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Abstract

Let (X ,J ) denote a Markov-additive process with phase–type jumps (PH-MAP) and

denote its supremum process by S. For some a > 0, let τ(a) denote the time when the

reflected processY := S−X first surpasses the level a. Further, let τ−(a) denote the last

time before τ(a) when X attains its current supremum. In this paper we shall derive the

joint distribution of Sτ(a), τ−(a) and τ(a), where the latter two shall be given in terms

of their Laplace transforms. Furthermore, we define scale functions for PH-MAPs and

remark on some of their properties. This extends recent results for spectrally negative

Lévy processes to the (dense) class of PH-MAPs. The result is of interest to applications

such as the dividend problem in insurance mathematics and the buffer overflow problem

in queueing theory. Examples will be given for the former.
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1. Introduction

Markov–additive processes are a powerful generalisation of Lévy processes, becoming

more and more popular in stochastic modelling. Based on an underlying finite state Markov

process J , called the phase process, the level process X evolves like a Lévy process for which

the parameters change in time according to the phase process J . Furthermore, phase changes

(i.e. jumps of J ) may induce jumps of the level process X . The joint process (X ,J ) is called

a Markov–additive process (MAP).

A textbook introduction to MAPs is given in [1], chapter XI. First passage times (or the

one-sided exit problem) are derived via martingales in [4] and solved iteratively in [5]. The

two-sided exit problem is solved in [11] for MAPs with phase-type jumps (PH-MAPs). The
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class of PH-MAPs is dense within the class of all MAPs, see [2], proposition 1. The Gerber-

Shiu function (which is quite popular in insurance mathematics) has been derived in [6] for the

same class of MAPs.

It is this class of MAPs for which we wish to solve the following problem. Denote the

supremum process of X by S. For some a > 0, let τ(a) denote the time when the reflected

process X̂ := S − X first surpasses the level a. Further, let τ−(a) denote the last time before

τ(a) when X attains its current supremum. We shall derive the joint distribution of Sτ(a),

τ−(a) and τ(a), where the latter two shall be given in terms of their Laplace transforms. This

extends recent results for spectrally negative Lévy processes [13] to PH-MAPs. Even for the

common subset of Lévy processes with phase-type jumps the approach in this paper may be

advantageous, since the scale functions (which are the main ingredients in the formulas) are

given explicitly.

The result is of interest to applications such as the dividend problem in insurance mathe-

matics and the buffer overflow problem in queueing theory. An algorithmic solution for the

time to buffer overflow in a Markov-additive framework is given in [4], section 6, see also [3].

A partial result of the present paper in the context of queueing theory is contained in [7]. An

algorithmic solution for the expectation of the total dividend payments before ruin is presented

in [8]. Moments of dividend payments in a Markov-additive risk model without Brownian

component are derived in [12].

The analysis is performed mainly by matrix-analytic methods using probabilistic arguments

wherever possible. This naturally results in formulas containing matrices which are to be

computed via fixed point iterations. We shall present examples for the simple cases allowing

explicit scalar solutions. This restriction is due to the circumstance that only for these there

are solutions in the literature which can be compared with results in the present paper.

The paper is structured as follows. Section 2 contains an exact definition of the problem

to be analysed. In section 3, preparatory results from recent literature are presented and scale

functions for MAPs with phase-type jumps are introduced. Section 4 finally contains the main

result. Examples will be developed throughout the paper in subsequent stages.
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2. The exit problem for reflected MAPs

