
Software for fitting capture heterogeneity models
to estimate the size of a closed population

M. S. Ridout

Institute of Mathematics, Statistics and Actuarial Science
University of Kent
Canterbury, Kent CT2 7NF, UK
email: m.s.ridout@kent.ac.uk

Last updated: August 3, 2007 (Version 1.0)

1 Introduction and outline

These notes describe how to use R software to fit some models of capture heterogeneity
to estimate N , the size of a closed population, from capture-recapture data. The models
are specific forms of the class of models usually referred to as Mh in the literature and are
described in two papers:

PAPER1: Morgan, B.J.T. and Ridout, M.S. (2007) A new mixture model for capture

heterogeneity. need rest of reference

PAPER2: Morgan, B.J.T. and Ridout, M.S. (2007) Estimating N : a robust approach to

capture heterogeneity. need rest of reference

The most general model considered is a mixture of a binomial distribution, with probability

φ and a beta-binomial distribution with parameters µ and θ. The proportion of the mixture

arising from the binomial component is γ. This model is proposed as a model of capture

heterogeneity in the papers above (though it has been used previously in other applications,

see Brooks et al., 1997). The model generalises two commonly used heterogeneity models,

the beta-binomial model (Burnham, 1972; Dorazio and Royle, 2003, 2005) and (two-

component) finite mixture models (Norris and Pollock, 1996; Pledger, 2000, 2005).

The software allows four different models to be fitted:

bin – no heterogeneity, captures follow a binomial distribution (this is model M0);

betabin – captures follow a beta-binomial distribution;

twobin – captures follow a mixture of two binomial distributions;

binbbin – captures follow a mixture of a binomial and a beta-binomial distribution.

There are important problems of identifiability in models of capture heterogeneity (Link

2003, 2006). The model here does not resolve these problems, but does offer a broad and

1

flexible class of models within which to investigate and compare estimates of N . These

issues are discussed in PAPER1 and PAPER2.

The software consists of a series of R functions contained in the file estimateN.r, which

may be downloaded from

web address here

As with all software of this type, the software carries no warranty of any sort – use

entirely at your own risk. In particular, these models can sometimes be difficult to fit and

there is no guarantee that the reported results correspond to the global maximum of the

likelihood function.

The software is intended to be easy to use. For example, the following R commands fit all

four models to the skinks data set discussed in PAPER1 and PAPER2.

source("estimateN.r") # load the functions

skinks = c(56, 19, 28, 18, 24, 14, 9) # frequencies

kskinks = 7 # number of sampling occasions

fitallmodels(skinks, kskinks)

Alternatively, a function fitonemodel is available for fitting a specific model. This pro-

vides more control over the fitting process and the output produced. We now describe

these two functions in more detail.

2 The function fitallmodels

The specification of this function is

fitallmodels <- function(freq, kmax)

where freq is an array such that freq[k] is the number of animals seen on k occasions

and kmax is the total number of sampling occasions.

Typically freq will be of length kmax, but zeros at the end of the array may be omitted.

For example, with the taxicab data discussed in PAPER1 and PAPER2 there were 10

sampling occasions (so kmax= 10) with frequencies specified as follows:

taxicabs = c(142, 81, 49, 7, 3, 1, 0, 0, 0, 0)

No taxis were observed on more than six occasions and a valid alternative specification is

2

taxicabs = c(142, 81, 49, 7, 3, 1)

The choice is purely for convenience (useful if there are a large number of zeros at the

end of the array); there is no effect on computational efficiency, since any trailing zero

frequencies are ignored in the likelihood calculations.

The program will report an error if the specified value of kmax is not consistent with the

array freq. Note that to fit the most complex model requires kmax ≥ 5 and again the

program will report an error if this condition is not met.

The output produced by the program should be largely self-explantory, but is explained

in Section 4.

The program uses multiple random starts in an attempt to find the global maximum of

the likelihood function. This is discussed in more detail in Section 5. The fitallmodels

function uses fixed numbers of starting values of 5, 5, 50 and 50 for the bin, betabin,

twobin and binbbin models, respectively. If you want to use larger or smaller values, you

need to use the fitonemodel function described next.

3 The function fitonemodel

The specification of this function is rather more involved, because it provides several

options. However, most options have default settings and the function remains quite easy

to use, as illustrated by the examples in the next section. The full specification is

fitonemodel <- function(freq, kmax, model="bin", initparam=NULL,

nrandstart=100, plotprofile=FALSE, logn0values=NULL,

confpercent=95, nrandprof=10)

The freq and kmax arguments are as described above. The model argument should be set

to one of "bin", "betabin", "twobin" or "binbbin"; the default is "bin".

