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SUMMARY

Mallows' ¢-model (Mallows, 1957Biometrikg 44, 114-130) is a
simple one-parameter distribution for ranking datdarious

generalisations of the model have appeared intdrature. Here we
describe a different generalisation that is a m&tmodel. The new

distribution is shown to be more successful thanlthsicg -model

in describing visual rankings of spray depositdeaves.
1. Introduction

Suppose that a set of objects is to be ranked independently by a pojulaif judges
on the basis of an attribute that can also be medsuobjectively. The objective
measurement gives rise to a true ranking of theat®j We shall assume that there are no
ties in the true ranking, and that ties are natvadld in the rankings produced by the
judges. Mallows (1957) proposed several probabitligtributions to describe the
rankings of the judges in relation to the true ragk The simplest of these models,
termed theg -model, defines a distance measure between theweloseanking and the
true ranking, and assumes that the probabilithefabserved ranking is a function of this
distance. The distance measure is related to Kénda(Kendall, 1970). Chung &
Marden (1991) have pointed out that Mallowg-model appears earlier, albeit
peripherally, in the work of Mann (1945), in accande with Stigler's Law of Eponymy
(Stigler, 1980).

Feigin & Cohen (1978) and Schulman (1979) investigathe model further, giving

tables to facilitate parameter estimation, and @& (1988) suggested the use of



alternative distance measures. Fligner & Verdut8Bg) investigated a different type of

generalisation of theg-model, in which ranking is assumed to proceednil

independent stages. At each stage, the object hdogrank highest amongst those
remaining is removed. A separate parameter is mgedcwith each stage, and the
probability that the object selected at that siageuly the highest ranked is a function of
this parameter. When aiht+1 parameters are equal, the model reduces to Wslllo

¢ -model.

In this paper we consider a different generalisatibMallows' ¢ -model, motivated by a

practical example of ranking errors in ranked sedging. The model is a two-parameter
mixture distribution. The paper is organised adofe$. In Section 2 we describe

Mallows' ¢-model. Section 3 describes ranking data that adoseg an evaluation of

ranked set sampling for estimating spray depositthe leaves of apple trees. We show
that Mallows' model is not appropriate for soméh&fse data. In Section 4 we generalise
Mallows' model and show that the generalised mpdeVides a better fit to the leaf
deposit rankings. Relationships with other modélsanking errors are discussed briefly
in Section 5.

2. Mallow' ¢-model

We assume that the objects are labelled in accoedaith their true ranking, so that the
first object has the lowest rank, and th8 object has the highest rank. Lgf) be the
rank assigned to tH& object,i=1,...,m. Because ties are not allowed; ((1), ...,z(m))

is a permutation of 1,.,m. We shall define a distance functi@yx), to be the minimum
number of adjacent transpositions required to fomnsz to the identity permutation. A
minimal sequence of adjacent transpositions magdmerated by moving each object in
turn to its correct place (this is the basis of gle@eralisation of Mallows' model due to
Fligner & Verducci, 1986). For example nEb andr=(2,3,1,5,4) a minimal sequence of
adjacent transpositions is

(3,2,1,5,4 (3,1,2,5,4) (1,3,2,5,4) (1,2,3,5,4) (1,2,3,4,5)

andD(z)=4. Form objects, the possible values©bfz) are 0, 1, ...m(m-1)/2. Kendall's

rank correlation between and the identity permutation is a simple functidnDdr)



(Kendall, 1970, pp. 7-8). We shall limit our attientto this particular distance measure,

though, as pointed out earlier, alternative measca@ be used.

In Mallows' ¢-model, all permutationg with the same value dd(z) are assumed to
occur with equal probability

D (1)

P(m) = Ld

1
@@ @

where ¢(¢)is a normalising factor which ensures that the abiliies of all m!

