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Abstract In queueing theory, most models are based on time-homogeneous ar-
rival processes and service time distributions. However, in communication networks
arrival rates and/or the service capacity usually vary periodically in time. In or-
der to reflect this property accurately, one needs to examine periodic rather than
homogeneous queues. In the present paper, the periodic BMAP/PH/c queue is
analyzed. This queue has a periodic BMAP arrival process, which is defined in this
paper, and phase-type service time distributions. As a Markovian queue, it can be
analysed like an (inhomogeneous) Markov jump process. The transient distribution
is derived by solving the Kolmogorov forward equations. Furthermore, a stability
condition in terms of arrival and service rates is proven and for the case of stability,
the asymptotic distribution is given explicitly. This turns out to be a periodic family
of probability distributions. It is sketched how to analyze the periodic BM AP/M:/c
queue with periodically varying service rates by the same method.

Keywords: Periodic Queues, BMAP, Markov Jump Processes

AMS Subject classification: 60K25,60J75

1. Introduction

In queueing theory, most models are based on time-homogeneous arrival
processes and service time distributions. One of the most important features to
be exploited is the Markov property which often appears after the construction
of embedded Markov chains. The search for Markovian but versatile arrival
processes has led to the concept of batch Markovian arrival processes (BMAPs,
see Neuts [15] and Lucantoni [13]) which allow for a phase process controlling
the arrival rates. This arrival process is often used for modelling communication
networks.

A typical property of communication traffic is the dependence of its arrival
rates on time. This aspect incites the use of time-inhomogeneous processes and
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queues for modelling communication networks. Typically, a periodic dependence
of the arrival rates and/or the service time distribution can be assumed with
period lengths of a day or a week.

While queues with periodic input naturally reflect the time-dependent
amount of traffic that arrives in communication networks, the analysis of queues
with inhomogeneous arrival rates is far less developed than the one for homoge-
neous queues. Some of the existing results in the literature are given in Asmussen
and Thorisson [1], Bambos and Walrand [2], Falin [5], Harrison and Lemoine [8],
Hasofer [9], Heyman and Whitt [10], Lemoine [12], [11], Massey [14], Rolski [17],
[18], and Willie [19]. Although many types of stability conditions could be estab-
lished, explicit formulae for asymptotic behaviour have not been derived yet.

The present paper is organized as follows. In the remainder of this section,
the periodic BM AP/PH /c queue as well as the basic notations are defined. The
next section contains the transient distributions at arbitrary times. In section 3,
a stability condition is given and the asymptotic distributions at any ”day time”
of one period length are derived explicitly in the case of stability.

Like all Markov arrival processes in queueing theory, BMAPs are Markov
jump processes. As main reference for the theory of Markov jump processes, the
book by Gikhman, Skorokhod [7] shall be referred to. Analogous to the definition
of a BMAP (see Lucantoni [13]), an inhomogeneous BMAP shall be defined by
its time-dependent transition rate matrices (D, (t) : n € INg,t € IR]), assuming
that the continuity conditions for the transition rates of inhomogeneous Markov
jump processes are satisfied (see Gikhman, Skorokhod [7], p.362). Let the number
of phases, which is the dimension of the square matrices D, (t), be denoted by
m € IN. Then D,(t)(i,j) is the infinitesimal transition rate of observing n
arrivals at time ¢ while changing from phase ¢ to phase j. A periodic BMAP with
period T is an inhomogeneous BMAP with the property D, (s + T) = Dy,(s) for
alln € INy and s € [0,T7.

Let Q = (Q: : t € IR{) denote a periodic BMAP/PH/c queue with a
periodic BMAP arrival process and a phase—type service time distribution which
is identical and independent for all ¢ servers. Define the arrival process by its
transition rate matrices (Dy(t) : n € INg,t € IR]) having dimension m and
period T

Every server shall be equal, and the service time distribution be phase—
type with representation («, S) and dimension r (for a description of phase—type
distributions, see Neuts [16]). The absorbing state shall be denoted by 0 and the
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transient states by {1,...,7}. For any d € IN, let 1; denote the d—dimensional
column vector with all entries being 1 and denote the ith canonical column base
vector of IR? by e; if the dimension d is clear from the context. Denote the
transpose of a matrix A or a vector v by AT or v, respectively. Finally, define
the exit vector 1 := —S1,, the vectors o/ := (0,a) and 1’ := (0,77)7 as well as
the matrices

2. Transient Distributions

As a Markovian queue, the system can be analysed like an (inhomogeneous)
Markov jump process. The process @ has state space IN x{1,...,m}x{0,...,r}¢
and hence a finite phase space of dimension 1+ ¢ with d :=m - c- (r + 1) possible
phases. The first dimension indicates the arrival phase and the last ¢ dimensions
shall describe the phases of the respective servers. If a server is in phase 0 at
time ¢, it means that this server is idle at that time.

