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Definition

Be (Xn : n ∈ N0) a sequence of independent positive random
variables, and assume that (Xn : n ∈ N) are identically distributed.
Define the sequence S = (Sn : n ∈ N) by S1 := X0 and
Sn+1 := Sn + Xn for all n ∈ N. The random variable Sn is called
the nth renewal time, while the time duration Xn is called the nth
renewal interval. Further define the random variable of the
number of renewals until time t by

Nt := max{n ∈ N : Sn ≤ t}

for all t ≥ 0 with the convention max ∅ = 0. Then the continuous
time process N = (Nt : t ∈ R

+
0 ) is called a renewal process.
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Definition (contd.)

The random variable X0 is called the delay of N .

L. Breuer Chapter 4: Renewal Processes



Definition (contd.)

The random variable X0 is called the delay of N . If X0 and X1

have the same distribution, then N is called an ordinary renewal

process.

L. Breuer Chapter 4: Renewal Processes



Definition (contd.)

The random variable X0 is called the delay of N . If X0 and X1

have the same distribution, then N is called an ordinary renewal

process.
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Standard assumptions

We will always assume that P(X1 = 0) = 0.
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Standard assumptions

We will always assume that P(X1 = 0) = 0. If m := E(X1) < ∞,
then the strong law of large numbers implies that Sn/n → m with
probability one as n → ∞. Hence Sn < t cannot hold for infinitely
many n and thus Nt is finite with probability one. By standard
notation we will write

G (x) := P(X0 ≤ x) and F (x) := P(X1 ≤ x)

for all x ∈ R
+
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We will always assume that P(X1 = 0) = 0. If m := E(X1) < ∞,
then the strong law of large numbers implies that Sn/n → m with
probability one as n → ∞. Hence Sn < t cannot hold for infinitely
many n and thus Nt is finite with probability one. By standard
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for all x ∈ R
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Standard assumptions

We will always assume that P(X1 = 0) = 0. If m := E(X1) < ∞,
then the strong law of large numbers implies that Sn/n → m with
probability one as n → ∞. Hence Sn < t cannot hold for infinitely
many n and thus Nt is finite with probability one. By standard
notation we will write

G (x) := P(X0 ≤ x) and F (x) := P(X1 ≤ x)

for all x ∈ R
+
0 .

N is a counting process, i.e. Nt ∈ N0 for all t ≥ 0 and Ns ≤ Nt

for all s ≤ t.
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Example: Poisson process

A Poisson process with intensity λ is an ordinary renewal process
with F (x) = G (x) = 1− e−λx ,
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A Poisson process with intensity λ is an ordinary renewal process
with F (x) = G (x) = 1− e−λx , i.e. the renewal intervals have an
exponential distribution.
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Example: Poisson process

A Poisson process with intensity λ is an ordinary renewal process
with F (x) = G (x) = 1− e−λx , i.e. the renewal intervals have an
exponential distribution. Thus a renewal process can be seen as a
generalization of the Poisson process with respect to the
distribution of the renewal intervals.
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Example: Markov chains

Let Z be a homogeneous Markov chain with discrete state space
E .
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Let Z be a homogeneous Markov chain with discrete state space
E . Assume that i , j ∈ E and P(Z0 = i) = 1. Let

Nj(n) :=

n
∑

k=0

1{Zk=j}

denote the number of visits to state j after n steps.
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Example: Markov chains

Let Z be a homogeneous Markov chain with discrete state space
E . Assume that i , j ∈ E and P(Z0 = i) = 1. Let

Nj(n) :=

n
∑

k=0

1{Zk=j}

denote the number of visits to state j after n steps. Then
Nt := Nj ([t]) with

[t] := max{n ∈ N0 : n ≤ t}

defines a renewal process with delay τj and renewal intervals

Xn = τ
(n+1)
j − τ

(n)
j

for n ∈ N.
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Theorem 6.4: Rate of growth