Let J̃ = (J̃t : t ≥ 0) be an irreducible Markov process with finite state space Ẽ and

infinitesimal generator matrix Q̃ = (q̃ij)i,j∈Ẽ . We call J̃t the phase at time t ≥ 0 (another

common name is regime). Define the real–valued process X̃ = (X̃t : t ≥ 0) as evolving

like a Lévy process X̃ (i) with parameters µ̃i (drift), σ̃2
i (variation), and ν̃i (Lévy measure)

during intervals when the phase equals i ∈ Ẽ. For the sake of a more concise presentation

we exclude the case of µ̃i = σ̃2
i = 0, i.e. a pure jump process or the constant zero process,

for any phase i ∈ Ẽ. Whenever J̃ jumps from a state i ∈ Ẽ to another state j ∈ Ẽ, this

may be accompanied by a jump of X̃ with some distribution function Fij . Then the two–

dimensional process (X̃ , J̃ ) is called a Markov–additive process (or shortly MAP). In short,

a MAP is a Markov-modulated Lévy process with possible jumps at phase changes. For a

textbook introduction to MAPs see [1], chapter XI.

Define the supremum process S̃ = (S̃t : t ≥ 0) by S̃t := sups≤t X̃s ∨ 0 for all t ≥ 0, and

the reflected process Ỹ := S̃ − X̃ . For a fixed level a > 0 let

τ̃(a) := inf{t ≥ 0 : Ỹt ≥ a} and τ̃−(a) := sup{t ≤ τ̃(a) : Ỹt = 0}

We shall seek to determine the joint distribution of τ̃(a), τ̃−(a), and S̃τ̃(a) in the form of the

measure

E
(
e−α(τ̃(a)−τ̃−(a))e−γτ̃−(a); S̃τ̃(a) ∈ dx

)
where α, γ, x ≥ 0.

Example 1. We consider the classical compound Poisson model. Inter–claim times and claim

sizes are iid exponential with parameter λ > 0 and β > 0, respectively. The rate of premium

income is c > 0. Denote the initial risk reserve by u ≥ 0. This model has been examined in

[9]. The risk reserve at time t ≥ 0 is given by

X̃t = u+ ct−
Nt∑
n=0

Cn (1)

where (Nt : t ≥ 0) is a Poisson process with intensity λ and the Cn, n ∈ N, are iid random

variables with exponential distribution of parameter β.

The risk reserve process can be analysed as a MAP with exponential (and hence phase–

type) negative jumps with parameter β. For this, we would need only one phase, i.e. |Ẽ| = 1.
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This phase governs a Lévy process with parameters σ̃ = 0, µ̃ = c, and Lévy measure ν̃(dx) =

λe−β·(−x)βdx for all x < 0.

If any risk reserve above u is paid out as dividends immediately (i.e. a constant barrier

strategy), then τ̃(u) is the time of ruin under this strategy, Sτ̃(u) is the total amount of dividends

paid before ruin, and τ̃−(u) is the last time before ruin that dividends are paid.

3. Preliminaries

3.1. Markov–additive Processes with phase–type Jumps

In this section we introduce the restriction that all jumps have a phase-type distribution.

Then we construct a new MAP (X ,J ) from the given MAP (X̃ , J̃ ) without losing any

information. This new MAP will have continuous paths which simplifies the one- and two-

sided exit problems (cf. sections 3.2 and 3.3) considerably.

Denote the indicator function of a set A by IA. We assume that the Lévy measures ν̃i have

the form

ν̃i(dx) = λ+i I{x>0} α
(ii)+ exp(T (ii)+x)η(ii)+dx

+ λ−i I{x<0} α
(ii)− exp(−T (ii)−x)η(ii)−dx (2)

for all i ∈ Ẽ, where λ±i ≥ 0 and (α(ii)±, T (ii)±) are representations of phase–type distri-

butions without an atom at 0. The η(ii)± := −T (ii)±1 are called the exit vectors, where 1

denotes a column vector of appropriate dimension with all entries being 1. This means that

the jump process induced by the Lévy measure νi is compound Poisson with jump sizes of a

doubly phase–type distribution. Denote the order of PH(α(ii)±, T (ii)±) bym±ii . Further write

λi := λ+i + λ−i .

