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Abstract

Let f := p/q ∈ K(x) be a rational function in one variable. By Lüroth’s
theorem, the collection of intermediate fields K(f) ( L ( K(x) is in bijection
with inequivalent proper decompositions f = g ◦ h, with g, h ∈ K(x) of de-
grees ≥ 2. In (Alonso, Gutierrez & Recio 1995) an algorithm is presented to
calculate such a function decomposition. In this paper we describe a simpli-
fication of this algorithm, avoiding expensive solutions of linear equations. A
MAGMA implementation shows the efficiency of our method. We also prove
some indecomposability criteria for rational functions, which were motivated
by computational experiments.

1 Basic definitions and known results

Let K be an arbitrary field and K(x) the field of rational functions over K. It is well
known by Lüroth’s theorem, that every intermediate field L with K ≤ L ≤ K(x) is
of the form K(f) for some f ∈ K(x) (see (Schinzel 2000)). If f := fn

fd
∈ K(x)\K is a

non-constant function with fn, fd ∈ K[x] coprime, then since f is transcendent over
K, the polynomial m(y) := fn(y)− fd(y)f ∈ K(f)[y] is irreducible with x as a zero.
Hence

[K(x) : K(f)] = max(deg(fn), deg(fd)) := degf,

which one calls the degree of f and denotes by deg(f).
Let S := K(x)\K be the set of non-constant functions. Then S is equipped with a

structure of a monoid, given by the composition (f ◦ g)(x) := f(g(x)) for f, g ∈ S.
This monoid has a right - action on K(x) given by composition, i.e. for f, g ∈ K(x),
h, h′ ∈ S we have:

(a) (f + g) ◦ h = f ◦ h + g ◦ h;

(b) (f · g) ◦ h = (f ◦ h) · (g ◦ h);

(c) f ◦ (h ◦ h′) = (f ◦ h) ◦ h′ and

(d) x, the neutral element in S, acts as identity operator.
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Lemma 1.1. For g, h ∈ S one has

deg(g ◦ h) = deg(g) · deg(h).

In particular ◦ is right - cancellable, i.e. for f1, f2 ∈ S, f1◦h = f2◦h implies f1 = f2.

Proof: The fields K(h) and K(x) are isomorphic, hence [K(h) : K(g(h))] =
[K(x) : K(g(x))] and we get

[K(x) : K(h)] · [K(x) : K(g)] = [K(x) : K(h)] · [K(h) : K(g(h))] = [K(x) : K(g ◦ h)].

If f1 ◦ h = f2 ◦ h, then (f1 − f2) ◦ h = 0 and a degree - argument shows that f1 − f2

is constant, hence zero. �
From this it follows easily that the group of units with respect to composition is

given by

U◦ := {ax + b

cx + d
| det

(
a b
c d

)
6= 0}.

Moreover the map

ϕ : GL2(K) → S, M =

(
a b
c d

)
7→ ax + b

cx + d

is easily seen to be a homomorphism of monoids and therefore it induces an isomor-
phism

PGL2(K) ∼= U◦.

It follows that there is a natural right action of GL2(K) on K(x) via field - auto-
morphisms over K, given by fM := f ◦ ϕ(M). Let A := AutK(K(x)) denote the full
group of K - automorphisms of K(x) and α ∈ AutK(K(x)) with xα = p(x)/q(x) in
reduced form. Then 1 = deg(x) = deg(α(x)), hence p(x) = ax + b and q(x) = cx + d

with det

(
a b
c d

)
6= 0 and fα(x) = f(ax+b

cx+d
) for an arbitrary f ∈ K(x). So the right

action of G := GL2(K) on K(x) induces canonical isomorphisms

AutK(K(x)) ∼= PGL2(K) ∼= U◦.

There is also a natural left - action of GL2(K) on S given by

M · f := ϕ(M) ◦ f.

It follows from right - cancellability of ◦, that this action is fixed - point free, i.e.
M · f = f for some f ∈ S implies that M is a scalar matrix in the centre of GL2

and therefore acting trivially on S.

Definition 1.2. Let f ∈ S. Then we define the following subsets of S:

Rf := {h ∈ S | ∃g ∈ S with f = g ◦ h};

Lf := {g ∈ S | ∃h ∈ S with f = g ◦ h}.
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Note that for f = g ◦ h and α ∈ U◦ we have f = g ◦ α ◦ α−1 ◦ h, so there is a
right action of G or U◦ on Lf and a left action on Rf . The following result shows
the significance of these actions:

Theorem 1.3. . Let Li = K(fi) with fi ∈ S for i = 1, 2 be two intermediate fields
with K ≤ Li ≤ K(x). Then

(a) L1 ≤ L2 if and only if f2 ∈ Rf1.

(b) L2 = L1 if and only if f2 = αf1 for some α ∈ G.

(c) The Li are conjugate over K, ie. L2 = Lα
1 for α ∈ AutK(K(x)) if and only if

f2 = u ◦ f1 ◦ v for some u, v ∈ U◦.

(d) For every f ∈ S the mapping h 7→ K(h) induces a bijection between the set of
intermediate fields K(f) ≤ L ≤ K(x) and the set Rf/G of left G - orbits on
the set of right factors Rf .

Proof: If K(f1) ≤ K(f2) then clearly f1 = g ◦f2 for some g ∈ S which is uniquely
determined by the fi. If L1 = L2, then g is of degree one. On the other hand, if
f1 = g ◦ f2 with g ∈ U◦, then clearly L1 = L2. Now the rest is clear. �

In dealing with functional decompositions, we will often come across homogeniza-
tion of functions.

Definition 1.4. For F ∈ K[x] define the homogenization to be

HF (x, y) := ydeg(F )F (x/y) ∈ K[x, y].

We will need the following lemma:

Lemma 1.5. Let R,S, P, Q ∈ K[x] with gcd(R,S) = gcd(P, Q) = 1. Then the
polynomials Q, HR(P, Q) and HS(P, Q) are pairwise coprime.

Proof: see (Schinzel 2000),pg.18. �

2 A normal form for subfield generators

Let L = K(f) be an intermediate field. Since the generators f ∈ S are only deter-
mined up to (left) G - conjugacy, it may be useful to have a unique normal form
for such a generator. This is provided by the next definition and proposition. As a
matter of notation Gf will denote the left G - orbit of f in S.