Let 0 and I denote the zero and identity matrix, respectively. Denote the
Kronecker product of two quadratic matrices A and B by A ® B (cf. Bellman
[3]). The neutral element with respect to the Kronecker product is the scalar 1 €
IR, interpreted as a one—dimensional matrix. Define the iteration of Kronecker
products by A®% := 1 and A®"t! .= A®" ® A for all quadratic matrices A.

Now the infinitesimal generator G(t) of the queue process @ can be written
as an INy x IN( block matrix with entries being the d x d matrices

( 0 fork>n+1
¢ I®@nel @ 19 fork=n+1<c
Gkn(t):{ lel‘g’i@n’a'@I@C_i .fork:n—|—1>c
Do(t) @ I®+ 3¢ | I®*"Q S @ I®"fork =n
Dy (t) @ I®€ forc<k<n
L D, _1(t) ® BY¢ fork<c<n
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as well as

-1
Gin(t) = (C_k) > Dp () @M ®...0 M,
c—n 1<61 <<l <C
for k < n < ¢, with M; = By for i € {i1,...,ip—x} and M; = I else. The
interpretation of the last equation is that for several possibilities of filling idle
servers, every possibility shall be equally probable. This convention allows us
to write the above generator in block matrix form without needing to define
the elements of the blocks separately, which notationally would be much more
inconvenient. Denote the (i, j)th entry of the matrix Gk, (t) by Gk, (t)(Z,7) for

ij€{1,....d}.

Remark 1. Instead of the periodic BM AP/PH/c queue as described above, one
can analyze the periodic BM AP/M;/c queue with periodically varying service
rates by the same method. In this case, every server is equal, and the service
time distribution function B, for a user arriving at time s € IRJ is defined by

t
Bs(t—s):=1- e Jy b

for all ¢ > s. This means that the service process without idle periods would be
an inhomogeneous Poisson process with rates (u; : ¢t € IRJ). Periodicity of the
service rates means psym = ps for all s € [0, 7.

Here, we would have an infinitesimal generator G(t¢) of the queue process
which can be written as an INy x INy block matrix with entries being the m x m

matrices
( 0 for k>n+1
kpg - 1 for k=n+1<c
cuy - 1 for k=n+1>c¢

Gn(t) =
en(t) = 3 Dy(t) —kpe-I for k=n<c

Do(t) —cur-I for k=n>c
L D,, () for k<n

for k,n € INy. All the statements in the following apply to this queue with
periodic service rates, too.

The multiplication of two INy x INy block matrices A and B is defined by

o d

(AB)kn(3,5) := > Y Apli, h)Bin (b, )

=0 h=1
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for every k,n € INg and 4,5 € {1,...,m} x {0,...,r}¢={1,...,d}.

Define Py, (s,t)(4,7) as the probability of having n € IN users in the queue
and being in phase j at time ¢ > s under the condition of having k € IN( users
in the queue and being in phase 7 at time s. Further define Py, (s,t) as the d x d
matrix with entries Py, (s,t)(7,7) and P(s,t) = (Pgn(8,1))knem, as the INg x IN
block matrix with entries Py (s,t).

Solving Kolmogorov’s forward equations via the iteration method by Picard
and Lindelof (cf. Gikhman, Skorokhod [7], p.317), it can be shown that the
transition probability matrices of the queue can be written as

o0
P(s,t) = > PW(s,1)
k=0
with

t rug u2
P(k)(s,t):// / Glur) ... Glup)dus .. . duy

—
k integrals

In the periodic case, this formula can be simplified as follows. The periodicity of
the generator yields

P(0,nT) = P(0,(n — 1)T)P((n — 1)T,nT) = P(0,(n — 1)T)P(0,T) = P(0,T)"
Let p denote the initial distribution of the queue process (). Define
[t/T| := max{n € INy : nT < t}

as the number of period lengths that have passed until time ¢ € IRT. Now the
transient distribution of @) is given by

Q: = / duP(0, |t/T|T)P(|t/T|T,t) = / duP(0, )TV p(0,t — |t/T|T)

This expression allows a computation of the transient distribution at any time
t € IR" without needing to integrate over ranges larger than the period T'. For
computing the remaining terms P(0,s) with s < T, one can use the following
iteration as given in Bellman [3], p.168: Starting with Iy(u) := Id for all u < s,
the iteration

U
Toss (1) = /0 I,(0)Q(v)dv + Id
leads to the limit

P(0,s) = lim I,(s)

n—o0
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for all s <T.

