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Synopsis

This paper is a short overview of the main ways in which symmetries can be
used to obtain exact information about differential equations. It is written
for a general scientific audience; readers do not need any previous knowledge of
symmetry methods. The information yielded by symmetry methods may include
the general solution of a given differential equation, special ‘invariant solutions’
(such as similarity solutions), and conservation laws. Several symmetry methods
have been implemented as computer algebra packages, which can be used by
nonspecialists.

Towards the end of the paper, there is a brief outline of some recent devel-
opments in symmetry methods that await translation into symbolic algebra.
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1 Introduction

In the second half of the 19th century, the Norwegian mathematician Sophus
Lie began to create a remarkable body of work that unified virtually all known
methods of solving differential equations. He discovered that symmetries of dif-
ferential equations can be found and exploited systematically. Over many years,
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Figure 1: Some solutions of y' = 0.

considerable research effort has been directed at understanding the elegant al-
gebraic structure of symmetry groups, but Lie’s methods for determining and
using symmetries were largely neglected until fairly recently. With the advent
of powerful symbolic computation packages, it has become possible to apply
Lie’s methods to explore the symmetries and conservation laws of a wide range
of physical systems.

This article is a straightforward introduction to symmetry methods. Simple
examples are used to illustrate each of the major ideas; indeed, §2 is devoted
to the simplest of all differential equations. The majority of the article is con-
tained in §3, which deals with the problem of finding symmetries, and §4, which
describes various ways of using symmetries. Some extensions of these themes
are given in §5, and §6 is a brief description of some newly-developed methods
that have not yet been implemented as symbolic packages.

The article concludes with some suggestions for further reading.

2 Symmetries of the simplest differential equa-
tion

Some important concepts in symmetry methods can be explained with the aid
of the simplest differential equation,

y' =0. (1)

The solutions of this ordinary differential equation (ODE) can be represented
on the (z,y) plane by the parallel straight lines y = ¢, as shown in Fig. 1. (Here
and throughout the paper, arbitrary constants are denoted by ¢ or ¢;.)

Roughly speaking, a point symmetry of an ODE is a smooth invertible map-
ping T of the (z,y) plane to itself, that maps every solution of the ODE to a
solution. Here are some examples of symmetries of (1):

L. reflection in the z-axis, I'y := (z,y) + (z, —y), which maps the solution
y = ¢ to the solution y = —¢;



2. translations in the z-direction, I's := (z,y) — (z + €,y), each of which
maps each solution to itself;

3. translations in the y-direction, I's := (z,y) — (z,y + €), which map the
solution y = ¢ to the solution y = c + €.

These are not the only symmetries of the ODE (1) — in fact, there are
infinitely many. However, each of the above represents an important aspect
of symmetries. First note that I'; maps almost every solution to a different
solution; the only exception is y = 0, which is mapped to itself. Any solution
that is mapped to itself by a symmetry is said to be invariant. Translations in
the z-direction move points along solution curves, so every solution is invariant.
Symmetries that map every solution to itself are called trivial symmetries. By
contrast, translations in the y-direction map each solution to a different solution.

The translations I's and I's each depend on a continuous parameter, €. In
each case, € = 0 corresponds to the identity map. These are examples of Lie
point symmetries. By contrast, I'y does not depend on a continuous parameter;
therefore it is said to be a discrete symmetry.

The set of all solutions of the ODE can be obtained by finding all solutions
in the upper half-plane, and then applying the reflection I'y to each of these
solutions. (This yields the set of solutions in the lower half-plane.) A more
efficient way to generate all solutions is to find one solution and then apply all
possible translations I's, allowing € to vary over the real numbers. In this way
the dimension of the problem is reduced by one. Instead of having to find a
one-parameter family of solutions, we need only find a single solution. This idea
is at the heart of symmetry methods for ODE’s.

Note that the trivial symmetries I's do not reduce the number of solutions
that we have to find. For this reason, trivial symmetries are of no use to us.

Point symmetries are examples of point transformations, which are trans-
formations of the independent and dependent variables. There may also be
symmetries that depend additionally on derivatives of the dependent variables.
These symmetries are usually less obvious than point symmetries, but they can
still be very useful.

