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tAn analogue of the Poin
ar�e lemma for exa
t forms on a latti
e is statedand proved. Using this result as a starting-point, a variational 
omplex fordi�eren
e equations is 
onstru
ted and is proved to be lo
ally exa
t. Theproof uses homotopy maps, whi
h enable one to 
al
ulate Lagrangians fordis
rete Euler-Lagrange systems. Furthermore, su
h maps lead to a system-ati
 te
hnique for deriving 
onservation laws of a given system of di�eren
eequations (whether or not it is an Euler-Lagrange system).1



1 Introdu
tionMost partial di�erential equations (PDEs) that are used as mathemati
almodels have some interesting geometri
al features, the most 
ommon ofwhi
h are symmetries and 
onservation laws. If the PDE 
omes from a vari-ational prin
iple, its variational symmetries and nontrivial 
onservation lawsare related to one another by Noether's Theorem [34, 4℄. There are variantsof Noether's Theorem for Hamiltonian and multisymple
ti
 systems, whi
hhave a stru
tural 
onservation law for the (multi-)symple
ti
 two-form [5, 6℄.Mu
h information about a given PDE 
an be gleaned from its geomet-ri
al stru
tures, whi
h a
t as 
onstraints on the behaviour of the solutions.Therefore it is reasonable to try to in
orporate these stru
tures into numeri
almethods for solving the PDE. Various approa
hes have been developed, ea
hof whi
h preserves a parti
ular geometri
 feature; together, these approa
hesform the dis
ipline of geometri
 integration. For example, low-order 
onser-vation laws of hyperboli
 PDEs 
an be preserved by using a Lax-Wendro�s
heme [17℄. For some integrable PDEs, there are methods that that preserveone or two 
onservation laws [15℄. If a di�erential equation is derived froma known variational problem, and if variational symmetries are preserved bythe dis
retiztion, then a dis
rete version of Noether's Theorem [24℄ 
an beused to obtain di�eren
e analogues of the 
orresponding 
onservation laws[31, 38, 30℄. At present, there is no systemati
 approa
h to preserving ar-bitrary 
onservation laws of PDEs that do not fall into any of the above
ategories.It is sometimes desirable to preserve symmetries that are not variational.In parti
ular, if the intermediate asymptoti
 behaviour of a given PDE iss
aling-invariant, dis
retizations that preserve su
h invarian
e are highly ef-2



fe
tive. They 
an reprodu
e the 
orre
t asymptoti
 behaviour, even as sin-gularities are approa
hed [8℄. For more general symmetries, various adaptivemethods have been proposed that retain Lie symmetries exa
tly [10℄.Throughout this paper, we fo
us on 
onservation laws and (to a lesserextent) symmetries. However there is a rapidly-growing body of work onnumeri
al methods that preserve other geometri
 stru
tures. These methodsin
lude symple
ti
 and multisymple
ti
 integrators [36, 7, 30℄, dis
rete gra-dients [32℄, and Lie group solvers [21, 22, 33℄. (A good starting-point for thenew
omer is the overview by Budd & Iserles [9℄).There is a well-developed set of mathemati
al tools for �nding symme-tries and 
onservation laws of a given PDE. Generators of one-parameterLie groups of symmetries 
an be determined straightforwardly from the lin-earized symmetry 
ondition, a te
hnique that 
an also be used to obtain somegeneralized symmetries [34℄. (For an elementary introdu
tion to symmetrymethods, 
onsult [18, 37℄.) There are many 
omputer algebra pa
kages thatwill help with the work of �nding these symmetries (see Hereman's review [16℄for further information). However, it is not usually possible to �nd all gener-alized symmetries of a given PDE. If the PDE is the Euler-Lagrange equationfor a known variational problem, and if some generalized symmetries 
an befound, it is easy to 
he
k whi
h of these are variational symmetries. ThenNoether's Theorem 
an be used to 
onstru
t the 
orresponding 
onservationlaw.These well-known methods lead to several questions. Is it possible to �ndout whether a given PDE is an Euler-Lagrange equation? If so, is there ate
hnique for determining a 
orresponding variational problem? Is it possibleto 
onstru
t 
onservation laws systemati
ally if the PDE has no variational,Hamiltonian, or multisymple
ti
 formulation? Even if there is su
h a formu-3



lation, 
an one determine 
onservation laws if no variational symmetries areknown (so that Noether's Theorem 
annot be used)? These questions, whi
hare related to one another, 
an be answered with the aid of the variational
omplex. 0# in
lusionR 
 (
onstant)# in
lusion�0 f(x; u(N))# Grad�1 fi(x; u(N)) dxi# Curl�2 fij(x; u(N)) dxi ^ dxj ; (i < j)# Div�3 f(x; u(N)) dx1 ^ dx2 ^ dx3# Euler�1� R fF (x; u(N)) � dug dx# Helmholtz�2� R fdu ^ D(du)g dx#�3�#...Figure 1: The three-dimensional 
ontinuous variational 
omplexThe 
ontinuous variational sequen
e for a three-dimensional base spa
eis given in Figure 1. This sequen
e has two types of ve
tor spa
e: the total4



r-forms, �r, and the fun
tional r-forms, �r� (see Olver [34℄ for details). Atypi
al element of a spa
e in the sequen
e appears on the right. Fun
tionsmay depend on the dependent variables u and their derivatives up to some�nite order N ; these are denoted 
olle
tively by u(N). We adopt the summa-tion 
onvention: where an index o

urs twi
e in a term, summation over allpossible values of the index is implied. The integralZ f�g dx � Z f�g dx1 dx2 dx3denotes an element of an equivalen
e 
lass; two 
oeÆ
ient fun
tions are equiv-alent if they di�er by a total divergen
e. In �2�, the matrix-valued di�erentialoperator D is skew-adjoint with respe
t to the L2 inner produ
t.If the fun
tions depend on the independent variables only then the �rstpart of the sequen
e is well-known (this 
onsists of the ve
tor spa
es downto �3). Provided the domain of de�nition of fun
tions is di�eomorphi
 toR3 (or C 3), the gradient of a fun
tion is zero if and only if it is 
onstant.Under the same 
ondition, the 
url of a ve
tor �eld f(x) is zero if and onlyif f(x) is a gradient, and the divergen
e of f(x) is zero if and only if f(x)is a 
url. It is less well known that su
h ve
tor �elds may also depend onarbitrary fun
tions of the dependent variables and their derivatives; theseextra variables are regarded as fun
tions of the independent variables in ea
hof the ve
tor spa
es �r. (Consequently, total derivatives are used in theoperators Grad, Curl, and Div.) This result is proved 
onstru
tively, usinghomotopy operators that take an element of the kernel of one map to anelement of the pre-image.The above sequen
e and its maps form a 
omplex, be
ause the image ofone map is 
ontained in the kernel of the next (irrespe
tive of the domain).For example, Div(Curl(�)) is identi
ally zero. More generally, a 
omplex is5



