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1. Introduction

Retrial queueing models are characterized by the fact that the arrival calls,
which find the servers busy, do not line up or leave the system forever, but they
try their luck after some random time.

Retrial queueing models accurately describe the operation of many telecom-
munication networks. So their investigation is very important. Good overviews
of the current research on retrial queues are contained in the book of Falin and
Templeton [25], the paper of Kulkarni and Liang [31] and in the recent surveys
of Artalejo [4, 5]. The analysis of the current situation makes clear that there is
a lack of results in the two following directions.
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The first direction is the investigation of retrial models with correlated in-
puts, e.g. the M AP and the BM AP input. Since the introduction of the BM AP
by Lucantoni [33] in 1991, many queues with BM AP input have been investi-
gated in detail. But except the recent papers of Anisimov and Kurtulus [3] Choi
and Chang [12], Choi, Chung, Dudin [13], Diamond and Alfa [14, 15], Dudin and
Klimenok [20-22], the results do not concern the retrial models.

The second direction is the consideration of multi-server retrial models.
Even the simplest retrial model of M/M/N type is not well investigated yet,
see [25]. We can refer to the book [36] and the paper [37] of Stepanov and the
papers of M.Neuts and coauthors [7, 35] where some results concerning retrial
multi-server queues with stationary Poisson input are obtained. In the papers of
Anisimov [1,2], the asymptotic results are presented.

The direction of the research on multi-server retrial queues with M AP or
the BM AP input is represented only by papers of Choi and Chang [12], Diamond
and Alfa [15] and He, Li, Zhao [28]. Note that the first two papers deal only with
M AP-inputs. This simplifies the problem because the behavior of the system
is described by the Level Dependent Quasi-Birth-and-Death processes which are
investigated rather well, see e.g. Bright and Taylor [10-11], Latouche and Ra-
maswami [32]. The paper of He, Li, Zhao [28] deals with a complicated system
of the BMAP/PH/N/N + K type with PH-retrial times. The authors solve
a very important problem of finding the stationary distribution existence condi-
tion, but they did not touch the problem of calculation of the stationary state
distribution. Unfortunately, the stability condition given in [28] for the case of
pure retrial model (K = 0), which is interesting for us in the present paper, is
not proven correctly.

In our present paper, we consider the retrial BMAP/PH/N system. This
model is suitable for the analysis and optimization of mobile computer commu-
nication networks. The assumption about the BM AP-like behavior of the input
fits well to the real-life flows. The assumption about the presence of a multi-
server device is very important because the base station of a mobile network
provides usually more than one channel for information transmission. In the case
N =1, the problem is solved already by Dudin and Klimenok in the case of the
more complicated SM-type service process [20, 21]. The assumption about the
PH-service (phase-type service time distribution) is some kind of the trade-off
between the relative easiness of investigating systems with exponential service-
time distribution and the practical importance of considering more general service
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time distributions.

Concerning the retrial process, we suppose that the inter-retrial times are
exponentially distributed with rate «;, which may depend on the current number
1 of customers on the orbit. As special cases, we consider the variants of a
constant retrial rate («; = 7,7 > 1) and linear repeated requests (a; = ia+7y, a >
0,7 > 0,7 > 1). Note that the results could be extended to the case where the
parameters « and vy are modulated by some finite-space continuous-time Markov
process (like it was done in [22]).

The content of the paper is the following. In Section 2, we formally describe
the model under consideration. In Section 3, the behavior of the queueing model
under consideration is described in terms of a multi-dimensional continuous-time
Markov chain. To investigate this chain, in Section 4 we reduce it to the multi-
dimensional discrete-time Markov chain. In Section 5 we consider the case of a
constant retrial rate. In Sections 6 and 7, we consider the case when the total
retrial rate is infinitely increasing as the number of calls on the orbit tends to
infinity.

2. The model

We consider an N-server queueing system. The primary calls arrive to the
system according to a BM AP (Batch Markovian Arrival Process). The notion
of the BM AP and its detailed description is given by D.Lucantoni in [33]. We
denote the directing process of the BM AP by vi,t > 0. The state space of
this irreducible continuous time Markov chain v; is {0,1,...,W}. As follows
from [33], the behavior of the BM AP is characterized completely by the matrix

o0
generating function D(z) = Y. Dg2*, |2| < 1. The matrix Dy, characterizes the
k=0

intensities of transitions of the process v; which are accompanied by generating a
batch of k calls, k& > 0. The matrix Dy is stable one. The matrix D(1) represents
the generator of the process v, t > 0.

The average arrival rate X is defined as A = 6D’ (1)1 where § is the invariant
vector of the stationary distribution of 14,¢ > 0. The vector 6 is the unique
solution to the system gD(l) =0, 61 = 1. Here 1 is the column-vector of
appropriate size consisting of units and 0 is the row-vector of appropriate size
consisting of zeroes.

The servers are identical and independent of each other. The service of a
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customer by a server is governed by the directing process m;. The state space
of this continuous time Markov chain my is {1,..., M}. The initial state of the
process m; at the epoch of starting the service is determined by the probabilistic
row-vector 8 = (B1,...,Bm). The transitions of the process my, which do not
lead to service completion, are defined by the irreducible matrix S of size M x M.
The intensities of transitions, which lead to service completion, are defined by the
vector Sp = —S1. The service time distribution function has the form B(z) =
1 — BeS*1. A more detailed description of the P H-type service time distribution
can be found e.g. in the book [34].

