle motion occurring there. The interpretation of these

figures is discussed in the next section.

4. Discussion

Before examining the qualitative nature of particle paths for ǫ 6= 0, it is helpful to

consider the unperturbed motion shown in figure 1. Here the corner angle is 2φ0 = 20◦.

Based on Moffatt’s analysis of relative intensities, the left-hand eddy is around 380 times

weaker than the right-hand eddy. So, by the time it takes a particle near the middle of

the left eddy to complete a circuit, one near the middle of the right eddy has completed

many circuits. This is reflected in the trajectory output for particles. For the left-hand

eddy, each successive point on the path plotted is close to the previous point and the

closed orbit is slowly traced out over time. For the right-hand eddy, successive points

have a much larger gap between them and the particle completes many circuits before

the orbit appears to be closed. So, particles in the eddies circulate at different rates —

this can be seen in figure 1. The speed of the five particles for the right-hand eddy are

represented by the highest five curves, while the lowest line represents the displacement
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Figure 3. Top: A Poincaré section of particle motion in the perturbed flow; 2φ0 = 20◦,

K = 1/2π and ǫ = 0.01. Fourteen initial conditions have been evolved — eight of which are the

original initial conditions for ǫ = 0, while another six have been chosen for further detail; each

regular trajectory is composed of 2000 points. Bottom: A Poincaré section of particle motion

in the perturbed flow; 2φ0 = 20◦ and K = 1/2π; each regular trajectory is composed of 2000

points. Left: Eight initial conditions have been evolved with ǫ = 0.1. The right-hand eddy is

the focus of the view; the left-hand eddy has not changed qualitatively. (The points have been

enlarged for clarity.) Right: Seven initial conditions have been evolved with ǫ = 0.5 — three of

which are the original initial conditions of the left-hand eddy for ǫ = 0, while another four have

been chosen for further detail. The left-hand eddy is the focus of the view; the right-hand eddy

has been destroyed.
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Figure 4. Top: A Poincaré section of particle motion when 2φ0 = 60◦ and K = 1/2π; each

regular trajectory is composed of 2000 points. Left: Four initial conditions have been evolved

with ǫ = 0. Right: Fourteen initial conditions have been evolved with ǫ = 0.1 — four of which

are the original initial conditions for ǫ = 0, while another ten have been chosen for further detail.

Bottom: An enlarged view of the bottom left-hand region of the top-right figure.
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of the three particles for the left-hand eddy (coinciding here for this scale). The periods

illustrate that the particles of the left eddy circulate, relatively speaking, slower than

those on the right eddy. Moreover, when considering each eddy separately, the closer a

streamline is to the centre of the eddy, the shorter time it takes for a particle to complete

a circuit of the closed curve relating to this streamline.

We now examine what happens when ǫ 6= 0. Figure 2 shows a Poincaré section of some

particle trajectories when ǫ = 0.001. The central part of the right-hand eddy behaves

exactly as the KAM and the Poincaré-Birkhoff theorems suggest; several closed curves

remain intact and chains of islands can be seen. However, trajectories in the outer part

of the eddy are chaotic. By contrast, the Poincaré section for the left-hand eddy appears

to be unaffected by the perturbation.

Figure 3 (top and bottom-left) shows the effects of increasing ǫ to 0.01 and 0.1 re-

spectively. The right-hand eddy behaves as expected: the KAM tori break up, so that

the chaotic region increases in size. The left-hand eddy remains apparently unaffected.

Indeed even if ǫ is increased to 0.5, as in figure 3 (bottom-right), many particles in the

left-hand eddy seem to be moving around closed curves. In fact, the outer orbits have

disintegrated, but the intermediate ones are merely deformed into cashew shapes. The

innermost ones lie on closed curves in the upper or lower central regions of the cashew

(the figure shows one such curve in the lower region).

For a resting corner angle of 2φ0 = 60◦, the relative intensity for consecutive eddies

will now be much larger. The smaller of a pair of neighbouring eddies is around 685

times weaker than its larger neighbour. Figure 4 (top left) shows unperturbed (ǫ = 0)

particle paths for one eddy, while figure 4 (top right and bottom) show some trajectories

for ǫ = 0.1. The trajectories behave similarly to those in the right-hand eddy in figure 2.