The argument initparam provides a means of specifying initial parameter values. How-

ever, it is not intended for routine use, and you will need to look at the function unpack

in the file estimateN.txt to see how parameters are specified (the specification varies

from model to model). In normal use, this argument should be left unset, in which case

the function works from a number of random starting points, specified by the argument

nrandstart. The model is fitted from each possible starting value, using the Nelder-Mead

simplex algorithm, and the best fit overall is reported. Details of how the random starting

points are chosen are given below in Section 5.

3

It is also possible to plot the profile-log-likelihood for n0 by setting plotprofile=TRUE.

Here n0 denotes the number of unseen animals (not the total population size N). Typically,

the profile is extremely asymmetric about the estimate of n0, and so in the profile plot, the

profile is plotted against log(n0). By default, the profile is plotted at 25 equally-spaced

points in the range

[log(n̂0)− 4.605, log(n̂0) + 4.605]

which is [n̂0/100, 100n̂0] on the log-scale. Alternatively, you can supply a set of evaluation

points using the option logn0values, for example

logn0values = seq(lowvalue, highvalue, length.out=25)

for suitably chosen values of lowvalue and highvalue. See the next section for an ex-

ample. If you supply values in this way, there is no need to set plotprofile=TRUE as

well.

Whether or not the profile is plotted, the program calculates a profile-likelihood interval for

n0. The number of observed individuals is then added to the limits, so that the interval

that appears in the output is for the total population size, N . The confidence level is

determined by the argument confpercent; by default 95% intervals are produced. Quite

often it may transpire that the lower confidence limit is simply the observed number of

individuals and/or the upper limit is infinite. This is discussed in more detail in the next

section.

Calculating the profile-log-likelihood function for n0, whether for plotting or for finding

confidence limits, requires optimisation with respect to the remaining parameters and

again it can be important use multiple random starting values. However, it is seldom

necessary to use as many starting values as in the full model optimisation. The argument

nrandprof can be used to specify the number required; the default is 20. You should

increase this, for example, if the profile appears bumpy, see example below.

As the algorithm runs from random starting points, results will not be reproducible unless

you set the random number seed. All the results here were produced by using the command

set.seed(12345)

immediately before calling fitonemodel or fitallmodels.

4 Description of output

The commands:

4

skinks = c(56, 19, 28, 18, 24, 14, 9)

kskinks = 7

fitonemodel(skinks, kskinks, model="twobin", nrandstart=25)

produce the following output (see below if it looks different):

*** TWO-BINOMIAL MODEL ***

Minimised negative log-likelihood value = 23.0394

Parameter estimates

Binomial p1 = 0.13 (logit = -1.901 , SE = 0.4524)

Binomial p2 = 0.6586 (logit = 0.657 , SE = 0.175)

Proportion p1 = 0.3982 (logit = -0.413 , SE = 0.1878)

Number of unseen individuals = 48.9 (log = 3.89 , SE = 0.57)

Number of individuals seen = 168

Estimated total population (N)= 216.9

95 % profile limits for N

lower = 185.9 upper = 332.5

Correlation matrix of TRANSFORMED parameters

(First parameter is log(n0). Other parameters

are in the order given above)

[,1] [,2] [,3] [,4]

[1,] 1.0000000 -0.7009116 -0.94259344 -0.15762503

[2,] -0.7009116 1.0000000 0.78128365 -0.22239173

[3,] -0.9425934 0.7812837 1.00000000 -0.01396201

[4,] -0.1576250 -0.2223917 -0.01396201 1.00000000

freq Fitted

[1,] 56 52.26

[2,] 19 26.79

[3,] 28 17.52

[4,] 18 23.54

[5,] 24 26.34

[6,] 14 16.89

[7,] 9 4.65

5

Here 25 random starting points is enough to find the global optimum (or at least running

with much large numbers of starting points has not found a better fit). Note, however,

that there may be small differences in the last few decimal places, because the starting

values are random here. Also, the two-binomial model is symmetric and the two binomial

parameters may be interchanged in the output, with a resulting change in the Proportion

p1 parameter.

The program works by minimising the negative log-likelihood (excluding some constant

terms). The minimised value (here 23.0394) is useful mainly for comparing with alternative

models.

Parameter estimates are given next. The optimisation is actually done in terms of trans-

formed parameters (logit or log transformation) as discussed in Section 5 . Consequently,

standard errors (obtained by inverting a numerical estimate of the Hessian matrix, using

the hessian=TRUE setting of optim) relate to the transformed parameters. Thus, for ex-

ample, the estimated logit of the first binomial probability is -1.901, with standard error

0.4524, giving a value of p1=0.13. The program attempts to print estimates to sensible

numbers of decimal places, but sometimes R imposes some additional rounding, as here

where the estimates of p1 and p2 have different numbers of decimal places.