3 The linearized symmetry condition

This section describes how to obtain Lie symmetries of a given scalar differential
equation. (For brevity, we do not consider systems of differential equations, but
everything in the remainder of this paper is applicable to systems as well as
scalar equations.) Consider the problem of finding the Lie point symmetries of

the ODE
y(n) =w (Iayayla"'ay(nil)) . (2)

Let us seek conditions under which a smooth invertible mapping

U (z,y) — (#(z,y), §(z,9))



is a symmetry of the ODE. Let y = f(z) be a curve in the (z,y) plane. The
image of this curve under the mapping I' is the parametric curve

g:g(xaf(x))a .f:.f(x,f(.ﬁ))

In regions in which the second of these equations is invertible, there exists a
function f such that § = f (z). It is usual to identify the (&, ) plane with the
(z,y) plane; thus the image of the curve y = f(z) is y = f(z).

The mapping I" is a symmetry of the ODE if each solution is mapped to a

solution. Therefore y = f(x) satisfies (2) whenever y = f(x) does. Equivalently,
5™ = w (x 5,7, .. ,QW—”) when (2) holds. (3)

This equation is called the symmetry condition for the ODE (2). In principle,
the symmetry condition can be solved by writing out the derivatives of § with
respect to & in full, For instance,

N % N fg:c‘f'yl?gy

VYZ2W% " G tyay,
(The subscripts « and y denote partial derivatives with respect to these vari-
ables.) For higher derivatives, the expressions are much messier, and it is hard
to solve the symmetry condition for the unknown functions &(z,y) and g(z, y).

The problem of solving the symmetry condition becomes very much easier

if we restrict attention to one-parameter local Lie groups of point symmetries
that are near-identity transformations of the plane. These Lie point symmetries
of a given ODE (2) are symmetries for which

& o= z+e(r,y)+O0(?),
§ = yren(zy) +0(A). (4)
Here € is a real parameter, and the Lie symmetries are defined for each e suffi-
ciently close to zero. The set of points (&, §) that can be reached from (x,y) by
varying e is called the orbit through (z,y); Fig. 2 illustrates part of a typical
orbit. By substituting (4) into the symmetry condition (3) and expanding the
result in powers of €, it is possible to derive a linear partial differential equa-
tion (PDE) for &(x,y) and n(x,y). This PDE is called the linearized symmetry
condition (LSC).

Perhaps surprisingly, once the LSC has been solved, the Lie point symmetries
can be calculated to all orders in €. To do this, define the infinitesimal generator
of the Lie symmetries to be the first-order partial differential operator

0 0

X = — —.

@, y) o+ n(x,y)ay

This operator can be interpreted as the tangent vector field (at e = 0) to the

orbits of (4), as illustrated in Fig. 2. Consequently (Z,¢) are solutions of the
initial-value problem

dz dy

Qe n(Z,9), (%,9) = (z,y) when € = 0.



(&(x,y))
n(z,y)

Figure 2: Part of the orbit through (z,y), showing the tangent vectors at e = 0
and at a general value of e.

The solution to this problem can be expressed as a power series, as follows:

T = eEan g = eEXya
where
o) n
eeX _ 2 — X"
n.
n=0

Thus, once we know X, it is possible to calculate (&,9); in other words, the
orbits can be found.

For nontrivial symmetries, most orbits are curves that are transverse to solu-
tion curves, so that points on one solution curve will be mapped onto different
solution curves. There are two important exceptions. A point (x,y) on the
plane is fixed by the Lie symmetries if and only if the infinitesimal generator is
zero there, i.e.

&(x,y) = n(x,y) = 0.
Points that satisfy this condition are called invariant points; each one is a zero-
dimensional orbit.

The other exception occurs when an orbit coincides with a solution curve.
As the orbit is determined by the infinitesimal generator, we can write this
as a condition on £(z,y) and n(z,y), as follows. The characteristic of the Lie
symmetries (4) is the function

Qz,y,y") = n(z,y) — &(x,9) v/, (5)

which is zero wherever the tangent to a curve (z,y(z)) is parallel to the tan-
gent to the orbit. Any curve on which @) vanishes is invariant under the Lie
symmetries.