a sequen
e of ve
tor spa
es with maps between 
onse
utive elements in thesequen
e, su
h that the 
omposition of any two su

essive maps is identi
allyzero. A 
omplex is exa
t if the image of ea
h map is pre
isely the kernel ofthe following map. Vinogradov [39℄ was the �rst to prove that the variational
omplex is formally lo
ally exa
t . Lo
al means that the domains of de�nitionof 
oeÆ
ient fun
tions are restri
ted to be open balls, or (more generally)to be \totally star-shaped." A mu
h simpler (
onstru
tive) proof due to IanAnderson is detailed in Olver [34℄; again, this uses homotopy operators. Thevariational 
omplex is a formal 
onstru
tion, with an underlying assumptionthat there are never any 
ontributions from the boundary of the domain; weshall use this assumption hen
eforth.The fa
t that the variational 
omplex is lo
ally exa
t has several uses.For example, if the Euler operator a
ting on a fun
tion is zero, that fun
tionis ne
essarily a total divergen
e. This result 
an be used to 
onstru
t s
alar
onservation laws systemati
ally [34, 1, 2℄. (Form-valued 
onservation laws
an be 
al
ulated with the aid of the variational bi
omplex, whi
h may beregarded as an extension of the variational 
omplex; see Anderson [3℄ fordetails.) Similarly, if a PDE P = 0 satis�es the Helmholtz 
ondition thenP = 0 is ne
essarily an Euler-Lagrange equation. Moreover, the Lagrangian
an be 
al
ulated with the aid of a homotopy operator.The above te
hniques 
an be used to �nd many of the geometri
 featuresof a given PDE. This raises a key question: to what extent 
an one do thesame thing for partial di�eren
e equations (P�Es)? To date, most of thevarious di�erent approa
hes to geometri
 integration have fo
used on pre-serving a single geometri
 feature. Given a 
lass of methods that preserve aparti
ular feature, is it possible to determine whi
h (if any) of the methodspreserve other geometri
 features? For example, given a 
lass of multisym-6



ple
ti
 integrators, 
an one �nd out whi
h symmetries or 
onservation lawsare preserved by ea
h dis
retization [29℄?Systemati
 te
hniques for determining some of the geometri
 stru
turesof a given P�E have been developed re
ently, although mu
h work still needsto be done. There are various te
hniques for �nding Lie symmetries; theydepend upon the type of symmetry that is sought. The development ofsu
h te
hniques was initiated by Maeda [27℄, who showed that autonomoussystems of �rst-order ordinary di�eren
e equations (O�Es) 
an be simpli�edor solved with the aid of Lie point symmetries. Maeda also showed that thelinearized symmetry 
ondition for su
h O�Es amounts to a set of fun
tionalequations. In general, these are hard to solve, but Maeda des
ribed twoexamples for whi
h a very restri
tive ansatz yields Lie symmetries. Gaeta[13℄ used formal series expansions to derive some symmetries of those systemsof O�Es that are dis
retizations of 
ontinuous systems. Maeda's ideas havebeen extended in various ways. Series-based methods have been developed forobtaining some solutions of the linearized symmetry 
ondition for O�Es [35,25℄ and P�Es [12, 25℄. Series expansions 
an be 
al
ulated if the symmetry
ondition has a �xed point. However, it may not be possible to sum theseries and obtain solutions in 
losed form, in whi
h 
ase the symmetries arenon-lo
al. Another approa
h uses di�erential elimination to determine lo
alsymmetries in 
losed form [19℄. This is a systemati
 method, but it is also
omputationally intensive. As with symmetry methods for PDEs, it is limitedby the generality of the 
lass of symmetries being sought.To obtain 
onservation laws of an arbitrary P�E, irrespe
tive of whetheror not there is an underlying variational stru
ture, a di�eren
e analogue ofthe variational 
omplex is needed. The purpose of the 
urrent paper is tointrodu
e su
h a 
omplex, and to show that it is exa
t on topologi
ally trivial7



domains. We present a homotopy operator that 
an be used systemati
allyto 
onstru
t 
onservation laws. This is not a trivial generalization of the
ontinuous homotopy operator, be
ause the independent variables lie on alatti
e rather than a 
ontinuous spa
e. Furthermore, the di�eren
e operatordoes not a
t like a derivative: there is no analogue of the Leibniz produ
trule.Although the independent variables are dis
rete, the dependent variablesare 
ontinuous (just as for PDEs). Consequently, parts of the new 
omplexthat involve the dependent variables 
orrespond 
losely to parts of the 
ontin-uous 
omplex; wherever it is possible, we develop analogues of the stru
turesdes
ribed in x5.4 of Olver [34℄. As early as 1985, Kupershmidt [23℄ formu-lated the di�eren
e analogue of �1�, in order to provide an algebrai
 basis forthe study of integrable di�eren
e equations. However, this investigation wasnot extended to the rest of the 
omplex.We introdu
e the 
omplex in three stages. In x2 we 
onstru
t the dif-feren
e 
omplex, whose elements depend only on the latti
e points. Thedependent variables are added in x3, whi
h 
ompletes the �rst (or `horizon-tal') part of the 
omplex; the analogues of �r� are also des
ribed. In x4 thewhole 
omplex is spli
ed together. Some appli
ations are presented in x5;others 
an be found in [20, 28℄.2 The di�eren
e 
omplex2.1 Latti
e 
oordinates and the shift mapsThroughout this se
tion, we retri
t attention to spa
es that involve onlythe latti
e 
oordinates n = (n1; : : : ; np) 2 Zp. These 
oordinates will be8



the independent variables when we 
onsider di�eren
e equations (from x3onwards). The algebra of fun
tions depending only on the latti
e variables nis written as B. Unlike Rp , the latti
e does not have a di�erentiable stru
ture;instead it has an ordering on ea
h ni. Consequently, the natural operatorson the latti
e are the shift maps,Sk : ni 7! ni + Æik; k = 1; : : : ; p ;here Æki is the Krone
ker delta. To simplify things, let 1k be the p-tuple whoseonly nonzero entry is in the kth pla
e; this entry is 1. Then the kth shift mapis Sk : n 7! n + 1k :The a
tion of ea
h shift map extends naturally to any fun
tion f(n) 2 B asfollows: Sk : f(n) 7! f(n+ 1k): (1)Note that the shift maps 
ommute (i.e. SkSj = SjSk), and ea
h shift map isa homomorphism on B:Sk ff(n)g(n)g = f(n+1k)g(n+1k) = Sk ff(n)gSk fg(n)g ; 8f(n); g(n) 2 B:2.2 The di�eren
e mapLet Ex(p) be the exterior algebra on p symbols �1; : : :�p, so that�2i = 0; �i�j = ��i�j:De�nition 2.2.1. We de�ne the algebra of di�eren
e forms to bepEx = [n2ZpEx(p)9



