Justifying Objective Bayesianism with Scoring Rules

Jürgen Landes
Centre for Reasoning

Workshop on Scoring Rules

LSE

10.06.2013
Outline

1 Introduction
 - Objective Bayesianism

2 Scoring Rules
 - Scoring Rules for Probability Functions
 - Scoring Rules for Belief Functions
 - The Probability Norm
 - Logarithmic Loss

3 Belief Functions
 - Locality
 - Normalization

4 Results
Aims of this talk

- What do I do for a living.
- Please stop me!
- This talk is about you; not about me.
Aims of this talk

- What do I do for a living.
- Please stop me!
- This talk is about you; not about me.
Aims of this talk

- What do I do for a living.
- Please stop me!
- This talk is about you; not about me.
3 Principles of Rationality (a subjective belief function of a rational agent ought to satisfy):

1. **Probabilism** – Beliefs should satisfy the axioms of probability.
2. **Calibration** – Beliefs should satisfy constraints imposed by the available evidence.
3. **Equivocation** – “Choose probability function consistent with evidence which is most open-minded.” (Equivalently: maximize Shannon Entropy among calibrated probability functions)

With asterisk

Jürgen Landes Centre for Reasoning

Justifying Objective Bayesianism with Scoring Rules
3 Principles of Rationality (a subjective belief function of a rational agent ought to satisfy):

1. **Probabilism** – Beliefs should satisfy the axioms of probability.
2. **Calibration** – Beliefs should satisfy constraints imposed by the available evidence.
3. **Equivocation** – “Choose probability function consistent with evidence which is most open-minded.” (Equivalently: maximize Shannon Entropy among calibrated probability functions)

With asterisk
3 Principles of Rationality (a subjective belief function of a rational agent ought to satisfy):

1. Probabilism – Beliefs should satisfy the axioms of probability.
2. Calibration – Beliefs should satisfy constraints imposed by the available evidence.
3. Equivocation – “Choose probability function consistent with evidence which is most open-minded.” (Equivalently: maximize Shannon Entropy among calibrated probability functions)

With asterisk
3 Principles of Rationality (a subjective belief function of a rational agent ought to satisfy):

1. Probabilism – Beliefs should satisfy the axioms of probability.
2. Calibration – Beliefs should satisfy constraints imposed by the available evidence.
3. Equivocation – “Choose probability function consistent with evidence which is most open-minded.” (Equivalently: maximize Shannon Entropy among calibrated probability functions)

With asterisk
The usual story

1. Probabilism - Dutch Book (one single bet)
 Avoidance of **sure** loss.

2. Calibration - Repeated betting
 Avoidance of **expected** loss.

3. Equivocation - Repeated betting
 Avoidance of **worst-case expected** loss.

Our current goal: Give one single justification for OB.

No need to appeal to three different types of loss avoidance.
Justifying Objective Bayesianism

The usual story

1. Probabilism - Dutch Book (one single bet)
 Avoidance of **sure** loss.

2. Calibration - Repeated betting
 Avoidance of **expected** loss.

3. Equivocation - Repeated betting
 Avoidance of **worst-case expected** loss.

Our current goal: Give **one single** justification for OB.

No need to appeal to **three different** types of loss avoidance.
The usual story

1 Probabilism - Dutch Book (one single bet)
 Avoidance of **sure** loss.
2 Calibration - Repeated betting
 Avoidance of **expected** loss.
3 Equivocation - Repeated betting
 Avoidance of **worst-case expected** loss.

Our current goal: Give **one single** justification for OB.

No need to appeal to **three different** types of loss avoidance.
The usual story

1. Probabilism - Dutch Book (one single bet)
 Avoidance of sure loss.
2. Calibration - Repeated betting
 Avoidance of expected loss.
3. Equivocation - Repeated betting
 Avoidance of worst-case expected loss.

Our current goal: Give one single justification for OB.
No need to appeal to three different types of loss avoidance.
Justifying Objective Bayesianism

- The usual story
 1. Probabilism - Dutch Book (one single bet)
 Avoidance of **sure** loss.
 2. Calibration - Repeated betting
 Avoidance of **expected** loss.
 3. Equivocation - Repeated betting
 Avoidance of **worst-case expected** loss.

- Our current goal: Give **one single** justification for OB.
- No need to appeal to **three different** types of loss avoidance.
The usual story

1. Probabilism - Dutch Book (one single bet)
 Avoidance of **sure** loss.

2. Calibration - Repeated betting
 Avoidance of **expected** loss.

3. Equivocation - Repeated betting
 Avoidance of **worst-case expected** loss.

Our current goal: Give **one single** justification for OB.