Definition 2.1. A function f = p
q
∈ S is called in normal form or normalized,

if p, q ∈ K[x] are monic and coprime, p(0) = 0 and either deg(p) > deg(q) or
m := deg(p) < deg(q) =: n with q = xn + qn−1x

n−1 + · · ·+ q0 and qm = 0.
The set of all functions in normal form will be denoted by N or NK.
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If f = p
q
∈ S is in normal form, then the polynomials p and q are uniquely

determined.
For example x2

x+1
is a generator in normal form of the field K( x2

x2+x+1
) and x

x2+1
is a

generator in normal form of the field K( x
x2+x+1

). If f := fnx
n + · · ·+ f1x + f0 ∈ K[x]

is of degree n, then f̂ := (1/fn)(f − f0) is a generator in normal form of K(f).

Proposition 2.2. For every f ∈ S there is a unique f̂ = p/q of normal form inside
Gf . The polynomials p and q are uniquely determined by f and the properties in the
definition 2.1.

Proof: We first show the existence of f̂ in G · f . So let f = p/q = pmxm+···+p0

qnxn+···+q0

with deg(p) = m, deg(q) = n and gcd(p, q) = 1. Note that(
a b
c d

)
· f =

ap + bq

cp + dq

with Hax+b(p, q) = ap + bq and Hcx+d(p, q) = cp + dq being coprime, by Lemma 1.5.

Firstly we can assume that p0 = 0: Assume otherwise; if q0 = 0 we apply

(
0 1
1 0

)
.

If p0q0 6= 0 we can assume that m ≥ n and apply

(
−q0/p0 1

0 1

)
. Now if m = n, we

apply

(
1 0

−qm/pm 1

)
to achieve m > n and after applying

(
qn/pm 0

0 1

)
we can

assume that p, q are monic, p0 = 0, (p, q) = 1 and of different degree. If m > n we

have achieved the normal form; if m < n the function

(
1 0
−qm 1

)
· f = p

q−qmp
will

be in normal form.
Now we show the uniqueness. Let f = p/q and f̂ := ap+bq

cp+dq
= p′/q′ with

det

(
a b
c d

)
6= 0

and suppose that f and f̂ are both in normal form. We will show that this implies
b = c = 0 = a− d, hence f = f̂ .
If d = 0, then (ap+bq)q′ = p′pc, so bq0q

′
0 = 0 and b = 0, a contradiction. Hence d 6= 0

and f̂(0) = bq0/dq0 = 0 implies b = 0. We get the equation apq′ = p′(cp + dq), which
implies p | p′ | p and therefore p = p′, since these are monic polynomials; so aq′ =
cp+dq. Assume deg(p) = m > n = deg(q). If c 6= 0, then deg(q′) = deg(p) = deg(p′),
a contradiction. Hence c = 0 and a = d. If deg(p) = m < n = deg(q), a comparison
of coefficients at xm shows a · 0 = c + 0 and again we conclude c = 0 = a− d.
If f̂ = p/q is the normal form of f , then it is clear from the above, that the monic
polynomials p and q are uniquely determined by f . �

Now Theorem 1.3 and Proposition 2.2 yield:
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Corollary 2.3. The function f 7→ K(f) induces a bijection between the set of non-
constant intermediate fields K < L ≤ K(x) and the set NK of normalized rational
functions.
If L = K(f) with f ∈ NK, we call f the (unique) normalized generator of L.

It is well known that the intermediate field L contains a non-constant polynomial
if and only if it has a polynomial generator. This easily follows from the above,
and it turns out, as might be expected, that the unique normalized generator is a
polynomial:

Corollary 2.4. Let L = K(f̂) with f̂ in normal form. Then L contains a non-
constant polynomial, if and only if f̂ ∈ K[x].

Proof: Let h ∈ K[x] ∩ L\K and f̂ = p/q in normal form. Then h = g ◦ f̂

for some g = u/v with coprime polynomials u and v. Then h = Hu(p,q)·q−deg(u)

Hv(p,q)·q−deg(v) and

hqdeg(u)Hv(p, q) = qdeg(v)Hu(p, q). Now by Lemma 1.5 Hv(p, q) must be a constant.
In general this does not imply that v ∈ K, but in our situation this follows: let
v = vsx

s + · · ·+ v0 with vs 6= 0, then Hv(p, q) = vsp
s + vs−1p

s−1q + · · ·+ v0q
s. Then

Hv(p, q) = Hv(p, q)(0) = v0q
s
0. If v0 = 0, then vsp

s ≡ 0 mod(q), in contradiction to
vs 6= 0. So Hv(p, q) = v0q

s
0 6= 0. If deg(p) < deg(q), then

0 = deg(Hv(p, q)) = deg(v0q
s) = deg(q) ⇒ s = 0

and if deg(p) > deg(q), then

0 = deg(Hv(p, q)) = deg(vsp
s) = deg(p) ⇒ s = 0.

Hence v ∈ K. Now it follows that

hqdeg(u)v0 = Hu(p, q).

Since h 6∈ K, we have that u 6∈ K, so deg(u) > 0 and Lemma 1.5 yields q ∈ K, so
q = 1. �

3 An indecomposability criterion

Let f = p/q be in the normal form of Definition 2.1. Then p = x`p̃ with ` > 0 and
p̃, q ∈ K[x] monic with non-vanishing constant term. In this section we investigate
the possible decompositions of f . It turns out that f is indecomposable, whenever p̃
and q are irreducible with gcd(`, deg(q)) = 1 = gcd(deg(p̃), deg(q)) (see Proposition
3.5). If p̃ and q ∈ K[x] satisfy p̃(x) = p̂(xk) and q = q̂(xk) for some 1 < k | ` ∈ N
and max{deg(p̂), deg(q̂)} > 1, then clearly f = x`

ep
q

= x`/kp̂
q̂

(xk) is decomposable. If

p̃ and q are both irreducible with deg(q) < deg(p), this is the only possibility how f
could be decomposable see Proposition (3.5).



6

Normal form algorithm

Function Normalize()

Input: Fct f = p/q; // normalized

Output: normalized Fct f̂ , Matrix M with f̂ = M ◦ f .