If the arriving batch of the primary calls meets several servers being idle,
the primary calls occupy the corresponding number of the servers. If the number
of the idle servers is insufficient (or all servers are busy) the rest of the batch (or
all the batch) goes to the so called orbit. These calls are said to be repeated calls.
These calls try their luck later, until they will be served. We assume that the
total flow of retrials is a such as the probability of generating the retrial attempt
in the interval (¢, ¢+ At) is equal to a; At+ o(At) when the orbit size (the number
of calls on the orbit) is equal to 4, i > 0, &y = 0. The orbit capacity is assumed
to be unlimited. We do not fix the explicit dependence of the intensities «; on 3.
The following two variants will be dealt with:

e a constant retrial rate : a; =7y, 1 > 0;
e an infinitely increasing retrial rate : lim o; = oo. This variant includes the
classic retrial strategy (o; = ia) and thel_l;;oear strategy (a; = i + ).

Our goal is to derive the stationary state distribution of the orbit.

3. Continuous-time Markov chain

Let:
¢ i; be the number of calls on the orbit, i; > 0,
e n; be the number of busy servers, n; = 0, N,
° mgj ) be the state of the directing process of the service on the j-th busy server,
mgj ) = 1,M, j = 1,n; (we assume here that the busy servers are numerated in
order of their occupying, i.e. the server, which begins the service, is appointed the
maximal number among all busy servers; when some server finishes the service,
the servers are correspondingly enumerated),
e 1; be the state of the directing process of the BM AP, v; = 0, W,
at the epoch ¢, > 0.
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Consider the multi-dimensional process & = (it, ng, v, mgl), ... ,mgm)), t>
0, in continuous time. It is easy to see that this process is an irreducible Markov
chain. Denote the stationary probabilities of this process as

p(i,n,v, m(l), . ,m(")) =

(1) _ (n) _

t—00

fori >0, v=0W,mY =1, M, j =1,n, and n = 0, N. The problem of the
existence of the limits (1) will be discussed a little bit later.
Enumerate the states of the chain &,¢ > 0, in lexicographic order and form

the row-vector p; of the stationary-state probabilities p (i, n, v, m®, ... ,m(")),
i > 0. Note that the dimensionality of these vectors is equal to K = (W +
1)% E.g., if the number N is equal to 5 and the state spaces of the

BM AP-input and PH-service consist of two elements (W = 1, M = 2), then
K = 126. So, the dimension of the vector p; is rather high and the problem of the
accuracy of calculations can arise. Note that in case of large K we can use another
Markovian process for describing the queueing model under consideration, see e.g.
[38, 40].

Define the infinite-dimensional probability vector = (g, p1 ... ).

Proposition 1. If the vector p exists then it satisfies the equilibrium equa-
tion

PA=10 (2)

where 0 is the infinite row-vector consisting of zeroes and the matrix A is the
infinitesimal generator of the chain &, ¢ > 0, and has the following structure:

Ago Ag1 Ag2 Ag3 - - -
AjgA11 Ap Agz ...

A= 0 A21A22A23...
0 0 AzyAs;z...
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where the blocks A;; of size K x K have the following form:

0F=®8 0 ... 0
0 0 Ipy®B... 0
Ajjir=ao; |+ : . : ; (4)
0 0 0 Ly ®f
0 0 0 0
0...0 D]H_N@,B@N
0...0 Dpyn_1® Iy @ BEWN-1)
Aigrp=|0..0Dpyn2 @ L1 @ BFW=D | o>, (5)
0...0 Dy @Iy~

(0,7 <r—1,r=2,N,

<

@S¢, r'=r—1,r=1,N,
(Ai,i)r,r’ = (6)
Dy @ 8% — ;(1 = 6y, N) I ppe, v =7, 7 =0, N,

\Dl®IMr®,B®l,’f‘l:’l"+l,lzl,N—T,’I‘:O,N,

1> 0.
1, =N,

Here 6, v =
N { 0,r %N
product, and & is the sign of Kronecker’s sum,

, is Kronecker’s symbol, ® is the sign of Kronecker’s

gt se @B, 1>1,80% se. . a8, 1>1, s20%
—— S——
! l
-1
SO %S Inm ® S0 @ Ingiom—1, 121,

m=0

W =W + 1, I, denotes the identity matrix of size L x L, I;0 = 1.

The proof of Proposition 1 consists of deriving the equilibrium equations
for the Markov chain &;,t > 0, and rewriting them into the matrix form. These
operations are rather long and trivial, so the proof is omitted.
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The technique of solving (2) is known only for the cases when the input
flow is a M AP (not a BM AP) and the matrix A is a three block-diagonal one
or when the matrix A is quasitoeplitz i.e. A;; = A; 4,9 > J, J is some fixed
integer.

Thus, we should offer a way for solving (2). To this end, we reduce the
investigation of the continuous-time Markov chain &;,¢ > 0, to investigating an
embedded at the epochs t; of its transitions discrete-time Markov chain & =

. 1 (n1)
(tty > Ntyy Vigs mgk),...,mtk ),k > 1.

4. Discrete-time Markov chain

The technique of generating the embedded discrete-time Markov chain
¢k, k > 1, is well-known. Every row of the infinitesimal generator A is divided
by the module of the diagonal entry of this generator and a unit is added to the
diagonal entry. Let us do so.

