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SUMMARY  

Mallows' φ -model (Mallows, 1957, Biometrika, 44, 114-130) is a 

simple one-parameter distribution for ranking data. Various 

generalisations of the model have appeared in the literature. Here we 

describe a different generalisation that is a mixture model. The new 

distribution is shown to be more successful than the basic φ -model 

in describing visual rankings of spray deposits on leaves.  

1. Introduction  

Suppose that a set of m objects is to be ranked independently by a population of judges 

on the basis of an attribute that can also be measured objectively. The objective 

measurement gives rise to a true ranking of the objects. We shall assume that there are no 

ties in the true ranking, and that ties are not allowed in the rankings produced by the 

judges. Mallows (1957) proposed several probability distributions to describe the 

rankings of the judges in relation to the true ranking. The simplest of these models, 

termed the φ -model, defines a distance measure between the observed ranking and the 

true ranking, and assumes that the probability of the observed ranking is a function of this 

distance. The distance measure is related to Kendall's τ (Kendall, 1970). Chung & 

Marden (1991) have pointed out that Mallows' φ -model appears earlier, albeit 

peripherally, in the work of Mann (1945), in accordance with Stigler's Law of Eponymy 

(Stigler, 1980).  

Feigin & Cohen (1978) and Schulman (1979) investigated the model further, giving 

tables to facilitate parameter estimation, and Diaconis (1988) suggested the use of 
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alternative distance measures. Fligner & Verducci (1986) investigated a different type of 

generalisation of the φ -model, in which ranking is assumed to proceed in m-1 

independent stages. At each stage, the object thought to rank highest amongst those 

remaining is removed. A separate parameter is associated with each stage, and the 

probability that the object selected at that stage is truly the highest ranked is a function of 

this parameter. When all m-1 parameters are equal, the model reduces to Mallows' 

φ -model. 

In this paper we consider a different generalisation of Mallows' φ -model, motivated by a 

practical example of ranking errors in ranked set sampling. The model is a two-parameter 

mixture distribution. The paper is organised as follows. In Section 2 we describe 

Mallows' φ -model. Section 3 describes ranking data that arose during an evaluation of 

ranked set sampling for estimating spray deposits on the leaves of apple trees. We show 

that Mallows' model is not appropriate for some of these data. In Section 4 we generalise 

Mallows' model and show that the generalised model provides a better fit to the leaf 

deposit rankings. Relationships with other models of ranking errors are discussed briefly 

in Section 5. 

2. Mallow' φ -model 

We assume that the objects are labelled in accordance with their true ranking, so that the 

first object has the lowest rank, and the mth
 object has the highest rank. Let π(i) be the 

rank assigned to the i th object, i=1, ..., m. Because ties are not allowed, π = (π(1), ..., π(m)) 

is a permutation of 1, ..., m. We shall define a distance function, D(π), to be the minimum 

number of adjacent transpositions required to transform π to the identity permutation. A 

minimal sequence of adjacent transpositions may be generated by moving each object in 

turn to its correct place (this is the basis of the generalisation of Mallows' model due to 

Fligner & Verducci, 1986). For example, if m=5 and π =(2,3,1,5,4) a minimal sequence of 

adjacent transpositions is 

(3,2,1,5,4) → (3,1,2,5,4) → (1,3,2,5,4) → (1,2,3,5,4) → (1,2,3,4,5) 

and D(π)=4. For m objects, the possible values of D(π) are 0, 1, ..., m(m-1)/2. Kendall's 

rank correlation between π and the identity permutation is a simple function of D(π) 
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(Kendall, 1970, pp. 7-8). We shall limit our attention to this particular distance measure, 

though, as pointed out earlier, alternative measures can be used.  

In Mallows' φ -model, all permutations π with the same value of D(π) are assumed to 

occur with equal probability 
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where )(φψ is a normalising factor which ensures that the probabilities of all m! 

permutations sum to one (Mallows used a different, but equivalent parameterisation). The 

parameter φ  may take any non-negative real value. Perfect ranking, for which π is the 

identity permutation with probability one, corresponds to the limit φ→ 0. When φ =1, all 

permutations are equally likely, and the ranking is random. When φ >1 the probability of 

a particular ranking increases with increasing D(π). Although this is possible in principle, 

it seems unlikely to occur in practice, at least in the type of example that we have in 

mind, and we therefore assume that φ  lies in the interval [0,1]; Feigin & Cohen (1978) 

impose the same constraint.  