1. local Matrix M, U , Fct f̂ , Pol p, q, Int m, n;
2. f̂ := f ; p := Num(f̂); q := Denom(f̂); m := Deg(p); n := Deg(q);
3. p0 := Coeff(p, 0); q0 := Coeff(q, 0);
4. if p0 6= 0 then // want p0 = 0;
5. if q0 = 0 then

6. M :=

(
0 1
1 0

)
; f̂ := M · f̂ ;

7. else // now p0 · q0 6= 0

8. U :=

(
−q0/p0 1

0 1

)
; f̂ := U ◦ f̂ ; M := U ·M ;

9. end if;
10. end if; // from now p0 = 0, q0 6= 0.
11. if m = n then

12. U :=

(
1 0

−qn/pm 1

)
; f̂ := U ◦ f̂ ; M := U ·M ;

13. end if; // now p, q of different degrees.

14. U :=

(
qn/pm 0

0 1

)
; f̂ := U ◦ f̂ ; M := U ·M ; // make p,q monic;

15. if m < n then

16. U :=

(
1 0
−qm 1

)
; f̂ := U ◦ f̂ ; M := U ·M ; // remove qm;

17. end if;
18. return f̂ , M ;
19. end function;
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Definition 3.1. Two polynomials p, q ∈ K[x] will be called ` - related, if p(x) =
p̂(xk) and q(x) = q̂(xk) for p̂, q̂ ∈ K[x] and 1 < k | `. For a, b ∈ K[x], the symbol
a ∼ b will denote that a and b are associated, ie. b = λa for some 0 6= λ ∈ K.

Note that if any two of the integers deg(p), deg(q) or ` are coprime, then p and
q are not ` - related.

Proposition 3.2. Let p̃ ∈ K[x] be irreducible and not associated to x; let f = p
q
∈

K(x) with p = x` · p̃, ` > 0, deg(p) 6= deg(q), gcd(p, q) = 1; f is not necessarily in
normal form.
Assume that f = g ◦ h is a proper decomposition. Then up to equivalence, h = r/s
with r = xk, k | ` and s(0) 6= 0. Moreover g := u/v with u := uµx

µ + · · · + ui0x
i0,

µ := deg(u), i0 := min{i | ui 6= 0} > 0, v := vνx
ν + · · · + v0, ν := deg(v), v0 6= 0,

and one of the following holds:

I s = p̃, kµ = `, u = uµ · xµ, ν = µ + 1 and q ∼ Hv(x
k, p̃) = vµ+1x

k(µ+1) + · · ·+
v0p̃

µ+1,

deg(p) < deg(q) =

{
(µ + 1)k = ` + k if k > deg(p̃)

(µ + 1)deg(p̃) if k < deg(p̃).
(1)

II p ∼ Hu(x
k, s), q ∼ sµ−νHv(x

k, s), ` = ki0, ν ≤ µ,

p̃ = uµx
k(µ−i0) + uµ−1x

k(µ−i0−1)s + · · ·+ ui0s
µ−i0 ; (2)

q = sµ−ν · (vνx
kν + vν−1x

k(ν−1)s + · · ·+ v0s
ν). (3)

Moreover we have in case II:

deg(s) < deg(r) = k ⇐⇒ deg(q) < deg(p) = kµ with µ > ν; (4)

deg(s) > deg(r) = k ⇐⇒ deg(q) = µ · deg(s) > deg(p) (5)

with deg(p̃) = deg(s)(µ− i0).

Proof: Assume that f = g ◦ h is a proper decomposition. We can assume that
g = u/v with u, v coprime and h = r/s is in normal form so r(0) = 0, s(0) 6= 0. With
notation of Definition 1.4 and Lemma 1.5 we have

p · Hv(r, s)s
µ = q · Hu(r, s)s

ν , (6)

with s,Hv(r, s),Hu(r, s) pairwise coprime. Hence

Hu(r, s) | p | Hu(r, s)s
ν and Hv(r, s) | q | Hv(r, s)s

µ.
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Since x does not divide s, x` must be the exact x - power dividing Hu(r, s), hence
0 < i0 and r |Hu(r, s) | p.
Assume first that r is not associate to a power of x. Then p̃ 6∈ K and r = xk · p̃ for
some 0 ≤ k ≤ `. It follows that

Hu(r, s) = uµ · rµ + · · ·+ ui0 · ri0sµ−i0 ,

with p̃i0 | p, so i0 = 1, hence k = ` and r = p ∼ Hu(r, s). Now equation (6) reads
Hv(r, s)s

µ ∼ qsν , hence ν ≤ µ. If deg(r) > deg(s), then µ ·deg(r) = deg(p) = deg(r),
so µ = 1 ≥ ν, a contradiction. If deg(r) < deg(s), then deg(r) = deg(p) = deg(r) +
(µ − 1)deg(s) and again we get the contradiction µ = 1 ≥ ν. 1 We conclude that
r = xk with k ≤ `.
Now we assume that Hu(r, s) is not associated to p. Then p̃ 6∈ K and

x` ∼ Hu(r, s) = xki0 · ϕ

with ϕ = uµx
k(µ−i0) + · · ·+ ui0s

µ−i0 . But x 6 | ϕ so ϕ ∈ K and since deg(r) 6= deg(s),
we conclude that µ = i0 and u = uµx

µ with kµ = `. Now equation (6) reads
p̃Hv(r, s)s

µ ∼ qsν , hence p̃ | s and ν > µ. But sν−µ | p̃, hence p̃ = s, ν = µ + 1 and
deg(p̃) 6= k. It follows that q = Hv(x

k, p̃) with deg(q) = (µ + 1)k = ` + k > deg(p) if
k > deg(p̃) and deg(q) = (µ + 1)deg(p̃) if k < deg(p̃). Note that

k < deg(p̃) ⇐⇒ ` < deg(p̃)µ ⇐⇒ ` + deg(p̃) < (µ + 1)deg(p̃),

hence deg(q) > deg(p) in both cases.
Now we assume that p ∼ Hu(r, s) = uµ · xkµ + · · ·+ ui0 · xki0sµ−i0 with ` = i0k and

p̃ ∼ uµ · xk(µ−i0) + · · ·+ ui0 · sµ−i0 .