Let N = (Nt : t ≥ 0) denote a renewal process with renewal
intervals having mean length m < ∞.
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Let N = (Nt : t ≥ 0) denote a renewal process with renewal
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lim
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Nt
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lim
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Nt
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=
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holds with probability one. The number 1/m is called the rate of
the renewal process.
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Theorem 6.4: Rate of growth

Let N = (Nt : t ≥ 0) denote a renewal process with renewal
intervals having mean length m < ∞. Then

lim
t→∞

Nt

t
=

1

m

holds with probability one. The number 1/m is called the rate of
the renewal process. It describes the asymptotic rate at which
renewals occur.
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Proof of theorem 6.4

By definition of Nt , the inequalities SNt
≤ t < SNt+1 hold with

probability one for all times t.
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t timeS SNN t t + 1

Dividing these by Nt and using the strong law of large numbers,
we obtain (with probability one)

m = lim
n→∞

Sn

n
= lim

t→∞

SNt

Nt

≤ lim
t→∞

t

Nt
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Dividing these by Nt and using the strong law of large numbers,
we obtain (with probability one)

m = lim
n→∞

Sn

n
= lim

t→∞

SNt

Nt

≤ lim
t→∞

t

Nt

≤ lim
t→∞

(

SNt+1

Nt + 1
·
Nt + 1

Nt

)
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Dividing these by Nt and using the strong law of large numbers,
we obtain (with probability one)

m = lim
n→∞

Sn

n
= lim

t→∞

SNt

Nt

≤ lim
t→∞

t

Nt

≤ lim
t→∞

(

SNt+1

Nt + 1
·
Nt + 1

Nt

)

= lim
n→∞

Sn+1

n + 1
· lim
n→∞

n + 1

n
= m · 1
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Example: Poisson process

Regarding a Poisson process N = (Nt : t ≥ 0) with intensity
λ > 0,
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Example: Poisson process

Regarding a Poisson process N = (Nt : t ≥ 0) with intensity
λ > 0, it can be shown that

P(Nt = n) =
(λt)n

n!
e−λt

for all t ≥ 0 and n ∈ N0.
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distribution with parameter λ · t.
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the rate of the Poisson process, since a mean renewal interval has
length 1/λ.
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Example: Poisson process

Regarding a Poisson process N = (Nt : t ≥ 0) with intensity
λ > 0, it can be shown that

P(Nt = n) =
(λt)n

n!
e−λt

for all t ≥ 0 and n ∈ N0. The expectation of Nt is given by
E(Nt) = λ · t.
Thus a Poisson process with intensity λ has at time t a Poisson
distribution with parameter λ · t. Moreover, the intensity λ is also
the rate of the Poisson process, since a mean renewal interval has
length 1/λ. Now theorem 6.4 states that a consistent statistical
estimator for the intensity λ is given by λ̂ = N(t)/t.
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Lemma 6.10

For a renewal process N with delay X0 and renewal intervals
(Xn : n ∈ N),
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Lemma 6.10

For a renewal process N with delay X0 and renewal intervals
(Xn : n ∈ N), the random variable Nt is a stopping time for the
sequence (Xn : n ∈ N0).
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Lemma 6.10

For a renewal process N with delay X0 and renewal intervals
(Xn : n ∈ N), the random variable Nt is a stopping time for the
sequence (Xn : n ∈ N0).

Proof:
This follows from the observation that Nt = k is equivalent to

k−1
∑

n=0

Xn ≤ t <

k
∑

n=0

Xn

L. Breuer Chapter 4: Renewal Processes



Lemma 6.10

For a renewal process N with delay X0 and renewal intervals
(Xn : n ∈ N), the random variable Nt is a stopping time for the
sequence (Xn : n ∈ N0).