with 
oeÆ
ients in B and pointwise multipli
ation and addition. A typi
alelement of pEx takes the form! = P0(n) + pXr=1 Xi1<:::<ir Pi1i2:::ir(n)�i1�i2 : : :�ir (2)where P0(n); Pi1i2:::ir(n) 2 B.De�nition 2.2.2. The a
tion of ea
h shift map on elements of pEx is de�nedby (1), together with Sk(�i) = �i andSk(�!) = Sk(�)Sk(!); �; ! 2 pEx;so that the a
tion of Sk on the typi
al element (2) isSk! = Sk(P0(n)) + pXr=1 Xi1<:::<ir Sk(Pi1i2:::ir(n))�i1�i2 : : :�ir :There is a natural grading of pEx. We say that ! is a di�eren
e r-form andwrite ! 2 pExr if ! = Xi1<:::<ir Pi1i2:::ir(n)�i1�i2 : : :�ir :The di�eren
e 0-forms are de�ned to be fun
tions of n, so that pEx0 = B.De�nition 2.2.3. We de�ne the di�eren
e map � : pExr�!pExr+1 to be�(!) = pXk=1�k � (Sk � id)! (3)for r = 0; : : : ; p�1; here id denotes the identity map. On the typi
al element(2), we have�(!) = pXk=1(Sk � id)(P0(n))�k10



+ pXk=1 p�1Xr=1 Xi1<:::<ir(Sk � id)(Pi1:::ir(n))�k�i1 : : :�ir :In parti
ular, �(ni) = �i :Example 2.2.4. If ! = (n1 + (n2)2)�1 + n1�2 then�(!) = ��1(�1 +�2) + �(n2 + 1)2 � (n2)2��2�1� = �2n2�1�2:The maps (Sk� id) 
ommute pairwise, whereas the symbols �i anti
om-mute pairwise; it follows that �2 = 0.De�nition 2.2.5. The di�eren
e 
omplex is0�!R {�! pEx0 ��! pEx1 ��! � � � ��! pExp ��! 0 (4)where { is the in
lusion map.It is important to note that � is not a derivation, that is,�(!�) 6= (�!)� � !(��):Furthermore, although the di�eren
e 
omplex mimi
s the de Rham 
omplex,there is no obvious sense in whi
h the spa
e pEx1jn 
an be 
onsidered asthe dual spa
e to some tangential obje
t. The geometri
 meaning of thedi�eren
e 
omplex is still being investigated.Shortly, we shall show that the di�eren
e 
omplex is lo
ally exa
t. Firstthough, we make some general remarks on 
omplexes and the use of homo-topy maps to prove exa
tness.
11



2.3 Homotopy mapsA 
omplex is a sequen
e of linear spa
es fAig together with a 
olle
tion oflinear maps Æi : Ai�!Ai+1 su
h thatÆi+1 Æ Æi = 0; for all i:This means that im Æi � ker Æi+1 (5)for all i. Often a 
omplex is written as: : :�!Ai�1 Æi�1�! Ai Æi�! Ai+1 Æi+1�! : : :One way to show that the 
omplex is exa
t, i.e. thatker Æi+1 = im Æi (6)for ea
h i, is to 
onstru
t a sequen
e of so-
alled homotopy mapsHi : Ai�!Ai�1su
h that Hi+1Æi + Æi�1Hi = id; for all i: (7)In pi
tures, one has : : : Ai�1 Æi�1�! �Hi Ai Æi�! �Hi+1 Ai+1 : : :If ! 2 ker Æi, then evaluating equation (7) on ! yieldsÆi�1Hi! = !:Thus ! 2 im Æi�1, and we haveker Æi � im Æi�1 (8)Putting (8) and (5) together for all i yields the result (6). What is more,Hi(!) is a pre-image (under Æi�1) of !, so the proof of exa
tness is 
onstru
-tive. 12



2.4 Lo
al exa
tness of the di�eren
e 
omplexThe Poin
ar�e Lemma states that the de Rham 
omplex is exa
t over star-shaped domains; this means that there is a point in the domain that 
an berea
hed from any other point in the domain along a straight path. Indeed,the homotopy map uses an integral along su
h a path. The latti
e is nota 
ontinuous spa
e, so we should not expe
t to be able to use the same
onstru
tion. However, we 
an make use of the ordering on Z to 
onstru
t ahomotopy map.De�nition 2.4.6. A 
ube-shaped domain in Zp is a set of all latti
e pointsk = (k1; : : : ; kp) su
h thatni0 � ki � ni; i = 1; : : : p;for some integers ni0 and ni. In other words, a 
ube-shaped domain 
onsistsof all points that lie within a 
ube with opposite verti
es n0 = (n10; : : : ; np0)and n = (n1; : : : ; np).De�nition 2.4.7. Given a 
ube-shaped domain, a path from n0 to n isan ordered set of latti
e points kj; j = 0; : : : ; jn, that has the followingproperties: k0 = n0, kjn = n, and for ea
h j < jnkj+1 � kj = 1i;for some i. In other words, a path is a sequen
e of latti
e points su
h thatea
h su

essive point is one step 
loser to n than its prede
essor. Note thatalthough there may be many paths from n0 to n, they all have the samenumber of points. Paths between any pair of opposite verti
es of the 
ubeare de�ned similarly. An edge path is a path whose points all lie on the edgesof the 
ube.We 
an now state the di�eren
e analogue of the Poin
ar�e Lemma.13



Lemma 2.4.8. The di�eren
e 
omplex (4) is exa
t on 
ube-shaped domains;hen
e ker�jpExr = im�jpExr�1; r = 1; : : : p� 1;and ker�jpEx0 = R.To prove this result, we need to 
onstru
t a set of homotopy maps for thedi�eren
e 
omplex. For simpli
ity, we 
hoose our latti
e 
oordinates so thatn0 = 0 and all 
oordinates of ea
h point in the domain are non-negative. Wealso 
hoose the edge path 
onsisting of the points(k; 0; : : : ; 0); k = 0; 1; : : : ; n1;(n1; k; 0; : : : ; 0); k = 1; : : : ; n2;...(n1; n2; : : : ; np�1; k); k = 1; : : : ; np:This allows us to 
onstru
t the homotopy map by indu
tion on the number ofedges needed to get to n (that is, on the dimension of the latti
e). However,it is easy to modify the formulae and arguments that follow, to allow forother edge paths from an arbitrary origin to a generi
 point n in the domain.De�ne the proje
tion maps�j : jExr�!j�1Exr; �j(!) = !jnj=0;�j=0 (9)and note that �r Æ �r+1 Æ � � � Æ �p! = 0 (10)for all ! 2 pExr, r � 1.We introdu
e a formal analogue of the interior produ
t of a ve
tor �eldand a di�erential form, by de�ning the derivations �niy : jExr�!jExr�1 gen-erated by �niy�k = Æik, where Æ is the Krone
ker symbol. This is extended to14



