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Introductory Example – CJS Model 

• In capture-recapture studies animals are captured, marked and 

then recaptured again. 

 



• Herring Gulls (Larus argentatus) capture-recapture data for 1983  

to 1986 (Lebreton, et al 1995): 

 

 

 

• Cormark, Jolly Seber (CJS) model for capture-recapture data. 

• i – probability animals survives from occasion i to occasion i +1. 

• pi – probability an animal is recaptured on occasion i. 

• Probabilities of being captured in year i then next captured in year j: 

 

 

 

• Parameters 3 and p4 are confounded, will only ever be able to 

estimate 3  p4. 

• Model is parameter redundant. 

Introductory Example – CJS Model 



Definitions 

• Let M() be the function that defines a model, which has 
unknown parameters . 
 

• Parameter redundancy: A model is parameter redundant if 
we can write M() as a function just of , where  = f() and 
dimension  < dimension . 
 

• Identifiability: A model is globally identifiable if  
 M(1) = M(2) implies that 1 = 2. A model is locally 

identifiable if there exists an open neighbourhood of any  
such that this is true. Otherwise a model is non-identifiable. 

 

• A parameter redundant model will be non-identifiable. A 
model that is not parameter redundant will be at least locally 
identifiable. 
 

• The Bayesian equivalent of parameter redundancy is weak 
identifiability. Weak identifiability is measured by an overlap 
of the prior and posterior distributions (Garrett and Zeger, 
2000, Gimenez et al 2009). 
 



Practical Implications 

• A parameter redundant model will have a ridge in the 

likelihood, so that there can be more than one maximum 

likelihood estimate. 

• In a parameter redundant model the Hessian matrix and 

information will be singular, so that the standard errors for 

parameter estimates do not exist. 

• In reality when numerical methods are used to obtain standard 

errors, the approximate Hessian / information matrix could be 

non-singular and the standard errors may be just very large. 

• It is better to check for parameter redundancy before fitting a 

model. 

• To fit a parameter redundant model a constraint is needed. 



Definitions 

• Exhaustive Summary: A parameter vector () is an 

exhaustive summary if knowledge of () uniquely determines 

M(). 

• Examples of exhaustive summaries: 

– The means of an exponential family model (Catchpole and 

Morgan, 1997); 

– The log-likelihood terms                             (Cole et al, 

2010); 

– The capture probabilities, P (Catchpole and Morgan, 1997). 
 



Symbolic Method 
Checking whether a model is PR 

• Method has a long history given in Cole et al, (2010). 
• Start with an exhaustive summary, , of length n, for a model 

with q parameters given by vector, . 
• Form a derivative matrix: 

 
 
 
 
 
 
 
 
 

• r = Rank(D) is the number of estimable parameters or 
parameter combinations in a model. 

• d = q – r is the deficiency of the model (how many parameters 
you cannot estimate). If d = 0 model is full rank (not parameter 
redundant). If d > 0 model is parameter redundant. 



Symbolic Method 
Maple code 

• Maple procedure Dmat(kappa,pars) finds the derivative matrix 

for a vector of exhaustive summary terms stored in the vector kappa 

and a vector of parameters stored in the vector pars. 

• Rank(D1) is the intrinsic Maple procedure that finds the rank of a 

matrix D1. 

 

 

 

• This model has 7 parameters, rank 7 and deficiency 0, so it is not 

parameter redundant. 

 

 

 

 

• This model has 13 parameters, rank 13 and deficiency 2, so it is 

parameter redundant. 



Symbolic Method 
CJS Example 



Symbolic Method 
Parameter Redundant Models 

• Consider a model with q parameters, rank r, deficiency d = p – r > 0 

• There will be d non-zero solutions to TD = 0.  

• Zeros in s indicate estimable parameters.  

• Solve PDEs to find full set of estimable pars. 

 

 

 

 
• Maple procedure Estpars(D1,pars)will solve the PDEs and find 

estimable parameter combinations for derivative matrix stored in D1 

found using parameter stored in the vector pars. 

• Maple procedure Estpars2(D1,pars)also returns  and PDEs. 



Symbolic Method 
CJS Example 

Can estimate: 1, 2, p2, p3 and 3p4 



Symbolic Method 
Full Rank Models 

• Mallard (Larus argentatus) mark-recovery data for 1963 to 

1965 (Brownie et al., 1985): 
 
 
 
 

• Mark-recovery model with 1st year surival dependent on time, 
constant adult survival and 2 age classes for reporting 
probability: 
 
 
 

  
• Model is not parameter redundant. However the nested model 

with 1,1 = 1,2 = 1,3 is parameter redundant, deficiency = 1. 
• This information is in the first model’s derivative matrix. 



Symbolic Method 
Full Rank Models 

• Modified PLUR decomposition (or Turing factorisation) to 
determine whether a full rank model is always full rank. (Cole 
et al, 2010). 