Likewise, let p+ij (resp. p−ij) denote the probability that a positive (resp. negative) jump

is induced by a phase change from i ∈ Ẽ to j ∈ Ẽ, and assume that these jumps have

a PH(α(ij)±, T (ij)±) distribution without an atom at 0. Note that p+ij + p−ij ≤ 1 for all

i, j ∈ Ẽ. Letm±ij denote the order of PH(α(ij)±, T (ij)±) and define the exit vectors η(ij)± :=

−T (ij)±1.

The main advantage of the phase–type restriction on the jump distributions is the possibility

of transforming the jumps into a succession of linear pieces of exponential duration (each with

slope 1 or -1), which yields a modified MAP with continuous paths. We can then retrieve
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the original process via a simple time change. This is explained in detail in sections 2.1 and

2.2 of [6]. Here we shall present only the pertinent information to make the present paper

self-contained.

Without the jumps, the Lévy process X̃ (i) during a phase i ∈ Ẽ is either a linear drift (i.e.

σ̃i = 0) or a Brownian motion (with parameters σ̃i > 0 and µ̃i ∈ R). Considering this MAP

(without the jumps) we can partition its phase space Ẽ into the subspaces Ep (for positive

drifts), Eσ (for Brownian motions), and En (for negative drifts). We thus define

Ep := {i ∈ Ẽ : µ̃i > 0, σ̃i = 0}, En := {i ∈ Ẽ : µ̃i < 0, σ̃i = 0} (3)

and Eσ := {i ∈ Ẽ : σ̃i > 0}

Note that Ẽ = Ep ∪Eσ ∪En, since we have excluded the case of µ̃i = σ̃2
i = 0 for any phase

i ∈ Ẽ. Then we introduce two new phase spaces

E± := {(i, j, k,±) : i, j ∈ Ep ∪ Eσ ∪ En, 1 ≤ k ≤ m±ij} (4)

to model the jumps. Define now the enlarged phase space E = E+ ∪ Ẽ ∪ E−. We define the

modified MAP (X ,J ) over the phase space E as follows. Set the parameters (µi, σ
2
i , νi) for

i ∈ E as

(µi, σ
2
i , νi) :=

(±1, 0,0), i ∈ E±

(µ̃i, σ̃i,0), i ∈ Ẽ = Ep ∪ Eσ ∪ En
(5)

LetEc := Ep∪Eσ∪En denote the subspace ofE that contains all phases under which the real

time movements are continuous. The modified phase process J is determined by its generator

matrix Q = (qij)i,j∈E . For this the construction above yields

qih =



q̃ii − λi, h = i ∈ Ec

q̃ih · (1− p+ih − p
−
ih), h ∈ Ec, h 6= i

λ±i α
(ii)±
k , h = (i, i, k,±)

q̃ij · p±ij · α
(ij)±
k , h = (i, j, k,±)

(6)

for i ∈ Ec as well as

q(i,j,k,±),(i,j,l,±) = T
(ij)±
kl and q(i,j,k,±),j = η

(ij)±
k (7)

for i, j ∈ Ec and 1 ≤ k, l ≤ m±ij .
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The original level process X̃ is retrieved via the time change

c(t) :=

∫ t

0

I{Js∈Ec} ds and X̃c(t) = Xt (8)

for all t ≥ 0. Thus we obtain

St := sup
s≤t

Xs ∨ 0 = sup
s≤c(t)

X̃s ∨ 0 = S̃c(t)

as well as

τ̃(a) = c(τ(a)) and τ̃−(a) = c(τ−(a)) (9)

for Yt := St −Xt and

τ(a) := inf{t ≥ 0 : Yt ≥ a} and τ−(a) := sup{t ≤ τ(a) : Yt = 0}

In particular,

S̃τ̃(a) = Sτ(a) (10)

Equations (9) and (10) imply that we can perform an analysis of the MAP (X̃ , J̃ ) in terms of

the modified MAP (X ,J ) alone.