Since all permutations with the same value of D are assumed to be equally likely, our 

main interest is in the distribution of D itself. Clearly  

2/)1(...,,1,0,
)(

)( −=== mmd
n

dDP
d

d

φψ
φ

   (2) 

where nd is the number of permutations for which D=d. The computation of nd is 

described by Kendall (1970, pp. 67-68). The mean and variance of D are  

∑
∑

=

=

−
−

−
=

−
−

−
=

m

j
j

j

m

j
j

j

jm
D

jm
DE

1
2

2

2

1

)1()1(
)var(

)1(1
)(

φ
φ

φ
φ

φ
φ

φ
φ

 

(Fligner & Verducci, 1986). Given a sample of D values, the maximum likelihood 

estimator of φ , φ̂ , is obtained by solving the equation DDE =)( , where D is the sample 

mean; Feigin & Cohen (1978) and Schulman (1979) give tables to facilitate estimation. 



 4 

3. Ranking errors in ranked set sampling 

Ranked set sampling is a technique for improving precision in comparison with simple 

random sampling, particularly with regard to estimation of the population mean. Kaur et 

al. (1995) provide an introduction to the literature on ranked set sampling. The method 

involves selecting mr random samples of size m from the population. Each set of m units 

is ranked in some way that does not involve direct measurement, for example by visual 

assessment, and one unit is measured from each set. This is done in such a way that, 

amongst the mr units that are measured in total, there are r that were thought to be of rank 

j, for each j  = 1, ..., m. 

Our interest here is in errors that may occur in the ranking process. As part of a recent 

practical evaluation of ranked set sampling for estimating spray deposits on the leaves of 

apple trees (Murray, Ridout & Cross, 2000), two plots of trees were sprayed with a 

fluorescent marker dye. One plot was sprayed at high volume, using coarse nozzles on 

the sprayer, to give a large average droplet size, the other was sprayed at low volume, 

using fine nozzles, to give a small average droplet size. We refer to these treatments as 

Coarse and Fine respectively. One hundred and twenty five leaves were sampled 

haphazardly from each set of trees. In the laboratory the 125 leaves were divided 

randomly into 25 sets of five. Four observers, working independently, then ranked each 

of these sets by assessing visually the density of spray deposit. The upper and lower leaf 

surfaces were ranked separately. The 125 leaves were then divided randomly again into 

25 sets of five and the procedure was repeated. This gave in total 800 rankings of m=5 

leaves  (25 sets × 2 sprayer settings × 2 surfaces × 4 observers × 2 repetitions). The true 

ranking of each set is also known, based on an objective measurement of deposit density 

using an image analysis system. 

For the purposes of analysis we pooled the data from the two repetitions to give 16 sets of 

rankings (2 sprayer settings × 2 surfaces × 4 observers), with 50 rankings in each set. We 

fitted Mallows' φ -model to each set. The mean value of D ranged from 0.98 to 1.50, 

implying a range of 0.220 to 0.321 for φ̂ . However, there was some systematic lack of 

fit. Table 1 shows the ratio of the sample variance to the variance of the fitted Mallows' 

distribution for the 16 data sets. For all observers the ratio was less than one for ranking 
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the upper surfaces of leaves from the Fine treatment. Otherwise the ratio was consistently 

greater than one, sometimes substantially so. In the next section we develop a mixture 

model that can account for this overdispersion.  

4. A generalisation of Mallows' model 

In ranked set sampling, our interest is in the performance of a particular ranker, who has 

to rank several different sets of samples. For a particular set, the parameterφ  determines 

the probabilities of the different possible rankings. However, the difficulty of ranking is 

likely to vary from set to set, and this would be reflected in variation of φ  from set to set. 

We therefore consider a mixture distribution in which φ  is replaced by a random variable 

T. Since φ  is constrained to lie in the interval [0,1], it is flexible and convenient to 

assume a beta distribution for T. Alternatives, such as the logistic-normal distribution, in 

which )logit(φ  is assumed to be normally distributed, could also be considered. 

However, the resulting mixture distribution of D is determined primarily by the low-order 

moments of the mixing distribution, and is likely to be relatively insensitive to the precise 

distributional form of the mixing distribution. 