No need to appeal to **three different** types of loss avoidance.
Outline

1. Introduction
 - Objective Bayesianism

2. Scoring Rules
 - Scoring Rules for Probability Functions
 - Scoring Rules for Belief Functions
 - The Probability Norm
 - Logarithmic Loss

3. Belief Functions
 - Locality
 - Normalization

4. Results
Idea: Ask agent for her beliefs, i.e. \(\text{bel} : S \mathcal{L} \rightarrow [0, 1] \).

Denote by \(\Omega \) the set of worlds (elementary events, atoms).

If \(\omega \in \Omega \) obtains, then DM will suffer loss \(L(\omega, \text{bel}) \).

Expected loss then leads to the notion of a scoring rule

\[
S(P, \text{bel}) := \sum_{\omega \in \Omega} P(\omega) \cdot L(\omega, \text{bel}) .
\]

Low score is good! – Avoid loss.
Idea: Ask agent for her beliefs, i.e. \(bel : SL \rightarrow [0, 1] \).

Denote by \(\Omega \) the set of worlds (elementary events, atoms).

If \(\omega \in \Omega \) obtains, then DM will suffer loss \(L(\omega, bel) \).

Expected loss then leads to the notion of a scoring rule

\[
S(P, bel) := \sum_{\omega \in \Omega} P(\omega) \cdot L(\omega, bel) .
\]

Low score is good! – Avoid loss.
Idea: Ask agent for her beliefs, i.e. $bel : SL \to [0, 1]$. Denote by Ω the set of worlds (elementary events, atoms). If $\omega \in \Omega$ obtains, then DM will suffer loss $L(\omega, bel)$. Expected loss then leads to the notion of a scoring rule

$$S(P, bel) := \sum_{\omega \in \Omega} P(\omega) \cdot L(\omega, bel).$$

Low score is good! – Avoid loss.
Scoring Rules - Basic Notation

- Idea: Ask agent for her beliefs, i.e. \(\text{bel} : \mathcal{L} \to [0, 1] \).
- Denote by \(\Omega \) the set of worlds (elementary events, atoms).
- If \(\omega \in \Omega \) obtains, then DM will suffer loss \(L(\omega, \text{bel}) \).
- Expected loss then leads to the notion of a scoring rule

\[
S(P, \text{bel}) := \sum_{\omega \in \Omega} P(\omega) \cdot L(\omega, \text{bel}) .
\]

- Low score is good! – Avoid loss.
Idea: Ask agent for her beliefs, i.e. \(\text{bel} : S \mathcal{L} \rightarrow [0, 1] \).

Denote by \(\Omega \) the set of worlds (elementary events, atoms).

If \(\omega \in \Omega \) obtains, then DM will suffer loss \(L(\omega, \text{bel}) \).

Expected loss then leads to the notion of a scoring rule

\[
S(P, \text{bel}) := \sum_{\omega \in \Omega} P(\omega) \cdot L(\omega, \text{bel}).
\]

Low score is good! – Avoid loss.
Interpreting the Functions

\[S(P, bel) := \sum_{\omega \in \Omega} P(\omega) \cdot L(\omega, bel) \]

- \(bel \) is the belief function DM announces.
- Suppose \(P = bel^* \), private subjective beliefs.
- A DM minimizing \(S(bel^*, bel) \) should announce a probability function, because her personal beliefs satisfy the axioms of probability.
- No justification of the probability norm nor the calibration norm!
Interpreting the Functions

\[S(P, bel) := \sum_{\omega \in \Omega} P(\omega) \cdot L(\omega, bel) . \]

- \(bel \) is the belief function DM announces.
- Suppose \(P = bel^* \), private subjective beliefs.
- A DM minimizing \(S(bel^*, bel) \) should announce a probability function, because her personal beliefs satisfy the axioms of probability.
- No justification of the probability norm nor the calibration norm!
Interpreting the Functions

\[S(P, \text{bel}) := \sum_{\omega \in \Omega} P(\omega) \cdot L(\omega, \text{bel}) \, . \]

- \text{bel} is the belief function DM announces.
- Suppose \(P = \text{bel}^* \), private subjective beliefs.
 - A DM minimizing \(S(\text{bel}^*, \text{bel}) \) should announce a probability function, because her personal beliefs satisfy the axioms of probability.
 - No justification of the probability norm nor the calibration norm!
Interpreting the Functions

\[S(P, \text{bel}) := \sum_{\omega \in \Omega} P(\omega) \cdot L(\omega, \text{bel}) \, . \]

- \(\text{bel} \) is the belief function DM announces.
- Suppose \(P = \text{bel}^\ast \), private subjective beliefs.
- A DM minimizing \(S(\text{bel}^\ast, \text{bel}) \) should announce a probability function, because her personal beliefs satisfy the axioms of probability.
- No justification of the probability norm nor the calibration norm!
Interpreting the Functions

\[S(P, \text{bel}) := \sum_{\omega \in \Omega} P(\omega) \cdot L(\omega, \text{bel}) \].

