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We transform near-local Hamiltonian balanced models describing nearly geostrophic
fluid motion (with constant Coriolis parameter) into multisymplectic systems. This
allows us to determine conservation of Lagrangian momentum, energy and potential
vorticity for Salmon’s L1 dynamics; a similar approach works for other near-local
balanced models (such as the

√
3-model). The multisymplectic approach also en-

ables us to determine a class of systems that have a contact structure similar to
that of the semigeostrophic model. The contact structure yields a contact trans-
formation which makes the problem of front formation tractable. The new class
includes the first local model with a variable Coriolis parameter that preserves all
of the most useful geometric features of the semigeostrophic model.
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1. Introduction

The rotating shallow-water model, which describes the behaviour of a single layer
of incompressible fluid with a free surface under gravity over a rotating bed, is fre-
quently used in geophysical fluid dynamics as an approximation for the dynamics
of the atmosphere. When the Rossby number is small (Ro � 1) a further ap-
proximation is to filter out the fast motions, driven by inertia gravity waves, to
create so-called ’balanced models’. Typically, these incorporate a balance between
the pressure gradient and the Coriolis force.

Salmon (1983, 1985) showed how Hamilton’s principle can be used to derive
an important class of balanced models systematically. The idea is to define a con-
straint corresponding to a balance condition (the geostrophic approximation), and
to incorporate this into the Lagrangian for the parent model, which is the two-
dimensional shallow-water model. A variational principle is then used to obtain
the dynamical equations. The accuracy of the resulting balanced model is judged
against the parent dynamics, with the latter being considered as exact. The bal-
anced model inherits a Hamiltonian structure and consequent conservation laws.
By considering a class of balance conditions which included Salmon’s L1 dynamics
and semigeostrophic theory, McIntyre & Roulstone (2002) derived balanced models
which go beyond geostrophy: when the Froude number is small (Fr � 1), gravity
waves are fast compared with the flow velocity and the geostrophic approximation
is not sufficient to yield a good approximation. One, called the

√
3-model, improves

the accuracy of the approximation to the geostrophic flow (but not the advection
velocity) by one order in Ro over semigeostrophic theory. The balance conditions
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considered in McIntyre & Roulstone (2002) and in this paper are referred to as near-
local, because they depend on the geopotential and a finite number of its derivatives
only.

Recently, Bridges et al. (2005) showed that the shallow-water model and the
semigeostrophic model each have a multisymplectic formulation; moreover, these
two formulations are very similar. Multisymplectic systems have a common ge-
ometric structure: a vector of closed two-forms is conserved by the flow. (This
generalizes the conservation of a single two-form in canonical Hamiltonian dynam-
ics.) The multisymplectic structural conservation law can be exploited to analyse
stability (see Bridges (1997) for details), but in the context of balanced models
we focus on the scalar conservation laws that arise from it, namely conservation
of Lagrangian momentum, energy and potential vorticity. Another advantage of
the multisymplectic structure is that when it is preserved by a discretization, the
resulting finite difference methods normally have extremely good stability prop-
erties (see Bridges & Reich (2006) and Ascher & McLachlan (2005) for details).
Until now, it has not been clear how to extend the shallow-water multisymplectic
structure to other near-local balanced models. One purpose of this paper is address
this problem. We derive a multisymplectic description of L1 dynamics. McIntyre &
Roulstone’s other balanced models (including the

√
3-model) can be tackled by a

similar approach, but as this adds considerable complexity without giving further
illumination, we merely summarize the steps that lead to their multisymplectic
formulation.

Although the semigeostrophic model is only first-order, from the geometric view-
point it is the richest of the balanced models. It possesses both Hamiltonian and
contact structures (see McIntyre & Roulstone (2002) for details), and recently Dela-
haies & Roulstone (2009) showed that the semigeostrophic model possesses a hyper-
-Kähler structure. The contact structure is particularly useful, because it yields a
contact transformation that expands the singularities which occur at fronts, and it
is therefore able to describe the formation and evolution of fronts. However, like
the other balanced models cited above, the semigeostrophic model has a constant
Coriolis parameter. So it is natural to try to generalize this model in a way that
retains the contact structure; this is the second aim of our paper. There have been
several attempts to find models that preserve the structure of semigeostrophic the-
ory and allow the Coriolis parameter to vary. Using Hamilton’s principle, Salmon
(1985) made the Coriolis parameter a function of geostrophic coordinates, while
Shutts (1989) modelled planetary flow, replacing the geostrophic momentum with
its projection onto the equatorial plane. Here we build on the common features of
the multisymplectic formulations for the shallow-water and semigeostrophic models,
and we derive a class of multisymplectic systems with the same contact structure.
One such system, which allows the Coriolis parameter to vary with position, has
the same accuracy as the semigeostrophic model. By restricting this model to the
β-plane, we show that this differs from the planetary model of Roulstone & Sewell
(1997) by the inclusion of a single non-obvious term.