permutations sum to one (Mallows used a differleat,equivalent parameterisation). The

parameterg may take any non-negative real value. Perfectingnior whichz is the
identity permutation with probability one, corregps to the limitg — 0. Wheng=1, all
permutations are equally likely, and the rankingaisdom. Wheng >1 the probability of

a particular rankingncreaseswith increasindgd(z). Although this is possible in principle,
it seems unlikely to occur in practice, at leasthe type of example that we have in
mind, and we therefore assume tlgaties in the interval [0,1]; Feigin & Cohen (1978)
impose the same constraint.
Since all permutations with the same valueDoére assumed to be equally likely, our
main interest is in the distribution Bfitself. Clearly

d
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P(D=d) = , d=01..mm-1)/2 )

where ny is the number of permutations for whidb=d. The computation ofhy is
described by Kendall (1970, pp. 67-68). The meahvamiance oD are

_mp - j¢
E(D)_l—co ;a—qﬂ)
_mp -
D) = - :
V) ="y ;a—q»)z

(Fligner & Verducci, 1986). Given a sample Df values, the maximum likelihood
estimator ofg, g?) is obtained by solving the equati&{D) = D , whereD is the sample

mean; Feigin & Cohen (1978) and Schulman (197% tables to facilitate estimation.



3. Ranking errors in ranked set sampling

Ranked set sampling is a technique for improvirgcigion in comparison with simple

random sampling, particularly with regard to estioma of the population mean. Kaat

al. (1995) provide an introduction to the literature mnked set sampling. The method
involves selectingnr random samples of size from the population. Each set mfunits

is ranked in some way that does not involve direeasurement, for example by visual
assessment, and one unit is measured from eacfitsstis done in such a way that,
amongst thenr units that are measured in total, thererafreat were thought to be of rank

j, foreachj=1,...,m.

Our interest here is in errors that may occur m ridinking process. As part of a recent
practical evaluation of ranked set sampling fomesting spray deposits on the leaves of
apple trees (Murray, Ridout & Cross, 2000), twotplof trees were sprayed with a
fluorescent marker dye. One plot was sprayed dt i@ume, using coarse nozzles on
the sprayer, to give a large average droplet $imeother was sprayed at low volume,
using fine nozzles, to give a small average drogilet. We refer to these treatments as
Coarse and Fine respectively. One hundred and ywbwe leaves were sampled
haphazardly from each set of trees. In the laboratbe 125 leaves were divided
randomly into 25 sets of five. Four observers, wagkindependently, then ranked each
of these sets by assessing visually the densispiafy deposit. The upper and lower leaf
surfaces were ranked separately. The 125 leaves then divided randomly again into
25 sets of five and the procedure was repeated. Jdre in total 800 rankings o5
leaves (25 sets x 2 sprayer settings x 2 surfagesbservers x 2 repetitions). The true
ranking of each set is also known, based on arctibgemeasurement of deposit density

using an image analysis system.

For the purposes of analysis we pooled the dam the two repetitions to give 16 sets of
rankings (2 sprayer settings x 2 surfaces x 4 gbsg), with 50 rankings in each set. We

fitted Mallows' ¢-model to each set. The mean valueDofanged from 0.98 to 1.50,

implying a range of 0.220 to 0.321 fefr. However, there was some systematic lack of

fit. Table 1 shows the ratio of the sample variatwéhe variance of the fitted Mallows'

distribution for the 16 data sets. For all obsesu@e ratio was less than one for ranking



the upper surfaces of leaves from the Fine tredtn@herwise the ratio was consistently
greater than one, sometimes substantially so.dnmn#xt section we develop a mixture

model that can account for this overdispersion.
4. A generalisation of Mallows' model
In ranked set sampling, our interest is in the gremfince of a particular ranker, who has

to rank several different sets of samples. Forrigodar set, the parametgrdetermines

the probabilities of the different possible ranlenglowever, the difficulty of ranking is

likely to vary from set to set, and this would ledlected in variation ofz from set to set.
We therefore consider a mixture distribution in @hg is replaced by a random variable
T. Since ¢ is constrained to lie in the interval [0,1], it flexible and convenient to

assume a beta distribution for Alternatives, such as the logistic-normal disitibn, in

which logit(¢) is assumed to be normally distributed, could atso considered.

However, the resulting mixture distribution@fis determined primarily by the low-order
moments of the mixing distribution, and is liketylie relatively insensitive to the precise

distributional form of the mixing distribution.