Then equation (6) implies that ν ≤ µ and

q ∼ Hv(r, s)s
µ−ν = sµ−ν(vν · xkν + · · ·+ v0 · sν)

with v0 ∼ q(0) 6= 0. If k > deg(s), then deg(q) = kν + deg(s)(µ− ν) < kµ = deg(p)
and µ > ν. If k < deg(s), then

deg(q) = µ · deg(s) > µ · deg(s) + i0(k − deg(s)) = deg(s)(µ− i0) + i0k = deg(p),

and deg(p̃) = deg(s)(µ− i0). �

Remark 3.3. It is straightforward to construct decomposable examples for each of
the situations described in Proposition 3.2:

1Here and in the following note that since deg(r) 6= deg(s), the summands in the Hu(r, s) have
pairwise different degrees, so deg(Hu(r, s)) = µ · deg(r) if deg(r) > deg(s) and i0deg(r) + (µ −
i0)deg(s) if deg(s) > deg(r).
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I : This case can be realized for any given irreducible polynomial p̃ ∈ K[x].
Indeed, s = p̃ is already determined. Now let k ∈ N be any positive integer
different from deg(p̃) and set r := xk to determine h := r/s, define ` := k · µ
for some µ ∈ N and set u := uµx

µ. For any v := vµ+1x
µ+1 + · · · + v0 ∈ K[x]

with vµ+1v0 6= 0, vµ+1 = 1 if k > deg(p̃) and v0 = 1 otherwise, the polynomial

q := Hv(x
k, p̃) = vµ+1x

k(µ+1) + · · ·+ v0p̃
µ+1

is coprime to p := x`p̃, monic and of degree strictly larger that deg(p). Hence

the rational functions f := x`
ep

q
, h = xk

ep
are reduced and satisfy f = g ◦ h with

g = uµxu

v
, where uµ is a suitable scalar.

II : The occurence of these cases depends on special properties of p̃. A necessary
condition is that there are positive integers k, z, a polynomial s ∈ K[x] of degree
different from k and scalars a0, a1, · · · , az ∈ K such that a0 · az 6= 0 and p̃ can
be written in the form

p̃ =
z∑

j=0

aj · sjxk(z−j). (7)

If this is possible, we set h := xk

s
. Now let ` := k · i0 be any multiple of k, set

µ := z + i0 and p := x` · p̃. If deg(s) < k, define u :=
∑z

j=0 ajx
µ−j and choose

ν < µ, if deg(s) > k then define u :=
∑µ

j=i0
aµ−jx

µ−j and choose ν ≤ µ.
Now search for v :=

∑ν
m=0 vmxm ∈ K[x] with vν 6= 0 6= v0 such that the

polynomial

q := Hv(x
k, s) = sµ−ν(vνx

kν + vν−1x
k(ν−1)s + · · ·+ v0s

ν)

is coprime to p̃. Then f = g ◦ h with g := u/v.

Example 3.4. Let K = F2, p̃ := x3 + x + 1, s1 := x + 1, k1 := 3, z := 1,
a1 := 1 =: a0, u := xi0(x + 1), p1 = x3i0(x3 + x + 1), ν := 4 ≤ 1 + i0 = µ. Let
v := x4 + x3 + x2 + x + 1 and

q1 := (x + 1)i0+1−4(x12 + x9(x + 1) + x6(x2 + 1) + x3(x + 1)3 + x4 + 1) =

(x + 1)i0−3(x12 + x10 + x9 + x8 + x5 + x3 + 1).

Then gcd(q1, p1) = 1 and f1 = p1/q1 = (u/v) ◦ (x3/(x + 1)).
Let s2 = x3+1, k2 := 1, ` = i0 > 3, p2 := xi0(x3+x+1). Note that ν = 4 < µ2 =
1+i0. For q2 := (x3+1)i0−3(x4+x3(x3+1)+x2(x6+1)+x(x3+1)3+(x3+1)4) =

(x3 + 1)i0−3(x12 + x10 + x8 + x7 + x6 + x3 + x2 + x + 1)

we have gcd(q2, p2) = 1 and f2 := p2/q2 = g ◦ h2 with h2 = x/(x3 + 1).



10

Proposition 3.5. Let p̃ ∈ K[x] be irreducible. Moreover let ` > 0 and f := p/q =
x`
ep

q
be a rational function as in Proposition 3.2, or in normal form. Then f is

indecomposable in each of the following cases:

(a) deg(q) < deg(p) and gcd(`, deg(p̃)) = 1.

(b) deg(q) < deg(p), q is irreducible and p̃ and q are not ` - related.

(c) deg(q) > deg(p), gcd(`, deg(q)) ≤ deg(p̃) and gcd(deg(q), deg(p̃)) = 1.

(d) q is irreducible of prime degree and p̃ and q are not ` - related.

(e) q is irreducible with gcd(`, deg(q)) = gcd(deg(p̃), deg(q)) = 1.

Proof: Assume f is decomposable. In case (a), Proposition 3.2 shows that we
are in situation II with deg(s) < k | gcd(deg(p̃), `) = 1, which is a contradiction.
Assume (b) holds. Again we are in situation II with deg(s) < k; then µ > ν and s
divides q. If s ∼ 1, then 1 < k and the equations (2) and (3) show that p̃ and q are
` - related. Hence q ∼ s 6∈ K, µ = ν + 1 and kν = 0, which gives the contradiction
ν = 0 and µ = 1.
Assume (c) holds. Then we are in situation I or in situation II with deg(s) > k.
Assume I: if k > deg(p̃), then we get the contradiction k | gcd(`, deg(q)) ≤ deg(p̃).
Hence

k < deg(s) = deg(p̃) = gcd(deg(q), deg(p̃)) = 1,

again a contradiction. So we are in situation II with

k < deg(s) | gcd(deg(q), deg(p̃)) = 1.

Assume (d) holds. Since deg(f) = max(deg(p), deg(q)), decomposibility of f requires
deg(q) < deg(p) and (b) gives a contradiction.
Assume (e) holds. Then p̃ and q are not ` - related and by (b) we have deg(q) >
deg(p) ≥ 1. This and (c) give the contradiction 0 < deg(p̃) < 1. �

Corollary 3.6. Let x 6∼ p̃ ∈ K[x] be irreducible, ` > 0 and f := x`p̃ ∈ K[x] a
polynomial. Then f is indecomposable, if and only if p̃(x) is not of the form p̂(xk)
with p̂ ∈ K[x] and 1 < k | `.

Proof: The given condition is equivalent to p̃ and q := 1 not being ` - related.
So the claim follows from Proposition 3.5. �

4 A simplified decomposition algorithm

From Theorem 1.3 it is clear that in order to describe the set of intermediate fields
containing a given subfield L := K(f), one has to know the set Rf of right factors of
f . Assume we are given L ≤ T := K(h) with h ∈ Rf . In order to express elements
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of L explicitly as functions of h, we also have need to know the left factor g ∈ K(x)
with f = g ◦ h. Recall that g is uniquely determined by f and h.