The plan of the paper is as follows. Section 2 describes the main features of
near-local Hamiltonian balanced models with constant Coriolis parameter. A brief
presentation of multisymplectic systems is given in §3, together with the multi-
symplectic formulations of the shallow-water and semigeostrophic models. In §4,
Salmon’s L1 dynamics is written as a multisymplectic system; we also outline how to
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recast the other balanced models in McIntyre & Roulstone’s class as multisymplectic
systems. Section 5 generalizes semigeostrophic theory by describing a class of mul-
tisymplectic systems that preserve energy, potential vorticity and Lagrangian mo-
mentum, and which also have a contact structure that yields analogues of Hoskins’
geostrophic coordinates. This class includes the first local semigeostrophic-type
model that allows the Coriolis parameter to vary with latitude, while retaining
such a contact structure. The paper concludes with a brief discussion in §6.

2. Review of shallow-water balanced models

Following Bridges et al. (2005), we present the shallow-water theory in a Lagrangian
formulation. The position and velocity of fluid particles are denoted by x = (x1, x2)
and u = (u1, u2) respectively, and we label each fluid particle by its position at t = 0,
which is denoted by m = (m1,m2); then all variables are treated as functions of m
and t. The total derivatives with respect to t and mα are denoted by subscript t or
α after a comma, for example

xi,α =
∂xi(m, t)

∂mα
, xi,αt =

∂2xi(m, t)

∂mα∂t
, etc., (2.1)

and partial derivatives with respect to any other variable are written in full.
In shallow-water theory, the motion of a shallow layer of incompressible inviscid

fluid over a rotating flat-bottomed bed is approximated by the horizontal momen-
tum equations,

u,t + fk× x,t + g∇xη = 0. (2.2)

The Coriolis parameter is f (which is assumed constant except in §5), the gravita-
tional acceleration is directed downwards with magnitude g, and η(x, t) is the fluid
height. The common shorthand k× (a, b) ≡ (−b, a) is used and as a consequence of
the Lagrangian formulation we have

x,t = u. (2.3)

The incompressibility hypothesis requires η to satisfy the relation ηdx = η0dm,
where the initial height η0 = η(m, 0) is assumed to be uniform. We choose coor-
dinates in which η0 = 1, so that this condition yields the following form of the
continuity equation:

η =

(
∂(x1, x2)

∂(m1,m2)

)−1
. (2.4)

Finally, the gradient with respect to x is given in terms of the Lagrangian formu-
lation by

∇x =

(
∂x1

∂x2

)
= η

(
x2,2 −x2,1
−x1,2 x1,1

)(
∂m1

∂m2

)
. (2.5)

From (2.2)–(2.5), it is easy to show that the potential vorticity

Q =
1

η

(
f +

∂u2

∂x1
− ∂u1

∂x2

)
, (2.6)
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is conserved following particles (see B̂ılǎ et al. (2006) for a thorough analysis). The
total energy of a blob of fluid that occupies D at t = 0 is

E =

∫
D

1
2

(
(u1)2 + (u2)2 + gη

)
dm; (2.7)

given suitable boundary conditions, E is also conserved.
Equations (2.2) and (2.3) are Euler–Lagrange equations for the variational prin-

ciple

δ

∫
Lsw[x,u] dm dt = 0,

where square brackets enclose the quantities that are varied. (In other words, [x,u]
denotes the functions x, u and finitely many of their derivatives with respect to m
and t.) The shallow-water Lagrangian is

Lsw[x,u] =
(
u1 − 1

2fx
2
)
x1,t +

(
u2 + 1

2fx
1
)
x2,t −H[x,u]; (2.8)

here H is the total energy density:

H[x,u] = 1
2 (u · u + gη) . (2.9)

Conservation of potential vorticity and energy are consequences (via Noether’s The-
orem) of the particle relabelling symmetry and the time-invariance of the variational
problem (see Salmon (1983)).

The semigeostrophic approximation to the shallow-water equations replaces the
acceleration u,t in the momentum equations (2.2) by the Lagrangian time derivative
of the geostrophic wind ug = (u1g, u

2
g), which is defined by

u1g = −f−1 ∂φ
∂x2

, u2g = f−1
∂φ

∂x1
, (2.10)

where φ = gη is the geopotential. So the shallow-water semigeostrophic equations
consist of (2.10), the momentum equation,

ug,t + fk× x,t + g∇xη = 0, (2.11)

and the continuity equation (2.4). Equations (2.10) and (2.11) arise from a varia-
tional problem

δ

∫
Lsg[x,ug] dmdt = 0.

In this case, the Lagrangian is

Lsg[x,ug] =
(
u1g − fx2

) (
x1 + u2g/f

)
,t
−H[x,ug], (2.12)

where H is given by equation (2.9). Once again the particle relabelling symmetry
leads to conservation of potential vorticity, which is now defined by

Qsg =
1

η

(
f +

∂u2g
∂x1
−
∂u1g
∂x2

+
1

f

∂(u1g, u
2
g)

∂(x1, x2)

)
. (2.13)
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Given suitable boundary conditions, the total energy of a fluid blob,

Esg =

∫
D

1
2

(
ug · ug + gη

)
dm, (2.14)

is also conserved, because the variational problem is invariant under time transla-
tions.