Example 2. Continuing example 1, we obtain the MAP (X ,J ) as follows. Let the phase

space be given by Ep = {1}, E− = {2}, and Eσ = ∅. The parameters are given by σ1 =

σ2 = 0, µ1 = c, µ2 = −1, ν1 = ν2 = 0, and

Q =

−λ λ

β −β


The initial state is (X0, J0) = (u, 1).

3.2. First Passage Times

Of central use in the present paper will be the recent derivation of the Laplace transforms

for the first passage times of MAPs as given in [5]. Define the first passage times σ̃(x) :=

inf{t ≥ 0 : X̃t > x} and

σ(x) := inf{t ≥ 0 : Xt > x} = inf{t ≥ 0 : Xt = x}

for all x ≥ 0 and assume that X̃0 = X0 = 0. Note that σ̃(x) is the first passage time over the

level x for the original MAP X̃ , meaning that we do not count the time spent in jump phases
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i ∈ E±. This means that

σ̃(x) = c(σ(x)) =

∫ σ(x)

0

I{Js∈Ec}ds

according to (8). In particular, we may compute expectations over σ̃(x) using the distribution

of the modified MAP (X ,J ) only and without needing to recur to the original MAP (X̃ , J̃ ).

For γ ≥ 0 denote

Eij(e−γσ̃(x)) := E(e−γσ̃(x); Jτ(x) = j|J0 = i,X0 = 0)

for all i, j ∈ E. Let E(e−γσ̃(x)) denote the matrix with these entries and write

E(e−γσ̃(x)) =

E(a,a)(e
−γσ̃(x)) E(a,d)(e

−γσ̃(x))

E(d,a)(e
−γσ̃(x)) E(d,d)(e

−γσ̃(x))


in obvious block notation with respect to the subspaces Ea := E+ ∪ Ep ∪ Eσ (ascending

phases) and Ed := En ∪ E− (descending phases).

According to section 3 in [5] we can write

E(e−γσ̃(x)) =

 Ia

A(γ)

(eU(γ)x 0
)

(11)

where Ia denotes the identity matrix of dimension Ea × Ea, 0 the zero matrix of dimension

Ea×Ed, U(γ) is a sub–generator matrix of dimension Ea×Ea, and A(γ) is a sub–transition

matrix of dimension Ed × Ea. An iteration to determine A(γ) and U(γ) is derived in [5] and

further specified to the case of phase-type jumps in [6].

Example 3. Continuing example 2, first note that phase 2 represents the downward jumps

and we will not discount the time during sojourns in it. According to the formulas above, the

Laplace transform of the first passage time σ̃(x) to a level x > u is given by E(e−γσ̃(x)) =

eU(γ)·(x−u), where

U(γ) = −λ+ γ

c
+
λ

c
A(γ) and A(γ) =

β

β − U(γ)

Noting that U(γ) must be negative, this resolves as

U(γ) =
1

2c

(
cβ − γ − λ−

√
(cβ − γ − λ)2 + 4cβγ

)
cf. equation (3.12) in [9], noting that γ is denoted as δ there.
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3.3. The two-sided Exit Problem

Define the stopping times σ(0, b) := inf{t ≥ 0 : Xt < 0 or Xt > b} and

σ̃(0, b) :=

∫ σ(0,b)

0

I{Js∈Ec}ds = inf{t ≥ 0 : X̃t < 0 or X̃t > b} (12)

which are the exit times of X and X̃ from the interval [0, b], respectively. For the main result

we need an expression for

Ψ+
ij(b|x) := E

(
e−γσ̃(0,b);Xσ(0,b) = b, Jσ(0,b) = j|J0 = i,X0 = x

)
where x ∈ [0, b] and i, j ∈ E. Clearly Ψ+

ij(b|x) = 0 for j ∈ Ed since an exit over

the upper boundary can occur only in an ascending phase. Define the matrix Ψ+
γ (b|x) :=

(Ψ+
ij(b|x))i∈E,j∈Ea . A formula for Ψ+

γ (b|x) has been derived in [11]. In order to state it we

need some additional notation.