In (Alonso et al. 1995) the authors describe algorithms to explicitly calculate
this functional decomposition. We will briefly revisit these here with the aim of
some simplifications. First we need the following easy lemma, which is also used in
constructive proofs of Lüroth’s theorem:

Lemma 4.1. Let u(x), v(x), F (x) ∈ K[x], v(x) 6= 0 with u(x) 6= λv(x) for any λ ∈ K
and let t be a new variable, algebraically independent of x. Then F is not divisible
by u(x)− tv(x) in the polynomial ring K(t)[x].

Proof: Assume otherwise, then

ϕ(t) · F (x) = A(t, x) · (u(x)− tv(x))

with polynomials ϕ ∈ K[t] and A ∈ K[t, x]. Let c(x) | gcd(F, u(x) − tv(x)) and
assume that c(x) has positive degree. Then u(η) = tv(η) for some root η ∈ K of c,
hence t is algebraic over K. This contradiction shows that gcd(F, u(x)− tv(x)) = 1.
Considering roots of ϕ and the fact that u and v are linearly independent over K
(and hence over K), we can also see that gcd(ϕ, u(x)−tv(x)) = 1. This contradiction
proves the lemma. �

We will use the following definition of (Alonso et al. 1995)

Definition 4.2. A bivariate polynomial a(y, x) ∈ K[y, x] is called near - separate,
if it is of the form

a(y, x) = ∇p,q(y, x) = p(y)q(x)− p(x)q(y) (8)

with coprime polynomials p(x), q(x) ∈ K[x].

The following remarkable theorem has been proved in (Alonso et al. 1995). For
convenience we will include their proof, because it is constructive and relevant for
later algorithmic considerations:

Theorem 4.3. Let f = p/q, h = r/s ∈ S with 1 = gcd(p, q) = gcd(r, s), then the
following are equivalent:

1. f = g ◦ h for some g ∈ K(x).

2. ∇r,s(y, x) divides ∇p,q(y, x) in K[y, x].

Proof: 1. ⇒ 2.: The polynomials r(y)− hs(y) and p(y)− fq(y) are the minimal
polynomials of x over K(h) and K(f), respectively. Since K(f) ≤ K(h), r(y)− hs(y)
divides p(y)− fq(y) in K(h)[y], which yields an equation

q(x)(r(y)s(x)− r(x)s(y))Ψ = (p(y)q(x)− p(x)q(y))s(x)
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with Ψ ∈ K(h)[y]. The coefficients of Ψ are of the form s`−k · akrk+ak−1rk−1s+···+a0sk

b`r`+b`−1r`−1s+···+b0s` ,

so after clearing denominators we get an equation of the form

ϕ(x)(r(y)s(x)− r(x)s(y)) = (p(y)q(x)− p(x)q(y))χ(x)

with suitable univariate polynomials ϕ, χ ∈ K[x]. It is easily seen, that near - sepa-
rate polynomials do not have non-trivial univariate factors, hence we conclude that
(r(y)s(x)− r(x)s(y)) divides (p(y)q(x)− p(x)q(y)) in K[x, y].
2. ⇒ 1.: Now assume that ∇r,s(y, x) divides ∇p,q(y, x) in K[y, x]; then r(y)− hs(y)
divides p(y)−fq(y) in K(x)[y]. Let t be a new independent variable, then division by
r(y)− ts(y) inside K(t)[y] gives unique remainders B(t, y) ≡ p(y) mod (r(y)− ts(y))
and D(t, y) ≡ q(y) mod (r(y) − ts(y)) with B, D ∈ K(t)[y], such that degy(B) and
degy(D) are less than degy(r(y) − ts(y)) = deg(h). By Lemma 4.1, B and D are
non-zero and

0 ≡ B(h, y)− fD(h, y) ≡ p(y)− fq(y) mod r(y)− hs(y) ∈ K(x)[y].

Since degy(B(h, y)− fD(h, y)) < degy(r(y)− hs(y)) = deg(h), we get

0 = B(h, y)− f(x)D(h, y) ∈ K(x)[y].

It follows that degyB = degyD = k, say, and we get for the leading terms Bk, Dk of
B, D ∈ K(x)[y]: f(x) = Bk(h)/Dk(h) = g ◦ h with g(x) = Bk(x)/Dk(x). �

Remark 4.4. Note that the steps in 2. ⇒ 1. of Theorem 4.3 allow a direct con-
struction of the left factor g, if a right factor h has been found: one simply has
to divide p(y) and q(y) by r(y) − ts(y) in K(t)[y], take the remainders B(t, y) and
D(t, y), which have to be of the same y - degree k, and set g(t) = Bk(t)/Dk(t).

It remains to find the right factor h. In (Alonso et al. 1995) it is proposed to first
factorize ∇p,q in K[y, x] and then check proper factors of the form (y−x) · a(y, x) for
being near - separate, by solving certain linear systems of equations. We will now
show that these linear systems can be completely replaced by a short and simple
calculation. This is based on the following elementary observation:

Lemma 4.5. Let a(y, x) = ∇u,v(y, x) for u(x), v(x) ∈ K[x]. Then the following
identities hold in K[w, x, y, z]:

a(x, y) = −a(y, x) (9)

a(w, x)a(y, z) + a(w, y)a(z, x) + a(w, z)a(x, y) = 0. (10)

Conversely, assume that a(y, x) ∈ K[y, x] satisfies the identities (9) and (10), then

a(y, x) = ∇u,v(y, x) with u(x) := a(x, α) and v(x) :=
a(x, β)

a(α, β)
∈ K[x] (11)

for every α, β ∈ K with a(α, β) 6= 0.
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Proof: Equation 9 is obvious. Equation 10 is of the form