The semigeostrophic approximation is a balanced model with many useful ana-
lytic and geometrical properties, including Hamiltonian and contact structures (see
McIntyre & Roulstone (2002) for details). However, as it is formally correct only
to first order in the Rossby number, its usefulness is limited. The question of how
to build more accurate Hamiltonian balanced models while retaining the essential
mathematical features of semigeostrophic theory has been much-studied. McIntyre
& Roulstone (2002) provided one answer to this question, using the framework of
constrained Hamiltonian dynamics pioneered in Salmon (1983, 1985) and Allen &
Holm (1996). The method is to construct a constrained Lagrangian Lc[x] by re-
placing u in the shallow-water Lagrangian Lsw[x,u] by a constraint velocity field of
the form

uc = ug + ak×
(
f−1(ug ·∇x)ug

)
, a ∈ R. (2.15)

In this formulation, uc cannot be varied independently of x; the Euler–Lagrange
equation is the momentum equation, which must be supplemented by the constraint
(2.15) and the continuity equation (2.4). For each a ∈ R, the resulting model
conserves the potential vorticity,

Qc =
1

η

[
f +

∂u2c
∂x1
− ∂u1c
∂x2

]
, (2.16)

and (given suitable boundary conditions) the total energy in a fluid blob, which is

Ec =

∫
D

1
2 (uc · uc + gη) dm. (2.17)

Most attention has been focused on just three values of a. The semigeostrophic
model corresponds to a = −1/2; it is a simple calculation to show that Qc amounts
to (2.13). For a = 0, the constraint velocity reduces to the geostrophic wind, uc =
ug; this gives Salmon’s L1 dynamics. Finally, a = 1 yields the so-called

√
3-model,

which is the most accurate of the balanced models derived by McIntyre & Roulstone.
In this case, the potential vorticity (2.16) agrees to second order with an asymptotic
expansion of the shallow-water potential vorticity (2.6) in terms of the Rossby
number. By contrast, L1 dynamics and the semigeostrophic model are each accurate
only to first order (see Snyder et al. (1991), Delahaies (2009)).

The constrained Lagrangian formulations are incomplete, because they do not
contain the velocity constraint. In the next section, we show that by using a mul-
tisymplectic approach (which arises from a complete first-order Lagrangian), bal-
anced models are given a common geometric structure. This structure provides local
conservation laws, from which one can determine the necessary boundary conditions
for a fluid blob to have a conserved quantity. It also reveals that conservation of po-
tential vorticity is a differential consequence of two more fundamental conservation
laws.
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3. Multisymplectic systems and the shallow-water equations

Bridges (1997) called a system of first-order quasilinear PDEs multisymplectic if
there is a (symplectic) closed 2-form associated with each independent variable,
such that these 2-forms satisfy a structural conservation law (which generalizes
conservation of symplecticity for Hamiltonian ODEs). For models based on the
shallow-water approximation, we seek multisymplectic systems in a (local) Carte-
sian coordinate system with n dependent variables z1, . . . , zn and three independent
variables (t,m1,m2). The structural conservation law is of the form

ω,t + κα,α = 0, (3.1)

where
ω = 1

2Wij(z) dzi ∧ dzj , κα = 1
2K

α
ij(z) dzi ∧ dzj , (3.2)

are closed. Here summation is from 1 to n for Latin indices and from 1 to 2 for
Greek indices; the functions Wij and Kα

ij are locally smooth. Hydon (2005) showed
that the structural conservation law is a differential consequence of a 1-form quasi-
conservation law of the form(

Wj(z) dzj
)
,t

+
(
Kαj (z) dzj

)
,α

= d
(
Wj(z)zj,t + Kαj (z)zj,α − S(z)

)
, (3.3)

for some locally smooth functions Wj , K
α
j and S. In the above, the exterior derivative

d acts only on the dependent variables zi; it commutes with the total derivative
operators (see Bridges et al. (2010) for details). By comparing the exterior derivative
of (3.3) with (3.2), one finds that

Wij(z) =
∂Wj(z)

∂zi
− ∂Wi(z)

∂zj
, Kα

ij(z) =
∂Kαj (z)

∂zi
− ∂Kαi (z)

∂zj
.

Moreover, by expanding the quasi-conservation law and collecting the coefficients
of dzi, one obtains the general form of a multisymplectic system (subject to the
above restrictions):

Wij(z)zj,t +Kα
ij(z)zj,α =

∂S(z)

∂zi
. (3.4)

A routine calculation shows that (3.4) is the set of Euler–Lagrange equations for
the variational principle

δ

∫
L̃[z] dm dt = 0, (3.5)

where
L̃[z] = Wj(z)zj,t + Kαj (z)zj,α − S(z). (3.6)

So the set of multisymplectic systems is equivalent to the set of variational problems
with a first-order Lagrangian that is affine linear in the derivatives of z. (Note: the
above construction may be extended to deal with systems for which Wj , K

α
j and S

also depend upon t and m, but this is not needed for our purposes – see Bridges et
al. (2010) for details.)