3. Stability and Asymptotic Distributions

The asymptotic analysis of the BM AP/ P H/c queue first requires the deriva-
tion of an ergodicity condition, before asymptotic distributions can be given. In
Fayolle, Malyshev, Menshikov [6], a version of Foster’s criterion for state spaces
INyx{1,...,d}, hence for Markovian BMAP queues with phase—type service, can
be found. This shall be used in this section in order to prove ergodicity criteria for
the periodic BMAP/PH/c queue. After that, the concept of an asymptotic dis-
tribution (which is valid for homogeneous queues) is adapted to periodic queues
by the definition of a periodic family of asymptotic distributions. This is given
explicitly for the case of ergodicity at the end of this section.

Define Y = (Y, : n € INy) as the homogeneous Markov chain with transition
probability matrix P(0,7") and let Y# = (Y, : n € IN) denote the version of ¥’
with initial distribution . Assume in the following that the arrival phase process
as well as the service phase processes have stationary distribution 74 and =g,
respectively. This means, the equations 74 > o2y Dy, = 0 and 7p(S + na) =0
are satisfied. For the latter as well as for all following statements on PH-renewal
processes, see Neuts [16], p.2311f.

Theorem 2. The Markov chain Y is ergodic if and only if the stability condition

1 /T >
T/o 7S nDp(t) 1 dt < c 751 (1)

n=1

holds.

Proof Let A= (A;:t€ IR{) and B = (B; :t € IR{) denote the BMAP arrival
process into the queue and the c-fold superposition of the PH-renewal process
with representation («, S), respectively. That means, A; is the random variable
of all arrivals into the queue until time ¢. Define Z := A — B as the difference of
these independent processes. Then Z is a periodic Markov jump process. For any
two—dimensional process X, denote the marginal process in the first dimension
by X!. The mean expectation of Z! over one period length in phase equilibrium
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equals
E(Z}) = B(Ak) - E(B}) = / S 0D () dt— compn T ()
n=1

In order to show the necessity of condition 1, assume that E(Z1) > 0. Since
the state space of Z is Z x {1,...,d}, but the chain Y has a barrier at the zero

level, we have
E(Y{) > E(Zy) >0

for initial distributions with support {0} x {1,...,d}. Starting in phase equlib-
rium, the asymptotic expectation

n

Az, DY) = lim 5 B

diverges to infinity. Hence, there is no asymptotic distribution for Y.

Now we show sufficiency. Denote the transition probability matrix of the
homogeneous Markov chain (Z,7 : n € INy) by p?. Since Z is homogeneous in
the first component, we can define

i (6, 3) = Doy k.jy = P(Zr = (k, )| Z0 = (0,4))

for all k € Z and 4,5 € {1,...,d}. Further define 7 := m4 ® 73°, using the
obvious adaptation of the Kronecker product to vectors. The above observation
2 yields

d d
Som YN kepf,5) <0
i=1 kE€Zj=1

According to Fayolle, Malyshev, Menshikov [6], p.35, there is an ¢ > 0 and a
positive function f such that

oo d
> 2Pl F(md) = f(kd) < —e
n=0j=1

for almost all states (k,i) € INg x {1,...,d}. Furthermore, there are numbers
ai,-..,aq such that f(k,i7) = k + a; for almost all states (k,1).
Define the event

R(n):={3te[nT,(n+1)T[: Q: = 0}
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for all n € INy. Then the transition probabilities of the homogeneous chain Y

can be decomposed in

Pleiyig) = P(Yor1 = (1,)|Ya = (k,1))
= P(Yny1 = (0,5)|Yn = (k,4), R(n)) - P(R(n)|Yy = (k, %))
+P (Y1 = (1, 5)|[Yn = (k,4), R(n)°) - P(R(n)"|Yn = (k,%))
= P(Ynt1 = (1,))|Yn = (k,1), R(n)) - P(R(n)|Ys = (k, 1))
+p(iyag) - P(R(n)°Yn = (k, 1))

for all n € IN. Since

lim P(R(n)|Y, = (k,4)) =0 2)

k—00

there is a kg € IN such that
€
P Y, = ; —r
(R(In’)l (k,l)) < 2 . M[

for all k > ko, with M’ := M + Y%, |a;| and some M € IN, for which condition
1 implies

max /eZZnD )1y, dt < M < o0

ie{l,...,m} el

Thus the estimation

oo d
SN P(Yoi1 = (1,§)|Ya = (k,0), R(n)) - £(1,5)