We therefore assume that the probability densitgtion ofT is

_ t7t(@1-1)F
B(a, B)

where B(a, 8) denotes the beta functioo,=¢@1-9)/0, B=0-¢)(1-J)/0 andJ is

f(t) : 0<t<l a,B8>0

an overdispersion parametr< o <1). This implies that

EM)=¢ and var(l)=3d(-¢)

The resulting distribution dD is

nd 1td+a—l (1_t),8—1

B(a.B)’° ()

P(D=d) = dt, d=021...m(m-1)/2 3)
Often, in mixture models that involve the beta rilisition, reasonably simple explicit
expressions exist for the mixture distribution m@bitities. Examples are the beta-
binomial distribution €.g. Morgan, 1992, Section 6.1.1) and the beta-geometri

distribution €.g. Morgan, 1992, Section 6.7.2). Here, however, eipéixpressions for



the probabilities appear not to exist, due to ttes@nce of the normalising factgn(t) in
the denominator of the integrand. Similarly, expliormulae for the moments do not
exist. Nonetheless, it is easy to work with therdistion numerically, particularly when

mis small, as it usually is in ranked set sampling.

The generalised distribution was fitted to the &fadsets for which the variance ratio in
Table 1 exceeded one. In six instances there wagraficant improvement in fit
(P<0.05) when judged by a likelihood ratio testbl€a2 shows the observed and fitted
values for the rankings by Observer 1 of the uppedt lower leaf surfaces from the
Coarse treatment. Parameter estimates and likelired® statistics are shown in Table 3.
The calculations were done using Genstat. The atdnetrors are based on a numerical

approximation to the observed information matrigr Eheg -model the standard error of

(} calculated in this way agreed very closely witk tralue calculated from a formula

based on the expected information (Fligner & Verilut986).

Judged by the likelihood ratio test, the improvetniarfit is strongly significant for the
upper leaf surface (P=0.003) but not for the loleaf surface (P=0.11). Nonetheless, the
two data sets show a similar pattern of discreganfriom the¢-model and the lack of
significance for the lower leaf surface data prdpaéflects the lack of power of the test

statistic, with a sample size of 50, rather thanatlequacy of the-model. For both data

sets, the Wald statistic that results from dividi«ﬁgy its standard error indicates a less

significant departure from thg-model than the likelihood ratio statistic doesisTivas
true for all 12 data sets studied and probably ltesa part from skewness in the
distribution of 5. The estimates of. were similar for both models, but, as would be

expected, the standard error was greater for tReurei model.

We have focused our attention so far on the digiob of D. If we wish to consider the
distribution of individual permutations we needassess the validity of the assumption
that all permutations with the same valueDofre equiprobable. This is difficult to do
directly because, for most values®fthe number of rankings is smaller than the number
of distinct permutations, and we therefore adoptiratirect approach. In ranked set

sampling the most important information about ragkerrors is contained in the matrix



P =( pj) wherep; is the probability that the object that has truekrawithin a set is
judged to have rank From the observed data we may calculate the xnisitr ( ;)
wheren; is the number of times that the object that has tamki within a set was judged
to have rank. Table 4 shows the matriX for the rankings by Observer 1 of the upper
leaf surface of leaves from the Coarse treatmesthf the rows and columns of this
matrix sums to 50, the total number of rankingsbl&@ad also shows the fitted values

n, =50p, , based on the fit of the new distribution r(4™ column of Table 2) and

assuming that all rankings with the same valudadre equiprobable. The matrix of

fitted values is necessarily symmetric about badiganals.

The chi-squared statistic for comparing the obskaed fitted values i¥°=14.3. This
statistic has 14 degrees of freedom (d.f.), bec#luseow and column totals & are
fixed, and because two parameters have been estimbte fit is therefore satisfactory
in this important respect. If the standard Mallomsidel (3* column of Table 2) is used
instead, the goodness of fit statisti&ts24.3 (15 d.f.). For the rankings of the lower leaf
surface (last two columns of Table 2) the corresjpupstatistics ar¥?=16.1 (14 d.f.) for
the new model and?=23.0 (15 d.f.) for thez-model.