We therefore assume that the probability density function of T is 
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where ),( βαB  denotes the beta function, δδφα /)1( −= , δδφβ /)1)(1( −−=  and δ is 

an overdispersion parameter )10( ≤≤ δ . This implies that 
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The resulting distribution of D is 
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Often, in mixture models that involve the beta distribution, reasonably simple explicit 

expressions exist for the mixture distribution probabilities. Examples are the beta-

binomial distribution (e.g. Morgan, 1992, Section 6.1.1) and the beta-geometric 

distribution (e.g. Morgan, 1992, Section 6.7.2). Here, however, explicit expressions for 
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the probabilities appear not to exist, due to the presence of the normalising factor )(tψ in 

the denominator of the integrand. Similarly, explicit formulae for the moments do not 

exist. Nonetheless, it is easy to work with the distribution numerically, particularly when 

m is small, as it usually is in ranked set sampling.  

The generalised distribution was fitted to the 12 data sets for which the variance ratio in 

Table 1 exceeded one. In six instances there was a significant improvement in fit 

(P<0.05) when judged by a likelihood ratio test. Table 2 shows the observed and fitted 

values for the rankings by Observer 1 of the upper and lower leaf surfaces from the 

Coarse treatment. Parameter estimates and likelihood ratio statistics are shown in Table 3. 

The calculations were done using Genstat. The standard errors are based on a numerical 

approximation to the observed information matrix. For theφ -model the standard error of 

φ̂  calculated in this way agreed very closely with the value calculated from a formula 

based on the expected information (Fligner & Verducci, 1986).  

Judged by the likelihood ratio test, the improvement in fit is strongly significant for the 

upper leaf surface (P=0.003) but not for the lower leaf surface (P=0.11). Nonetheless, the 

two data sets show a similar pattern of discrepancies from the φ -model and the lack of 

significance for the lower leaf surface data probably reflects the lack of power of the test 

statistic, with a sample size of 50, rather than the adequacy of theφ -model. For both data 

sets, the Wald statistic that results from dividing δ̂ by its standard error indicates a less 

significant departure from the φ -model than the likelihood ratio statistic does. This was 

true for all 12 data sets studied and probably results in part from skewness in the 

distribution of δ̂ . The estimates of φ  were similar for both models, but, as would be 

expected, the standard error was greater for the mixture model. 

We have focused our attention so far on the distribution of D. If we wish to consider the 

distribution of individual permutations we need to assess the validity of the assumption 

that all permutations with the same value of D are equiprobable.  This is difficult to do 

directly because, for most values of D, the number of rankings is smaller than the number 

of distinct permutations, and we therefore adopt an indirect approach. In ranked set 

sampling the most important information about ranking errors is contained in the matrix 
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P = (  pij ) where pij is the probability that the object that has true rank i within a set is 

judged to have rank j. From the observed data we may calculate the matrix N = ( nij ) 

where nij is the number of times that the object that has true rank i within a set was judged 

to have rank j. Table 4 shows the matrix N for the rankings by Observer 1 of the upper 

leaf surface of leaves from the Coarse treatment. Each of the rows and columns of this 

matrix sums to 50, the total number of rankings. Table 4 also shows the fitted values 

ijij pn ˆ50ˆ = , based on the fit of the new distribution for D (4th column of Table 2) and 

assuming that all rankings with the same value of D are equiprobable. The matrix of 

fitted values is necessarily symmetric about both diagonals.  

The chi-squared statistic for comparing the observed and fitted values is X2=14.3. This 

statistic has 14 degrees of freedom (d.f.), because the row and column totals of N are 

fixed, and because two parameters have been estimated. The fit is therefore satisfactory 

in this important respect. If the standard Mallows' model (3rd column of Table 2) is used 

instead, the goodness of fit statistic is X2=24.3 (15 d.f.). For the rankings of the lower leaf 

surface (last two columns of Table 2) the corresponding statistics are X2=16.1 (14 d.f.) for 

the new model and X2=23.0 (15 d.f.) for the φ -model. 