Let (X+,J ) denote the MAP as constructed in section 3.1 and define the process X− =

(X−t : t ≥ 0) by X−t := −X+
t for all t > 0 given that X+

0 = X−0 = 0. Thus (X−,J ) is

the negative of (X+,J ). The two processes have the same generator matrix Q for J , but the

drift parameters are different. Denoting variation and drift parameters for X± by σ±i and µ±i ,

respectively, this means σ+
i = σ−i and µ−i = −µ+

i for all i ∈ E. This of course implies that

phases i ∈ E+ ∪ Ep (resp. i ∈ E− ∪ En) are descending (resp. ascending) phases for X−.

Let A±(γ) and U±(γ) denote the matrices that determine the first passage times in (11).

We shall write A± = A±(γ) and U± = U±(γ) except in cases when we wish to underline

the dependence on γ.

Example 4. If (X+,J ) is the MAP as constructed in example 2, then (X−,J ) would be the

net claim process for the compound Poisson model. As shown in [5], example 5, the Laplace

transform of the first passage time σ̃−(x) := inf{t ≥ 0 : X̃−t > x} to a level x > 0 is given

by

E(e−γσ̃
−(x)) = A−eU

−x where A− =
β −R
β

, U− = −R

and

−R =
1

2c

(
λ+ γ − cβ −

√
(cβ − γ − λ)2 + 4cβγ

)
This coincides with equation (4.24) in [9], noting that γ is denoted as δ there.
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Define the matrices

C+ :=

 0 Iσ

A+

 and C− :=

A−
Iσ 0

 (13)

of dimensions (Eσ∪Ed)×Ea andEa×(Eσ∪Ed), respectively, where Iσ denotes the identity

matrix of dimension Eσ × Eσ . Further define

W+ :=

 Ia

A+

 and W− :=

 A−

Iσ∪d

 (14)

which are matrices of dimensions E×Ea and E× (Eσ ∪Ed). Here, Iσ∪d denotes the identity

matrix of dimension (Eσ ∪ Ed) × (Eσ ∪ Ed). Finally, let Z± := C±eU
±·b. Then equation

(23) in [11] states that

Ψ+
γ (b|x) =

(
W+eU

+·(b−x) −W−eU
−·xZ+

)
·
(
I − Z−Z+

)−1
(15)

for 0 ≤ x ≤ b. This matrix has dimension E × Ea, due to the fact that exit from below can

only happen in an ascending phase.

By reflection at the initial level x, we obtain

Ψ−γ (b|x) := E
(
e−γσ̃(0,b);Xσ(0,b) = 0|X0 = x

)
=
(
W−eU

−x −W+eU
+·(b−x)Z−

)
·
(
I − Z+Z−

)−1
(16)

for 0 ≤ x ≤ b. This matrix has dimension E × (Eσ ∪ Ed). Note that the expressions on the

right-hand sides of (15) and (16) depend on a choice of γ ≥ 0.

Remark 1. Noting that (I − Z−Z+)
−1

=
∑∞
n=0 (Z−Z+)

n andZ−Z+ represents a crossing

of the interval [0, b] from b to 0 and back, formula (15) has a clear probabilistic interpretation.

The termW+eU
+·(b−x) simply yields the event thatX exits from b (before an exponential time

of parameter γ). The correction term W−eU
−·xZ+ refers to the event that X descends below

0 before exiting from b. Multiplication by (I − Z−Z+)
−1 yields all possible combinations

with any number of subsequent (down and up) crossings over the complete interval [0, b].