Proof:
This follows from the observation that Nt = k is equivalent to

k−1
∑

n=0

Xn ≤ t <

k
∑

n=0

Xn

which implies that the event Nt ≤ k depends only on X0, . . . ,Xk .
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Lemma 6.11 (Wald)

Be X = (Xn : n ∈ N0) a sequence of stochastically independent
positive random variables
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Be X = (Xn : n ∈ N0) a sequence of stochastically independent
positive random variables with the same expectation E(Xn) = m

for all n ∈ N.
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positive random variables with the same expectation E(Xn) = m

for all n ∈ N. The expectations E(X0) and E(X1) shall be finite.
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Be X = (Xn : n ∈ N0) a sequence of stochastically independent
positive random variables with the same expectation E(Xn) = m

for all n ∈ N. The expectations E(X0) and E(X1) shall be finite.
Further be S a stopping time of the sequence X with E(S) < ∞.
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Lemma 6.11 (Wald)

Be X = (Xn : n ∈ N0) a sequence of stochastically independent
positive random variables with the same expectation E(Xn) = m

for all n ∈ N. The expectations E(X0) and E(X1) shall be finite.
Further be S a stopping time of the sequence X with E(S) < ∞.
Then

E

(

S
∑

n=0

Xn

)

= E(X0) + E(S) ·m
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Proof of lemma 6.11

For all n ∈ N0 define the random variables In := 1 on the set
{S ≥ n} and In := 0 else.
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Proof of lemma 6.11

For all n ∈ N0 define the random variables In := 1 on the set
{S ≥ n} and In := 0 else. Then

S
∑

n=0

Xn =
∞
∑

n=0

InXn
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Proof of lemma 6.11

For all n ∈ N0 define the random variables In := 1 on the set
{S ≥ n} and In := 0 else. Then

S
∑

n=0

Xn =
∞
∑

n=0

InXn

and hence

E

(

S
∑

n=0

Xn

)

= E

(

∞
∑

n=0

InXn

)

=

∞
∑

n=0

E(InXn)

by monotone convergence,
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Proof of lemma 6.11

For all n ∈ N0 define the random variables In := 1 on the set
{S ≥ n} and In := 0 else. Then

S
∑

n=0

Xn =
∞
∑

n=0

InXn

and hence

E

(

S
∑

n=0

Xn

)

= E

(

∞
∑

n=0

InXn

)

=

∞
∑

n=0

E(InXn)

by monotone convergence, as In and Xn are non–negative.
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Proof of lemma 6.11

For all n ∈ N0 define the random variables In := 1 on the set
{S ≥ n} and In := 0 else. Then

S
∑

n=0

Xn =
∞
∑

n=0

InXn

and hence

E

(

S
∑

n=0

Xn

)

= E

(

∞
∑

n=0

InXn

)

=

∞
∑

n=0

E(InXn)

by monotone convergence, as In and Xn are non–negative. S being
a stopping time for X , we obtain by definition P(S ≥ 0) = 1,
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Proof of lemma 6.11

For all n ∈ N0 define the random variables In := 1 on the set
{S ≥ n} and In := 0 else. Then

S
∑

n=0

Xn =
∞
∑

n=0

InXn

and hence

E

(

S
∑

n=0

Xn

)

= E

(

∞
∑

n=0

InXn

)

=

∞
∑

n=0

E(InXn)

by monotone convergence, as In and Xn are non–negative. S being
a stopping time for X , we obtain by definition P(S ≥ 0) = 1, and
further

P(S ≥ n|X ) = 1−P(S ≤ n−1|X ) = 1−P(S ≤ n−1|X0, . . . ,Xn−1)

for all n ∈ N.
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Proof of lemma 6.11 (contd.)

Since the Xn are independent, In and Xn are independent,
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Proof of lemma 6.11 (contd.)

Since the Xn are independent, In and Xn are independent, which
implies E(I0X0) = E(X0)
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Proof of lemma 6.11 (contd.)

Since the Xn are independent, In and Xn are independent, which
implies E(I0X0) = E(X0) and

E(InXn) = E(In) · E(Xn) = P(S ≥ n) ·m

for all n ∈ N.
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Proof of lemma 6.11 (contd.)