Example 1 The Lie symmetries of the ODE

sy taty—y—a
i+t +y—=x




include the rotations about the origin,
(Z,9) = (xcose — ysine, xsine + ycose),

which are generated by

0 8

Note that the only invariant point is the origin. The characteristic is

Qz,y,y) =z +yy,

which vanishes on the circles 22 4+ 3% = c¢. The invariant solutions of the ODE
are the common solutions of Q(z,y,y’) = 0 and the ODE; there is only one such
solution, namely

22 +y? =1.

If the Lie symmetries of the ODE (2) are trivial, the characteristic vanishes
on every solution. It is possible to factor out the trivial symmetries by insisting
that £ = z. The following result enables us to do this without losing any
generality.

Theorem 1 The Lie point symmetries (4) of the ODE (2) are equivalent (up
to a trivial symmetry) to the following dynamical symmetries:

=

Z,

= y+eQ(z,y,y) + O(?), (7)

where Q(x,y,y") = n(z,y) — &(z,v)y'.

<

Generally speaking, dynamical symmetries are not point symmetries, be-
cause §j depends on y'. However, when (7) is substituted into the symmetry
condition, it yields the same LSC as (4). It turns out that (7) is easier to work
with than (4); moreover, this formulation is easily extended to other types of
symmetry.

To calculate the LSC for the ODE (2), we must calculate the derivatives of
7 with respect to &. Define the total derivative with respect to x, restricted to
solutions of the ODE, to be the operator

0
8y(n—1) ’

0 0 0 , (n—1)
Dxfa +y6 + 8,+ +w(xyyy )

Then, letting @ denote Q(z,y,y’) (on solutions of the ODE),

dg _ dg
di ~ dz
Similarly, on solutions of the ODE,

=D,) =9y +€eD,Q + O(e?).

- y
g =&Y

o =y D) Q+0(E). k=12



By substituting these results into the symmetry condition, and looking only at
the terms that are first-order in €, we derive the LSC:

(D2)"Q = wyn—1 (Da)" 7 'Q —wyn-2(De)" 2Q — ... —wy@ =0.  (8)

If n > 2 then the LSC depends upon /,y”, ...,y Y, whereas ¢ and 7 are
independent of these variables. Therefore (8) can be split into an overdetermined
system of PDEs, as the following simple example shows.

Example 2. Consider the ODE y” = 0. The total derivative operator is

0 0

D, = — I
* 8x+y8y’

and therefore the LSC is

Quz + 2y/Qxy + yl2ny =0.

By substituting (5) into the LSC, and splitting the resulting equation into pow-
ers of ¢/, we obtain the overdetermined system

Nea = 0, 2Ny — §za = 0, Myy — 2§zy =0, fyy =0.
The general solution of this system is

E(ayy) = c1z? + CoxyY + 3T + C4Y + Cs,
n(x,y) = cixy+ cay® + cer + cry + cs.

Therefore every infinitesimal generator of Lie point symmetries of y” = 0 is a
linear combination of

0 0 0 0 0
f— 2— —_— = _— 2— 0 = —_— _
4(1 x 8I+Zy8y7 4(2 xyax+y aya ‘<3 Zaxa ‘(4 y@x’
0 0 0 0
Xs=—, Xe=1=, Xr=y—, Xg=—.
5 8I’ 6 xay; 7 yaya 8 6:(]

The process used above can also be applied to more complicated ODEs.
The basic step of splitting the LSC into an overdetermined system is easily
accomplished with the aid of computer algebra. Hereman [1] reviews a wide
variety of packages for doing this. Some packages also use various heuristics
to try to solve the overdetermined system. A nicer approach uses differential
algebra to simplify the overdetermined system first [2]. Within the computer
algebra system Maple [3], for example, this can be done by using the package
rifsimp, which reduces the system to a simple ‘involutive’ form [4].

Example 3. In this example, we use Maple to find the Lie point symmetries
of the nonlinear ODE

y' =y [y



The symmetries can be found very quickly with a few lines of Maple code, which
are listed in the Appendix. It is instructive to follow the solution process in some
detail. The LSC is

9 1 2y

(Dx) Q- _QDzQ + _3Q =0,
Y Y

where

0 , 0 y 0
“oz Y oy y2 0y’
As before, the LSC is split into a system of PDEs by equating terms that have
the same dependence on %’. The overdetermined system that results from this
process is

Dy

Yoo — YN =

20 Nay — Y un — y&a + 20
Yonyy — 20y — 206, =
ysgyy =

o o o o

This rather untidy system is reduced by rifsimp to the equivalent form

=0,  &=2n/y, ny=nly, & =0,

which is easily solved:
=2z +c, n=ay.