Remark 2. Since Z+ = C+eU
+·b we can write Ψ+

γ (b|x) in the form

Ψ+
γ (b|x) =

(
W+e−U

+·x −W−eU
−·xC+

)(
e−U

+·b − C−eU
−·bC+

)−1
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This comes closer to the usual expression of the exit time distribution in terms of scale func-

tions. For instance, let X be a Brownian motion with variation σ > 0 and drift µ ∈ R. We

then obtain

U± =
±µ−

√
µ2 + 2γσ2

σ2

Denote −r := U+ and s := U−. Then

Ψ+
γ (b|x) =

erx − esx

erb − esb

cf. [10], (2.12 - 2.15), where the γ-scale function is given as g(x) = erx − esx.

Example 5. Continuing example 3, we obtain

U± =
1

2c

(
±(cβ − γ − λ)−

√
(cβ − γ − λ)2 + 4cβγ

)
cf. [9], equations (3.12) and (4.24) with δ = γ. Denote −ρ := U+ and −R := U−. Section

3.2 further yields A+ = β/(β + ρ) and A− = (β −R)/β. Thus

Ψ+
γ (b|x) =

(
e−U

+·x −A−eU
−·xA+

)
·
(
e−U

+·b −A−eU
−·bA+

)−1
=
eρx − β−R

β e−Rx β
β+ρ

eρa − β−R
β e−Ra β

β+ρ

=
eρx − ψ(x)

eρb − ψ(b)

if we write ψ(x) := e−Rx · (β − R)/(β + ρ), cf. equation (6.37) in [9]. This coincides with

formula (6.25) in [9], where Ψ+
γ (b|x) is denoted by B(0, b|x).

4. Main Result

Theorem 1. The joint distribution of τ̃(a), τ̃−(a), and S̃τ̃(a) is given by

E
(
e−α(τ̃(a)−τ̃−(a))e−γτ̃−(a); S̃τ̃(a) ∈ dx

)
= Ψ+

γ (a|a)eG
(γ)(a)·xH(α)(a) dx

for α, γ, x ≥ 0, where

G(γ)(a) =
(
U+(γ)e−U

+(γ)a + C−(γ)eU
−(γ)aU−(γ)C+(γ)

)
×
(
e−U

+(γ)a − C−(γ)eU
−(γ)aC+(γ)

)−1
and

H(α)(a) =
(
U−(α) + C+(α)U+(α)C−(α)

)
×
(
C+(α)eU

+(α)aC−(α)− e−U
−(α)a

)−1
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Proof: We consider the sequence (T̃n(ε) : n ∈ N0) of stopping times defined by

T̃n(ε) := inf{t ≥ 0 : S̃t > nε, t < τ̃(a)}

where inf ∅ := ∞. Assume that X̃0 = 0, i.e. S̃0 = 0. On the set {T̃n(ε) < ∞}, we observe

that T̃n(ε) = σ̃(−a, nε) = c(σ(−a, nε)) = c(Tn(ε)), see (12) and (8). Here, of course,

Tn(ε) := inf{t ≥ 0 : St > nε, t < τ(a)}

Since XTn(ε) = STn(ε) for all {n ∈ N : Tn(ε) < ∞}, the times Tn+1(ε) − Tn(ε) and thus

T̃n+1(ε)− T̃n(ε) are conditionally independent given the phase process J . Thus

E
(
e−γT̃n(ε); S̃τ̃ > nε

)
= Ψ+

γ (a+ ε|a)
(
Ψ+
γ (a+ ε|a)(a,a)

)n−1
for n ∈ N and γ ≥ 0, where Ψ+

γ (a+ ε|a)(a,a) denotes the upper block of the matrix

Ψ+
γ (a+ ε|a) =

Ψ+
γ (a+ ε|a)(a,a)

Ψ+
γ (a+ ε|a)(d,a)


referring to ascending initial phases (i.e. those in Ea). Thus

Ψ+
γ (a+ ε|a)(a,a) =

(
eU

+(γ)ε − C−(γ)eU
−(γ)aC+(γ)eU

+(γ)·(a+ε)
)

×
(
Ia − C−(γ)eU

−(γ)·(a+ε)C+(γ)eU
+(γ)·(a+ε)