For the more complicated models, the likelihood surface can be complicated and standard

errors may be of little value. Quite often the numerically inverted Hessian matrix is not

positive definite or is highly ill-conditioned. In these cases a warning message is printed

and no standard errors are produced.

The estimate of n0 is added to the number of distinct individuals seen to give the estimate

of N and a confidence interval is given, based on the profile-likelihood. Whilst the profile-

likelihood necessarily decreases away from the maximum, it may not decrease sufficiently

for profile log-likelihood estimates of n0, and hence N to exist at the required confidence

level. The program only checks in the range [n̂0/100, 100n̂0]. If the lower limit does

not exist in this range the program simply gives the number of individuals seen, with a

comment to this effect. If the upper limit does not exist it is given as

infinity (probably)

The ‘probably’ is because the search is only to 100n̂0. But in many cases there is genuinely

no finite limit. Refer to PAPER2 for a detailed discussion of this issue.

The program also prints the correlation matrix of parameter estimates (provided that the

Hessian matrix is positive-definite and not too poorly conditioned). These relate to the

transformed parameters and the order is as earlier in the output except that logn0 is now

the first parameter rather than the last.

6

The final output gives fitted values. These are calculated by taking the fitted model for

the number of times an animal is seen, conditioning on being seen at least once and then

multiplying by the total number of animals actually seen.

The following R commands produce the profile plots shown below:

par(mfrow=c(2,2), mar=c(4.5,4,1.5,1.5), oma=c(1.25,1.25,1.25,1.25))

set.seed(12345)

fitonemodel(skinks, kskinks, model="twobin", nrandstart=20,

logn0values=seq(-4,8,length.out=20), nrandprof=10)

set.seed(12345)

fitonemodel(link3, klink3, model="binbbin", nrandstart=20,

logn0values=seq(5,11,length.out=20), nrandprof=10)

set.seed(12345)

fitonemodel(link3, klink3, model="binbbin", nrandstart=20,

logn0values=seq(5,11,length.out=20), nrandprof=20)

set.seed(12345)

fitonemodel(link3, klink3, model="binbbin", nrandstart=20,

logn0values=seq(5,11,length.out=20), nrandprof=50)

The top-left figure is a profile log-likelihood plot for the mixture of two binomial models

fitted earlier to the skinks data. Using just 10 random starting points for the profile (the

default is nrandprof=20) appears to give a satisfactory profile.

The remaining figures are for the Link3 data set discussed in PAPER 2 and given originally

by Link (2003, Table 3). The model fitted is the mixture of a binomial and a beta-binomial

model. The graphs differ as a result of the different setting of the nrandprof option. Using

nrandprof=10 (top right) or nrandprof=20 (bottom left) fails to give a smooth profile,

but the profile is smooth with nrandprof=50 (bottom right). Note that the smoothness

may depend on the particular points at which the profile is calculated as well as on the

setting of nrandprof and the setting of the random number seed.

This has important implications for calculated profile intervals of N . If too small a value

of nrandprof is used, the program may generate a finite upper confidence limit, whereas

the correct estimate is infinite in this example. However, setting a large value slows the

program down considerably. The default setting of nrandprof=20 is intended to be a

compromise. For the 16 data sets considered in PAPER 1 and PAPER 2, only Link3

and the Golftees fail to give smooth profiles with the default settings of nrandprof, the

default choice of points at which to plot the profile (i.e. with logn0values unset) and if

set.seed(12345) is used.

7

● ● ● ● ●
●

●

●

●

●

●

●

● ●

●

●

●

●
● ●

−4 −2 0 2 4 6 8

25
30

35

logn0values

pr
of

n0

●

●

●

●

● ● ● ● ●

●

●

●

● ●

●
● ● ● ● ●

5 6 7 8 9 10 11

50
60

70
80

90

logn0values

pr
of

n0

●

●

●

●

● ● ● ●

●

●

●

● ● ●

●

● ● ●

● ●

5 6 7 8 9 10 11

50
60

70
80

90

logn0values

pr
of

n0

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

5 6 7 8 9 10 11

50
60

70
80

90

logn0values

pr
of

n0

5 Computational details

5.1 Optimisation method

For the two-binomial and binomial/beta-binomial mixture models of heterogeneity the

likelihood surface is typically difficult to optimise. To try to find a global optimum, the

Nelder-Mead simplex algorithm is run from multiple starting points using the R function

optim. Note that optim produces warning messages when used for 1-dimensional optimi-

sation, recommending instead the optimise function. This is relevant to profile likelihood

estimation in the binomial model. Because optim appears to perform perfectly satisfac-

torily in this case, I have continued to use it and simply switched off warning messages

temporarily while this option is running.