Therefore the symmetry generators are linear combinations of

0 0 9]
! I8x+y6y’ 27 ox

The Maple code listed in the Appendix is adapted from the documentation
for rifsimp. It is short and simple, and is easily changed to determine sym-
metries of other ODEs. Newcomers to symmetry methods who have access to
Maple may wish to experiment by trying to find symmetries of various ODEs
of order two or more. Readers with other computer algebra systems should
consult their documentation for help on finding symmetries. Hereman’s review
[1] covers most of the add-on packages that are available.

So far we have focused on ODEs. However, the same approach can be used
to find Lie symmetries of PDEs. For simplicity, we shall restrict attention to
PDEs with one dependent variable, u, and two independent variables, x and t.
Then the infinitesimal generator of Lie point symmetries is of the form

0 0 0
X = €(Iatau)£ +T(I,t,u)g +77($at,u)% .

The characteristic is

Q =n(x,t,u) — &(z, t,u)uy — 7(z, t,u)ue. 9)



Once again, invariant solutions satisfy the condition ) = 0, and trivial symme-
tries may be factored out by looking for symmetries of the form

T x,
t =t
0 = uteQ+0(?)

As before, the symmetry condition requires that the PDE must hold in the
transformed variables whenever it holds in the original variables. The LSC is
obtained by retaining only the first-order terms.

Example 4. The symmetry condition for the heat equation, u; = uy, is
Uy = Uzs when  us = Ugy.
Therefore the LSC is

D,Q = (Dx)QQ when  u; = Ugg,

where
Dy = 2 tued e bt
T 9x ' Cou ouy | ouy T
D, = 6+u 0 +u 0 +u iJr
t — 8t ta a:ta ttat

are the total derivatives with respect to x and ¢ respectively. After replacing w,;
by u; wherever it occurs, one can split the LSC into an overdetermined system
by equating powers of uz¢, U, u, and us. This system can be solved by hand,
but it is easier to use computer algebra. The infinitesimal generator is a linear
combination of

0 0 B 0 0
N=5g Xz Kesupy,  Xasagotlin.
0 0 B 0 o
X5 = 2%— — zu—0 X¢ = dot— + 42— — 2
5= 2y Ty 6 =datg. +at g — (@ +2ug,
P
Xy = t)— : =Ugz ¢ - 1

Note that there is an infinite family of infinitesimal generators, which depend
upon solutions of the heat equation. The effect of these symmetries is to add
an arbitrary multiple of one solution to the original solution:

@ =u+eU(z,t), (11)

where U; = Up,,. This corresponds to the principle of linear superposition.
Similarly, every PDE that is linear (or linearizable by a point transformation)
has an infinite family of Lie point symmetries.



Example 5. The LSC for the Thomas equation, u,; = uzus — 1, is
D.D:Q = uD,Q + u D:Q when  uz = ugus — 1.
Once again, there is an infinite family of Lie point symmetry generators, spanned
by
T 7 ou T Tor ot
0

Xy =V(x,t)e'— : Vi =V, 12

{xv=venes vi-v] 12)

This suggests that the Thomas equation is linearizable to v, = v by a point
transformation. The required transformation is obtained by looking for variables

in which Xy generates linear superpositions. In this case v = —exp{—u} will
do, for then
6”2 = 9 .
Oou  Ov

4 Some uses of Lie point symmetries

4.1 Reduction of order

For ODEs, a one-parameter local Lie group of symmetries can be used to re-
duce the order of the ODE by one. In particular, first-order ODEs can be solved
completely. This is done by introducing a new set of coordinates that are suited
to the symmetries. In terms of these new canonical coordinates, nontrivial sym-
metries become translations between solutions (similar to I's in §2).

Let (r,s) be a pair of canonical coordinates, where s is the direction of
translation. Then the Lie symmetries are

(7,8) = (r,s +e),

and so a first-order ODE 3y’ = w(z,y) that admits such symmetries may be
rewritten in the form

ds
= — = Q(r). 13
s= T =) (13)
Note that 2 is independent of s, because s varies with €, whereas r and $ are

invariant. The transformed equation (13) is easy to solve:

s—l—c:/Q(r)dr.