It is well-known that the diagonal entries of the matrix Dy are negative:
(Do)vy = —Auvs Ay >0, v =0, W, as well as the diagonal entries of the matrix S:
(S)mm = —Smy Sm >0, m=1,M.

The diagonal blocks of the generator A have the form

(Aii)rr = Do ® 89" — i Iy o (1 — 6y ), 7 =0, N, i > 0.
Introduce the diagonal matrix R;:

R, =C+ o4, (7)

C = diag { diag {\,, v =0,W } & [diag { s, m =1, M }]®", r =0,N }.

Here diag {a;, | = 1, L} denotes the diagonal matrix of size L x L with the
diagonal entries a;,

O 0 ...IWMN_l O
0 0 ... 0 Oy

O is the zero matrix of size L x L. When the index is omitted, the size of the
matrix should be clear from the context.
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The matrix R; defines the diagonal entries of the block A;;, i > 0.

Thus, we reduce the investigation of the original continuous-time Markov
chain with the generator A to the consideration of a discrete-time Markov chain
&k, k > 1, of the same dimensionality having the transition probability matrix Y

which is defined as follows:

Y =Yl i0>0,
( .
0,1l <i-1,
R7A; i1, 1=14—1,

Ri_lAi,i-}-I,l:Z',

\Ri_lAi,i—Hc, l=i+k k2>1,

12> 0.

Introduce the notations

0B 0 ... 0

0 0 IFyy®B... 0
Ig=1|: S ; :

0 0 0 .Lyna®f

0 O 0 0

and I = I — I. The matrix D) ghall be defined by its blocks

(0,7 <r—1,

Ly @Sy, r'=r—1,
(D), 0 = ¢
Dy SO v =1,

(D@ I @B%, ' =r+1,1=1,N —r,

r=0,N.

Rewriting the matrix R; in the form R; = (C + ;1)1 4 CI and taking into
account the evident formula R = (C + ;I)~'1 + C~'T and formulas (4)-(6),
we obtain from (8) another expression for the transition probability blocks Y; ;.
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Theorem 1. The blocks Y;; of the transition probability matrix Y of the
discrete-time Markov chain &, k > 1, are defined as follows:

Yiy=0, I<i-1,

Yi,i—l = QgZ)Y'O(l)a i > 1a

Yii= Qv + QY i >0,

Yiitk = Ql’)YkH +QPYE, 0k >1,

where

QY =(C+aulwl, QY =(C+aul)7'C,i 0, (10)
Yo(l) = jﬂa
YO —c I DM 41, v = T A, k> 1, (11)

YA =ct-DWM 1, Y2 =0 A, k> 1

Enumerate the states of the discrete-time Markov chain &, k > 1, in lexico-
graphic order and denote as 7; the stationary probability row-vector correspond-
ing to the state i of the first component.

In the following Sections, we derive the sufficient conditions for existence of
these probabilities. Suppose that these conditions hold.

Proposition 2. When the stationary distribution 7;,7 > 0, of the embed-
ded Markov chain exists, the stationary distribution p;,z > 0, of the original
continuous-time Markov chain &, ¢ > 0, exists as well and the following relations
hold true:

pi=cmiRT, i>0, (12)

where the positive finite constant ¢ is defined as:

C = (i mR1) L (13)
=0
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Proof. Because the non-negative diagonal matrices R; ' have a form R} =

(C + a;1)~! and we deal the cases of the constant or the infinitely increasing
o0 ~ (o]

retrial rates ;,7 > 1, the series ) TR, ! evidently converges if the series 3. 7
=0 =0

converges. Thus assuming that the stationary distribution 7;,7 > 0, exists,we

guarantee the existence of the finite positive constant ¢ defined by formula (13).
Let @ = (7o, 71,...). The vector 7 satisfies the equilibrium equation

TY =7 (14)
which can be rewritten in the form:
+1
N mYy=m, 1>0. (15)
=0

Substituting (8) into (15), we obtain that the probability vectors 7;,i > 0,
satisfy the equations:

+1 R
S o#R7TA =0, 1>0. (16)
=0

Thus, the vectors p;,i > 0, defined by formula (12) represent a positive solution
of equilibrium equations

+1
> Ay =0, 1>0, (17)
1=0

o0
such that the series ) p; converges. By Foster’s theorem we conclude that the

vectors p; in form (1Z2) define the unique stationary distribution of the original
continuous-time Markov chain &, ¢t > 0. Proposition 2 is proven.

Corollary 1. The sufficient conditions for existence of the embedded
Markov chain stationary distribution are also the sufficient conditions for ex-
istence of the continuous-time Markov chain &;,¢ > 0, stationary distribution.

Thus, if we prove the stationary distribution existence condition for the
probabilities 7;, 2 > 0, and calculate these probabilities, the problem of calcu-
lation of the stationary state probabilities p;, ¢ > 0, can be considered being
solved.

Let us investigate the chain &, k& > 1, which is determined by the transition
probability matrix in the form (9)-(11). The investigation depends essentially on
the strategy of retrials. We consider sequentially two strategies mentioned above.
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5. Constant retrial rate

We assume g = 0, a; = 7, ¢ > 0. This strategy describes the situations
where the retrial process is controlled by some decision-maker. Only one call
from the orbit is allowed to make the repeated attempts in intervals, which are
exponentially distributed with rate . Or all calls are allowed to make the retrials
while the individual intensity of retrials should be equal to /i when ¢ calls stay
on the orbit.