5.2 Parameterisation

The model uses four parameters pbin, pbbin, theta and alphabin. In terms of the

notation in PAPER1 and PAPER2, these correspond to φ, µ, θ and 1 − γ, respectively.

8

Note in particular the last of these. The remaining parameter is n0, the number of

unseen individuals.

Because the parameters have to satisfy constraints but the optimisations used are uncon-

strained, the model works in terms of transformed parameters logit(pbin), logit(pbbin),

log(theta), logit(alphabin) and log(n0).

5.3 Choice of random starting points

The parameters pbin, pbbin and alphabin are constrained to lie in [0, 1] and so random

U [0, 1] variables are used as starting values.

The remaining two parameters, theta and n0 are constrained to be positive. The variance

of the beta-binomial distribution is given by the expression

Kµ(1− µ)
[
1 + (K − 1)

θ

1 + θ

]
,

where K is the number of sampling occasions (kmax in the program). The factor θ/(1+ θ)

lies in the interval [0, 1) and we therefore choose a random U [0, 1] variable as the starting

value for θ/(1 + θ).

To choose a random starting value for n0, we choose

n0

n0 + ninit
0

to have a U [0, 1] distribution, where ninit
0 is an initial estimate of n0. Thus the generated

values have equal probability of being greater than or less than ninit
0 . For model="bin",

we choose ninit
0 to be the Good-Turing estimator of the number of unseen species (Good,

1953), whilst for other models we use another coverage-based estimator recommended by

Ashbridge and Goudie (2000). A further minor modification is that very large values of n0

are excluded. Specifically if n0 > exp(15) = 3269017.3 it is replaced by this upper limit.

5.4 Error checking

The program checks for a few specific errors or inconsistencies in data input and stops the

program with an appropriate error message. However, there is no attempt to check for

all conceivable input errors systematically and incorrect usage may cause the program to

crash.

9

5.5 Version number

The file estimateN.r includes a version() function, which displays the current version

number:

> version()

[1] "This is Version 1.0 of estimateN.r (1 Aug 2007)"

5.6 Timing

Computer time used depends on various factors, including the number of sampling occa-

sions, the model being fitted and the number of random starts used. However, because

multiple starting points are used, it may take some time to fit models.

The software was developed on a 3.19 GHz Pentium 4 PC with 1 GB RAM, running

version 2.3.1 of R. With this set up, fitting the two-binomial model to the skinks data

took about 12 seconds of computing time whilst producing the four profile plots took

about 310 seconds.

6 References

Ashbridge, J. and Goudie, I.B.J. (2000). Coverage-adjusted estimators for mark-recapture

in heterogeneous populations. Communications in Statistics – Simulation and Com-

putation, 29, 1215-1237.

Brooks, S.P., Morgan, B.J.T., Ridout, M.S. and Pack, S.E. (1997). Finite mixture models

for proportions. Biometrics, 53, 1097-1115.

Burnham, K.P. (1972). Estimation of population size in multiple capture-recapture studies

when capture probabilities vary among animals. PhD thesis, Oregon State University,

Corvallis.

Dorazio, R.M. and Royle, J.A. (2003). Mixture models for estimating the size of a closed

population when capture rates vary among individuals. Biometrics, 59, 351-364.

Dorazio, R.M. and Royle, J.A. (2005). Rejoinder to ”The performance of mixture models

in heterogeneous closed populations”. Biometrics, 61, 874-876.

Good, I.J. (1953). The population frequencies of species and the estimation of population

parameters. Biometrika, 40, 237-264.

Link, W.A. (2003). Nonindentifiability of population size from capture-recapture data

10

with heterogeneous detection probabilities. Biometrics, 59, 1123-1130.

Link, W.A. (2006). Rejoinder to ”On identifiability in capture-recapture models”. Bio-

metrics, 62, 936-939.

Norris, J.L. and Pollock, K.H. (1996). Nonparametric mle under two closed capture-

recapture models with heterogeneity. Biometrics, 52, 639-649.

Pledger, S. (2000). Unified maximum likelihood estimates for closed capture-recapture

models using mixtures. Biometrics, 56, 434-442.

Pledger, S. (2005). The performance of mixture models in heterogeneous closed population

capture-recapture. Biometrics, 61, 868-873.

11