- \(\text{bel} \) is the belief function DM announces.
- Suppose \(P = \text{bel}^* \), private subjective beliefs.
- A DM minimizing \(S(\text{bel}^*, \text{bel}) \) should announce a probability function, because her personal beliefs satisfy the axioms of probability.
- No justification of the probability norm nor the calibration norm!
Interpreting the Functions 2

\[S(P, \text{bel}) := \sum_{\omega \in \Omega} P(\omega) \cdot L(\omega, \text{bel}). \]

It makes much more sense to interpret \(P \) as the objective chance function \(P^* \) — if you believe in such a thing. Then, minimizing score can be interpreted as minimizing inaccuracy; with respect to \(L \).

However, DM does not know \(P^* \), all she knows is \(P^* \in \mathbb{E} \subset \mathbb{P} \). Minimizing worst case loss makes sense:

\[\sup_{P \in \mathbb{E}} S(P, \text{bel}) := \sup_{P \in \mathbb{E}} \sum_{P \in \mathbb{E}} \sum_{\omega \in \Omega} P(\omega) \cdot L(\omega, \text{bel}). \]
Interpreting the Functions 2

\[S(P, \text{bel}) := \sum_{\omega \in \Omega} P(\omega) \cdot L(\omega, \text{bel}). \]

- It makes much more sense to interpret \(P \) as the objective chance function \(P^* \) — if you believe in such a thing.

- Then, minimizing score can be interpreted as minimizing inaccuracy; with respect to \(L \).

- However, DM does not know \(P^* \), all she knows is \(P^* \in \mathbb{E} \subseteq \mathbb{P} \). Minimizing worst case loss makes sense:

\[
\sup_{P \in \mathbb{E}} S(P, \text{bel}) := \sup_{P \in \mathbb{E}} \sum_{\omega \in \Omega} P(\omega) \cdot L(\omega, \text{bel}).
\]
Interpreting the Functions 2

\[S(P, \text{bel}) := \sum_{\omega \in \Omega} P(\omega) \cdot L(\omega, \text{bel}) . \]

It makes much more sense to interpret \(P \) as the objective chance function \(P^* \) — if you believe in such a thing.

Then, minimizing score can be interpreted as minimizing inaccuracy; with respect to \(L \).

However, DM does not know \(P^* \), all she knows is \(P^* \in \mathbb{E} \subseteq \mathbb{P} \). Minimizing worst case loss makes sense:

\[\sup_{P \in \mathbb{E}} S(P, \text{bel}) := \sup_{P \in \mathbb{E}} \sum_{\omega \in \Omega} P(\omega) \cdot L(\omega, \text{bel}) . \]
Interpreting the Functions 2

\[S(P, \text{bel}) := \sum_{\omega \in \Omega} P(\omega) \cdot L(\omega, \text{bel}) . \]

- It makes much more sense to interpret \(P \) as the objective chance function \(P^* \) — if you believe in such a thing.
- Then, minimizing score can be interpreted as minimizing inaccuracy; with respect to \(L \).
- However, DM does not know \(P^* \), all she knows is \(P^* \in \mathbb{E} \subseteq \mathbb{P} \). Minimizing worst case loss makes sense:

\[\sup_{P \in \mathbb{E}} S(P, \text{bel}) := \sup_{P \in \mathbb{E}} \sum_{\omega \in \Omega} P(\omega) \cdot L(\omega, \text{bel}) . \]
Let us revisit the expression $P(\omega)L(\omega, \text{bel})$.

Imagine we want to implement our scoring rule by penalization (weather man).

In case ω, it would be very strange, if forecaster’s loss depended the forecast for $\omega' \neq \omega$.

Thus, we desire that our scoring rules are local, i.e.

$$L(\omega, \text{bel}) = L(\text{bel}(\omega)).$$

Brier score is not local.
Local Scoring Rules

- Let us revisit the expression $P(\omega)L(\omega, bel)$.
- Imagine we want to implement our scoring rule by penalization (weather man).
- In case ω, it would be very strange, if forecaster’s loss depended the forecast for $\omega' \neq \omega$.
- Thus, we desire that our scoring rules are *local*, i.e.

 $$L(\omega, bel) = L(bel(\omega)).$$

Brier score is *not* local.
Local Scoring Rules

- Let us revisit the expression $P(\omega)L(\omega, \text{bel})$.
- Imagine we want to implement our scoring rule by penalization (weather man).
- In case ω, it would be very strange, if forecaster’s loss depended the forecast for $\omega' \neq \omega$.
- Thus, we desire that our scoring rules are *local*, i.e.

 $$L(\omega, \text{bel}) = L(\text{bel}(\omega)).$$

Brier score is *not* local.
Let us revisit the expression $P(\omega)L(\omega, \text{bel})$.

Imagine we want to implement our scoring rule by penalization (weather man).