• Write derivative matrix which is full rank r as  D = PLUR. 
• P is a square permutation matrix . 
• L is a lower diagonal square matrix, with 1’s on the diagonal. 
• U is an upper triangular square matrix (any entry on the 

diagonal). 
• R is a matrix (size of D) in reduced echelon form. 
• If Det(U) = 0 at any point, model is parameter redundant at 

that point (as long as R is defined). The deficiency of U 
evaluated at that point is the deficiency of that nested model 
(Cole et al, 2010). 
 



Symbolic Method 
Full Rank Models 

• Mark-recovery example: 

 

 

 

 

 

 

 

 

 

 

• As 1,1 = 1,2 (= 1,3) results in Det(U) = 0 the nested model with 

1,1 = 1,2 = 1,3 is parameter redundant with deficiency 1. 

 

 



Symbolic Method 
Full Rank Models 

• Internal Maple procedure  
 LUDecomposition(D1,output=['P','L','U1','R'])  

 performs a PLUR decomposition on D1.  

• Internal Maple procedure Determinant(u1) finds the 

determinate of matrix u1. 

 

 



Symbolic Method 
General Results 

• Extension theorem (Catchpole and Morgan, 1997, Cole et al 2010). 
• Suppose a model has exhaustive summary 1 and parameters 1.  

 
 

• Now extend that model by adding extra exhaustive summary terms 2, 
and extra parameters 2 (e.g. add more years of data). New model’s 
exhaustive summary is  = [1

T 2
T]T and parameters are  = [1 2]. 

 
 
 
 
 
• If D1 is full rank and D2 is full rank, the extended model will be full 

rank. The result can be further generalised by induction. 
• Result is trivially always true, if you add zero or one extra parameter. 
• Method can also be used for parameter redundant models by first 

rewriting the model in terms of its estimable set of parameters. 



Symbolic Method 
General Results 

• Ring-recovery example with 1st year survival dependent on 

time, adult survival dependent on age, and the reporting 

probability dependent on time. 

• Probability matrix for n = 5 years of marking and recovery: 

 

 

 

 

 

 
 

• 14 parameters: 

• The non-zero terms of P form 1. 
 

• Derivative matrix,         , has full rank 14. 



Symbolic Method 
General Results 

• Probability matrix for n = 6 years of marking and recovery: 

 

 

 

 

 

  

extra parameters: 

 

                  has full rank 3. 

 

 
 

• Therefore by the extension theorem the model has full rank   

3n – 1 for any n  5. 

• Further reading Cole et al (2012). 



Examples I 
Naïve Bayesian Network (Whiley and Titterington, 2002)  

• The network consists of n observable binary nodes, y1,…,yn and a 

single unobservable binary node, z. 

• p is the probability z = 1. 

• i,j is the probability yi = 1 given z = j. 

• The probability of an observation y is: 

 

 

 

• n = 2 

 

 

 

 

• Model is parameter redundant with deficiency 2. 

• Is the model when n = 3 parameter redundant? Maple Practical I. 



Example I 
Bio-kinetic models of sludge respiration (Dochain et al, 1995) 

• The activated sludge process can be modelled using a non-linear 

compartment model. For k pollutants Si, the oxygen uptake is: 

 

 

 

• An exhaustive summary for compartment models involves a 

Tayor series expansion of U (Pohjanpalo, 1978). The exhaustive 

summary terms are U(0), U(1)(0), U(2)(0), U(3)(0), … 

• k = 1: 

 

 

 

         Model is parameter redundant 

        with deficiency 2. 



 

 

9.40 – 10.30   Maple Practical I 

 

 

 

 

 

 

 

 

10.30 – 11.00   Tea and Coffee Break 

 



Workshop Outline 

•   9.00 – 9.40     Workshop Part I 

• Introductory Example 

• Definitions and practical implications 

• Symbolic Methods for detecting PR 

• Examples I 

•   9.40 – 10.30   Maple Practical I 

• 10.30 – 11.00   Tea and Coffee Break 

• 11.00 – 11.30   Workshop Part II 

• Problems with Complex Models 

• Hybrid-symbolic Numeric Method 

• Extended Symbolic Method 

• Examples II 

• 11.30 – 12.00   Maple Practical II 



Problems with Complex Models 
• The key to the symbolic method for detecting parameter 

redundancy is to find a derivative matrix and its rank. 
• Models are getting more complex. 
• The derivative matrix is therefore structurally more complex. 
• Maple runs out of memory calculating the rank. 
• Examples: Hunter and Caswell (2009), Jiang et al (2007) 

 
 
 
 
 
 

 
• How do you proceed? 

– Numerically – can be inaccurate and give wrong results (eg 
Jiang et al, 2007 corrected in Cole and Morgan, 2010a). 

– Symbolically – involves extending the theory. Again it 
involves a derivative matrix and its rank, but the derivative 
matrix is structurally simpler.  

– Hybrid-Symbolic method – combination of both methods. 

Wandering Albatross 
Multi-state models for sea birds 

 

Striped Sea Bass 
Age-dependent tag-return  

models for fish 

 



Hybrid-Symbolic Numeric Method 
• Derivative matrix evaluated symbolically, rank is determined at 5 

random points. The model rank is equal to the maximum rank of 

the 5 points (Choquet and Cole, 2012). 