Given the above equivalence, it is straightforward to state Noether’s Theorem
for the multisymplectic system (3.4), as follows. A vector field of the form

X = Qi[z] ∂zi
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generates variational symmetries if, for each ε ∈ R sufficiently close to zero, the
map zj 7→ exp{εX}(zj) leaves the variational problem (3.5) unchanged. Thus the
criterion for X to generate variational symmetries is

X dL̃ = a,t + bα,α , (3.7)

for some functions a and bα, where denotes the inner derivative of the differential
form dL̃ by the vector field X. By taking the inner derivative with respect to X
of the quasi-conservation law (3.3), we obtain the conservation law associated with
X, namely (

Wj Q
j − a

)
,t

+
(
Kαj Q

j − bα
)
,α

= 0. (3.8)

In particular, for every multisymplectic system (3.4), translations in t,m1 and
m2 are variational symmetries (with Qi being zi,t, z

i
,1 and zi,2 respectively); they

yield the following three conservation laws:[
Wiz

i
,t −

(
Wiz

i
,t + Kαi z

i
,α − S(z)

)]
,t

+
(
K1i z

i
,t

)
,1

+
(
K2i z

i
,t

)
,2

= 0, (3.9)(
Wiz

i
,1

)
,t

+
[
K1i z

i
,1 −

(
Wiz

i
,t + Kαi z

i
,α − S(z)

)]
,1

+
(
K2i z

i
,1

)
,2

= 0, (3.10)(
Wiz

i
,2

)
,t

+
(
K1i z

i
,2

)
,1

+
[
K2i z

i
,2 −

(
Wiz

i
,t + Kαi z

i
,α − S(z)

)]
,2

= 0. (3.11)

Conservation of energy is represented by (3.9), whereas (3.10) and (3.11) describe
conservation of Lagrangian momentum, that is, the quantity that is canonically
conjugate to translations in label space. All three conservation laws may also be
regarded as components of the pullback of the quasi-conservation law (3.3) to the
space of independent variables. From this viewpoint, the dependent variables zi and
their derivatives are treated as functions of t,m1 and m2; then the coefficients of dt,
dm1 and dm2 are (3.9), (3.10) and (3.11) respectively. The same approach can be
applied to the structural conservation law (3.1), yielding conservation laws that are
differential consequences of (3.9)–(3.11). In particular, the coefficient of dm1 ∧dm2

is the difference between the m1-derivative of (3.11) and the m2-derivative of (3.10),
namely (

Wiz
i
,2

)
,1t
−
(
Wiz

i
,1

)
,2t

+
(
K1i z

i
,2

)
,11
−
(
K2i z

i
,1

)
,22

= 0. (3.12)

This is the conservation law that corresponds (by Noether’s Theorem) to the parti-
cle relabelling symmetry, which is the infinite-dimensional pseudogroup of volume-
preserving diffeomorphisms of label space. For shallow-water theory and for the
balanced models that approximate it, (3.12) describes conservation of potential
vorticity in terms of the Lagrangian coordinates†. It is interesting that from the
Lagrangian viewpoint, conservation of potential vorticity is merely a differential
consequence of the (possibly more fundamental) conservation laws (3.10) and (3.11).
However, those two conservation laws, unlike conservation of energy and potential
vorticity, do not appear in the Eulerian viewpoint (because they cannot be written
without reference to the particle labels).

We now review some relevant details of the multisymplectic version of the
shallow-water model, which was derived in Bridges et al. (2005). The shallow-water

† The other components of the pullback of the structural conservation law merely yield label-
space derivatives of the energy conservation law (3.9).
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Lagrangian (2.8) is not affine linear as it stands, because it contains a multiple of

η =
1

x1,1x
2
,2 − x1,2x2,1

.

However, an equivalent affine linear Lagrangian can be created by introducing new
variables xβα = xβ,α. It is also convenient to write the internal (potential) energy
term gη/2 as

e(τ) =
g

2τ
, where τ = η−1 = x11x

2
2 − x12x21. (3.13)

Inserting these new elements into (2.8), using Lagrange multipliers wαβ to enforce

the constraints xβα = xβ,α, we obtain the affine linear Lagrangian

L̃sw =
(
u1 − 1

2fx
2
)
x1,t +

(
u2 + 1

2fx
1
)
x2,t +wαβ (xβ,α − xβα)−

[
1
2u · u + e(τ)

]
. (3.14)

Then the Euler–Lagrange equations obtained by varying δx1, δx2, δuα, δwαβ and

δxβα in turn (with fixed endpoint conditions) are

fx2,t − u1,t − wα1,α = 0, (3.15)

−fx1,t − u2,t − wα2,α = 0, (3.16)

xα,t = uα, (3.17)

xβ,α = xβα, (3.18)

0 =
∂e(τ)

∂xβα
+ wαβ . (3.19)

The multisymplectic structure emerges when we reorganize this system of first-order
partial differential equations as

Wz,t + Kαz,α = ∇zS. (3.20)

Here
z = (x1, x2, u1, u2, w1

1, w
2
1, w

1
2, w

2
2, x

1
1, x

1
2, x

2
1, x

2
2)T, (3.21)

W is the 12× 12 skew-symmetric matrix

W =

(
W 0(4×8)

0(8×4) 0(8×8)

)
,

where W is the 4× 4 block

W =


0 f −1 0

−f 0 0 −1

1 0 0 0

0 1 0 0

 , (3.22)

the skew-symmetric matrices Kα, α = 1, 2, are defined by

Kα =

 0(4×4) Nα 0(4×4)
−(Nα)T 0(4×4) 0(4×4)
0(4×4) 0(4×4) 0(4×4)