1=0 j=1

M8

d
> P(¥usr = (1)Y= (k). R (z+2|ag|) (3)

Jj=1
d

< M+Z|ai|
=1

~
Il
<)

holds. Using the positive function f, we have

Z Zpgc,i),(n,j) ) f(naj) - f(k},'l)

oo d d
. . € 4
< 2 S pfhy S0 T + 5 (M+z;|ai|> “
n=07= 1=
P
2




Lothar Breuer / Periodic BMAP/PH/c Queue 9

for almost all states (k,7) € INy x {1,...,m}. Now Foster’s criterion as stated
in Fayolle, Malyshev, Menshikov [6], p.29, assures that Y is ergodic. O

Now the concept of an asymptotic distribution shall be adapted to periodic
queues. After that, the main theorem of this paper gives an explicit formula for
the asymptotic distribution of a stable periodic BMAP/PH/c queue.

A family (g5 : s € [0, T]) of probability distributions shall be called a periodic
family of asymptotic distributions for @ if

= lim
qs ey 00 QnT—l—s

does exist for every s € [0, 7. Here, the limit shall be defined in terms of weak
convergence.

Theorem 3. Let @) denote a periodic BM AP/PH /c queue with period T'. ) has
a periodic family of asymptotic distributions if and only if the stability condition
1 holds. In this case, the periodic family of asymptotic distributions is uniquely
determined by

%=/@P@$

for all s € [0,T[, with g being the stationary distribution of the homogeneous
Markov chain Y = (Y, : n € IN) with transition probability matrix P(0,7).

Proof Let u denote the initial distribution of ). First, assume that a periodic
family (g5 : s € [0, T]) of asymptotic distributions does exist for ). A necessary
property of ¢ is

@ = lim / duP(0,nT) = lim / duP(0, (n — T)P(0,T)

= (T}EEO / duP(0, (n — 1)T)) P(0,T) = / dgoP(0,T)

which means that gg is the stationary distribution of Y.
Now let g be the stationary distribution of Y. Then

o Y n_ 1 u_
q = nlggo/dpP(O,nT) = nli)nolo/duP(O,T) = nli)rgo Yi=gq

does exist.
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Hence, the first statement follows from the above theorem 2. If the station-
ary distribution ¢ of Y does exist, then the periodic family (g5 : s € [0,7]) of
asymptotic distributions for @) is given by

gs = lim /d,uP(O,nT+s) = nli_)nc}o/duP(O,nT)P(O, s)

n—00

= (nli_)ngo / duP(O,nT)) P(0,s) = / dqP(0, s)

O

As intuitively plausible, this theorem shows that periodic Markovian arrival
rates (and service capacity, in case of the BM AP/M;/c queue) yield a periodic
asymptotic behaviour of the queue. The stability condition coincides with in-
tuition, too, as it compares the accrued workload and service capacity over one
period length. For the special case of m = 1 and constant service capacity, the
results yield an analysis of the periodic My/M /c queue. This extends the results
of Heyman, Whitt [10].

4. Conclusion

In this paper, formulae for the transient as well as for asymptotic distribu-
tions for the periodic BMAP/PH/c queue are given. The stability condition,
which is derived, is easy to check, since it is written in terms of arrival and ser-
vice rates and asymptotic distributions of the phase process. A structural result
is that the family of asymptotic distributions of the examined periodic queue is
again periodic.

The method applied in this paper seems to work only for Markovian queues.
In order to model periodically varying service rates, one can apply the same
method to the periodic BMAP/M;/c queue as described in remark 1. Fur-
thermore, the same method can be applied towards the spatial Markovian
SMAP/M,/c/c queue with a periodic spatial Markovian arrival process (SMAP)
and a limited number of users in the queue. For an analysis of this queue see
Breuer [4]. Spatial queues are used for modelling mobile communication networks
and take the spatial location of their users in account.
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