(AB − CD)(FG−HE) + (AE − FD)(HB − CG) + (AG−HD)(CE − FB) =

A · 0 + D · 0 = 0. The rest is clear. �
If 0 6= a(y, x) is a divisor of ∇p,q with f = p/q, then in order to decide if a(y, x)
is near-separate, we simply have to check the identities of Lemma 4.5. If they are
satisfied and a(y, x) does not vanish on K2 (e.g. whenever K is infinite), then Lemma
4.5 also provides polynomials r(x), s(x) ∈ K[x] with a(y, x) = ∇r,s. However, if K
is a finite field, it can happen that 0 6= a(y, x) is zero on K2. If the identities of
Lemma 4.5 hold, we can find a(α, β) 6= 0 with α, β ∈ K and solve a(y, x) = ∇r,s with
r, s ∈ K[x]. But it is slightly more subtle to check and construct solutions over the
ground field K (see Lemma 4.6 and equation (15)). For this analysis the following
observation is useful:

Let K[y, x]/K∗ denote the set of bivariate polynomials modulo constants. Then the
function ∇ : S → K[y, x]/K∗, mapping the reduced expression f = p/q to the class

[∇p,q], is constant on left G - orbits: indeed for M =

(
a b
c d

)
∈ GL2 we have

M ◦ f = ap+bq
cp+dq

with

∇ap+bq,cp+dq = det(M) · ∇p,q. (12)

Lemma 4.6. Let 0 6= a(y, x) ∈ K[y, x] with no univariate factors. Then the follow-
ing are equivalent:

1. a(y, x) = ∇u,v for two polynomials u(x), v(x) ∈ K[x].

2. There are α, β ∈ K such that a(0, α) 6= 0 and a(y, x) = ∇r,sα,β
with r(x) :=

a(x, 0) and sα,β(x) := a(α,x)
a(α,0)

+ β · r(x) ∈ K[x].

Assume that 1. or 2. hold and let r, s ∈ K[x] with

a(y, x) = ∇r,s. (13)

Then the total set of solutions s′ ∈ K[x] of equation (13) with fixed r consists of all
polynomials of the form s′(x) = s(x) + c · r(x) with c ∈ K.
For any two pairs of solutions (u(x), v(x)), (w(x), t(x)) of equation (13), the cor-
responding functions h := u/v and h′ := w/t are equivalent, i.e. h′ = M ◦ h with
M ∈ GL2(K).

Proof: 2. ⇒ 1. is obvious.
1. ⇒ 2.: By the assumption on a(y, x), the polynomials u, v must be coprime. Hence
the vector (u(0), v(0))tr is nonzero. Since SL2 acts transitively on nonzero vectors, we
can find M ∈ SL2(L) such that M · (u(0), v(0))tr = (0, 1)tr. Now equation (12) shows
that a(y, x) = ∇r,s with r(0) = 0, s(0) = 1 and r/s = M ◦u/v. It follows that r(x) =
a(x, 0) 6= 0 and we can choose α as above. Now a(α, x) = a(α, 0)s(x) − r(x)s(α),
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Algorithm to decide near-separability of a and to solve a = ∇r,s

Function Nearsep()

Input: BivPol a(y, x); // multiple of y − x;
// no univariate factors;

Output: Fct h; Int bool; // right factor h = r/s, if bool = 1:
// if K is finite, h can be defined in
// a suitable finite extension field.
// bool = 0, if a(y, x) is not near separate.

1. local Fct h; Pol r, s; Int bool; Scalar α, m;
2. r := a(x, 0);
3. find α with r(α) =: m 6= 0;// if K is finite, we need to search in extension fields
4. s(x) := 1

m
a(α, x);

5. if a(y, x) = ∇r,s then return h := r
s
, 1; end if;

6. return h := x, 0; // a is not near - separate, return function ‘x‘ and the boolean ‘0’.
7. end function;

hence s(x) = a(α,x)
a(α,0)

+ βr(x) with β := s(α)
a(α,0)

.
Assume now that 1. and 2. hold. The operator ∇u,v is bilinear in both arguments
and ∇r,r = 0. It follows that for fixed r, any solution s and c ∈ K, the combination
s + cr is again a solution of equation (13). On the other hand, if ∇r,s0 = 0 with
s0 ∈ K[x], then s0(x) = c · r(x) for c = s0(γ)/r(γ) with suitable γ ∈ K. Hence
c ∈ K ∩K(x) = K. So the set of all solutions with fixed numerator r is as described
above.
Let (u, v), (w, t) be arbitrary solutions with corresponding functions h and h′. As in
the beginning of this proof we can find elements M, M ′ ∈ SL2(K) with M ◦ h = r

s
,

M ′ ◦ h′ = r
s′

and r(x) = a(x, 0), s, s′ ∈ K[x] with s(0) = s′(0). From the above we
know that s′ = s + c · r for suitable c ∈ K, hence r/s′ and r/s are equivalent and so
are h′ and h. �

Now we assume that K = Fq, a finite field of order q = ps. Let 0 6= a(y, x) ∈
K[y, x] have no univariate factors and suppose it satisfies the identities of Lemma 4.5,
but vanishes on K2. If a(y, x) is a divisor of ∇p,q with normalized f = p(x)/q(x) ∈
K(x), then this implies that p(x) and hence f vanish on K, e.g. f = x2+x

x4+x+1
∈ F2(x).

Assume a(α, 0) 6= 0 with α ∈ K, then r := a(x, 0) and sα := a(α,x)
a(α,0)

are solutions of

equation (13). Clearly r ∈ K[x], but sα ∈ K[x]. By Lemma 4.6, there is a solution
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Algorithm to compute the unique left factor g with f = g ◦ h

Function Leftfactor()

Input: Fct f = p(x)/q(x), h = r(x)/s(x); // reduced, h ∈ Rf .

Output: Fct g; // f = g ◦ h,

1. local Fct g; Pol F, B, C ∈ K(x)[y];
2. F (x, y) := r(y)− x · s(y); // in K(x)[y] ;
3. B(x, y) := p(y) mod F ; C(x, y) := q(y) mod F ;
4. g(x) := LeadingCoefficienty(B)/LeadingCoefficienty(D);
5. return g(x);
6. end function;

s ∈ K[x] if and only if we can find β ∈ K such that

sα(x) + β · r(x) ∈ Fq[x]. (14)

Let sα(x) = αmxm + · · · + α1x + 1, with αi ∈ Fq and r(x) = amxm + · · · + a1x
with ai ∈ Fq and m ≥ the maximum of both degrees. Such an element β satisfying
equation (14) exists if and only if αi+β ·ai ∈ Fq, for all i = 1, · · ·m. This is equivalent
to

βq − β =
αi − αq

i

ai

=: γ for all i with ai 6= 0 and αi ∈ Fq, for all i with ai = 0. (15)

These conditions are easily verifiable and, if they are met, we can take β to be a root
of xq − x− γ.