 , (3.23)
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with

N1 =


−1 0 0 0

0 0 −1 0

0 0 0 0

0 0 0 0

 , N2 =


0 −1 0 0

0 0 0 −1

0 0 0 0

0 0 0 0

 ,

and
S(z) = 1

2u · u + e(τ) + wαβx
β
α. (3.24)

Using (3.18) and (3.19) together with (2.5) we see that

wα1,α = −η−1 ∂e
′(τ)

∂x1
, wα2,α = −η−1 ∂e

′(τ)

∂x2
,

so (3.13) yields

wα1,α = g
∂η

∂x1
, wα2,α = g

∂η

∂x2
. (3.25)

Inserting these expressions in (3.15) and (3.16) leads to the horizontal momentum
equations (2.2), which shows that the system (3.15)–(3.19) is equivalent to the
shallow-water model.

The multisymplectic formulation of the semigeostrophic model is almost the
same as the above (with ug replacing u), except that the affine linear Lagrangian
is

L̃sg[x,ug] =
(
u1g − fx2

) (
x1 + u2g/f

)
,t

+ wαβ (xβ,α − xβα)−
[
1
2ug · ug + e(τ)

]
, (3.26)

and so (3.22) is replaced by

W =


0 f −1 0

−f 0 0 −1

1 0 0 f−1

0 1 −f−1 0

 . (3.27)

The structural conservation law and the 1-form quasi-conservation law for each
of these models is obtained by substituting the components into the general forms
(3.1)–(3.3); see Bridges et al. (2005) and Hydon (2005) for details.

4. Multisymplectic formulation of constrained dynamics

The purpose of this section is to derive a multisymplectic version of McIntyre &
Roulstone balanced models. In §3 we derived a Lagrangian L̃sw that enabled us to
recast the shallow-water model into multisymplectic form. We now seek to insert
the constraint u = uc into this Lagrangian. The process is described in full for
L1 dynamics and is summarized for McIntyre & Roulstone’s class of more general
constraints (2.15).

(a) L1 dynamics in multisymplectic form

To recast L1 dynamics into a multisymplectic form we need to insert the con-
straint u = ug, written in terms of the multisymplectic variables, into the La-
grangian (3.14). For the shallow-water model, equation (3.25) gives

ug = −f−1wα2,α , vg = f−1wα1,α,
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where

wαβ = −∂e(τ)

∂xβα
.

Recall that in this setting the variables wαβ are introduced as the Lagrange multipli-

ers corresponding to the constraints xβ,α = xβα. We want wαβ to play the same role in
the derivation of L1 dynamics, so that they remain as Lagrange multipliers without
being used in the constraint u = ug. Therefore we introduce auxiliary functions eαβ ,
which depend on the variables xαβ only, as follows:

eαβ = −∂e(τ)

∂xβα
.

The constraint u = ug can now be written as

u1 = −f−1eα2,α , u2 = f−1eα1,α; (4.1)

it depends only on uα, xαβ and first-order derivatives of xαβ . Inserting this constraint

with a vector of Lagrange multipliers v = (v1, v2) into the Lagrangian defining the
parent dynamics leads to the affine linear Lagrangian

L̃1(z, z(1)) = Wjz
j
,t + Kαj z

j
,α − S(z), (4.2)

where now

z = (x1, x2, u1, u2, w1
1, w

2
1, w

1
2, w

2
2, v

1, v2, x11, x
1
2, x

2
1, x

2
2).

Here
W =

(
u1 − 1

2fx
2, u2 + 1

2fx
1, 0, . . . , 0

)
,

Kα =
1

f

(
fwα1 , fw

α
2 , 0, 0, 0, 0, 0, 0, 0, 0, v

2 ∂e
α
1

∂x11
− v1 ∂e

α
2

∂x11
,

v2
∂eα1
∂x12
− v1 ∂e

α
2

∂x12
, v2

∂eα1
∂x21
− v1 ∂e

α
2

∂x21
, v2

∂eα1
∂x22
− v1 ∂e

α
2

∂x22

)
,

and
S(z) = 1

2u · u + e(τ) + wαβx
β
α + v · u.

The Euler–Lagrange equations corresponding to the variations δxβ , δuβ , δwαβ , δvβ

and δxβα are

fx2,t − u1,t − wα1,α = 0 , (4.3)

−fx1,t − u2,t − wα2,α = 0 , (4.4)

x1,t = u1 + v1 , (4.5)

x2,t = u2 + v2 , (4.6)

xβ,α = xβα , (4.7)

−f−1eα2,α = u1 , (4.8)

f−1eα1,α = u2 , (4.9)

f−1
∂eγ2

∂xβα
v1,γ − f−1

∂eγ1

∂xβα
v2,γ =

∂e(τ)

∂xβα
+ wαβ . (4.10)

As shown in Delahaies (2009) this multisymplectic system is equivalent to Salmon’s
L1 dynamics.
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(b) Conservation laws for the multisymplectic L1 model

Just as for the shallow-water model, the closed 2-forms (3.2) are

ω = fdx1 ∧ dx2 + du1 ∧ dx1 + du2 ∧ dx2,

κα = dwαβ ∧ dxβ +
1

f

(
∂eα2

∂xβγ
dxβγ ∧ dv1 − ∂eα1

∂xβγ
dxβγ ∧ dv2

)
.