all di�eren
e forms by linearity and the produ
t rule. Let hi : jExr�!jExr�1be de�ned by hi(!) = ni�1Xk=0 (�niy!) jni=k (11)For example,h3(�(n1; n2; n3)�1�3 + �(n1; n2; n3)�1�2) = n3�1Xk=0 ��(n1; n2; k)�1:Notes: If ! is a 0-form then hi(!) = 0; i = 1; : : : ; p. We also use the
onvention that any sum whose lower limit ex
eeds its upper limit is assignedthe value zero, so hi(!) = 0 if ni = 0.Theorem 2.4.9. Under the above assumptions on the domain of de�nitionof ! 2 pExr=B, leth(!) = hp(!) + p�1Xi=1 hi (�i+1 Æ �i+2 Æ � � � Æ �p!) : (12)Then HB(!) = 8<: h(!) ! 2 pExr; r > 0!jn1=���=np=0 ! 2 pEx0 (13)is a homotopy operator for the 
omplex pEx over B.Example 2.4.10. If p = 2 then for 1-forms ! = �(n1; n2)�1 + �(n1; n2)�2the homotopy map ish(!) = n2�1Xk=0 �(n1; k) + n1�1Xk=0 �(k; 0)whereas for 2-forms ! = f(n1; n2)�1�2 the homotopy map ish(!) = � n2�1Xk=0 f(n1; k)�1:15



Notes:1. If p = 1 then h(!) = h1(!) is the operator that is used to solve theordinary di�eren
e equation (S1 � id) g(n1) = f(n1) for g given f .2. If r � 1 then, from (10), the sum in (12) need only be taken from i = rto i = p� 1.3. If ~! = �p! then h(!) = hp(!) + h(~!) (14)Proof: It is suÆ
ient to prove thath(�!) + �h(!) = ! � �1 Æ � � � Æ�p!: (15)To see this, note that if ! 2 pExr and r � 1 then, by (10), �1 Æ � � � Æ�p! = 0and thus HB = h is a homotopy map. To show exa
tness at pEx0, we needto show that h�(!) + !jn1=���=np=0 = !for ! 2 pEx0. But this is pre
isely (15), sin
e! 2 pEx0 =) h(!) = 0; �1 Æ � � � Æ �p! = !jn1=���=np=0:The proof of (15) is by indu
tion on p. First note that if ! 2 1Ex0 then! = f(n1) for some fun
tion f , and thereforeh�(!) + �h(!) = h(ff(n1 + 1)� f(n1)g�1)= Pn1�1k=0 (f(k + 1)� f(k))= f(n1)� f(0)= ! � !jn1=0= ! � �1!: (16)
16



Also if ! 2 pExp then ! is a multiple of the p-form �1�2 � � ��p and so�p! = 0 and �! = 0. Hen
eh�(!) + �h(!) = �hp(!)= ��Pnp�1k=0 (�npy!) jnp=k�= (Sp � id)�Pnp�1k=0 !jnp=k�= Pnpk=0 !jnp=k �Pnp�1k=0 !jnp=k= != ! � �1 Æ � � � Æ �p!: (17)
Now �x r < p and suppose that HB is a homotopy operator for all p0 < p.We set ~! = �p(!) and observe that ~! 2 p�1Exr; the indu
tion hypothesisimplies that h�~! +�h~! = ~! � �1 Æ � � � Æ �p�1~! (18)The last term is nonzero only if r = 0. Note that�p(�!) = �p(Ppj=1�j(Sj � id)!)= Pp�1j=1�j(Sj � id)(�p!)= �~!and so, from (14), h(�!) = hp(�!) + h(�p�!)= hp(�!) + h(�~!):Also from (14), �h(!) = �hp(!) + �h(~!);and therefore, using (18),h�(!) + �h(!) = hp(�!) + �hp(!) + ~! � �1 Æ �2 Æ � � � Æ �p�1~!= hp(�!) + �hp(!) + �p(!)� �1 Æ �2 Æ � � � Æ �p!:17



So to prove the 
orre
tness of the homotopy formula, we need only show thathp(�!) + �hp(!) = ! � �p!:But this 
an be veri�ed by dire
t 
al
ulation, as follows.hp(�!) +�hp(!)= np�1Xk=0  �npy pXj=1 �j(Sj � id)!!!����np=k+ pXj=1 �j(Sj � id) np�1Xk=0 (�npy!) ���np=k!= p�1Xj=1 np�1Xk=0 (�npy (�j(Sj � id)!) + �j(�npy(Sj � id)!)) ���np=k+Pnp�1k=0 (�npy (�p(Sp � id)!)) ���np=k +�p(�npy!)= �npy(�p!)� (�npy(�p!))jnp=0 +�p(�npy!)= ! � !jnp=0;�p=0= ! � �p!as required, where we have used the identity �npy�j� + �j(�npy�) = Æpj �.Equations (16) and (17) show that (15) holds for p = r if r � 1 and for p = 1if r = 0. By indu
tion, (15) holds for all p, r, as required. �One question remains: why did we require the domain to be 
ube-shaped?It turns out that for ea
h path along the edges of a 
ube-shaped domain thereis an operator ~h whi
h plays the role of h. After a long 
al
ulation, it 
anbe shown that ~h(!) = h(!), whi
hever edge path is taken between 0 andn. Now 
onsider the two-dimensional latti
e with the point (1; 1) removed,whi
h is not a 
ube-shaped domain. The di�eren
e 1-form!(n1; n2) = 8<: �1 ; n1 = 1; n2 � 2;0 ; otherwise; (19)18



is 
losed, but it 
annot be obtained by applying the di�eren
e operator toany singled-valued fun
tion on the pun
tured latti
e. There are exa
tly twopaths between (0,0) and (2,2). Our homotopy operator takes the path pass-ing below the deleted point (1,1) and gives the result h(!(2; 2)) = 0. Thehomotopy operator that takes the path passing over (1,1) is~h(!) = h1(!) + h2 (�1 !) ;this gives the result ~h(!(2; 2)) = 1. As the result is path-dependent, the1-form ! is not exa
t. This imitates what happens in the 
ontinuous 
ase:on the pun
tured plane, there are 1-forms that are 
losed but not exa
t.In fa
t, the requirement that the domain is 
ube-shaped is slightly morerestri
tive than is ne
essary. Suppose that the domain 
ontains a point 0su
h that every other point n in the domain 
an be rea
hed by a path P thatis a sequen
e of 
onse
utive edge paths along 
ube-shaped subdomains. (By
onse
utive, we mean that the last point of the edge path in one subdomain
oin
ides with the �rst point of the edge path in the next subdomain.) Thenour homotopy operator 
an be modi�ed so that it follows the path P, whi
hproves that the di�eren
e 
omplex is exa
t on any su
h domain. However,the details are too lengthy to be in
luded in this paper.3 The Horizontal, Verti
al and Verti
al Fun
-tional ComplexesFor di�eren
e equations on a p-dimensional latti
e, the independent variablesare n = (n1; : : : ; np). The dependent variables un = (u1n; : : : ; uqn) are assumedto vary 
ontinuously and to take values in R. A smooth fun
tion depending19