5. Discussion

Mallows' ¢-model is extremely ambitious, in so far as it @S to describe the

distribution ofm! rankings in terms of a single parameter. It i$ surprising, therefore,
that examination of the fit of the model to partisudata sets has often revealed
inadequacies of the moded.¢. Cohen & Mallows, 1983). The mixture model desalibe
here introduces a second parameter to allow fordiy@ersion. This gives considerable
additional flexibility in modelling the distributioof D. In some instances modelliriy
may be an end in itself but, if the probabilitigsimdividual rankings are required, the
new model still has the restrictive assumption #dihtankings with the same value Df
are equiprobable. However, in the particular exantplat we have studied, the new
model leads to good estimates of the ma®ixwhich is derived from individual

permutation probabilities.



The new model assumes that variability in the clifty of ranking different sets leads to

variability in ¢. In some circumstances it may be useful to redhel differences

between sets as fixed effects. For exampleould be related to a measure of within-set
variability via a logistic model. In the context @nked set sampling, however, it is more
appropriate to regard set differences as a rand@euotewith the sets considered as a

random sample from the population of possible getsmight need to be ranked.

Several other models of ranking errors have be@sidered in the literature of ranked
set sampling. Patiét al. (1994) used a model proposed originally by Lut@59) and
Bohn & Wolfe (1994) modelled the matri directly. However, the model of Dell &
Clutter (1972) has received the most attentions Timdel assumes that an observer ranks
the units on the basis of his or hggrceptionof the true value. The perceived value is
assumed to be the sum of the true value and a maralor term that is distributed as
N(0,0%). This is a form of the Thurstone-Mosteller-Dani¢lEMD) ranking model
(Daniels, 1950). Under this model, rankings witle teame value oD are not
equiprobable in general. Nonetheless, we may aiifisider the distribution dd under
this model. Limited simulations suggest that th&ribution isunderdispersedelative to
Mallows' ¢-model. This is in agreement with a numerical examp Feigin & Cohen
(1978). These authors simulated a sample of 40nmgakising a TMD model and noted
that theg -model gave a poor fit. The ratio of the observadance to the variance of the

¢ -model with the same mean was 0.45 in their example

The fact that, for all observers, the varianceorédr ranking the deposits on the upper
surfaces of leaves from the Fine treatment wasthess one suggests that a TMD model
may be appropriate for describing ranking erro@\@rsely, the overdispersion present
in the other data sets indicates that a TMD moderlldnot be appropriate for these data.
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Table 1

The ratio of the sample variance to the varianctheffitted Mallows'¢ -model for 16
sets of ranking data.

Spray Observer
Treatment Surface 1 2 3 4
Coarse Upper 1.75 1.12 1.61 1.63
Coarse Lower 1.33 1.53 141 1.27
Fine Upper 0.86 0.71 0.95 0.85
Fine Lower 1.30 1.30 1.23 1.73
Table 2

Observed distribution dd and fitted values from the standard Mallowsmodel and

the generalised distribution described in Sectiasf the paper. The rankings are by
Observer 1 and relate to leaves from the Coarsatitnent

Upper leaf surface Lower leaf surface
Fitted Fitted
D New New
Observed ¢-model model Observed ¢-model model
0 22 16.5 22.4 19 15.9 19.2
1 14 17.2 124 16 17.0 14.5
2 6 10.0 7.0 6 10.2 8.3
3 4 4.3 3.9 4 4.6 4.3
4 0 15 2.2 4 1.6 2.1
5 3 0.4 1.2 1 0.5 1.0
6-10 1 0.1 0.9 0 0.2 0.6
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Table 3

Parameter estimates for the data sets in Tableng,likelihood ratio (LR) statistics for
comparing models. Figures in brackets are asympgitindard errors.

Upper leaf surface Lower leaf surface

¢-model
(; 0.260 ( 0.0320) 0.267 (0.0324)
New model
@ 0.252 (0.0411) 0.262 (0.0377)
k) 0.190 (0.0832) 0.103 (0.0788)
LR statistic (1 d.f.) 8.78 2.52

Table 4

The rankings of Observer 1 in relation to the tragkings for the 50 sets of upper leaf
surfaces from the Coarse treatment. The main endnie the observed frequencies. The
figures in brackets are the frequencies predictedhffitting the new model to the
observed distribution db, and assuming that all rankings with the same value are
equiprobable.