The dm1 ∧ dm2 component of the pullback of the structural conservation law is
Qg,t = 0, where Qg is the geostrophic potential vorticity (that is, the potential
vorticityQc defined by (2.16) with uc = ug). Similarly, the local energy conservation
law, which is the dt component of the quasi-conservation law, is

(
1
2u · u + e(τ)

)
,t

+ {wαβx
β
,t −

1

f
eα2,tv

1 +
1

f
eα1,tv

2},α = 0.

It implies that, provided suitable boundary conditions are given, the total energy
Eg, defined by equation (2.17) with uc = ug, is conserved. The components of
Lagrangian momentum are derived similarly.

(c) Multisymplectification for McIntyre & Roulstone’s balanced models

To recast McIntyre & Roulstone’s other balanced models into a multisymplec-
tic form we apply the same technique as for L1-dynamics, that is, we apply the
constraint u = uc to the Lagrangian density Lsw. However, by contrast with L1-
dynamics, additional functions are needed for the constraint to fit into the multi-
symplectic structure. Recall that the constraint velocity is

uc = ug + af−1k× ug · ∇ug, a ∈ R. (4.11)

The
√

3-model is obtained when a =
√

3. Expanding (4.11) using (2.5) and (4.1),
the constraint u = uc can be written in components as

u1 = −f−1eα2,α + af−3eαβ,ατ
−1xβ2 e

γ
1,γ1 − af−3eαβ,ατ−1x

β
1 e
γ
1,γ2, (4.12)

u2 = f−1eα1,α + af−3eαβ,ατ
−1xβ2 e

γ
2,γ1 − af−3eαβ,ατ−1x

β
1 e
γ
2,γ2. (4.13)

The above expressions involve second-order derivatives xβα,γδ (via the second deriva-

tives of eβα), so to create an affine linear first-order Lagrangian, we introduce new
variables,

xβσα = xβσ,α, (4.14)

and new functions,

eαγα =
∂eαγ

∂xβσ
xβσα. (4.15)

Then, as

eαγα,δ =
∂2eαγ

∂xβσ∂xνµ
xβσαx

ν
µ,δ +

∂eαγ

∂xβσ
xβσα,δ, (4.16)
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12 S. Delahaies & P. E. Hydon

(4.12) and (4.13) amount to

u1 =− f−1eα2,α + af−3eαγατ
−1xγ2e

β
1β,1 − af

−3eαγατ
−1xγ1e

β
1β,2, (4.17)

u2 = f−1eα1,α + af−3eαγατ
−1xγ2e

β
2β,1 − af

−3eαγατ
−1xγ1e

β
2β,2. (4.18)

This ensures that the model obtained by adding the constraints (4.14), (4.17) and
(4.18) to the Lagrangian (3.14), can be written in multisymplectic form†.

5. A contact-preserving generalisation of semigeostrophic
theory

Despite its limited accuracy, the semigeostrophic theory has remarkable geometrical
properties such as a contact structure, Legendre duality and a Monge Ampère struc-
ture. These properties have been used to show that solutions exist (see Benamou
& Brenier (1998)). In this section, we derive a class of multisymplectic systems
which generalizes semigeostrophic theory in a way that retains a contact structure
and a modified version of the Hamiltonian structure that can be obtained by using
Hoskins’ geostrophic coordinates. By restricting attention to members of the class
that have the same qualitative features as the semigeostrophic model, we find a
new model that allows the Coriolis parameter f to vary with latitude. Throughout
this section u denotes the constraint velocity (which is ug when f is constant); it
is defined by the pair of diagnostic equations (which lack time-derivatives).

(a) Geometric features when f is constant

The semigeostrophic equations with constant f have several geometric features
that are revealed by using geostrophic coordinates,

ξ1 = x1 + f−1u2, ξ2 = x2 − f−1u1. (5.1)

Hoskins (1975) showed that, from the Eulerian viewpoint,

∂Φ

∂ξα
=

∂φ

∂xα
, (5.2)

where φ = gη is the geopotential and

Φ = φ+ 1
2u · u. (5.3)

Note that (5.2) follows immediately from the definition of the geostrophic wind by
the diagnostic equations

u1 = −f−1 ∂φ
∂x2

, u2 = f−1
∂φ

∂x1
. (5.4)

The consequence of (5.2) and (5.4) is that, for each t, the transformation(
x1, x2, φ,

∂φ

∂x1
,
∂φ

∂x2

)
7→
(
ξ1, ξ2,Φ,

∂Φ

∂ξ1
,
∂Φ

∂ξ2

)
,

† See Delahaies (2009) for further details.
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is a strict contact transformation, because

dΦ− ∂Φ

∂ξα
dξα = dφ− ∂φ

∂xα
dxα.