on n, u�n and �nitely many iterates of u�n is written as P [u℄. The algebra ofsu
h fun
tions is denoted by A.If we regard un as a fun
tion of n, the shift map Sk a
ts on the dependentvariables as follows: Sku�n = u�n+1k : (20)We write the 
omposite of shifts using multi-index notation asSm = Sm11 : : : Smpp (21)so that u�n+m = Smu�n. The a
tion of Sk on a typi
al element of A is givenby SkP (n; : : : ; u�n+m; : : :) = P (n+ 1k; : : : ; u�n+m+1k; : : :) (22)3.1 The Horizontal ComplexDe�nition 3.1.11. We de�ne the algebra of horizontal forms to beEx = [n2ZpEx(p)with 
oeÆ
ients in A and pointwise multipli
ation and addition. This is likepEx, ex
ept that the 
oeÆ
ients now involve the dependent variables. We
all ! a total di�eren
e r-form and write ! 2 Exr if! = Xi1<:::<ir Pi1i2:::ir [u℄�i1�i2 : : :�ir :Also Ex0 = A.De�nition 3.1.12. We de�ne the total di�eren
e map � : Exj�!Exj+1 tobe �(!) = pXk=1�k � (Sk � id)! (23)20



for j = 0; : : : ; p� 1.Example 3.1.13. If ! = n1un1;n2un1+1;n2�2 then�(!) = �(n1 + 1)un1+1;n2un1+2;n2 � n1un1;n2un1+1;n2��1�2:The proof that �2 = 0 dupli
ates the proof that �2 = 0. Note that if !is a fun
tion of the independent variables only then �! = �!.Theorem 3.1.14. The horizontal 
omplex0�!R {�! Ex0 ��! � � � ��! Exp (24)is exa
t.The proof will be given after we have introdu
ed the analogue of the higherEuler operators.3.2 Verti
al formsDe�nition 3.2.15. A verti
al r-form is a �nite sumbw = X�;m1:::mr P �m1:::mr [u℄du�1n+m1^ : : :^du�rn+mrwhere P �m1:::mr[u℄ 2 A. We de�ne the di�erential bd to bebd( bw) = X�;mj X�;m1:::mr ��u�n+mj P �m1:::mr[u℄du�n+mj^du�1n+m1^ : : :^du�rn+mr:Example 3.2.16. If bw = nundun+1 � u2n+2dun+2 then bd bw = ndundun+1.Any given verti
al form 
an depend on only �nitely many of the iterates;therefore the b� 
omplex with di�erential bd is an extension of the well-known21



de Rham 
omplex, with independent variables u�n+m; the ni play the role ofparameters. Indeed, bd is bilinear, is a derivation,bd(bw^b�) = d bw^b� + (�1)r bw^bd b�and satis�es bd 2 = 0. The Poin
ar�e lemma for the 
ontinuous verti
al 
omplexextends immediately to yield the following result.Theorem 3.2.17. The verti
al 
omplexb�0 bd�! b�1 bd�! b�2 bd�! : : : (25)is exa
t.Proof: De�ne the ve
tor �eldvu =X�;m u�n+m ��u�n+mand the homotopy map bh : b�r+1�!b�rby bh(b!) = Z 10 vu y b![�u℄ d�� (26)where in b![�u℄ ea
h u�n+m is repla
ed by �u�n+m and ea
h du�n+m is repla
edby �du�n+m. By the de�nition of fun
tions in A, the number of terms invu y b! is �nite.It is a standard 
al
ulation thatbhbd + bdbh = id:Hen
e if bd b! = 0 then bdbhb! = b!, showing that ker bdj�j+1 � bd(b�j). The reversein
lusion follows from bd 2 = 0. �22



Example 3.2.18. If b! = nun+1dundun+1 then b![�u℄ = �3nun+1dundun+1and 1�vuyb![�u℄ = �2 �nunun+1dun+1 � nu2n+1dun�bh(b!) = 13(nunun+1dun+1 � nu2n+1dun)(bdbh+ bhbd)(b!) = bdbh(b!) as bd(b!) = 0= 13(nun+1dundun+1 + 2nun+1dundun+1)= b!De�nition 3.2.19. The a
tion of ea
h shift map on verti
al forms is de�nedby Sk(bw + b�) = Sk bw + Skb�;Sk(
bw) = 
Sk bw; 
 2 R;Sk(bd bw) = bd(Sk bw);Sk(b! ^ b�) = Sk(b!) ^ Sk(b�); (27)together with the standard a
tion on the 
oeÆ
ients given in (22). Hen
eSkdu�n+m = du�n+m+1k and Smdu�n = du�n+m.3.3 Fun
tional formsThe se
ond part of the dis
rete variational 
omplex is a quotient of the verti-
al 
omplex des
ribed above under an equivalen
e relation. In the 
ontinuous
ase, two fun
tions are equivalent if they di�er by a total divergen
e. Herewe say that two fun
tions of the iterates are equivalent if they di�er by thetotal dis
rete divergen
e Div� of a ve
tor g 2 Ap, whi
h is de�ned as follows:Div�(g) = pXk=1(Sk � id)gk[u℄: (28)23



Note that every total di�eren
e p-form ! whi
h belongs to im(�) is of theform ! = Div�(F)�i1�i2 : : :�ip ;for some F 2 Ap.De�nition 3.3.20. We de�ne an equivalen
e 
lass on A byf1 � f2 () f1 � f2 = Div�(g)for some fun
tions g 2 Ap. The set of fun
tionals F is de�ned to be the setof equivalen
e 
lasses, F = A= � :We denote the equivalen
e 
lass of f 2 A by P f . The notation re
e
ts the(formal) identity that Xn f [u℄ = 0if f is a total dis
rete divergen
e. Note that F is not an algebra, that is,produ
ts of fun
tionals are not fun
tionals.An equivalen
e relation on b�r of verti
al r-forms 
an be de�ned similarly,bw � bw1 () bw = bw1 + pXk=1(Sk � id)b�k b�k 2 b�rfor some b�k, k = 1; : : : ; p, where Sk a
ts on b�k a

ording to the formulae (27).Again, we denote the equivalen
e 
lass of bw byP bw:The equivalen
e 
lasses are 
alled fun
tional forms, and the set of equivalen
e
lasses b�r= � is denoted by �r� 24