In this case, the matrices Qgi), gi), which are defined by formulas (10), do
not depend on 4. Thus the transition probability blocks Y;;, 2 > 0, depend only
on the value [ — ¢ and do not depend on ¢ and [ separately. This means that the
Markov chain &, k > 1, belongs to the class of M/G/1 type chains (see [34]) or
multi-dimensional quasitoeplitz Markov chains [19, 23] and can be investigated
easily.

Denote Yo, = Vi, Yiiyk—1 = Y3,k > 0,7 >0,

00 o] [e]
=0 =0 1=0

It is well-known [34, 19, 23], that the vector generating function [i(z) satisfies
the following linear matrix functional equation:

(2)(Y (2) — =I) = TL(0)(Y (2) — 2V (2)) (18)

that can be rewritten in the form

where
O(z) = (Y(z) — 2V (2))(Y(z) — zI)_l. (19)

In our case, the matrix generating functions Y (z) and V' (z) are calculated as:
0 o]
V(z) = Z YO,kaa Y(z2) = Z Yi,i-Hc—lzka 1> 0.
k=0 k=0

Denote

D*(z) =Y DWVHRk = (20)
k=0
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Dy Di®B% Dy®p% ... Dy_1®BN-D  Ax_i(2,8)

Ly ®Sgt Do®S®' Dy @Iy @ %' ... Dy 2 ® Ing © N2 An (2, )
0 IW®SSBZ Do @S9 ... Dy 3®Ip» ®B%N=3) Ax 3(z,8) ,

0 0 0 ... I @ SPN D(z) @ SON

m -

with A, (z,8) = 271 (D(2) — Y. Dpz*) @ Iyyn-m-1 @ B m =0, N — 1.
k=0

Then, we easily derive the explicit expressions for the matrix generating

functions as:

V(z) =1+ C7'D*(2),
(21)

Y(z) = 2l + (C + 1) (I — vIz + 2D*(2)).

By substituting (21) into (18), we finally get the functional equation for the
vector generating function ﬁ(z) of the stationary distribution of &, & > 1, in the

following form:

ﬁ(z)(C + ’yf)_l(yfﬂ —ylz+ 2D*(2)) =

= T(0)(C + vI) I (I5 — Iz — C7'2D*(2)). (22)

As follows from [19, 26, 27], the sufficient condition for the stationary distribution
existence here has the form

(det(—yIg + Iz — 2D*(2)) ) |.=1 > 0. (23)
A more constructive form of this condition is given in the following state-
ment.
Theorem 2. The stationary distribution existence condition has the form
X((D*(2)) =1 — D) 1 <0, (24)

where the vector X is the unique solution to the following system of linear alge-

braic equations:

X(I-Y(1) =0, (25)

X1=1.
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The proof is given in the Appendiz 1.
It follows from [19, 26, 27, 30], that if condition (24) is fulfilled, then the
equation

det(yIg — yIz + 2D*(z)) = 0 (26)
has a simple root z = 1 and some number K of roots z having multiplicity ng,
KI
ng > 1, Y ng = K — 1, in the open unit disc.
k=1

Rewriting (22) in the form

Ti(z) = TI(0)®(z) = TI(0)(C + ~I) " yi(Is — Iz — C~'2D*(2)) x

Adj(yIg — yIz + 2D*(2)))(C +~I) (det(fyfﬁ — Iz + zD*(z))) -

and exploiting the analyticity of the vector generating function ﬁ(z) in the region
|z| <1 and the normalization condition

we can get the entries of the unknown vector ﬁ(O) as the solution of the following
system of linear algebraic equations:

- dn o A~
m(0)—1(C + ) IyI(I5 — Iz — C~'2D*(2)) x

Adj(yIg —vIz + 2D*(2)))(C +71)][z—z, =0,

T(0)(C + 1) Lyi(Is — Iz — C~12D*(2))x

. . . N N -1
Adj(yIg —vIz + 2D*(2)))(C + ~1) (det(fylﬂ —~ylz+ zD*(z))) l,=11=1.

It follows directly from [26], that this system has a unique solution when
the stationary distribution existence condition is fulfilled.

By substituting the calculated unique value of the vector ﬁ(O) into equation
(22), we get a unique solution II(z) to this equation that is analytic in the region
|z| < 1, continuous on the border of this region and satisfying the normalization
condition.
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The values of the vector factorial moments II(™ (1) are calculated as

-, am . . dm

m(1) = dz—mH(z)|z:1 = H(O)dz—mCI)(z)\z:l, m > 0.
However, the matrix generating function ®(z) and its derivatives at the point
z = 1 can not be calculated from (19) directly because both multipliers in (19)

are singular at this point. Thus, the following auxiliary result can be useful.

Let
d*D*(z d*Y (=
de 2 dk(I) z
v = TI(C) l.=1, @Pr = dzfc ) e=1, k2>0.