From the Lagrangian viewpoint, semigeostrophic dynamics is governed by

ξ1,t = u1 = −f−1 ∂Φ

∂ξ2
, ξ2,t = u2 = f−1

∂Φ

∂ξ1
. (5.5)

At first sight, this appears to be a canonical Hamiltonian system whose Hamilto-
nian is f−1Φ. However, each ξα is a length, which contravenes the usual idea in
mechanics that the Hamiltonian is energy and that the dependent variables are
position and momentum. For semigeostrophic flow, Φ is an energy density (energy
per unit mass), so it seems sensible to use this as the Hamiltonian and to have as
dependent variables a position and its canonically conjugate momentum density.
Bearing in mind that we later intend to allow f to depend on the latitude variable
x2, we use ξ1 as the position. Then, with

A = −fξ2 = u1 − fx2, B = ξ1 = x1 + f−1u2, (5.6)

equation (5.5) amounts to the canonical system

A,t = − ∂Φ

∂B
, B,t =

∂Φ

∂A
. (5.7)

Note that, by construction, the Hamiltonian Φ is independent of the Coriolis pa-
rameter.

The following observations are also helpful. First, using (A,B) as variables sim-
plifies the time-derivative part of the multisymplectic Lagrangian (3.26), so that

L̃sg[x,u] = AB,t + wαβ (xβ,α − xβα)−
[
1
2u · u + e(τ)

]
. (5.8)

Second, using (3.2), (3.6) with (3.21) the time-component of the multisymplectic
two-form reduces to

ω = dA ∧ dB,

so that the potential vorticity is

Q =
∂(A,B)

∂(m1,m2)
.

Third, as f is a constant, we have not altered the contact transformation property
by using (A,B) instead of (ξ1, ξ2).

(b) An extension that preserves the Hamiltonian and contact structures

A major distinction between the multisymplectic shallow-water and semigeostrophic
equations is the rank of W , which is 4 and 2 repectively. Consequently, for the shal-
low water equations there are four prognostic (dynamic) equations, and two pairs of
dependent variables are needed. For semigeostrophic flow, however, one can find a
single pair of variables (A,B) that are dependent variables in the prognostic equa-
tions; moreover, the diagnostic part of the semigeostrophic equations, as expressed
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14 S. Delahaies & P. E. Hydon

by the contact transformation, requires only the same single pair of variables. These
facts lie behind the useful geometric structures that Hoskins’ coordinates first re-
vealed.

It makes sense, therefore, to see which other systems of equations have the
same features in common. We shall leave the Hamiltonian Φ unchanged, but we
allow A and B to be arbitrary independent functions of x and u. Just as for the
semigeostrophic model with constant f , the multisymplectic Lagrangian is

L̃ = AB,t + wαi x
i
,α −

[
1
2u · u + e(τ) + wαi x

i
α

]
, (5.9)

because we want Φ to remain unchanged. Then the Euler-Lagrange equations cor-
responding to variations of δxβ , δuβ , δwαβ and δxβα are

∂(A,B)

∂(x1, x2)
x2,t +

∂(A,B)

∂(x1, uα)
uα,t − wα1,α = 0, (5.10)

∂(A,B)

∂(x2, x1)
x1,t +

∂(A,B)

∂(x2, uα)
uα,t − wα2,α = 0, (5.11)

∂(A,B)

∂(u1, xα)
xα,t +

∂(A,B)

∂(u1, u2)
u2,t = u1, (5.12)

∂(A,B)

∂(u2, xα)
xα,t +

∂(A,B)

∂(u2, u1)
u1,t = u2, (5.13)

xβ,α = xβα, (5.14)

wαβ = −∂e(τ)

∂xβα
. (5.15)

This system can be written as (3.20), except that the non-zero block W is now

W =


0 ∂(A,B)

∂(x1,x2)
∂(A,B)
∂(x1,u1)

∂(A,B)
∂(x1,u2)

∂(A,B)
∂(x2,x1) 0 ∂(A,B)

∂(x2,u1)
∂(A,B)
∂(x2,u2)

∂(A,B)
∂(u1,x1)

∂(A,B)
∂(u1,x2) 0 ∂(A,B)

∂(u1,u2)
∂(A,B)
∂(u2,x1)

∂(A,B)
∂(u2,x2)

∂(A,B)
∂(u2,u1) 0

 .

Equation (5.15) amounts to

wα1,α =
∂φ

∂x1
, wα2,α =

∂φ

∂x2
, (5.16)

and therefore the system (5.10)–(5.13) is equivalent to

B,t
∂A

∂xβ
−A,t

∂B

∂xβ
= g

∂η

∂xβ
, (5.17)

B,t
∂A

∂uβ
−A,t

∂B

∂uβ
= uβ , (5.18)

which can be expressed as

B,tdA−A,tdB = dΦ. (5.19)
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As before, W is of rank 2, so we can treat Φ as a function of (A,B) for each t.
Consequently, the system is again Hamiltonian:

A,t = − ∂Φ

∂B
, B,t =

∂Φ

∂A
. (5.20)

Substituting (5.20) into (5.17) and (5.18), we find that once again

dΦ− ∂Φ

∂A
dA− ∂Φ

∂B
dB = dφ− ∂φ

∂xα
dxα,

and so the transformation(
x1, x2, φ,

∂φ

∂x1
,
∂φ

∂x2

)
7→
(
A,B,Φ,

∂Φ

∂A
,
∂Φ

∂B

)
,

is a strict contact transformation.
So whenever the multisymplectic Lagrangian is of the same form as for constant-

f semigeostrophic flow, the contact and Hamiltonian structures are preserved. Fur-
thermore, the time-component of the multisymplectic two-form is again

ω = dA ∧ dB,

and thus there is an analogue of potential vorticity that is preserved by the flow,
namely

Q =
∂(A,B)

∂(m1,m2)
.