• Can also determine which parameters can be estimated in 

parameter redundant models, but not the estimable parameter 

combinations. 

• Maple procedure Formnum2(D1,pars) performs the hybrid 

method on derivative matrix D1 with parameters pars. 

Formnum(D1,pars)just gives the rank and deficiency. 

• CJS example: 

 

 



Extended Symbolic Method 

Finding simpler exhaustive summaries  
 Cole et al (2010) 

1. Choose a reparameterisation, s, that simplifies the model structure. 

 CJS Model (revisited): 

 

 

 

2. Reparameterise the exhaustive summary. Rewrite the exhaustive 

summary, (), in terms of the reparameterisation, (s). 
 

 



3. Calculate the derivative matrix Ds. 

 

 

 

 

 

 

 

4. The no. of estimable parameters = Rank(Ds) 

 rank(Ds) = 5, no. est. pars = 5 
 

5. If Ds is full rank ( Rank(Ds) = Dim(s) ) s = sre is a reduced-form 

exhaustive summary. If Ds is not full rank solve set of PDE to 

find a reduced-form exhaustive summary, sre. 

 There are 5 si and the Rank(Ds) = 5, so Ds is full rank. s is a 

reduced-form exhaustive summary. 

Extended Symbolic Method 
Finding simpler exhaustive summaries 



6. Use sre as an exhaustive summary. 
 

 A reduced-form exhaustive summary is 
 
 
 
 
 
 
 

 Rank(D2) = 5; 5 estimable parameters. 
 Solve PDEs: estimable parameters are 1, 2, p2, p3 and 3p4  
 
 See Hubbard et al (2012) for simpler exhaustive summaries 

for all capture-recapture models.   

Extended Symbolic Method 
Finding simpler exhaustive summaries 



Examples II 
Occupancy Models 

• Rather than mark animals, surveys can just record whether or not 

an animal was present. 

• i – whether a site was occupied in a particular season 

• p – probability of detection 

• eg h = [1 1 | 1 1] P(h) = c  p2  1,1  p2 

• eg h = [1 1 | 0 0] P(h) = c  p2 (1,1  (1 – p)2 + 1 – 1,1 ) 

• Models are all theoretically full rank as long as there are more 

than one survey each season. 

• However parameter redundancy could also be caused by the 

data. 

• Using occupancy data on House Finch, if i and p are both 

season dependent this data set is parameter redundant with 

deficiency 1, which can be shown using the hybrid method. 

http://www.allaboutbirds.org/guide/spp_photos.aspx?spp=1&sppid=276&keepThis=true&TB_iframe=true&height=488&width=875


Multi-state models with unobservable states  

(Cole et al 2010) 

• Hunter and Caswell (2009) examine parameter redundancy of multi-

state mark-recapture models, but cannot evaluate the symbolic rank of 

the derivative matrix (used a numerical method). 

• 4 state breeding success model:  
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Multi-state models with unobservable states  

(Cole et al 2010) 

1. Choose a reparameterisation, s, that simplifies the model structure. 

 

 

 

 

 
 

2. Rewrite the exhaustive summary, (), in terms of the 

reparameterisation - (s). 
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Multi-state models with unobservable states  

(Cole et al 2010) 

3. Calculate the derivative matrix Ds. 

 

 

 

 

 

 

4. The no. of estimable parameters =rank(Ds) 
 

 rank(Ds) = 12, no. est. pars = 12, deficiency = 14 – 12 = 2. 
 

5. If Ds is full rank s = sre is a reduced-form exhaustive 
summary. If Ds is not full rank solve set of PDE to find a 
reduced-form exhaustive summary, sre. 
 

 

Also see Cole (2012). 
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Examples II 
Naïve Bayesian Network (Whiley and Titterington, 2002 and Cole 

et al, 2010)  

• The network consists of n observable binary nodes, y1,…,yn and a 

single unobservable binary node, z. 

• p is the probability z = 1. 

• i,j is the probability yi = 1 given z = j. 

• The probability of an observation y is: 

 

 

 

• When n  4, standard symbolic method does not work. Instead we 

start by applying the extended symbolic method to n = 3. 

 

• Using the extension theorem model is always full rank for n  3. 



Extended Symbolic Method 
 

General Simple Exhaustive Summaries: 
• Capture-recapture models – Hubbard et al (2012) 
• Capture-recapture-recovery models – Hubbard et al (2012) 
• Multi-state models (including unobservable states) – Cole 

(2012) 
• Memory Models (Cole et al, 2013) 
• Stop-over models (Matechou, 2010, Matechou and Cole in 

prep) 
 
Tables of General Results: 
• Capture-recapture models – Hubbard et al (2012) 
• Capture-recapture-recovery models – Hubbard et al (2012) 
• Ring-recovery – Cole et al (2012) 
• Age-dependent mixture mark-recovery models – McCrea et al 

(2013) 
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