To help with identifying why there is a difference in behaviour between neighbouring
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eddies, let us return to the example with resting corner angle of 20◦. With each eddy, the

period depends continuously on the streamfunction. So it is not the case that none of the

orbits in the weaker (left) eddy are resonant with the perturbation. The other possibility

is that the resonances are very high order; consider ǫ = 0.001, here the circulation is

weaker (compared with ǫ = 0), indicating this is the case. (Quasi-steady Stokes flows

exhibiting lack of break-up of invariant curves also occurs in Kaper & Wiggins 1993, for

instance.) When ǫ ≪/ 1, the KAM theorem is no longer applicable. However, it is possible

to account for other observed behaviour, as follows.

The left-hand eddy is not chaotic, because within it the Moffatt corner flow is a per-

turbation to the back-and-forth motion produced by the squeeze flow. A fluid particle

moves into and out of the corner during any cycle, finishing very close to where it start-

ed. The difference in position is due to the very weak rotation produced by the Moffatt

eddy. Increasing the strength of the squeeze flow does not change the Poincaré section

significantly, unless the squeeze flow is so great that particles are pushed into regions

where they can experience strong Moffatt eddies. This explains why the left-hand eddy

appears unchanged unless ǫ is large.

From these results we can infer that there is an optimal region for chaotic transport in

a corner. By ‘chaotic transport’ we mean that the local Lyapunov exponent is positive.

For large or strong Moffatt eddies (in the sense of the relative scale and intensity factors

calculated by Moffatt), the wall motion provides only a weak perturbation, so the island

chains are thin. For small or weak Moffatt eddies, the rotation is a perturbation to

the motion produced by the squeeze flow. In either of these cases, most trajectories

are regular. Chaotic transport is maximized in the region where the squeeze flow is a

moderate perturbation to the Moffatt flow.

To support the hypothesis that there is a region where chaotic transport is maximized,
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consider the next furthest eddy from the corner. Figure 5 (top) shows such an eddy; the

step size is 0.0001. This is necessarily smaller than for the previous figures so that the very

fast moving particles of the largest eddy can be adequately tracked, especially near its

right-hand separatrix. In figure 5 (middle), perturbing the walls shows the disintegration

of its left-hand neighbour (compare with figure 3). The particle trajectories of the largest

eddy that lie sufficiently far from the walls appear robust to the perturbation. This

is expected because at this distance from the corner the squeeze flow is a very weak

perturbation to the strong rotation of the Moffatt eddy. Figure 5 (bottom) shows that

some particles in the largest eddy lie on KAM tori in thin islands, as predicted by

KAM theory. The thinness of these islands is due to the weakness of the squeeze flow

perturbation.

The model examined in this study only focuses on the effect of wall motion on recircu-

lating particles (to leading order for both the Moffatt flow and the squeeze flow). Even

so, it has shown that just with very simple boundary conditions, the cyclic expansion

and contraction causes passive particles to exhibit chaotic motion in very low Reynolds

number flow.

It is reasonable to ask whether our two-dimensional model gives any insight into real

alveolar flows, which are three-dimensional. Provided that an alveolar cavity is sufficiently

deep, recirculation has been shown to occur; Tsuda et al. (2002). Our results suggest

that in places where the squeeze flow driven by the wall motion is of the same order of

magnitude as recirculation in the centre, some particles move chaotically. It is unclear

whether or not such motion occurs at the edges of the alveoli.

The moving corner model may be extended to incorporate diffusion and particle inertia.

Furthermore, the far-field motion can be adjusted so that K is time-dependent and
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Figure 5. A Poincaré section of particle motion when 2φ0 = 20◦ and K = 1/2π; each regular

trajectory is composed of 500 points. Ten initial conditions have been evolved. (The points

have been enlarged for clarity.) Top: Fixed walls (ǫ = 0). Middle: Moving walls with ǫ = 0.1.

Bottom: A closer look at the middle figure.
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incorporates periodic motion (as well as a time lag). These investigations will be presented

elsewhere.

5. Conclusions

We have shown that, qualitatively speaking, particle transport in a moving-walled cor-

ner occurs in two distinct ways. In eddies near to the corner the wall motion dominates,

and the Moffatt eddies provide a weak perturbation. However, this weak perturbation

drives an average particle motion similar to the motion produced by the steady ed-

dy. Away from the corner the far-field motion dominates, encouraging islands of KAM

tori inside each other† and chaotic trajectories to form within a limited region, thereby

enhancing mixing of particles. To the best of our knowledge, this is the first clear theo-

retical indication that in small airways, where the Reynolds number is very low, there is

a mechanism for producing chaos.
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