Proposition 3. The matrices ®;,1 > 0, are recurrently calculated as follows:
& = ZTy L, 1>0, (27)

where the matrix T is obtained by replacing the first column in the matrix YO g
with the column (Y — I)1 and the matrices Z; are obtained by replacing the
first column of the matrix

-1
YO —vO vt 18, - S o,y ™

m=0

with the column
y(+1) _ y@+1)

[+1

l
VO () Y O i)

m=0

Proof. Rewrite formula (19) into the form:
B(2)(Y(2) — 2I) = (Y(2) — 2V (2))- (28)

Expand both sides of relation (28) into the series at the point z = 1 and consec-
utively equate the coefficients under the corresponding degrees of (z — 1). The
replacement of one column in both sides (the new columns are obtained from
relations for the higher degree of (z — 1)) is caused by the fact that the matrix
Y (©) — I, which is a multiplier of the matrix ®; on the (I + 1)th step of the recur-
rent procedure, [ > 0, is singular one while the modified matrix Tj is non-singular
(for proof see [16]).
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Corollary 2. The matrices ¥, defining the expansion:

i \pmw )
m=0

m!

are recurrently calculated as follows:

l
To=d,", U=-8"'> Cfop Ty, 1>1. (29)
k=1

Note that using the formulas (21) we can obtain the explicit expressions for the
matrices Y(¥) V(%) in the form:

YO =1+ (C+~D) M yls — vI + A),
VO =14+ C7tA,,
YW =14 (C+ ) =yl + A¢ + Ay),
Y = (C+D) (D1 + D), (30)

vk = C 1AL, k> 1.

Matrices Ay are easily calculated directly from (20). Procedure defined by
relations (27), which include the matrices defined by (30), allows to calculate any
desired number of matrices ®;,1 > 0.

Note that the matrix ®y defines the relation between the vectors Ii(1) and
7o = I1(0):

Ii(1) = 7.

The average number of calls on the orbit at the embedded epochs is calculated
as:

(1)1 = 7 1. (31)

Having known the stationary distribution of the embedded Markov chain
&k, k > 1, we can calculate the distribution of the original continuous-time Markov
chain.

Taking into account the formulas

A

Ri=R=(C+~DI+CIi>0, Ry=C,
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we get the constant ¢ in relation (12) as:
¢= (MR —y '@ D)1)7" (32)

— o .
The vector generating function P(z) = 2 piz" of the stationary distribution

1=0
of the original continuous-time Markov chain is calculated now as
P(z) = e(ll(z)R™" =77 ]), (33)

and the stationary probabilities p; are calculated as:
pi=cmR™, i >0, §y=ciyC (34)
The vectors 7;, ¢ > 0, can be calculated according to Ramaswami’s recurrent
scheme, see [34, p.143]:
#i = (RVi+ > 7Y i) (1 -Y1)7", i > 1, (35)
=1

where the matrices V;, Y; are defined by the formulas

— e . - — 0 . .
N N
j=i j=i

and the matrix G satisfies the equation

o0
G =) YG"
=0

The probabilistic meaning on the matrices V;, Y;, G for a more complicated
level-dependent case is explained in Section 7.

Although this Ramaswami’s scheme seems being hardly implemented be-
cause it contains the infinite sums, it is recommended as a very reliable one e.g.
by M. Neuts in [34]. Our own numerical experience also confirms a good quality
of this scheme.

The factorial moments P(™) (1) = 4 B(2)|,—1, m > 0, are calculated as:

PmM1) =ei™ 1R, m>1.

Thus, the problem of calculating the stationary state distribution for the
retrial BMAP/PH/N system in the case of a constant retrial rate is solved.

Note that M.Neuts’ approach for calculating the probability 7y, which is
based on the using the matrix G, could be easily applied here instead of the
analytic one as well.
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6. The case of infinitely increasing retrial rate

We assume that «; — oo when 7 — oo. This case includes the classic
strategy of retrials (o; = i) and the strategy of linear repeated requests (a; =
i+, 1> 0, see [6]).

In this case we see that

Q@—)I and Q@—)O as 1 — 00.

Comparing the expressions (9)-(11), which characterize the transition prob-
abilities of the Markov chain &, k& > 1, with the definition of the asymptoti-
cally quasitoeplitz Markov chain (AQT M C) in [20], we conclude that the chain
&k, k > 1, belongs to the class of AQT'MC. So we can use the results of [20] for
investigating the Markov chain &, k > 1.

As it is stated in [20], the stationary distribution existence condition for the
AQT M C coincides with the corresponding condition for the limiting quasitoeplitz
chain for a given AQTMC.

Define as Y (z) and V(z) the matrix generating functions characterizing the
limiting chain. From the definition of a limiting quasitoeplitz Markov chain and
(9)-(11) (or from (21)), we get the expressions

V(z) =1+ C7'D*(),
(36)

Y(2) = Ig + 2I + C~'12D*(2).

Substituting the explicit expressions for the matrices I, fg, C and D*(z)
into (36), we see that the matrix Y (z) is reducible. The normal form of the
matrix Y (1) contains only one irreducible stochastic diagonal block Y (1). The
corresponding block Y (z) of the matrix Y (z) has the form

B (A® Sy) "' (2D(2) ® 28®N) + 2I (A ® Sn) " (g ® S&V )2
Y (z) = . (37)
IWMN—I ®,3 OWMN—I
Here A@® Sy e/ diag {\,, v =0,W } @ [diag { sm, m =1, M }|®V.

It follows from Corollary1 in [20], that a sufficient condition for the sta-
tionary distribution existence is the fulfillment of the inequality

(det (2 — Y (2))' |51 > 0. (38)
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A more constructive form of condition (38) in our case is given in the fol-
lowing statement.