5.   Discussion 

Mallows' φ -model is extremely ambitious, in so far as it attempts to describe the 

distribution of m! rankings in terms of a single parameter. It is not surprising, therefore, 

that examination of the fit of the model to particular data sets has often revealed 

inadequacies of the model (e.g. Cohen & Mallows, 1983). The mixture model described 

here introduces a second parameter to allow for overdispersion. This gives considerable 

additional flexibility in modelling the distribution of D. In some instances modelling D 

may be an end in itself but, if the probabilities of individual rankings are required, the 

new model still has the restrictive assumption that all rankings with the same value of D 

are equiprobable. However, in the particular example that we have studied, the new 

model leads to good estimates of the matrix P, which is derived from individual 

permutation probabilities.  
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The new model assumes that variability in the difficulty of ranking different sets leads to 

variability in φ . In some circumstances it may be useful to regard the differences 

between sets as fixed effects. For example, φ  could be related to a measure of within-set 

variability via a logistic model. In the context of ranked set sampling, however, it is more 

appropriate to regard set differences as a random effect, with the sets considered as a 

random sample from the population of possible sets that might need to be ranked. 

Several other models of ranking errors have been considered in the literature of ranked 

set sampling. Patil et al. (1994) used a model proposed originally by Luce (1959) and 

Bohn & Wolfe (1994) modelled the matrix P directly. However, the model of Dell & 

Clutter (1972) has received the most attention. This model assumes that an observer ranks 

the units on the basis of his or her perception of the true value. The perceived value is 

assumed to be the sum of the true value and a random error term that is distributed as 

),0( 2σN . This is a form of the Thurstone-Mosteller-Daniels (TMD) ranking model 

(Daniels, 1950). Under this model, rankings with the same value of D are not 

equiprobable in general. Nonetheless, we may still consider the distribution of D under 

this model. Limited simulations suggest that this distribution is underdispersed relative to 

Mallows' φ -model. This is in agreement with a numerical example in Feigin & Cohen 

(1978). These authors simulated a sample of 40 rankings using a TMD model and noted 

that the φ -model gave a poor fit. The ratio of the observed variance to the variance of the 

φ -model with the same mean was 0.45 in their example.  

The fact that, for all observers, the variance ratio for ranking the deposits on the upper 

surfaces of leaves from the Fine treatment was less than one suggests that a TMD model 

may be appropriate for describing ranking errors. Conversely, the overdispersion present 

in the other data sets indicates that a TMD model would not be appropriate for these data.  
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Table 1 

The ratio of the sample variance to the variance of the fitted Mallows' φ -model for 16 
sets of ranking data. 

 

Spray  Observer 

Treatment Surface 1 2 3 4 

Coarse Upper 1.75 1.12 1.61 1.63 

Coarse Lower 1.33 1.53 1.41 1.27 

Fine Upper 0.86 0.71 0.95 0.85 

Fine Lower 1.30 1.30 1.23 1.73 

 

 

 

Table 2 

Observed distribution of D and fitted values from the standard Mallows' φ -model and 
the generalised distribution described in Section 4 of the paper. The rankings are by 

Observer 1 and relate to leaves from the Coarse treatment. 

 

 Upper leaf surface Lower leaf surface 

  Fitted  Fitted 

D  
Observed 

 
φ -model 

New 
model 

 
Observed 

 
φ -model 

New 
model 

0 22 16.5 22.4 19 15.9 19.2 

1 14 17.2 12.4 16 17.0 14.5 

2 6 10.0 7.0 6 10.2 8.3 

3 4 4.3 3.9 4 4.6 4.3 

4 0 1.5 2.2 4 1.6 2.1 

5 3 0.4 1.2 1 0.5 1.0 

6-10 1 0.1 0.9 0 0.2 0.6 
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Table 3 

Parameter estimates for the data sets in Table 2, and likelihood ratio (LR) statistics for 
comparing models. Figures in brackets are asymptotic standard errors.  

 

 Upper leaf surface Lower leaf surface 

φ -model   

φ̂  0.260 ( 0.0320) 0.267 (0.0324 ) 

New model   

φ̂  0.252 (0.0411) 0.262 (0.0377) 

δ̂  0.190 (0.0832) 0.103 (0.0788) 

LR statistic (1 d.f.) 8.78 2.52 

 

 

Table 4 

The rankings of Observer 1 in relation to the true rankings for the 50 sets of upper leaf 
surfaces from the Coarse treatment. The main entries are the observed frequencies. The 

figures in brackets are the frequencies predicted from fitting the new model to the 
observed distribution of D, and assuming that all rankings with the same value of D are 

equiprobable. 