In case ω, it would be very strange, if forecaster’s loss depended the forecast for $\omega' \neq \omega$.

Thus, we desire that our scoring rules are local, i.e.

$$L(\omega, \text{bel}) = L(\text{bel}(\omega)).$$

Brier score is not local.
Scoring Rules on Worlds

- Minimizing

\[\sup_{P \in \mathcal{E}} S(P, \text{bel}) = \sup_{P \in \mathcal{E}} \sum_{\omega \in \Omega} P(\omega) \cdot L(\omega, \text{bel}) \]

\[= \sup_{P \in \mathcal{E}} \sum_{\omega \in \Omega} P(\omega) \cdot L(\text{bel}(\omega)) \]

- still falls well short for justification of probability norm!
- \(\text{bel}(\omega_1 \cup \omega_2) \) does not appear in \(S(P, \text{bel}) \)!
- Instead, consider minimizing extended score

\[\sup_{P \in \mathcal{E}} S(P, \text{bel}) : = \sup_{P \in \mathcal{E}} \sum_{F \subseteq \Omega} P(F) \cdot L(F, \text{bel}) \]

\[= \sup_{P \in \mathcal{E}} \sum_{F \subseteq \Omega} P(F) \cdot L(\text{bel}(F)) \]
Minimizing

\[\sup_{P \in \mathcal{E}} S(P, bel) = \sup_{P \in \mathcal{E}} \sum_{\omega \in \Omega} P(\omega) \cdot L(\omega, bel) \]
\[= \sup_{P \in \mathcal{E}} \sum_{\omega \in \Omega} P(\omega) \cdot L(bel(\omega)) \]

still falls well short for justification of probability norm!

- \(bel(\omega_1 \cup \omega_2) \) does not appear in \(S(P, bel) \)!

Instead, consider minimizing extended score

\[\sup_{P \in \mathcal{E}} S(P, bel) : = \sup_{P \in \mathcal{E}} \sum_{F \subseteq \Omega} P(F) \cdot L(F, bel) \]
\[= \sup_{P \in \mathcal{E}} \sum_{F \subseteq \Omega} P(F) \cdot L(bel(F)) \]
Scoring Rules on Worlds

- Minimizing

\[
\sup_{P \in \mathbb{E}} S(P, bel) = \sup_{P \in \mathbb{E}} \sum_{\omega \in \Omega} P(\omega) \cdot L(\omega, bel) \\
= \sup_{P \in \mathbb{E}} \sum_{\omega \in \Omega} P(\omega) \cdot L(bel(\omega))
\]

still falls well short for justification of probability norm!
- \(bel(\omega_1 \cup \omega_2) \) does not appear in \(S(P, bel) \)!
- Instead, consider minimizing extended score

\[
\sup_{P \in \mathbb{E}} S(P, bel) : = \sup_{P \in \mathbb{E}} \sum_{F \subseteq \Omega} P(F) \cdot L(F, bel) \\
= \sup_{P \in \mathbb{E}} \sum_{F \subseteq \Omega} P(F) \cdot L(bel(F))
\]
Scoring Rules on Worlds

- Minimizing

\[
\sup_{P \in \mathbb{E}} S(P, \text{bel}) = \sup_{P \in \mathbb{E}} \sum_{\omega \in \Omega} P(\omega) \cdot L(\omega, \text{bel})
\]

\[
= \sup_{P \in \mathbb{E}} \sum_{\omega \in \Omega} P(\omega) \cdot L(\text{bel}(\omega))
\]

- still falls well short for justification of probability norm!
- \(\text{bel}(\omega_1 \cup \omega_2) \) does not appear in \(S(P, \text{bel}) \)!
- Instead, consider minimizing extended score

\[
\sup_{P \in \mathbb{E}} S(P, \text{bel}) : = \sup_{P \in \mathbb{E}} \sum_{F \subseteq \Omega} P(F) \cdot L(F, \text{bel})
\]

\[
= \sup_{P \in \mathbb{E}} \sum_{F \subseteq \Omega} P(F) \cdot L(\text{bel}(F))
\]
Constraining $L(F, \text{bel})$

- We aim to justify adopting the P^\dagger which maximizes

$$H_\Omega(P) = \sum_{\omega \in \Omega} -P(\omega) \cdot \log(P(\omega)) .$$

- So our loss function will have to be logarithmic.
- Axioms L1 – L4 imply that $L(F, \text{bel}) = -\log(\text{bel}(F))$.
- $L(F, \text{bel}) = L(\text{bel}(F))$ is interpreted as the loss distinct to F, if F obtains.
Constraining $L(F, bel)$

- We aim to justify adopting the P^\dagger which maximizes

$$H_\Omega(P) = \sum_{\omega \in \Omega} -P(\omega) \cdot \log(P(\omega)).$$

- So our loss function will have to be logarithmic.