Since the Xn are independent, In and Xn are independent, which
implies E(I0X0) = E(X0) and

E(InXn) = E(In) · E(Xn) = P(S ≥ n) ·m

for all n ∈ N. Now the relation
∑∞

n=1 P(S ≥ n) = E(S)
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Proof of lemma 6.11 (contd.)

Since the Xn are independent, In and Xn are independent, which
implies E(I0X0) = E(X0) and

E(InXn) = E(In) · E(Xn) = P(S ≥ n) ·m

for all n ∈ N. Now the relation
∑∞

n=1 P(S ≥ n) = E(S) yields

E

(

S
∑

n=0

Xn

)

=

∞
∑

n=0

E(InXn) = E(X0) +

∞
∑

n=1

P(S ≥ n) ·m

L. Breuer Chapter 4: Renewal Processes



Proof of lemma 6.11 (contd.)

Since the Xn are independent, In and Xn are independent, which
implies E(I0X0) = E(X0) and

E(InXn) = E(In) · E(Xn) = P(S ≥ n) ·m

for all n ∈ N. Now the relation
∑∞

n=1 P(S ≥ n) = E(S) yields

E

(

S
∑

n=0

Xn

)

=

∞
∑

n=0

E(InXn) = E(X0) +

∞
∑

n=1

P(S ≥ n) ·m

= E(X0) + E(S) ·m
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Theorem 6.12: Elementary renewal theorem

Be N a renewal process with renewal intervals (Xn : n ∈ N) and
mean renewal time E(X1) = m > 0.
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Theorem 6.12: Elementary renewal theorem

Be N a renewal process with renewal intervals (Xn : n ∈ N) and
mean renewal time E(X1) = m > 0. Assume further that the mean
delay is finite, i.e. E(X0) < ∞.
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Theorem 6.12: Elementary renewal theorem

Be N a renewal process with renewal intervals (Xn : n ∈ N) and
mean renewal time E(X1) = m > 0. Assume further that the mean
delay is finite, i.e. E(X0) < ∞. Then for the counting function Nt

the limit

lim
t→∞

E(Nt)

t
=

1

m

holds,
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Theorem 6.12: Elementary renewal theorem

Be N a renewal process with renewal intervals (Xn : n ∈ N) and
mean renewal time E(X1) = m > 0. Assume further that the mean
delay is finite, i.e. E(X0) < ∞. Then for the counting function Nt

the limit

lim
t→∞

E(Nt)

t
=

1

m

holds, with the convention 1/∞ := 0.
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Proof of theorem 6.12

For every t ≥ 0, the bound t <
∑Nt

n=0 Xn holds almost surely.
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Proof of theorem 6.12

For every t ≥ 0, the bound t <
∑Nt

n=0 Xn holds almost surely. By
Wald’s lemma, this implies

t < E

(

Nt
∑

n=0

Xn

)

= E(X0) + E(Nt) ·m
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and hence for m < ∞

1
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for all t ≥ 0. For E(X0) < ∞ and t → ∞,
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Proof of theorem 6.12

For every t ≥ 0, the bound t <
∑Nt

n=0 Xn holds almost surely. By
Wald’s lemma, this implies

t < E

(

Nt
∑

n=0

Xn

)

= E(X0) + E(Nt) ·m

and hence for m < ∞

1

m
−

E(X0)

m · t
<

E(Nt)

t

for all t ≥ 0. For E(X0) < ∞ and t → ∞, this yields the bound

lim inf
t→∞

E(Nt)

t
≥

1

m

which trivially holds for the case m = ∞.
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Proof of theorem 6.12 (contd.)

Now it remains to show that

lim sup
t→∞

E(Nt)/t ≤ 1/m
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Now it remains to show that

lim sup
t→∞
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Now it remains to show that

lim sup
t→∞

E(Nt)/t ≤ 1/m

To this aim we consider the truncated renewal process, denoted by
Ñ , with the same delay X̃0 = X0 but renewal intervals

X̃n = min(Xn,M)

for all n ∈ N, with M being a fixed constant. Denote further
m̃ = E(X̃1).
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Proof of theorem 6.12 (contd.)