Theorem 3. A sufficient condition for the existence of the stationary distribu-
tion for the BMAP/PH/N model with infinitely increasing retrial rate is given
by

p=Ap<1, (39)
where ) is the average arrival rate,
i =gSg" Lygn-1, (40)
1/ is the unique solution of the following system of linear algebraic equations:

F(SON + SN (Iynv-1 ® B)) =0,

41
71=1. (41)

The proof is given in the Appendix 2.
Corollary 3. For the BM AP/PH/1 retrial system the sufficient condition
for the stationary distribution existence has the form

p=Ap<l,

where = —(B8S11)! is the intensity of the PH-service.

The proof follows from (39)-(41) if we set § = —uBS .

Corollary 4. For the BMAP/M/N retrial system the sufficient condition
for the stationary distribution existence has the form (39) where

i=Nu, p=—(8S 1) (42)

The proof follows from (39)-(41) if we set ¥ = 1 and get the equality
7SN 1= Np.

Remark 1. For the BMAP/PH/N/N + K retrial model, K > 0 (it means
the system has a finite buffer) the sufficient condition also has the form (39),
(42). The proof is analogous to the one given in Appendiz 2 taking into account
that in this case the matrix SV 4+ SV (I),v-1 ® B) in (41) must be changed to
the matrix SOV + (S,8)®N and the vector 4/ has the form: § = —(uBS—1)®N.

In case K =0 (i.e. we have the pure retrial model), we get the condition in
the form (39)-(41). In opposite to us, in [28] it is stated that in case K = 0 the
condition has the form (39), (42). But the proof given in [28] is not correct.
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Remark 2. Condition (39), (42) holds true also for the BMAP/PH/N /oo
model with the standard enumeration of the busy servers. Condition (39)-(41)
is valid for the BM AP/PH /N /oo models in case we enumerate the busy servers
according to the rule described in the beginning of Section 3, i.e. the servers are
enumerated at the service completion epochs and the maximal number gets the
server which last begins the service.

In case of a general dependence «; of ¢, to calculate the stationary state
distribution of the Markov chain &, k > 1, we can develop a numerical algorithm
using the steady-state equations (15).

In the case when the dependence has a linear form: «; = ia+ v, 1 > 0 we
can additionally derive the vector functional-differential equation for the vector
generating function II(z).

Theorem 4. Let the stationary distribution existence conditions (39)-(41) be
fulfilled. Then the vector generating function II(z) of the stationary distribution
of &, k > 1, satisfies the following functional-differential equation:

' (2) = Ii(2)S(z) + [(0)z " ya~ & (2), (43)

where the matrices S(z) are defined as follows:

S(z) = 7 H2)®'(2) — 7 (2)(C + D)o 1271®(2) + a 127 1CD(2),

=N

®(z) = (I — 2I — C~'12D*(2)) - (I — 21 — C™'12D*(2))™". (44)

Remark 3. The methods for solving equation (43) have not been elaborated
yet. However, by sequential differentiation of this equation we can get the exact
analytic relations between the factorial moments of any order of the stationary
distribution. Thus, this equation has a high practical importance for constructing
the effective stop-rules for the numerical procedures for calculating the vectors
ﬁ(O) = T, i, 1 > 1, see, e.g. the procedure presented in Section 7.

Remark 4. Expression (44) is equivalent to:

®(z) = (Y(2) - 2V(2)(Y(2) — 2I) !, (45)

where the matrix generating functions Y (z) and V(z) define a limiting qua-
sitoeplitz chain and have form (36).
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The proof of Theorem4 is implemented by analogy with the proof of
Theorem4 in [20].

Mention that in the proof we get an important intermediate formula, which
is valid for the arbitrary form of intensities of retrials:

Z T2 C + ol 1CCI)( )- (46)

This formula is useful for finding the relationship between the function
ﬁ(z), which determines the stationary distribution of the original continuous-
time Markov chain, and the vector generating function ﬁ(z)

The relation (12) has here the form:

fi = &@((C + o)+ ¢, i > 0, (47)

Multiplying these relations by corresponding degrees of z and summing up,

we get the expression
o
P(z) =¢Y 72" ((C + aul) ™'+ C7H).

i

Taking into account (46), we get the relation:
Bz) = ell(z)071 (@1 (2)] + D). (48)
Now it is easy to calculate the coefficient ¢:
¢= (M@ Wi+

The values of the matrix ®~!(z) in (48) and its derivatives are easily calculated
basing on Proposition 3 and its Corollary. Comparing formulas (19) and (45), we
see that the coefficients of expanding ®(z) are calculated by formulas (27) with
replacement of matrices Y, V() by the matrices 17([), V® which are defined by

the recurrent relations:

YO =T+ Iz +C Ay, VO =T1+01A,,
YO =T+ 071 (Ag + Ay),

VO = C ' T(Ap1 + Ap), k>2, VB =C7 AL k> 1.

The coefficients of expanding the matrix function ®!(z) are the direct analogs
of those given by formulas (29).
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Thus, if we succeed to calculate the generating function f[(z) for the discrete-
time asymptotically quasitoeplitz Markov chain, we easily get the distribution of
the original chain describing the arbitrary-time distribution of the states of the
retrial BMAP/PH/N system.