 - Axioms L1 – L4 imply that $L(F, bel) = -\log(bel(F))$.
 - $L(F, bel) = L(bel(F))$ is interpreted as the loss distinct to F, if F obtains.
Constraining $L(F, bel)$

- We aim to justify adopting the P^\dagger which maximizes

$$H_\Omega(P) = \sum_{\omega \in \Omega} -P(\omega) \cdot \log(P(\omega)) .$$

- So our loss function will have to be logarithmic.

- Axioms L1 – L4 imply that $L(F, bel) = -\log(bel(F))$.

- $L(F, bel) = L(bel(F))$ is interpreted as the loss distinct to F, if F obtains.
We aim to justify adopting the P^* which maximizes

$$H_\Omega(P) = \sum_{\omega \in \Omega} -P(\omega) \cdot \log(P(\omega)) .$$

So our loss function will have to be logarithmic.

Axioms L1 – L4 imply that $L(F, bel) = -\log(bel(F))$.

$L(F, bel) = L(bel(F))$ is interpreted as the loss distinct to F, if F obtains.
Outline

1. Introduction
 - Objective Bayesianism

2. Scoring Rules
 - Scoring Rules for Probability Functions
 - Scoring Rules for Belief Functions
 - The Probability Norm
 - Logarithmic Loss

3. Belief Functions
 - Locality
 - Normalization

4. Results
A scoring rule S is called \textit{strictly proper}, if and only if $S(P, X)$ is uniquely minimized by $X = P$.

\textbf{Theorem – Savage 1971}

$L(\omega, \text{BEL}) = -\lambda \cdot \log(\text{BEL}(\omega))$ is the only strictly-BEL $\in \mathbb{P}$-proper scoring rule. ($\lambda \in \mathbb{R}_{>0}$)

\textbf{Theorem – Us 2012}

There is no strictly-BEL $\in \text{BEL}$-proper local extended scoring rule.
A scoring rule S is called *strictly proper*, if and only if $S(P, X)$ is uniquely minimized by $X = P$.

Theorem – Savage 1971

$L(\omega, BEL) = -\lambda \cdot \log(BEL(\omega))$ is the only strictly-BEL $\in \mathbb{P}$-proper scoring rule. ($\lambda \in \mathbb{R}_{>0}$)

Theorem – Us 2012

There is no strictly-BEL \in BEL-proper local extended scoring rule.
Proof: Assume that $S(P, BEL) = \sum_{F \subseteq \Omega} P(F)L(F, BEL)$ is a strictly proper extended scoring rule.

1. Locality implies $S(P, BEL) = \sum_{F \subseteq \Omega} P(F)L(BEL(F))$.
2. It is best to adopt $B(F) = x$ where $x \in [0, 1]$ minimizes $L(x)$ – regardless of P!
Proof of no-locality for Belief Functions

Proof: Assume that $S(P, BEL) = \sum_{F \subseteq \Omega} P(F)L(F, BEL)$ is a strictly proper extended scoring rule.

Locality implies $S(P, BEL) = \sum_{F \subseteq \Omega} P(F)L(BEL(F))$.

It is best to adopt $B(F) = x$ where $x \in [0, 1]$ minimizes $L(x)$ – regardless of P!
Proof of no-locality for Belief Functions

Proof: Assume that \(S(P, BEL) = \sum_{F \subseteq \Omega} P(F)L(F, BEL) \) is a strictly proper extended scoring rule.

Locality implies \(S(P, BEL) = \sum_{F \subseteq \Omega} P(F)L(BEL(F)) \).

It is best to adopt \(B(F) = x \) where \(x \in [0, 1] \) minimizes \(L(x) \) – regardless of \(P \)!
The loss function L for general beliefs

- Our story is along the lines: Minimize (...) logarithmic loss!
- If $bel(F) = 1$ for all $F \subseteq \Omega$, then $L(F, bel) = -\log(1) = 0$.
- Thus, $S^\log_g(P, bel) = \sum_{F\subseteq\Omega} g(F)P(F) \cdot 0 = 0$.
- So, $bel \equiv 1$ minimizes loss! This is BAD.
- Houston, we have a problem!
The loss function L for general beliefs

- Our story is along the lines: Minimize (...) logarithmic loss!
- If $bel(F) = 1$ for all $F \subseteq \Omega$, then $L(F, bel) = -\log(1) = 0$.
- Thus, $S^\log_g(P, bel) = \sum_{F \subseteq \Omega} g(F)P(F) \cdot 0 = 0$.
- So, $bel \equiv 1$ minimizes loss! This is BAD.
- Houston, we have a problem!
The loss function L for general beliefs

- Our story is along the lines: Minimize (...) logarithmic loss!
- If $\text{bel}(F) = 1$ for all $F \subseteq \Omega$, then $L(F, \text{bel}) = -\log(1) = 0$.
- Thus, $S_{\log}^g(P, \text{bel}) = \sum_{F \subseteq \Omega} g(F)P(F) \cdot 0 = 0$.
- So, $\text{bel} \equiv 1$ minimizes loss! This is BAD.
- Houston, we have a problem!
Our story is along the lines: Minimize (...) logarithmic loss!