The effect of the symmetry group is clear: each symmetry changes the arbitrary
constant of integration.

Canonical coordinates can be constructed systematically from the infinitesi-
mal generator X. This represents the tangent vector field, which is independent
of the coordinate system that is used. In canonical coordinates,

0
Xfa.

10



Therefore

or or
g(xay)a +77(Iay)a_y - Xr = 07
Js Js

This system of first-order linear PDEs can be solved by the method of charac-
teristics, which is a simple task for most symmetries of mathematical models
of physical systems. Thus, it is usually easy to obtain canonical coordinates;
any nondegenerate solution (r, s) of (14) will do. Canonical coordinates cannot
be defined at an invariant point; as X is zero there, the second equation of
(14) cannot be satisfied. Therefore it is usually necessary to use several sets of
canonical coordinates to cover all regions of the plane.

Example 1 (cont.) Recall that the ODE

,_ Yty —y—a
o+t +y—=x

has Lie symmetries generated by

In the region x > 0, the equations (14) for canonical coordinates have a well-
known solution, namely the polar coordinates

r=va?+y? s = tan"'{y/x}.

In these coordinates, (15) is transformed to

. 1
§=—-—1,
r(1—12)

which is undefined at the invariant point » = 0 and on the invariant solution
r = 1. The general solution of the transformed ODE is

7,,2

1—1r2

)

+ 11
s+c=-In
2

which can easily be rewritten in terms of x and y to yield the general solution of
(15) in the region > 0. The remainder of the plane can be treated similarly.

For a second-order ODE, the introduction of canonical coordinates enables
the ODE to be written in the form

§= Q(Tv‘é)a

11



which is equivalent to a first-order ODE for v = §. If the solution of this
‘reduced’ ODE is v = f(r,¢1) then

s+cp = /f(r,cl)dr.

Of course, there is no guarantee that the solution of the reduced ODE can be
found, unless a one-parameter Lie group of its symmetries is known. However,
if there are at least two independent infinitesimal generators for the original
ODE, it is almost always possible to arrange the reduction so that the reduced
ODE inherits some Lie symmetries, as follows. Calculate the commutator of
each pair of infinitesimal generators, which is the first-order partial differential
operator
[X1, Xo] = X1 Xs — X0 X,

It can be shown that each commutator is an infinitesimal symmetry generator,
and therefore the set of all infinitesimal generators is a Lie algebra. If one can
find a pair of generators X;, X; whose commutator is a multiple of X, write
the ODE in terms of the canonical coordinates obtained from X;; the reduced
ODE is then guaranteed to inherit the symmetries generated by X, which can
be used to solve it.

Example 3 (cont.) Earlier, we found that the Lie point symmetry generators
of the second-order ODE

1" Y
Yy =—
Y2
are linear combinations of
0 0 0
1 Iaz + yay ) 2= 5
The commutator of X; with X5 is
(X X]*—22 = —-2X.
1, A2] — Oz = 2.

Therefore, according to the above recipe, we should use canonical coordinates
determined by X5 to reduce the ODE. The simplest choice of such coordinates
is (r,s) = (y,z). Therefore § = 1/y/, and

Let v = $; then the reduced ODE is

V=——.
r2

It is worth noting that, in terms of these canonical coordinates, the symmetries
generated by X are
(7,58) = (er, e*s)

12



Therefore
0= ds = eSE =ev
dr dr ’
and so the infinitesimal generator for these symmetries on the (r,v) plane is
X = r% + v% .
As promised, these are symmetries of the reduced ODE. This ODE happens to
be separable, so it can be solved without using canonical coordinates for X1,
but the recipe ensures that such coordinates are available. At this stage, the
solution is easy to complete, and is left as an exercise.
Suppose that we had reduced the original ODE using the ‘wrong’ generator
X1. Then, in terms of the canonical coordinates (r,s) = (y/+/z, In(x)/2), the
original ODE becomes

§=—(2/r+7)(8)> —2(5)%/r2.

The reduced ODE does not inherit the symmetries generated by Xs, and it
appears to be intractable.