7. The algorithm for calculating the probability vectors 7;, i > 0, in
case of infinitely increasing retrial rate

In the previous Section, we have got the stationary distribution existence
condition for the embedded Markov chain which is the sufficient condition for
existence of the stationary distribution of the original continuous-time Markov
chain as well. We have got also formulas (47),(48) relating the distributions
of these chains. However, the problem of calculation of the stationary state
probabilities 7;,% > 0 of the embedded chain is not solved yet.

We can not exploit here the algorithm for calculating the stationary distribu-
tion of the asymptotically quasitoeplitz Markov chains which is elaborated in [20].
That algorithm is oriented to the case when the subdiagonal blocks Y;;_1 of the
transition matrix Y are non-singular. This assumption was not very restrictive
in the analysis of the BM AP/SM/1 retrial model by means of the asymptoti-
cally quasitoeplitz Markov chains [20]. But in case of our BMAP/PH/N retrial
systems all subdiagonal blocks are singular.

So, in the present Section we develop two new algorithms for calculating
the vector 7y which are suitable for application for arbitrary asymptotically qu-
asitoeplitz Markov chains in case of singular subdiagonal blocks Y;; 1 of the
transition matrix Y. The results of this Section can be considered as the com-
plementary to the theoretical results of paper [20].

Both these new algorithms (as well as the algorithm given in [20]) are based
on exploiting the level-dependent analogs to the matrix G defined in Section 5.

Let G*) be the probabilistic matrix describing the transitions of the finite
components of the Markov chain &,,n > 1, during the first passage time of the
denumerable component from the level k£ to the level £k — 1,k > 1. The matrices
G*) gatisfy the following recurrent relations:

o0 n
G =Yip1+ Y Yigsn [ GET"9 (49)
n=0 7=0

(see [29], Corollary 5.3 or [20]). In the classical level independent case, there are
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several algorithms for computing the matrix G, see Breuer et al. [9]. Similarly, we
have several possibilities in the level-dependent case. The simplest (but not the
worst) way consists of setting the value of G () being equal to the constant matrix
G for all | greater than some threshold L. The matrix G is defined as a solution to
the matrix equation G = 3.°° ; ¥;,G™ where the matrices Y, are the coefficients
of expanding the generating function Y (z) (see formula (36)) into series at the
point z = 0. The value of the threshold L depends on the convergence rate
of the asymptotically quasitoeplitz Markov chains to the corresponding limiting
quasitoeplitz Markov chain and the desired accuracy of calculation of the vector
To. The rest of the matrices G (those for | = 1,L — 1) are easily calculated
now from the backward recursion (49).

Extending Ramaswami’s idea [39] to the case of a level-dependent Markov
chain, we prove the following result.

Proposition 4. Let the stationary distribution existence conditions (39)-
(41) be fulfilled. Then the probability vectors 7;,7 > 1, are calculated as:

7 = 7oF,i > 1, (50)

where the matrices F; are calculated recurrently:

Fy=1,
k1 e
Fo=Wi+ S BV NI -7 k> 1, (51)

=1

()

the matrices Y,"’ and V,, are defined by formulas
_ 00 i—n o
Y8 =3V ppion [ GET,
=n 7j=1

t—n—1

V, = ZYO, HO G, (52)
i=n ji=

Note that the entries of the matrix Y}gk),n > k,k > 1, define the transition
probabilities of the finite components during the time interval until the state n of
the denumerable component will be reached first time conditional that the initial
value of this component was k and the first transition was made into the state
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i,4 > n. The entries of the matrix Vj,,n > 0, define the corresponding transition
probabilities for the initial state &k = 0.

Using recursion (51), we can calculate the matrices F;j until they become
negligible with the desired accuracy. Thus, we need to calculate the vector 7
and the problem of calculating all probabilities 7}, > 0, will be solved.

The first way to calculate the vector 7 is extremely simple. In the same
way as the recursion (51) is derived, we get the equation

To(I — V) = 0. (53)

The rank of the matrix I — V} is equal to K — 1. So we need one more equation
to get a solvable system of linear algebraic equations for the entries of the vector
7o. Taking into account representation (50) and the normalization condition, we
get the additional equation in the form:

o0
7oy Fpl=1. (54)
k=0
The system (53),(54) has a unique solution, so the probability vector 7 is found.

Surprisingly, this simple procedure is not described in the literature and
should be considered as a novel one. The probable reason of this situation is the
following. The procedure of Ramaswami was initially developed for the quasi-
toeplitz Markov chains and it is applied for calculating the probability vectors
7,4 > 1, by means of analogs of formulas (50), (52). The vector 7 is assumed
being calculated in advance using the well-known correspondence between the
stationary probability of the state and the average time until the first return to
this state. Approach of M. Neuts is based namely on this correspondence. As
the result, M. Neuts has elaborated a simple procedure for calculating the vector
7p. So Ramaswami’s procedure was applied only for reliable calculation of the
vectors 7,4 > 1 and the possibility of calculating the vector 7y from the same
procedure is not described.