)−1
according to (15), (13) and (14). The probabilities of failure for this matrix-geometric distri-

bution are the entries of the upper block of

E
(
e−ασ̃(0,a+ε);Xσ(0,a+ε) = 0|X0 = a

)
= Ψ−α (a+ ε|a) =

Ψ−α (a+ ε|a)(a,σ∪d)

Ψ−α (a+ ε|a)(d,σ∪d)


According to (16), (13) and (14)

Ψ−α (a+ ε|a)(a,σ∪d) =
(
C−(α)eU

−(α)a − eU
+(α)εC−(α)eU

−(α)(a+ε)
)

×
(
Iσ∪d − C+(α)eU

+(α)(a+ε)C−(α)eU
−(α)(a+ε)

)−1
=
(
C−(α)e−U

−(α)ε − eU
+(α)εC−(α)

)
×
(
e−U

−(α)(a+ε) − C+(α)eU
+(α)(a+ε)C−(α)

)−1
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Altogether we obtain

E
(
e−γT̃n(ε)e−α(τ̃(a)−T̃n(ε));nε < S̃τ̃ < (n+ 1)ε

)
= Ψ+

γ (a+ ε|a)
(
Ψ+
γ (a+ ε|a)(a,a)

)n−1
Ψ−α (a+ ε|ε)(a,σ∪d)

Now letting ε tend to 0 we obtain that E
(
e−α(τ̃(a)−τ̃−(a))e−γτ̃−(a); S̃τ̃(a) ∈ dx

)
has a

defective matrix-exponential distribution with parameters

G(γ)(a) = lim
ε↓0

1

ε

(
Ψ+
γ (a+ ε|a)(a,a) − Ia

)
and

H(α)(a) = lim
ε↓0

1

ε

(
Ψ−α (a+ ε|ε)(a,σ∪d) − 0

)
For the first parameter we obtain

G(γ)(a) = lim
ε↓0

1

ε

(
eU

+ε − Ia + C−eU
−a
(
eU

−ε − Iσ∪d
)
C+eU

+·(a+ε)
)

×
(
Ia − C−eU

−·(a+ε)C+eU
+·(a+ε)

)−1
=
(
U+(γ) + C−(γ)eU

−(γ)aU−(γ)C+(γ)eU
+(γ)a

)
×
(
Ia − C−(γ)eU

−(γ)aC+(γ)eU
+(γ)a

)−1
=
(
U+(γ)e−U

+(γ)a + C−(γ)eU
−(γ)aU−(γ)C+(γ)

)
×
(
e−U

+(γ)a − C−(γ)eU
−(γ)aC+(γ)

)−1
where, for notational simplicity, the dependence on γ is omitted in the first equality. The

second parameter is

H(α)(a) = lim
ε↓0

1

ε

(
C−(α)e−U

−(α)ε − eU
+(α)εC−(α)

)
×
(
e−U

−(α)a − C+(α)eU
+(α)aC−(α)

)−1
=
(
C−(α)U−(α) + U+(α)C−(α)

)
×
(
C+(α)eU

+(α)aC−(α)− e−U
−(α)a

)−1
Altogether this yields the statement.

�
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Example 6. The example in remark 2 of a Brownian motion fluid flow is explicated in section

6 of [13]. There it is stated that

E
(
e−ατ(a)−βSτ(a)−γτ−(a)

)
=

2e−2amW (α+γ)(a)

W (α)(a)(W (α+γ)′(a) + βW (α+γ)(a))
(17)

for σ2 = 1 and µ = m, where the scale function is defined as

W (α)(a) =
e−a(m−

√
m2+2α) − e−a(m+

√
m2+2α)

√
m2 + 2α

(18)

We now wish to arrive at the same expression via theorem 1. We begin by observing that

E
(
e−ατ(a)−βSτ(a)−γτ−(a)

)
=

∫ ∞
0

eG
(α+γ)(a)xe−βx dx H(α)(a)