If \(\text{bel}(F) = 1 \) for all \(F \subseteq \Omega \), then \(L(F, \text{bel}) = -\log(1) = 0 \).

Thus, \(S_{\log}^g(P, \text{bel}) = \sum_{F \subseteq \Omega} g(F)P(F) \cdot 0 = 0 \).

So, \(\text{bel} \equiv 1 \) minimizes loss! This is BAD.

Houston, we have a problem!
The loss function L for general beliefs

- Our story is along the lines: Minimize (...) logarithmic loss!
- If $\text{bel}(F) = 1$ for all $F \subseteq \Omega$, then $L(F, \text{bel}) = -\log(1) = 0$.
- Thus, $S_g^\log(P, \text{bel}) = \sum_{F \subseteq \Omega} g(F)P(F) \cdot 0 = 0$.
- So, $\text{bel} \equiv 1$ minimizes loss! This is BAD.
- Houston, we have a problem!
Let Π be the set of partitions of states of our language.

For example for $\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4\}$, $\pi = \langle (\omega_1, \omega_2, \omega_4), (\omega_3) \rangle$ is a partition.

Let $M := \max_{\pi \in \Pi} \sum_{F \in \pi} bel(F)$.

Given a belief function $bel : \{F \subseteq \Omega\} \rightarrow \mathbb{R}_{\geq 0}$ (bel not zero everywhere), its normalisation $B : \{F \subseteq \Omega\} \rightarrow [0, 1]$ is defined as $B(F) := bel(F)/M$.

Set of normalized belief functions

$$\mathcal{B} := \{ B : \{ F \subseteq \Omega \} \rightarrow [0, 1] : \sum_{F \in \pi} B(F) \leq 1 \text{ for all } \pi \in \Pi$$

and

$$\sum_{F \in \pi} B(F) = 1 \text{ for some } \pi \}.$$
Let \(\Pi \) be the set of partitions of states of our language. For example for \(\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4\} \), \(\pi = \langle (\omega_1, \omega_2, \omega_4), (\omega_3) \rangle \) is a partition.

Let \(M := \max_{\pi \in \Pi} \sum_{F \in \pi} \text{bel}(F) \).

Given a belief function \(\text{bel} : \{F \subseteq \Omega\} \rightarrow \mathbb{R}_{\geq 0} \) (\(\text{bel} \) not zero everywhere), its normalisation \(B : \{F \subseteq \Omega\} \rightarrow [0,1] \) is defined as \(B(F) := \frac{\text{bel}(F)}{M} \).

Set of normalized belief functions

\[
\mathcal{B} := \{B : \{F \subseteq \Omega\} \rightarrow [0,1] : \sum_{F \in \pi} B(F) \leq 1 \text{ for all } \pi \in \Pi \\
\text{and } \sum_{F \in \pi} B(F) = 1 \text{ for some } \pi \}.
\]

Jürgen Landes Centre for Reasoning Justifying Objective Bayesianism with Scoring Rules
Let Π be the set of partitions of states of our language. For example for $\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4\}$, $\pi = \langle (\omega_1, \omega_2, \omega_4), (\omega_3) \rangle$ is a partition. Let $M := \max_{\pi \in \Pi} \sum_{F \in \pi} \text{bel}(F)$. Given a belief function $\text{bel} : \{F \subseteq \Omega\} \rightarrow \mathbb{R}_{\geq 0}$ (bel not zero everywhere), its normalization $B : \{F \subseteq \Omega\} \rightarrow [0, 1]$ is defined as $B(F) := \frac{\text{bel}(F)}{M}$. Set of normalized belief functions $\mathbb{B} := \{B : \{F \subseteq \Omega\} \rightarrow [0, 1] : \sum_{F \in \pi} B(F) \leq 1 \text{ for all } \pi \in \Pi$ and $\sum_{F \in \pi} B(F) = 1 \text{ for some } \pi\}$.

Normalize!
Normalize!

- Let Π be the set of partitions of states of our language.
- For example, for $\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4\}$, $\pi = \langle(\omega_1, \omega_2, \omega_4), (\omega_3)\rangle$ is a partition.
- Let $M := \max_{\pi \in \Pi} \sum_{F \in \pi} \text{bel}(F)$.
- Given a belief function $\text{bel} : \{F \subseteq \Omega\} \rightarrow \mathbb{R}_{\geq 0}$ (bel not zero everywhere), its normalisation $B : \{F \subseteq \Omega\} \rightarrow [0, 1]$ is defined as $B(F) := \text{bel}(F)/M$.
- Set of normalized belief functions

\[\mathbb{B} := \{B : \{F \subseteq \Omega\} \rightarrow [0, 1] : \sum_{F \in \pi} B(F) \leq 1 \text{ for all } \pi \in \Pi \text{ and } \sum_{F \in \pi} B(F) = 1 \text{ for some } \pi\}. \]
Let Π be the set of partitions of states of our language. For example for $\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4\}$, $\pi = \langle (\omega_1, \omega_2, \omega_4), (\omega_3) \rangle$ is a partition.