3.3.1 Analogue of integration by partsIn the 
ontinuous variational 
omplex, mu
h use is made of the produ
t ruleof di�erential 
al
ulus, and the 
onsequent integration by parts, not only inthe study of 
anoni
al forms of equivalen
e 
lasses but at every stage in theproof of exa
tness of the 
ontinuous variational 
omplex. In the dis
rete 
asestudied here, neither the shift maps Sk nor the di�eren
e maps Sk � id obeythe Leibniz produ
t rule. However, there is a formula whi
h plays the roleof integration by parts in our variational 
omplex for dis
rete systems.To motivate this formula, we �rst 
onsider fun
tions of a single latti
e
oordinate, n; we write the 
orresponding shift operator as S. Given anytwo (square-summable) sequen
es ffng, fgng, we have the identity1Xn=�1(Sf)n gn = 1Xn=�1 fn+1 gn = 1Xn=�1 fn gn�1 = 1Xn=�1 fn(S�1g)nby a 
hange of dummy variable. This result is easily extended to an arbitrarynumber of latti
e 
oordinates. Moreover, given f , g 2 A,(Skf)g � f(S�1k g) = (Sk � id)(fS�1k g)for ea
h k. Hen
e P(Skf)g =P f(S�1k g) (29)using both the de�nition and the natural interpretation. Equation (29) is theanalogue of \integration by parts". To prove that the variational 
omplexis lo
ally exa
t, we need analogues of the higher Euler operators, whi
h wederive below. Our analogues are obtained by repla
ing (�D)m by S�m. This\repla
ement rule" follows from using (29) rather than the usual integrationby parts formula. 25



3.3.2 The verti
al fun
tional 
omplexIn this se
tion we take the verti
al 
omplex de�ned earlier and proje
t itto the equivalen
e 
lasses of fun
tional forms. The result is again an exa
t
omplex, whi
h will form the right hand side of the variational 
omplex weare developing.De�nition 3.3.21. Let w =P bw be the fun
tional r-form 
orresponding tothe verti
al r-form bw. Then the variational derivative of w is de�ned to beÆw =Pbd bw:Lemma 3.3.22. Æ is well-de�ned.Proof: We need to show that bd is identi
ally zero on total di�eren
es, orequivalently that bdSk = bd, for any k. Let f be an arbitrary fun
tion in A.Then bd(Skf) = X�;m �Skf�u�n+mdu�n+m= X�;m Sk � �f�u�n+m�1k� du�n+m= X�;m �f�u�n+m�1k S�1k du�n+m= X�;m �f�u�n+m�1k du�n+m�1k= bdf �As bd 2 = 0, it follows immediately that Æ2 = 0.Theorem 3.3.23. The verti
al fun
tional 
omplex0�!�0� Æ�! �1� Æ�! � � � (30)26



is exa
t.Proof: We show �rst that the homotopy operator bh (26) is well-de�ned onequivalen
e 
lasses. Let S denote Sk for some k. From the identitiesSvu = vu; S(![�u℄) = S(!)[�u℄;it is simple to see that bhS = Sbh:Thus if f1 � f2 = Sg � g then bhf1 � bhf2 = (S � id)bhg, and sof1 � f2 =) bhf1 � bhf2:Hen
e (Æbh+ bhÆ)P! =P(bdbh + bhbd)! =P!showing that �0� Æ�! �1� Æ�! � � �is exa
t.The kernel of bd???b�0 
onsists of fun
tions whi
h do not depend on theu�n+m, that is, are fun
tions of the ni alone. All su
h fun
tions are equivalentto zero, as we will now show, 
ompleting the proof of exa
tness of (30).To show that f = f(n) =) f � 0, it is enough to show that the equationf(n) = Spg � g (31)has a solution g for any given f . We may take as the initial 
ondition that gis zero on the hyperplane f(n1; : : : np�1; np) j np � n0g. Then, for any givenf , the values of g(n1; : : : np�1; n0�1) 
an be obtained from (31). The pro
essrepeats to give g on all of Zp. � 27



4 The dis
rete variational 
omplexTo 
omplete the 
onstru
tion of a variational 
omplex for di�eren
e equa-tions, we must pat
h together the horizontal and verti
al fun
tional 
om-plexes. This is a

omplished with the Euler operator, whi
h has been studiedby Kupershmidt [23℄. It turns out that the Euler operator E 
an be de�nedin the same way for both di�erential and di�eren
e equations, by using theFr�e
het derivative as follows.The Fr�e
het derivative of an r-tuple P [u℄ 2 Ar is the di�erential operatorDP : Aq ! Ar de�ned byDP (Q) = lim�!0�P [u+ �Q[u℄℄� P [u℄� � (32)where Q[u℄ is an arbitrary element of Aq. (Note that the independent vari-ables a
t as parameters here.) Then the Euler operator is de�ned by itsa
tion on arbitrary elements P [u℄ 2 Ar, as follows:E(P [u℄) = D�P (1); (33)where D�P is the adjoint of DP with respe
t to the appropriate inner produ
t.For di�eren
e equations, this is the `2 inner produ
t. The 
omponent of theEuler operator that 
orresponds to the dependent variable u� isE�(f) =Xm S�m �f [u℄�u�n+m :The Euler operator indu
es the following a
tion on elements of Exp:E(f�1 � � ��p) = qX�=1E�(f) du�:We let � : b�r�!�r� denote the proje
tion whi
h takes a verti
al form toits equivalen
e 
lass, �(b!) =Pb!: (34)28



Note that � is a surje
tion. Then the dis
rete variational 
omplex is, writing� Æ E as E0�!R�!Ex0 ��! Ex1�!� � � ��! Exp E�! �1� Æ�! �2� Æ�! � � � (35)In x3.3 we showed exa
tness of the 
omplex to the right of �1�. In thisse
tion we 
omplete the proof that this 
omplex is exa
t. First we look indetail at the point where the horizontal 
omplex and the verti
al fun
tional
omplex are spli
ed together using the Euler operator.4.1 Exa
tness around EConsider Figure 2, where � is given by (34), and where we have writtenE(f)du for P�E�(f)du�n for simpli
ity.��! Exp�1 ��! Exp E�! b̂1�# #�0�! ^0� Æ�! ^1� Æ�! ^2��!f �1 � � ��p E�! E(f)du�# #�P f Æ�! PE(f)duFigure 2: Spli
ing the horizontal and verti
al fun
tional 
omplexesLemma 4.1.24. Æ Æ � = � Æ E.Proof: � Æ E(f) = PP�E�(f)du�n29



= P�P�;m(S�m�u�n+mf)du�n�= P�P�;m(�u�n+mf)(Smdu�n)�= P�P�;m �u�n+mfdu�n+m�= Pbdf= Æ Æ �(f)where Sm is de�ned in (21) and we have used the a
tion of the shift mapson verti
al forms given in (27). �Theorem 4.1.25. The variational 
omplex is exa
t at Exp and at �1�. Spe
if-i
ally,A. The Euler-Lagrange operator has for its kernel pre
isely those fun
tionsin A that are total dis
rete divergen
es, that is,PE(f)du = 0,P f = 0B. The variational derivative Æj�1� has for its kernel pre
isely those expres-sions whi
h are Euler-Lagrange equations, that is,Æ(PP� f�du�) = 0, f� = E�(L) for some L
30