=
(
βIa −G(α+γ)(a)

)−1
H(α)(a)

Since there is only one phase and E = Eσ , we obtain W+ = W− = C+ = C− = 1 and

Ψ+
γ (a, a) = 1. Further

U±(α) = ±m−
√
m2 + 2α (19)

for σ2 = 1 and µ = m, i.e. U±(α) are real numbers. This implies

G(α+γ)(a) =
U+(α+ γ)e−U

+(α+γ)a + eU
−(α+γ)aU−(α+ γ)

e−U+(α+γ)a − eU−(α+γ)a

and

H(α)(a) =
U−(α) + U+(α)

eU+(α)a − e−U−(α)a

Equations (19) and (18) yield

W (α)(a) =
e−U

+(α)a − eU−(α)a

√
m2 + 2α

and G(α+γ)(a) = −W
(α+γ)′(a)

W (α+γ)(a)

as well as

H(α)(a) =
2
√
m2 + 2α e−2ma

e−U+(α)a − eU−(α)a
=

2 e−2ma

W (α)(a)

Hence we obtain

E
(
e−ατ(a)−βSτ(a)−γτ−(a)

)
=

W (α+γ)(a)

W (α+γ)′(a) + βW (α+γ)(a)

2 e−2ma

W (α)(a)

which is the same expression as (17).
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Remark 3. Defining a γ-scale function for MAPs with phase-type jumps by

W (γ)(x) := e−U
+(γ)x − C−(γ)eU

−(γ)xC+(γ)

for x > 0, we see first that G(γ)(a) = −W (γ)′(a)[W (γ)(a)]−1 where W (γ)′(a) denotes the

derivative of the function W (γ)(x) at x = a.

In applications to insurance risk, a popular question is the expected amount of γ-discounted

dividends paid before ruin. If the initial risk reserve is u ≥ 0 and dividends are paid above

a constant barrier of b ≥ u, then the mean discounted dividends paid out before ruin can be

computed as

Vγ(b|u) := Ψ+
γ (b|u) E

(
S̃τ̃(b)e

−γτ̃−(b)
)

= Ψ+
γ (b|u)

∫ ∞
0

eG
(γ)(b)x dx

= Ψ+
γ (b|u) [−G(γ)(b)]−1

=
(
W+(γ)e−U

+(γ)u −W−(γ)eU
−(γ)uC+(γ)

)
×
(
−U+(γ)e−U

+(γ)b + C−(γ)eU
−(γ)b

(
−U−(γ)

)
C+(γ)

)−1
Example 7. We continue the example in remark 2 of a Brownian motion fluid flow. Since

there is only one phase, we get W+ = W− = C+ = C− = 1 and hence

Vγ(b|u) =
eru − esu

rerb − sesb

which is equation (2.11) in [10]. Note that for γ = 0 we obtain

(s, r) =


(
−2 µ

σ2 , 0
)
, µ > 0(

0,−2 µ
σ2

)
, µ < 0

This implies

V0(b|u) =


σ2

2µ

(
e2µb/σ

2 − e2µ(b−u)/σ2
)
, µ > 0

−σ
2

2µ

(
e2µ(b−u)/σ

2 − e2µb/σ2
)
, µ < 0

cf. equation (2.22) in [10] for the case µ > 0.

Example 8. Another example is the compound Poisson model, continued from example 5.
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Starting in the ascending phase (collecting premiums), we obtain

Vγ(b|u) =
(
e−U

+u −A−eU
−uA+

)
·
(
−U+e−U

+b +A−eU
−b
(
−U−

)
A+
)−1

=
eρu − β−R

β+ρ e
−Ru

ρeρb +Rβ−R
β+ρ e

−Rb

=
(β + ρ)eρu − (β −R)e−Ru

ρ · (β + ρ)eρb +R · (β −R)e−Rb

which is formula (7.8) in [9].
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