(c) Variable-f equations

The discussion above is entirely mathematical, without reference to any phys-
ical constraints. We now consider how to perturb the constant-f semigeostrophic
variables (A,B) in a way that allows the Coriolis parameter to vary with x2. As
we have seen, the main problem is that there is a great deal of freedom. Here is
one rationale that leads to a solution; we cannot claim that this is the only or best
solution, but it has the advantage of introducing errors that are no larger than the
errors in the constant-f case.

For constant f ,

A,t = − ∂φ

∂x1
, B,t = u1.

As neither of these depend explicitly on x2, we seek to preserve these equations. A
straightforward calculation shows that this requires

A = u1 + F (x2, u2), B = x1 +G(x2, u2),

for some functions F and G. Suppose that, as for constant f , A−u1 is independent
of u2 and B − x1 is a multiple of u2. Then

A = u1 + F̃ (x2), B = x1 + G̃(x2)u2.

On dimensional grounds, the functions F̃ and G̃ must have the same dimensions as
fx2 and 1/f respectively. Indeed, for constant f ,

F̃ = −fx2, G̃ = 1/f.
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Even with all of these constraints, there remains a gauge freedom: we can add a
constant to F̃ without changing the explicit form of the equations. We may exploit
this freedom by choosing

F̃ = −
∫ x2

f(y)dy, G̃ = 1/f(x2).

The integral is indefinite, so A and B are local functions, as required.
So with

A = u1 −
∫ x2

f(y) dy, B = x1 +
u2

f(x2)
, (5.21)

the Eulerian form of (5.17), (5.18) is

f(x2)x2,t − u1,t = g
∂η

∂x1
, (5.22)

−f(x2)x1,t +
f ′(x2)

[f(x2)]
2u

2u1,t − u2,t = g
∂η

∂x2
, (5.23)

x1,t −
f ′(x2)

[f(x2)]
2u

2x2,t +
u2,t
f(x2)

= u1, (5.24)

x2,t −
u1,t
f(x2)

= u2. (5.25)

Therefore the constraint velocity is

u1 = − g

f(x2)

∂η

∂x2
− f ′(x2)

[f(x2)]
2

(
u2
)2
,

u2 =
g

f(x2)

∂η

∂x1
,

and the potential vorticity is

Q =
∂(A,B)

∂(m1,m2)
=

1

η

(
f(x2) +

∂u2

∂x1
− ∂u1

∂x2
+
∂(u1, u2/f(x2))

∂(x1, x2)

)
.

This is a new variable-f approximation, which preserves that contact and Hamil-
tonian structure of the constant-f system. Furthermore, a routine calculation shows
that the error introduced by this approximation is of precisely the same order of
magnitude as the error due to the neglect of planetary curvature. Consequently,
this model is no worse than the constant-f semigeostrophic model.

If f(x2) = f0+βx2, the system (5.22)-(5.25) provides a β-plane semigeostrophic
model that differs slightly from the β-plane version of the planetary geostrophic
equations derived in Roulstone & Sewell (1997), principally because it contains a
term that ensures that the contact structure is preserved.

6. Summary and concluding remarks

We have adapted Salmon’s approach of incorporating a balance condition into a
variational principle to the multisymplectic framework and thus obtained a local
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formulation of near-local balanced models. Starting with Salmon’s L1 dynamics, we
then considered the more general class of near-local constraints used in McIntyre
& Roulstone (2002), including the

√
3-model. These descriptions are not unique:

instead of inserting the balance condition into the Lagrangian through the use
of Lagrange multipliers, we could have replaced the velocity field by the suitably
expressed balance condition directly into the Lagrangian. As shown for L1 dynamics
and the generalization of semigeostrophic theory, the local formulation paves the
way for constructing conservation laws from the structural conservation law.

In this paper we have only considered near-local constraints, in which the con-
straint is expressed in terms of the local value of the geopotential and a finite
number of its derivatives. Higher accuracy typically requires nonlocal constraints;
examples include the nonlocal second-order balanced models derived in Allen &
Holm (1996) and Vanneste & Bokhove (2002).

We have also proposed a multisymplectic system which generalizes the system
presented in Bridges et al. (2005) for semigeostrophic theory. This generalization
enabled us to present a local extension of the f -plane semigeostrophic theory to
variable Coriolis parameter, and we have proved that this generalization carries a
contact structure. The generalization of semigeostrophic theory presented in this
paper was influenced by our prior knowledge of the formulation of semigeostrophic
theory in terms of canonical coordinates, namely Hoskins’ geostrophic coordinates.
McIntyre & Roulstone (2002) found that complex canonical coordinates exist for
the class of near-local constraints considered here; they lead to interesting complex
geometries. It would be useful to extend our approach to this more general class of
complex canonical coordinates‘.
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