Proof: To show Part A,PE(f)du = 0() � Æ E(f) = 0() Æ Æ �(f) = 0 by pre
eeding Lemma() �(f) = 0 by exa
tness of (30)() P f = 0;whi
h means that f is a total dis
rete divergen
e.To show Part B, if !� 2 �1� is su
h that Æ!� = 0, then by exa
tness ofthe verti
al fun
tional 
omplex, there exists �� 2 �0� su
h that Æ�� = !�.But �� = P � = �(�) for some � 2 b�0 be
ause � is surje
tive. Hen
e!� = Æ�(�) = �E(�), showing that !� is in the image of �E as required.Sin
e � 2 Exp it is of the form f�1 � � ��p for some f 2 A. Then the desiredLagrangian L is f . �4.2 Exa
tness of the horizontal 
omplex4.2.1 The Higher Euler operators and the Total Homotopy Oper-atorDe�nition 4.2.26. Given two multi-indi
es m = (m1; m2; : : : ; mp) and l =(l1; l2; : : : ; lp) we say m � l if mi � li for all i = 1; : : : ; p. We further de�nethe order of the multi-index, #m = m1 + : : :+mp.De�nition 4.2.27. We de�ne the higher Euler operatorsEJ� =XI�J �IJ�S�I�u�n+I ;where S�I = S�i11 S�i22 � � �S�ipp . 31



De�nition 4.2.28. The total interior produ
t for the q-tuple Q 2 Aq isIQ(!) =XI qX�=1 pXk=1 ik + 1p� r +#I + 1(S � id)I �Q�EI+1k� � ��nk y!�� ;for ! 2 Exr.De�nition 4.2.29. Given ! = ![n;u℄, let ![n; 0℄ be the proje
tion of !obtained by setting u�m = 0 for all �, m. Then ![n; 0℄ is in the di�eren
e
omplex, that is, has 
oeÆ
ients in B (re
all a fun
tion is in B if it dependson the nj only).Example 4.2.30. If ! = un1;n2+1�1 + n1�2 then ![n; 0℄ = n1�2.Theorem 4.2.31. For ! 2 Exr with r > 0 de�ne the operatorH(!) = Z 1�=0 Iu(!)[�un℄d��where u = (u1; : : : ; uq), and setHjEx0(!) = ![n; 0℄:Then the operator H satis�es![n;u℄� ![n; 0℄ = �H(!) +H(�!) ! 2 Exr; r > 0![n;u℄� ![n; 0℄ = H(!) +H(�!) ! 2 Ex0The form ![n; 0℄ is in the di�eren
e 
omplex. That is, the 
oeÆ
ients arein B. In order to obtain the total homotopy operator , we need to add to Hthe homotopy operator HB for the di�eren
e 
omplex.Theorem 4.2.32. Let HB be the homotopy operator (13) for the di�eren
e
omplex. Then the total homotopy operatorHT (!) = H(!) +HB(![n; 0℄)32



satis�es ! = �HT (!) +HT (�!) ! 2 Exr; r > 0! = HT (!) +HT (�!) ! 2 Ex0Example 4.2.33. As an example of the use of the total homotopy operator,
onsider the di�eren
e equation,w[n;u℄ � ((n+ 1)un+1un+2 � nunun+1 � (n+ 1)) = 0:This is the O�E un+2 � nn+ 1un � 1un+1 = 0multiplied by the 
hara
teristi
 P = S(nun) = (n+1)un+1 : As E(w) = 0, wmust be a divergen
e. In the one dimensional 
ase, this means that we mayre
onstru
t the �rst integral by using the homotopy map!To do this, we write the equation as an element of Exp, (in this 
ase,p = 1), ! = w�1:The higher order Euler operators in one dimension areE(1) = S�1�un+1 + 2S�2�un+2 + � � � ; E(2) = S�2�un+2 + � � �and the total interior produ
t isIu(!) = 1XI=0(S � id)I(unE(I+1)((n + 1)un+1un+2 � nunun+1 � (n+ 1)))Therefore Iu(!) = un[S�1(n + 1)un+2 � nun℄ + 2S�2((n+ 1)un+1)+(S � id)(unS�2((n+ 1)un+1))= 2nunun+1: 33



Now ![n; 0℄ = �(n + 1)�1. Using �ny�1 = 1 in the formula for HB,HB(![n; 0℄) = � n�1Xk=0 (�ny(n+ 1)�1) jn=k = � n�1Xk=0(n + 1)jn=k = � nXk=1 k:Finally ! =��, where� = HT (!) = Z 1�=0 2�nunun+1d�� nXk=1 k= nunun+1 � 12n(n + 1):5 Some appli
ations of the dis
rete variational
omplex5.1 How to obtain LagrangiansWhat do the above results mean for the study of systems of partial di�eren
eequations? Given a system of P�Es P1 = 0, P2 = 0, . . . , Pq = 0, we writedown an element of ��1, namelyP =PP1du1n + P2du2n + � � �+ Pqduqn:This involves de
iding whi
h equation belongs to whi
h dependent variable,that is, for whi
h j is Pi = Ej(L) for some (as yet unspe
i�ed) L. Assigningthe wrong Pi to ea
h dujn may 
ause the dis
rete Helmholtz 
ondition to fail,i.e. ÆP 6= 0, so the fa
t that the system is an Euler-Lagrange system may bemissed. Worse is if the system is only equivalent to an Euler-Lagrange system,for example, if E1(L) = g1, E2(L) = g2, and P1 = g1 + g2, P2 = g1 � Sg2.Even for the 
ontinuous 
ase, the general equivalen
e problem, of dete
tingwhen a system is equivalent to an Euler-Lagrange system, is open (see p.34



355 of Olver [34℄). However, given that ÆP = 0, we may use the homotopyoperator bh for the verti
al fun
tional 
omplex to �nd L.Example 5.1.34. The �rst dis
rete Painlev�e equation isP � un+1 + un + un�1 + �n+ �1 + un + � = 0: (36)(See equation (3.3.1) in [14℄; we have set a third 
onstant 
 to be zero andtranslated un to un+1 to simplify our 
al
ulations here). This equation sat-is�es DP = D�P and hen
e a Lagrangian exists for this equation. Cal
ulatingthe homotopy yieldsL = R 10 P [�u℄un d�= R 10 ��un + �(un+1 + un + un�1)un + �n+ �1 + �unun� d�= �un + 12(un+1 + un + un�1)un + (�n+ �) log(1 + un)This is equivalent to~L = �un + 12(un)2 + unun+1 + (�n+ �) log(1 + un):It is straightforward to 
he
k that E(L) = P .Example 5.1.35. As a more substantial example, 
onsider the followingsystem of P�Es:P1 � u2n1;n2�1 � u2n1+1;n2 + �(u1n1;n2) = 0; (37)P2 � u1n1;n2+1 � u1n1�1;n2 � �(u2n1;n2) = 0: (38)It is easy to 
he
k that ÆP = 0. Then, provided that t�(t)! 0 as t! 0, thehomotopy map yields (up to equivalen
e)L = u1n1;n2+1u2n1;n2 � u1n1;n2u2n1+1;n2 + Z u1n1;n2t=u2n1;n2 �(t) dt:(For problems in whi
h the homotopy operator is singular, 
onsult [2℄.)35