Example 4.7. Let K := F2 and f := (x4 + x2)/(x2 + x + 1). Then we get the
factorization f := (x2 + x) ◦ x2

x+1
, however the function Nearsep() needs to extend the

field to F4 along the way.

5 Complete decompositions, intermediate

fields and examples

In this section we describe a MAGMA - implementation of an algorithm which de-
termines all fields L with K(f) ≤ L ≤ K(x).

A sequence g := (gm, gm−1, · · · , g1) of elements gi ∈ K(x) with f = gm ◦ gm−1 ◦
· · · ◦ g1 and deg(gi) ≥ 2 is called a decomposition of f . Two decompositions
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Algorithm to compute a generator f of the subfield K(g, h) ≤ K(x).

Function Compfield()

Input: Fct g := gn/gd, h := hn/hd;

Output: Fct f ; normalized with K(f) = K(g, h),

1. if deg(g) = 0 then return(Normalize(h)); end if;
2. if deg(h) = 0 then return(Normalize(g)); end if;
3. m := Min(deg(g), deg(h));
4. Ψg := gn(z)− g · gd(z); Ψh := hn(z)− h · hd(z);
5. DD := Gcd(Ψg, Ψh) ∈ K(x)[z]; d := degz(DD);//note that DD ∈ K(g, h)[z].
6. while d < m do
7. for i := 0 to d do
8. if deg(coeffzi(DD)) > 0 then
9. q := coeffzi(DD); q := Normalize(q);

10. qn := Numerator(q); qd := Denominator(q);
11. Ψq := qn(z)− q · qd(z);
12. DD := Gcd(DD, Ψq); d := degz(DD); m := deg(q);
13. break;
14. end if;
15. end for;
16. end while;
17. return (Normalize(DD(0)));
18. end function;
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g := (gm, gm−1, · · · , g1) and h := (hn, hn−1, · · · , h1) of f are called equivalent if
m = n and there are units α1, · · · , αm−1 ∈ U◦ such that

gm = hm ◦α−1
m−1, gm−1 = αm−1 ◦hm−1 ◦α−1

m−2, · · · , gi = αi ◦hi ◦α−1
i−1, · · · , g1 = α1 ◦h1.

The decomposition g is called a full decomposition iff all factors gi are indecom-
posable and it is called normal if all factors gm−1, · · · , g1, with the possible exception
of gm, are in normal form. It follows from Definition 2.1 that for every decomposition
g of f there is a unique normal one which is equivalent to g.

For the decomposition g of f and i = 1, · · · , m define g̃i := gi ◦ gi−1 ◦ · · · ◦ g1 and
the associate sequence of proper intermediate fields

Sg := (Lm−1, · · · , Li, · · · , L1) with K(f) < Li := K(g̃i) < K(x).

It follows directly from Theorem 1.3 that for two decompositions g,h of f we have
Sg = Sf if and only if g and f are equivalent and that Sg is a maximal sequence of
proper intermediate fields if and only if g is a full decomposition. In other words,
the set of maximal sequences of proper intermediate fields between K(f) and K(x)
is in bijection with the set of all normal, full decompositions of f .

For h := u/v in reduced expression define ∇h to be the class [∇u,v] ∈ K[y, x]/K∗.
We define divisibility of classes [q], [r] ∈ K[y, x]/K∗ in the obvious way, i.e. [q] | [r]
iff q | r in K[y, x]. Then, due to Theorem 4.3 we have

f = gm ◦ gm−1 ◦ · · · ◦ g1 ⇐⇒ ∇
eg1 | ∇eg2 | · · · | ∇egm = ∇f ,

and g is a full decomposition of f if and only if for every i = 1, · · · , m− 1 there are
no proper near - separate divisors “between” ∇

egi
and ∇

egi+1
. In other words, there

is a bijection between the set of intermediate fields Li = K(g̃i) and the set of near
separate divisors ∇

egi
of ∇f . Using the function Nearsep(), one can easily produce

a complete list of these, once the full factorization of ∇f is known.

Example 5.1. Let K = Q, f := x16+2x12+x8

x24−2x12+1
. MAGMA produces the following list of

irreducible factors with multiplicities of ∇f :

< x− y, 1 >, < x + y, 1 >, < x ∗ y − 1, 1 >, < x ∗ y + 1, 1 >, < x2 + y2, 1 >,
< x2 ∗ y2 + 1, 1 >, < x8 ∗ y4 + x8 + x4 ∗ y8 + x4 + y8 + y4, 1 >,
< x8 ∗ y8 + x8 ∗ y4 + x4 ∗ y8 + x4 + y4 + 1, 1 > .

Using Nearsep() we obtain the exponent vectors (in terms of the above list) of all
near - separate divisors of ∇f , together with corresponding generators of intermediate
fields:

[1, 0, 0, 0, 0, 0, 0, 0], x,
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[1, 1, 0, 0, 0, 0, 0, 0], x2,
[1, 0, 1, 0, 0, 0, 0, 0], x/(x2 + 1),
[1, 0, 0, 1, 0, 0, 0, 0], x/(x2 − 1),
[1, 1, 1, 1, 0, 0, 0, 0], x2/(x4 + 1),
[1, 1, 0, 0, 1, 0, 0, 0], x4,
[1, 1, 0, 0, 0, 1, 0, 0], x2/(x4 − 1),
[1, 1, 1, 1, 1, 1, 0, 0], x4/(x8 + 1),
[1, 1, 0, 0, 1, 0, 0, 1], (x8 + x4)/(x12 − 1),
[1, 1, 1, 1, 1, 1, 1, 1], (x16 + 2x12 + x8)/(x24 − 2x12 + 1).

Recall that K(f) ≤ K(h) ⇐⇒ ∇h | ∇f , hence the containment relations between
subfields are reflected in the reverse “dominance - order” of exponent vectors, where
v ≺ w ⇐⇒ v − w is non-negative. So [1, 1, 1, 1, 1, 1, 0, 0] ≺ [1, 1, 0, 0, 1, 0, 0, 0]
indicates that K( x4

x8+1
) ≤ K(x4) and [1, 1, 0, 0, 1, 0, 0, 1] 6≺ [1, 1, 1, 1, 0, 0, 0, 0] shows

that K(x8+x4

x12−1
) is not contained in K( x2

x4+1
).