Now it remains to show that

lim sup
t→∞

E(Nt)/t ≤ 1/m

To this aim we consider the truncated renewal process, denoted by
Ñ , with the same delay X̃0 = X0 but renewal intervals

X̃n = min(Xn,M)

for all n ∈ N, with M being a fixed constant. Denote further
m̃ = E(X̃1). Because of X̃n ≤ M the bound

Ñt
∑

n=0

X̃n ≤ t +M

holds almost certainly for all t ≥ 0.
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Proof of theorem 6.12 (contd.)

Taking expectations and applying Wald’s lemma, we obtain

E(X0) + E(Ñt) · m̃ = E





Ñt
∑

n=0

X̃n



 ≤ t +M
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Taking expectations and applying Wald’s lemma, we obtain

E(X0) + E(Ñt) · m̃ = E





Ñt
∑

n=0

X̃n



 ≤ t +M

For E(X0) < ∞ and t → ∞, this yields

lim sup
t→∞

E(Ñt)

t
≤

1

m̃
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Since X̃n ≤ Xn for all n ∈ N,
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Taking expectations and applying Wald’s lemma, we obtain

E(X0) + E(Ñt) · m̃ = E


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Ñt
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X̃n



 ≤ t +M

For E(X0) < ∞ and t → ∞, this yields

lim sup
t→∞

E(Ñt)

t
≤

1

m̃

Since X̃n ≤ Xn for all n ∈ N, we know that Ñt ≥ Nt for all t ≥ 0.
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Taking expectations and applying Wald’s lemma, we obtain

E(X0) + E(Ñt) · m̃ = E


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
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For E(X0) < ∞ and t → ∞, this yields

lim sup
t→∞

E(Ñt)

t
≤
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Since X̃n ≤ Xn for all n ∈ N, we know that Ñt ≥ Nt for all t ≥ 0.
Thus we obtain further

lim sup
t→∞

E(Nt)

t
≤

1

m̃

for any constant M.
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Proof of theorem 6.12 (contd.)

Taking expectations and applying Wald’s lemma, we obtain

E(X0) + E(Ñt) · m̃ = E





Ñt
∑

n=0

X̃n



 ≤ t +M

For E(X0) < ∞ and t → ∞, this yields

lim sup
t→∞

E(Ñt)

t
≤

1

m̃

Since X̃n ≤ Xn for all n ∈ N, we know that Ñt ≥ Nt for all t ≥ 0.
Thus we obtain further

lim sup
t→∞

E(Nt)

t
≤

1

m̃

for any constant M. Now the result follows for M → ∞.
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Remark on the proof

One might be tempted to think that theorem 6.12 is trivially
implied by the elementary renewal theorem.
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imply a limit in expectation.
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imply a limit in expectation.
Let U denote a random variable which is uniformly distributed on
the interval ]0, 1[. Further define the random variables
(Vn : n ∈ N) by

Vn :=

{

0, U > 1/n

n, U ≤ 1/n
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Since U > 0 with probability one,
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Remark on the proof

One might be tempted to think that theorem 6.12 is trivially
implied by the elementary renewal theorem. However, the following
example shows that a limit with probability one in general does not
imply a limit in expectation.
Let U denote a random variable which is uniformly distributed on
the interval ]0, 1[. Further define the random variables
(Vn : n ∈ N) by

Vn :=

{

0, U > 1/n

n, U ≤ 1/n

Since U > 0 with probability one, we obtain the limit

Vn → 0, n → ∞

with probability one.
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Remark on the proof (contd.)

On the other hand, the expectation for Vn is given by

E(Vn) = n · P(U ≤ 1/n) = n ·
1

n
= 1

for all n ∈ N
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Remark on the proof (contd.)

On the other hand, the expectation for Vn is given by

E(Vn) = n · P(U ≤ 1/n) = n ·
1

n
= 1

for all n ∈ N and thus E(Vn) → 1 as n → ∞.
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