Let $M := \max_{\pi \in \Pi} \sum_{F \in \pi} \text{bel}(F)$.

Given a belief function $\text{bel} : \{F \subseteq \Omega\} \rightarrow \mathbb{R}_{\geq 0}$ (bel not zero everywhere), its normalisation $B : \{F \subseteq \Omega\} \rightarrow [0, 1]$ is defined as $B(F) := \text{bel}(F)/M$.

Set of normalized belief functions

$$\mathbb{B} := \{ B : \{F \subseteq \Omega\} \rightarrow [0, 1] : \sum_{F \in \pi} B(F) \leq 1 \text{ for all } \pi \in \Pi \}
\text{ and } \sum_{F \in \pi} B(F) = 1 \text{ for some } \pi \}.$$
1 Introduction
 - Objective Bayesianism

2 Scoring Rules
 - Scoring Rules for Probability Functions
 - Scoring Rules for Belief Functions
 - The Probability Norm
 - Logarithmic Loss

3 Belief Functions
 - Locality
 - Normalization

4 Results
For a loss function L and a weighting function $g : \Pi \rightarrow \mathbb{R}_{>0}$ define expected g-loss

$$S_g^L(P, B) = \sum_{F \subseteq \Omega} \left(\sum_{\pi \in \Pi} g(\pi) \right) P(F) L(F, B) .$$

With $L(F, B) = -\log(B(F))$ this becomes

$$S_g^{\log}(P, B) = -\sum_{F \subseteq \Omega} \left(\sum_{\pi \in \Pi} g(\pi) \right) P(F) \log(B(F)) .$$

g-entropy is defined as

$$H_g(P) = S_g^{\log}(P, P) .$$
For a loss function L and a weighting function $g : \Pi \rightarrow \mathbb{R}_{>0}$ define expected g-loss

$$S^L_g(P, B) = \sum_{F \subseteq \Omega} \left(\sum_{\pi \in \Pi} g(\pi) \right) P(F) L(F, B).$$

With $L(F, B) = -\log(B(F))$ this becomes

$$S^\log_g(P, B) = -\sum_{F \subseteq \Omega} \left(\sum_{\pi \in \Pi} g(\pi) \right) P(F) \log(B(F)).$$

g-entropy is defined as

$$H_g(P) = S^\log_g(P, P).$$
\(g \)-Score

- For a loss function \(L \) and a weighting function \(g : \Pi \rightarrow \mathbb{R}_{>0} \) define expected \(g \)-loss

\[
S^L_g(P, B) = \sum_{F \subseteq \Omega} \left(\sum_{\pi \in \Pi, \pi \in \Pi} g(\pi) \right) P(F) L(F, B).
\]

- With \(L(F, B) = -\log(B(F)) \) this becomes

\[
S^\log_g(P, B) = -\sum_{F \subseteq \Omega} \left(\sum_{\pi \in \Pi, \pi \in \Pi} g(\pi) \right) P(F) \log(B(F)).
\]

- \(g \)-entropy is defined as

\[
H_g(P) = S^\log_g(P, P).
\]
Good News Everyone!

Theorem – Norm 1, 2

\(S^\log_g(P, \cdot)\) is strictly proper on \(\mathcal{B}\). For convex \(\mathcal{E} \subseteq \mathcal{P}\)

\[
\arg \inf_{B \in \mathcal{B}} \sup_{P \in \mathcal{E}} S^\log_g(P, B) = \arg \sup_{P \in \mathcal{E}} H_g(P) = \{P^\dagger\}.
\]

Theorem – Norm 1, 2, 3

If \(P_\ominus \in \overline{\mathcal{E}}\) and if \(g\) is symmetric, then

\[
\arg \inf_{B \in \mathcal{B}} \sup_{P \in \mathcal{E}} S^\log_g(P, B) = \arg \sup_{P \in \mathcal{E}} H_g(P) = \{P_\ominus\} = \arg \sup_{P \in \mathcal{E}} H_\Omega(P).
\]
Good News Everyone!