The second way to calculate the vector 7y consists of the direct generaliza-
tion of M. Neuts’ approach to the case of the level-dependent Markov chains.
According to the M. Neuts’ approach, the vector 7 is calculated as:
R
~ (R,ep)’

—

(55)

where the probability row-vector ¥ is an eigenvector of the matrix which char-
acterizes the transition probabilities of the finite components during the time
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interval until the first return to the state 0. The column-vector ¢g consists of
conditional expectations of the number of transitions until the first return to the
state 0 starting from the corresponding state of the finite components.
According to the definition of the vector ¥ and definition of the matrices
Vi, k > 0, we conclude that the vector 7 is the unique solution to the following

system of linear algebraic equations:
KVo = R, R1. (56)

The procedure for calculation of the vector ¢p is analogous to one described in
Hofmann ([29], pp. 40-45, p.52).
Proposition 5. The vector ¢p is defined as

oo j—l/-1 ]
=3 %0, (60 0) &
=1 1=0 \i=0

with E(Fk ) denoting the mean number of transitions before the orbit size decreases

from k to k — 1.
k)

The vectors ¢’ can be computed as

with M’ = lim,,_,00 M,,! being determined by the iteration

Mt = (M(l,o))_1

and
M(Ln)
M—l _M—l : M(”‘H:O) !
Mﬁil = " " M(”’l) ( )
)

for n > 0. Here the matrices M*) are defined by

Mk — 1 _ Yl(k)
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for £ > 0, and
[e's) -1
Mbn) = — > Yikrnsi1 [] GUkFn+=3)
=1 j=1
for k,n > 0.

Thus, two ways for calculating the vector 7y are described. Recalling rela-
tions (50), (52), we conclude that the problem of calculation of the stationary
probabilities for the embedded Markov chain is solved.

8. Conclusion

We have considered the BM AP/PH/N retrial queueing system. The behav-
ior of this system is evidently described by a multi-dimensional continuous-time
Markov chain. In general, this chain has an infinitesimal generator with level
depending blocks. The generator does not have a three-diagonal form and the
chain does not belong to the known class of Level Dependent Birth-and-Death
Processes. To investigate this Markov chain, we reduce it to the corresponding
multi-dimensional discrete-time Markov chain. Depending on the strategy of re-
trials (constant retrial rate or infinitely increasing retrial rate), this discrete-time
Markov chain belongs to the class of multi-dimensional quasitoeplitz Markov
chains [19] or asymptotically quasitoeplitz Markov chains [20]. The technique
in the first case is well-known. In the second case, we exploit and develop the
results of [20] to investigate the chain. The numerical algorithm for approximate
calculating the stationary state probabilities is modified essentially comparing to
[20].

Our experience in implementation of the similar algorithms (see, e.g.
[17,18,20,21,24]) allows to predict the stable work of this algorithm. However,
the numerical work and obtaining the graphical dependences of the main perfor-
mance characteristics of the model on its numerous parameters should be made
carefully. So the results are planned to be reported later in some Journal in the
field of performance evaluation and capacity planning for the computer commu-

nication networks.
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Appendix 1.

Lemma Let the matrix —B be an irreducible infinitesimal generator. Then
e the vector 6 of the cofactors for the entries of the some column of the deter-
minant det B is positive,
e all solutions of the system of linear algebraic equations

IB =0
can be represented in the form
= cﬁ.

Proof. The first conclusion follows from the structure of the matrix B.
The diagonal entries of this matrix are positive, the non-diagonal entries are non-
positive and the row sums are equal to zero. All cofactors of the determinant of
such a kind of matrices are non-negative (see, e.g. [8]). This implies 7 > 0. The
inequality 6 > 0 follows from the irreducibility of the matrix B. The second
conclusion of the lemma is a well-known fact from algebra.

The proof of Theorem 2.

Denote as B(z) the matrix in (23), i.e.

B(z) = —yIg +ylz — zD*(2).

Summing up all columns of the detB(z) to the first column, expanding the
determinant along the entries of the first column and using the fact that —B(1)
is the infinitesimal generator, we obtain the inequality which is equivalent to
inequality (23)

vB'(1)1 >0, (A1.1)

where 6 is the vector of the cofactors for the entries of the first column of the
detB(1).
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Consider the system of linear algebraic equations
XB(1) =
{ - (1) ’ (A1.2)

It follows from Lemma that the unique solution of system (A1.2) can be

represented in the form

where 6 > 0.
Then inequality (A1.1) is equivalent to the following inequality:

XB'(1)1 >0, (A1.3)

where X satisfies the system (A1.2).
Taking into account the form of the matrix B(z), we can easily verify that
(A1.2), (A1.3) prove the theorem.

Appendix 2.

The proof of Theorem 3. ~
Using the block structure of the determinant det (21 —Y (z)) in (38), we can
reduce it to the following form:

det (21 — Y (2)) = det (A ® Sy)~12VM" " x

xdet (—2(D(z) ® SON) — (I ® SV Iy ayv—1 ® B)). (A2.1)

Taking into account (A2.1), it is easy to show that inequality (38) is equiv-
alent to the following inequality:

(detT(2))"|,=1 > 0, (A2.2)

where
T(z) = —2(D(2) ® S®N) — (I ® SSBN) Iy prv—1 @ B).

In the same way as in Appendix 1, we can prove that inequality (A2.2) is

equivalent to the inequality

XT'(1)1 >0, (A2.3)
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where X satisfies the system of linear algebraic equations

{XT(” =0, (A2.4)
X1=1.

Representing the vector X in the form X =0 ® i we can easily verify that
X satisfies (A2.4) if the vector 7 is a solution of system (41). Since the matrix
SON 1 SEN Iz ayv—1 ® B) is an irreducible generator, it follows from Lemma in
Appendix 1 that system (41) has a unique solution.

Theorem 3 is proven.
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