  

 Observer's ranking 

True rank 1 2 3 4 5 

1 43 

(37.9) 

4 

(7.8) 

1 

(2.6) 

1 

(1.1) 

1 

(0.6) 

2 6 

(7.8) 

30 

(31.5) 

9 

(7.1) 

3 

(2.5) 

2 

(1.1) 

3 0 

(2.6) 

11 

(7.1) 

30 

(30.6) 

8 

(7.1) 

1 

(2.6) 

4 1 

(1.1) 

4 

(2.5) 

6 

(7.1) 

32 

(31.5) 

7 

(7.8) 

5 0 

(0.6) 

1 

(1.1) 

4 

(2.6) 

6 

(7.8) 

39 

(37.9) 
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Notes on data organisation 

32 sets of ranking data generated, in file :\USER\RANKSS\1998DATA\PERMS.DAT. 
Each data set therefore has 25 values. 

  

Data sets Observer 

1-8 1 

9-16 2 

17-24 3 

25-32 4 

 

Within each set of 8 the order is as follows: 

 

Data set Treatment Surface Replicate 

1 Coarse Upper 1 

2 Coarse Upper 2 

3 Coarse Lower 1 

4 Coarse Lower 2 

5 Fine Upper 1 

6 Fine Upper 2 

7 Fine Lower 1 

8 Fine Lower 2 

 

Within the 32 data sets, each of the 25 lines of data is a permutation of (1,2,3,4,5).  A 
typical permutation, such as (1,4,2,5,3) means the following (NB - rank 1 = lowest, rank 
5 = highest, this is different from the paper, which uses the reverse convention). 

 The sample thought to be lowest was indeed lowest (rank 1). 

 The sample thought to be 4th lowest was actually 2nd lowest 

 The sample thought to be 2nd lowest was actually 3rd lowest 

 The sample thought to be 5th lowest was actually 4th lowest 

 The sample thought to be 3rd lowest was actually 5th lowest 
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The Genstat program is as follows: 

 

unit [125] 

 

fact [lev=25] Set1C, Set2C, Set1F, Set2F 
fact [lev=5] Rank1CU[1...4], Rank1CL[1...4], \ 
             Rank1FU[1...4], Rank1FL[1...4], \ 
             Rank2CU[1...4], Rank2CL[1...4], \ 
             Rank2FU[1...4], Rank2FL[1...4], \ 
             True1CU, True1CL, True1FU, True1FL, \ 
             True2CU, True2CL, True2FU, True2FL 
 
open 'o:/user/rankss/1998Data/rankss4.dat'; ch=2 
read [ch=2; pr=*] SampleNo, Set1C, Rank1CU[1...4], Rank1CL[1...4], \ 
            C1Upper, C1Lower, True1CU, True1CL 
read [ch=2; pr=*] SampleNo, Set2C, Rank2CU[1...4], Rank2CL[1...4], \ 
            C2Upper, C2Lower, True2CU, True2CL 
read [ch=2; pr=*] SampleNo, Set1F, Rank1FU[1...4], Rank1FL[1...4], \ 
            F1Upper, F1Lower, True1FU, True1FL 
read [ch=2; pr=*] SampleNo, Set2F, Rank2FU[1...4], Rank2FL[1...4], \ 
            F2Upper, F2Lower, True2FU, True2FL 
close 2 
 
 
for x = (True1CU, True2CU, True1CL, True2CL, True1F U, True2FU, \ 
        True1FL, True2FL)4; \ 
    y = Rank1CU[1], Rank2CU[1], Rank1CL[1], Rank2CL [1], \ 
        Rank1FU[1], Rank2FU[1], Rank1FL[1], Rank2FL [1], \ 
        Rank1CU[2], Rank2CU[2], Rank1CL[2], Rank2CL [2], \ 
        Rank1FU[2], Rank2FU[2], Rank1FL[2], Rank2FL [2], \ 
        Rank1CU[3], Rank2CU[3], Rank1CL[3], Rank2CL [3], \ 
        Rank1FU[3], Rank2FU[3], Rank1FL[3], Rank2FL [3], \ 
        Rank1CU[4], Rank2CU[4], Rank1CL[4], Rank2CL [4], \ 
        Rank1FU[4], Rank2FU[4], Rank1FL[4], Rank2FL [4]; \ 
    s = ( (Set1C, Set2C)2, (Set1F, Set2F)2)4 
    "tabu [class=x,y; print=nobs] SampleNo" 
    calc z = y 
    tabu [class=s,x] z; mean=m 
    print [rlprint=*; clprint=*; ipr=*; sq=y] m; d= 0; f=1 
    print [sq=y] ':' 
endfor 
 
stop 
 
 