The computation was performed in 0.470 CPU seconds on a Laptop - PC with CPU
Pentium 4 2.80 GHz.
In (Alonso et al. 1995), Example 5.4, a non - normalized version of this example was
considered. The calculation, performed with MAPLE, took 202.53 seconds for one
full decomposition.

Example 5.2. The following example also appears in (Alonso et al. 1995), Example
5.1.: f := fn/fd with

fn := −(4x6 + 9x5 − 13x4 − 12x3 + 29x2 − 17x− 8)(x3 + x2 − 2x + 1)·

(3x3 + 5x2 − 8x− 3)(9x6 + 29x5 − 24x4 − 90x3 + 39x2 + 37x + 3);

fd := 91x18 + 803x17 + 1634x16 − 4230x15 − 16526x14 + 5744x13 + 61317x12+

6452x11 − 117349x10 − 23079x9 + 111529x8 + 27940x7 − 34289x6−

36809x5 + 5132x4 + 11548x3 + 1021x2 − 929x− 167.

The normalizaion of f is equal to N := Nn/Nd with

Nn := x18 + 68203/8196x17 + 87695/6147x16 − 32675/683x15 − 3378407/24588x14+

532687/4098x13 + 324203/683x12 − 1916254/6147x11 − 6713321/8196x10+

5584523/8196x9 + 1543365/2732x8 − 4842583/6147x7 + 1155847/8196x6+

1528231/8196x5− 667808/6147x4− 100585/6147x3 +136280/6147x2 +12775/2732x;

Nd := x17 + 49436/6735x16 + 1212/449x15 − 592253/6735x14 − 59726/449x13+

889368/2245x12 + 5126696/6735x11 − 2101079/2245x10 − 4175731/2245x9+

2950617/2245x8 + 14668796/6735x7 − 2312663/2245x6 − 527851/449x5+
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2211184/6735x4 + 1919492/6735x3 − 146716/6735x2 − 66477/2245x− 8196/2245.

There is a unique full normalized decomposition, which is calculated by our MAGMA
implementation in 0.490 seconds:

[
x3 − 3805/4098x2 + 9125/32784x

x2 + 515/898x− 17075/64656
,
x2 + 5/12x

x + 4/15
,
x3 + 4/3x2 − 7/3x

x2 − x− 3
].

(In (Alonso et al. 1995) a corresponding MAPLE calculation took 249.23 seconds.)

Example 5.3. Let f := (x4− 8x)/(x3 + 1). Over the rationals f has the unique full
decomposition

[(x2 − 2x)/(x + 1), (x2 + 4x)/(x + 1)].

Let K := Q(ζ) with ζ a primitive third root of unity. Then f has the three non -
equivalent full decompositions:

[(x2 − 2x)/(x + 1), (x2 + 4x)/(x + 1)]

[(x2 + (2ζ + 2)x)/(x− ζ − 1), (x2 + (−4ζ − 4)x)/(x− ζ − 1)]

[(x2 − 2ζx)/(x + ζ), (x2 + 4ζx)/(x + ζ)].

Suppose F, G, H ∈ K[x] are polynomials with H ∈ K(F ) ∩ K(G). If the char-
acteristic of K does not divide the degree of H, then Engstrom’s formula (see
(Schinzel 2000), pg.18 and pg.23) tells us that

[K(F ) : K(F ) ∩K(G)] =
lcm(deg(F ), deg(G))

deg(F )
and

[K(F, G) : K(F )] =
deg(F )

gcd(deg(F ), deg(G))
.

The following is an immediate consequence:

Corollary 5.4. Let F ∈ K[x] be a polynomial of degree coprime to the characteristic
of K. Then F = g ◦ h = g′ ◦ h′ with deg(h) = deg(h′) implies that K(h) = K(h′). In
particular, if h and h′ are normalized, then h = h′.

Proof: By Corollary 2.3 we can assume that F, h and h′ are in normal form.
Then by Corollary 2.4, h and h′ are also polynomials. Since F ∈ K(h)∩K(h′), Ritt’s
first theorem implies that

[K(h, h′) : K(h)] =
deg(h)

gcd(deg(h), deg(h))
= 1,

hence K(h) = K(h′) and h = h′, again by 2.3. �
The following example shows that the assumption on the characteristic of K

cannot be ommitted, neither in Ritt’s first theorem, nor in Corollary 5.4:
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Example 5.5. Let K := F4 = F2(a) with a2 + a + 1 = 0 and f := x4 + 1. Then f
has precisely the three inequivalent full decompositions

[[x2 + x, x2 + x], [x2 + ax, x2 + a2x], [x2 + a2x, x2 + ax]],

corresponding to three proper intermediate subfields of the same index in K(x).

If F ∈ K[x] is a polynomial of degree coprime to the characteristic of K, then F
is indecomposable if and only if it is indecomposable over any extension field of K
(see (Schinzel 2000), Theorem 6, pg.20).
This is not necessarily true if deg(F ) · 1K = 0, as can be seen by the example of the
polynomial F , which has precisely the following three inequivalent decompositions
over F8 := F2(η) (with η3 + η + 1 = 0):

F := x4+x2+x = (x2+η6x)◦(x2+ηx) = (x2+η2x)◦(x2+η5x) = (x2+η4x)◦(x2+η3x),

(note that Example 3 in (Schinzel 2000) is stated incorrectly, since F is indecompos-
able over F4. However it appears correctly in (Schinzel 1982), pg. 15.

The polynomial

F := x16 + x12 + x11 + x8 + x6 + x4 + x3 + x2 + x

has only the following two decompositions over F4 = F2(a):

[x4 + ax3 + a2x2 + x, x4 + a2x3 + ax2 + x], [x4 + a2x3 + ax2 + x, x4 + ax3 + a2x2 + x],

in particular F is indecomposable over F2. An exhaustive search using our imple-
mentaion shows that F is a binary polynomial of minimal degree indecomposable
over F2 and decomposable over F4.

6 Conclusive Remark

All algorithms in this paper have been implemented and tested in the computer
algebra system MAGMA, version V2.11-6 (Cannon & Playoust 2007). A synopsis
and the full software can be obtained at

http://www.kent.ac.uk/ims/personal/pf10/calais/decomp synopsis.txt and
http://www.kent.ac.uk/ims/personal/pf10/calais/decomp, respectively.
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