5.2 How to obtain 
onservation lawsWe give an appli
ation of the higher Euler operators to 
al
ulating �rstintegrals of equations whi
h are Euler-Lagrange equations of a Lagrangian.The Lagrangian is assumed to have a variational symmetry, whi
h we de�nebelow. Thus we have a dis
rete analogue of Noether's theorem.The multi-dimensional 
ase is dis
ussed in [20℄; here we show the de�ni-tions, 
al
ulations and an example for ordinary di�eren
e equations.De�nition 5.2.36. The �rst-order partial di�erential operatorX = Q�un + (SQ)�un+1 + : : :generates a variational symmetry of a Lagrangian L(n; un; : : : un+m) ifXL = 0:The fun
tion Q is 
alled the 
hara
teristi
 of the symmetry.Theorem 5.2.37. If X is a variational symmetry of a Lagrangian L with
hara
teristi
 Q, then ' = 1Xk=0(S � id)k(QE(k+1)L)is a �rst integral of E(L) = 0;where the E(k) are the higher Euler operatorsE(k) = 1X̀=0 0� k + `k 1AS�(k+`) �un+k+`Indeed, it 
an be shown by dire
t 
al
ulation that(S'� ')jE(L)=0 = 0:36



Example 5.2.38. TakeL = unun+1 + n (log jun+1j � log junj)whi
h has a s
aling symmetry. Indeed,X = un�un + un+1�un+1 + : : :is the variational symmetry, with 
hara
teristi
 Q = un. The Euler-Lagrangeequation 
an be written, after some simpli�
ation, asun+1 = u2nun + un�1and thus ' = QE(1) L= QS�1 ��un+1L�= n� 1� un�1unis a �rst integral, that is, is 
onstant on solutions. Indeed it is simple toverify that (S' � ')jE(L)=0 = 0. Finally, it is a simple matter to solve theequation '� 
1 = 0 to obtain the solution,un = 
2=�(n� 
1):Although the above example is fairly simple, it is possible to use thevariational 
omplex to 
onstru
t 
onservation laws of arbitrary systems ofdi�eren
e equations, whether or not Noether's Theorem is valid. For detailsof how to do this, see [20℄.5.3 Continuum LimitsSeveral authors have developed dis
retized versions of parti
ular 
ontinuousvariational 
al
ulations [10, 31℄. Su
h developments, by 
onstru
tion, have an37



inbuilt 
ontinuum limit. The variational 
omplex developed in this arti
le hasno impli
it 
ontinuum limit. This is important be
ause di�eren
e equationsarise naturally in appli
ations su
h as quantum gravity, and should thereforebe regarded as obje
ts in their own right. Indeed, di�eren
e equations 
anhave several 
ontinuum limits, or no 
ontinuum limit at all, and they mayhave important solutions whi
h are not approximations to solutions of a
ontinuum limit.Nevertheless, given the use of di�eren
e equations as approximations to
ontinuous models espe
ially for numeri
al 
al
ulation, it is important to
onsider how our results behave under limiting pro
esses. Here we 
onsideronly an example.Re
all the �rst dis
rete Painlev�e equation (
f. 36),P � un+1 + un + un�1 + a+ bn1 + un � 3: (39)A 
ontinuum limit is given by un � �2w(t)un�1 � �2w(t� �)a+ bn � 3 + �4t (40)whi
h when inserted into (39) yieldsP � �4(w00 + 3w2 + t) +O(�6): (41)The dis
rete Lagrangian for (39) (
al
ulated in x4.2) isL = 12(un+1 + un + un�1)un � 3un + (a+ bn) log(1 + un)� �6(12ww00 + wt+ w3) +O(�8): (42)Now, L = 12ww00+wt+w3 is in fa
t a Lagrangian for (39), being equivalent tothe usual Lagrangian�12(w0)2+wt+w3 (re
all two Lagrangians are equivalentif they di�er by a total divergen
e). 38



Next, we 
onsider the 
ontinuum limit of the dis
rete Euler-Lagrangeoperator. It is helpful to introdu
e the forward di�eren
e operator � = S�id(whi
h should not be 
onfused with the di�eren
e operator of x2). Supposethat L = L(n; un; : : : un+m). Then, using Lun+m to denote �L=�un+m, weobtainE(L) = Lun + S�1Lun+1 + S�2Lun+2 + � � �= Lun + (S�1 � id)L(S�id)un + (S�1 � id)2L(S�id)2un + � � �= Lun ��S�1L�un +�2S�2L�2un � � � �= Lun � �� S�1L�un=� + �2�2 S�2L�2un=�2 � � � �where to obtain the �nal line we have used the dummy s
alar � together withthe identity �=�u = (1=�) �=�(u=�).If we now use the 
ontinuum limit (40) given above, with un�k = �2w(t�k�),we obtain �un � �3w0; �2un � �4w00; �� � ddtand thus E(L) � 1�2 �Lw � ddtLw0 + d2dt2Lw00 � � � �� (43)The �rst point to note is that the 
ontinuum limit of the Euler-Lagrangeoperator is the 
ontinuous Euler-Lagrange operator. Further, it 
an be seenthat the powers of � are 
onsistent, so that taking the separate 
ontinuumlimits of the Lagrangian and the Euler-Lagrange operator is 
onsistent withtaking the 
ontinuum limit of E(L), to obtain the 
ontinuum limit of P .6 Con
lusionIn this paper, we have derived a dis
rete analogue of the variational 
omplex.All of the 
onstru
tions that involve the (
ontinuous) dependent variables are39



analogous to the 
ontinuous 
ase, although the formulae are modi�ed some-what. However, the proof of lo
al exa
tness of the di�eren
e 
omplex is notat all similar to the proof of the Poin
ar�e Lemma. Now that the homotopymaps for the dis
rete variational 
omplex are known, it is simple (in prin
i-ple) to 
onstru
t 
onservation laws of P�Es, without referen
e to Noether'sTheorem. The main diÆ
ulty lies in the 
omplexity of the 
al
ulations (see[20℄ for further details).Throughout the paper we have restri
ted attention to di�eren
e equationswith real-valued 
oeÆ
ients. However, all results are also true if R is repla
edby C .A
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