Observer's ranking

True rank 1 2 3 4 5
1 43 4 1 1 1
(37.9) (7.8) (2.6) (1.1) (0.6)
2 6 30 9 3 2
(7.8) (31.5) (7.2) (2.5) (1.1)
3 0 11 30 8 1
(2.6) (7.1) (30.6) (7.1) (2.6)
4 1 4 6 32 7
(1.12) (2.5) (7.2) (31.5) (7.8)
5 0 1 4 6 39
(0.6) (1.1) (2.6) (7.8) (37.9)

12



Notes on data organisation

32 sets of ranking data generated, in iléSER\RANKSS\1998DATA\PERMS.DAT.
Each data set therefore has 25 values.

Data sets Observer
1-8 1
9-16 2
17-24 3
25-32 4

Within each set of 8 the order is as follows:

Data set| Treatment Surface Replicate
1 Coarse Upper 1
2 Coarse Upper 2
3 Coarse Lower 1
4 Coarse Lower 2
5 Fine Upper 1
6 Fine Upper 2
7 Fine Lower 1
8 Fine Lower 2

Within the 32 data sets, each of the 25 lines ¢& édaa permutation of (1,2,3,4,5). A
typical permutation, such as (1,4,2,5,3) meanddath@ving (NB - rank 1 = lowest, rank
5 = highest, this is different from the paper, whib uses the reverse conventign

The sample thought to be lowest was indeed lovask 1).
The sample thought to b& bwest was actually"? lowest
The sample thought to b&%2owest was actually"3lowest
The sample thought to b& owest was actually"#lowest
The sample thought to b& Bwest was actually'slowest

13



The Genstat program is as follows:

unit [125]

fact [lev=25] SetlC, Set2C, SetlF, Set2F

fact [lev=5] Rank1CUJ[1...4], Rank1CL[1...4],\
Rank1FUJ[1...4], Rank1FL[1...4], \
Rank2CUJ[1...4], Rank2CL[1...4],\
Rank2FUJ[1...4], Rank2FL[1...4], \
TruelCU, TruelCL, TruelFU, TruelFL, \
True2CU, True2CL, True2FU, True2FL

open 'o:/user/rankss/1998Data/rankss4.dat'; ch=2

read [ch=2; pr=*] SampleNo, Set1C, Rank1CU[1...4],
ClUpper, ClLower, TruelCU, TruelCL

read [ch=2; pr=*] SampleNo, Set2C, Rank2CU[1...4],
C2Upper, C2Lower, True2CU, True2CL

read [ch=2; pr=*] SampleNo, SetlF, Rank1FU[1...4],
F1lUpper, FlLower, TruelFU, TruelFL

read [ch=2; pr=*] SampleNo, Set2F, Rank2FU|[1...4],
F2Upper, F2Lower, True2FU, True2FL

close 2

for x = (TruelCU, True2CU, TruelCL, True2CL, TruelF
TruelFL, True2FL)4;\

y = Rank1CUJ1], Rank2CU[1], Rank1CL[1], Rank2CL
Rank1FUJ[1], Rank2FU[1], Rank1FL[1], Rank2FL
Rank1CU[2], Rank2CU[2], Rank1CL[2], Rank2CL
Rank1FU[2], Rank2FU[2], Rank1FL[2], Rank2FL
Rank1CU[3], Rank2CU[3], Rank1CL[3], Rank2CL
Rank1FUJ[3], Rank2FU[3], Rank1FL[3], Rank2FL
Rank1CU[4], Rank2CU[4], Rank1CL[4], Rank2CL
Rank1FU[4], Rank2FU[4], Rank1FL[4], Rank2FL

s = ((SetlC, Set2C)2, (SetlF, Set2F)2)4

"tabu [class=x,y; print=nobs] SampleNo"

calcz=y

tabu [class=s,x] z; mean=m

print [rlprint=*; clprint=*; ipr=*; sq=y] m; d=

print [sq=y] "'

endfor

stop

Rank1CL[1...4], \
Rank2CL[1...4],\
Rank1FL[1...4],\
Rank2FL[1...4], \

, True2FU, \

U
1
1
2
2
3
3
4
4

— - —

0; f=1
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