Theorem – Norm 1, 2

\[S_g^{\log}(P, \cdot) \text{ is strictly proper on } \mathcal{B}. \text{ For convex } \mathcal{E} \subseteq \mathcal{P} \]

\[
\arg \inf_{B \in \mathcal{B}} \sup_{P \in \mathcal{E}} S_g^{\log}(P, B) = \arg \sup_{P \in \mathcal{E}} H_g(P) = \{P_g^\dagger\}.
\]

Theorem – Norm 1, 2, 3

If \(P_\perp \in \overline{\mathcal{E}} \) and if \(g \) is symmetric, then

\[
\arg \inf_{B \in \mathcal{B}} \sup_{P \in \mathcal{E}} S_g^{\log}(P, B) = \arg \sup_{P \in \mathcal{E}} H_g(P) = \{P_\perp\} = \arg \sup_{P \in \mathcal{E}} H_\Omega(P).
\]
Conjecture – Norm 3?

For all (reasonable) \(g \) there exists a convex \(\mathbb{E} \) such that

\[
\arg\inf_{B \in \mathbb{B}} \sup_{P \in \mathbb{E}} S^g(P, B) \neq \arg\sup_{P \in \mathbb{E}} H_{\Omega}(P).
\]

Theorem – Norm 3 asterisk

For fixed \(\mathbb{E} \) let \(P^\dagger_g \) be the unique \(g \)-entropy maximizer, then

\[
P^\dagger_{\Omega} \in \{ P^\dagger_g \mid g \text{ sensible} \}.
\]
Conjecture – Norm 3?

For all (reasonable) g there exists a convex \mathbb{E} such that

$$\arg \inf_{B \in \mathbb{B}} \sup_{P \in \mathbb{E}} S^g(P, B) \neq \arg \sup_{P \in \mathbb{E}} H_\Omega(P).$$

Theorem – Norm 3 asterisk

For fixed \mathbb{E} let P^\dagger_g be the unique g-entropy maximizer, then

$$P^\dagger_\Omega \in \left\{ P^\dagger_g \mid g \text{ sensible} \right\}.$$
Thank You. Questions?
The loss function L – Axiomatic Characterization

- **L1** $L(F, \text{bel}) = 0$, if $\text{bel}(F) = 1$.
- **L2** Loss strictly increases as $\text{bel}(F)$ decreases from 1 towards 0.
- **L3** L is local. L is called *local*, if and only if $L(F, \text{bel}) = L(\text{bel}(F))$.
- **L4** Losses are additive when the language is composed of independent sublanguages.
- **L1 – L4** imply that $L(\text{bel}(F)) = -\log_b(\text{bel}(F))$ for some $b \in \mathbb{R}_{>0}$.

Jürgen Landes Centre for Reasoning Justifying Objective Bayesianism with Scoring Rules
The loss function L – Axiomatic Characterization

- **L1** $L(F, bel) = 0$, if $bel(F) = 1$.
- **L2** Loss strictly increases as $bel(F)$ decreases from 1 towards 0.
- **L3** L is local. L is called *local*, if and only if $L(F, bel) = L(bel(F))$.
- **L4** Losses are additive when the language is composed of independent sublanguages.
- **L1 – L4** imply that $L(bel(F)) = -\log_b(bel(F))$ for some $b \in \mathbb{R}_{>0}$.

Jürgen Landes Centre for Reasoning Justifying Objective Bayesianism with Scoring Rules
The loss function L – Axiomatic Characterization

- **L1** $L(F, \text{bel}) = 0$, if $\text{bel}(F) = 1$.
- **L2** Loss strictly increases as $\text{bel}(F)$ decreases from 1 towards 0.
- **L3** L is local. L is called *local*, if and only if $L(F, \text{bel}) = L(\text{bel}(F))$.
- **L4** Losses are additive when the language is composed of independent sublanguages.

$L1 – L4$ imply that $L(\text{bel}(F)) = - \log_b(\text{bel}(F))$ for some $b \in \mathbb{R}_{>0}$.
The loss function L – Axiomatic Characterization

- **L1** $L(F, \text{bel}) = 0$, if $\text{bel}(F) = 1$.
- **L2** Loss strictly increases as $\text{bel}(F)$ decreases from 1 towards 0.
- **L3** L is local. L is called *local*, if and only if $L(F, \text{bel}) = L(\text{bel}(F))$.
- **L4** Losses are additive when the language is composed of independent sublanguages.

$L1 – L4$ imply that $L(\text{bel}(F)) = - \log_b(\text{bel}(F))$ for some $b \in \mathbb{R}_{>0}$.
The loss function L – Axiomatic Characterization

- L1 $L(F, \text{bel}) = 0$, if $\text{bel}(F) = 1$.
- L2 Loss strictly increases as $\text{bel}(F)$ decreases from 1 towards 0.
- L3 L is local. L is called local, if and only if $L(F, \text{bel}) = L(\text{bel}(F))$.
- L4 Losses are additive when the language is composed of independent sublanguages.
- L1 – L4 imply that $L(\text{bel}(F)) = -\log_b(\text{bel}(F))$ for some $b \in \mathbb{R}_{>0}$.