For simplicity, we have restricted attention to first- and second-order ODEs.
However, the same ideas are equally applicable to higher-order ODEs. The
structure of the Lie algebra determines whether or not there exists a pair of
generators such that [X;, X;] is a multiple of X;. More generally, the Lie algebra
determines whether or not an ODE can be integrated step-by-step. For further
details, consult [5, 6].

4.2 Invariant solutions

Most PDEs do not have a ‘general solution,” but symmetries can be used to find
families of invariant solutions. Just as for invariant solutions of ODEs, we seek
solutions of the differential equation that also satisfy @@ = 0. Invariant solutions
commonly include travelling waves and similarity solutions (which can be found
almost by inspection), but they also include solutions that are not obvious. It is
possible to classify all invariant solutions, using the structure of the Lie algebra.
In the following, attention is restricted to a few examples, in order to convey
the basic method.
Given an infinitesimal generator,

X = (s tow) 2+ (s tow) 2 e o) 2

ox ot Ju
the solutions of @ = 0 are first integrals of the characteristic equations
dr dt  du
& T

All such first integrals are invariant under the symmetries generated by X. If r
and v are functionally independent first integrals, and if v depends nontrivially

13



on u, then we can substitute first integrals of the form v = F(r) into the original
PDE. In general, the PDE will reduce to an ODE for F. The solution of this
ODE yields a family of invariant solutions to the original PDE. If  depends on
u, it is also necessary to seek solutions of the form r = ¢, because such solutions
cannot be written in the form v = F(r).

Example 4 (cont.) We shall first seek invariant solutions of the heat equa-
tion, u; = Uz, under the symmetries generated by

0 0
X5 =2t— —zu—.
5 ar  “ou
The characteristic equations are
dr dt  du
26t 0 —zu’

which have two functionally independent first integrals:

¢ 22
r=t, v=uexpl — .
Pl

v hr

into the heat equation, which yields the reduced ODE

Therefore, we substitute

F'(t) = —%F(t).

The general solution of this ODE is F(t) = ¢//t; hence the invariant solutions
under the symmetries generated by X5 are the Gaussian profiles

c x2
U= —F4 €ex —— .
Vi P 4t

Applying the same procedure for the symmetries generated by

0 0 0
Xo =dat— + 4> — — (2 + 2t)u—
o = Aty TG — @ gy
yields the invariants
x ; x?
= — = X — .
r=7 v=uvitexp|

The ODE that is obtained by substituting



into the heat equation is F”" = 0, whose solution is F(r) = ¢17 + c2. Therefore
invariant solutions of the symmetries generated by Xg are a linear superposition

of
R x?
P

and the solutions obtained from X5.

The heat equation has several large families of invariant functions, which
have been classified [6]. The same is true of many important physical systems
[7, 8].

4.3 Some other uses

The methods that have been described up to this point are very powerful, and
can be applied to almost any differential equation. They are based on the simple
idea of a one-parameter Lie group. However, there are also many ways of using
symmetries that use information about all of the Lie point symmetries. Here
are two examples; they are not discussed in detail, but the interested reader is
referred to the literature.

e Provided that the number of linearly independent symmetry generators
exceeds the order of the ODE, it is possible to construct the first integrals
of the ODE directly from the symmetries; there is no need to consider the
structure of the Lie algebra [5].

e Lie symmetries can be used to construct the discrete symmetries of a
given differential equation [9, 10]. It is very hard to construct discrete
symmetries directly from the symmetry condition; I know of only one
substantial example in which this has been achieved [11]. However, it is
possible to find discrete symmetries indirectly by looking at their action
on the Lie algebra. Such actions have been classified for almost all Lie
algebras of symmetries of ODEs [12]. Discrete symmetries have many uses;
most notably, they affect the stability of nonlinear dynamical systems [13].

5 Higher symmetries

To find Lie point symmetries, one must split the LSC into an overdetermined
system of PDEs. For ODEs of order n > 3, there is no need for @ to be linear
in y'; the LSC can be split by equating powers of y”’. More generally, Q may
depend on any of the variables z,v,v/, ...,y V), provided that the form of
@ enables the LSC to be split in a way that enables any unknown functions
to be determined. All such symmetries are collectively known as dynamical
symmetries; as in Theorem 1, the independent variables are fixed.

A similar idea can be extended to PDEs; here Q may depend upon arbitrarily
many derivatives of the dependent variable. Such symmetries are called gen-
eralized or Lie-Bdcklund symmetries. For PDEs that come from a variational

15



formulation, Noether’s Theorem enables conservation laws to be derived from
symmetries that leave the variational problem unchanged; typically, these are
generalized symmetries. The nontrivial conservation laws of a PDE for u(x,t)
are expressions of the form

Dt(F) + Dz(G) =0,

that hold on solutions of the PDE, but do not hold identically. Integrable
systems (such as the Korteweg—de Vries equation) are partly characterized by
the existence of an infinite number of conservation laws.

Even if a PDE does not have a known variational formulation, its conserva-
tion laws can be found systematically by a direct method that is analogous to
the search for symmetries [6]. There are several different ways of implementing
this approach with computer algebra [14, 15].

6 Some recent developments

This section highlights two new areas of symmetries research that promise to
be widely applicable, for which computer algebra will be needed.

6.1 Symmetries of initial-value problems

So far, we have not referred to initial conditions or boundary conditions, but
such conditions are usually stated in the formulation of a physical problem.
Surprisingly, it is not generally true that the symmetries of an initial-value
problem are also symmetries of the unconstrained differential equation. For
example, the set of solutions of " = 0 subject to the initial condition " (0) = 0
is the same as the set of solutions of y” = 0. However, y/ = 0 has symmetries

generated by
0

X=yz
whereas "/ = 0 has no such symmetries. It has been shown that (subject to
technical conditions) the Lie point symmetries of ODEs with specified initial
conditions can be constructed with the aid of Taylor series [16]. Whilst this is
far more computationally intensive than the methods described in §3, it is a
way of solving some problems that cannot be solved by the standard approach.

6.2 Difference equations

Within the numerical analysis community, there is a rapidly-growing interest in
geometric integration, which describes the transfer of geometric structures from
a given differential equation to its numerical approximation. Such structures
include symmetries, conservation laws, and symplectic structures [17].

The geometric structure of difference equations is also important for inte-
grable systems, as there are large classes of discrete integrable systems. At
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present, far more is known about continuous integrable systems than about
their discrete counterparts.

The problem of finding local symmetries of difference equations can be tack-
led in much the same way as for differential equations, but the LSC is a func-
tional equation, rather than a PDE. Nevertheless, a technique for obtaining the
solutions of the LSC has recently been developed [18]; this technique has also
been used to determine conservation laws of partial difference equations [19].
At present, the calculations cannot usually be done entirely by hand or by com-
puter algebra (due to weaknesses in routines for solving differential equations).
It remains to be seen whether it is possible to develop a computational package
that will do this type of calculation reliably.

7 Conclusions and further reading

This article has shown something of the power and scope of symmetry methods.
Of necessity, it has only touched the surface of what is possible; indeed, cur-
rent research on symmetries suggests that there are simple, widely-applicable
methods still to be discovered.

For readers who would like a fuller introduction, I recommend the texts by
Stephani [20] and Hydon [5]. The outstanding advanced text by Olver [6] is es-
sential reading for anyone who is interested in research into symmetry methods.
Ovsiannikov [21] and Bluman & Kumei [22] each include a number of useful
results that do not appear in other texts.

The Lie symmetries and conservation laws of many physically-important
systems have been classified; the first two volumes of a handbook of symmetry
analysis edited by Ibragimov [7, 8] are excellent sources for such classifications.
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Appendix

Here is the Maple code that was used to obtain the Lie point symmetries of the
ODE y” = y//y?. For brevity, the output is omitted here, as it has been included
in §3 of the main text. For more information, refer to the Maple documentation
for the commands rifsimp and odepde.

> restart:
> with(DEtools):

First define the ODE whose symmetries are to be found.
> 0DE:=diff (y(x),x,x)-diff (y(x),x)/y(x)"2;
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The DEtools command "odepde" creates the LSC, whose numerator is
split into an overdetermined system by "coeffs."
> overdetsys:={coeffs(numer (odepde (0DE, [xi,etal (x,y),y(x))),_y1)};

The above system of determining equations is greatly simplified
by "rifsimp."
> simplesys:=rifsimp(overdetsys) ;

The simplified system is easily solved by hand;

however, "pdsolve" will also do the job.
> pdsolve(simplesys[’Solved’]);
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