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Abstract

We determine the distributions of occupation times of a Markov-modulated Brownian

motion (MMBM) in separate intervals before a first passage time or an exit from an

interval. They will be derived in terms of their Laplace transforms, distinguishing

occupation times in different phases too. For MMBMs with strictly positive variation

parameters we further propose scale functions.
Keywords: Markov-modulated Brownian motion; occupation time; scale function;

Markov-additive process
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1. Introduction

Let J = (Jt : t ≥ 0) denote an irreducible Markov process with a finite state space

E = {1, . . . ,m} and infinitesimal generator matrix Q = (qij)i,j∈E . We call Jt the phase at

time t and J the phase process. Choosing parameters µi ∈ R and σi ≥ 0 for all i ∈ E, we

define the level process X = (Xt : t ≥ 0) by

Xt = X0 +

∫ t

0

µJs ds+

∫ t

0

σJsdWs

for all t ≥ 0, whereW = (Wt : t ≥ 0) denotes a standard Wiener process that is independent

of J . Then (X ,J ) is called a Markov-modulated Brownian motion (MMBM). An MMBM is

a Markov-additive process (MAP, see [2], chapter XI) without jumps.

MMBMs have proved to be powerful tools in stochastic modelling, with applications in

queueing theory, insurance and finance. This is even more appparent after one considers the

fact that exit problems for MAPs with phase-type jumps can be reduced to an analysis of

MMBMs by standard transformation techniques (see e.g. [13, 6]). The class of MAPs with

phase-type jumps is dense within all MAPs, see proposition 1 in [3]. Thus we are dealing with

occupation times for a dense subset of MAPs.
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Some results for MMBMs go back to the 1990s, with [15] investigating Wiener-Hopf

factorisation and stationary distributions for the case that σi = ε is independent of the phase

process. Around the same time, [1] determined hitting probabilities and based on these expres-

sions for the stationary distributions. More recent results are [10, 7], which analyse MMBMs

with two reflecting barriers. Some properties of scale functions for MMBMs are derived in

[12].

Occupation times for the phase process before a one- or two-sided exit can be determined

via the results in [13, 6]. This will be shortly described in section 2. As an afterthought to this,

we shall propose a definition of scale functions for MMBMs with strictly positive variation

parameters, i.e. σi > 0 for all i ∈ E, in section 3. The more challenging part will be the

determination of occupation time distributions for the combined level and phase process. This

is the content of section 4, which deals with the case of only two intervals. The generalisation

to more than two intervals is then described in the last section. The appendix contains some

lemmata that are used in the proof of the main results.

2. Preliminaries: Occupation times of the phase process

2.1. Occupation times before a first passage

Define the first passage times τ(x) := inf{t ≥ 0 : Xt > x} for all x ≥ 0 and assume that

X0 = 0. We are interested in the occupation times ζj(x) :=
∫ τ(x)

0
I{Jt=j} dt in a phase j ∈ E

before the first passage over the level x ≥ 0. We collect these occupation times in the column

vector ζ(x) := (ζj(x) : j ∈ E). Consider an E-dimensional row vector r = (ri : i ∈ E) with

non-negative entries ri ≥ 0 for all i ∈ E. Define

Eij
(
e−

∫ τ(x)
0 rJsds

)
:= E

(
e−

∫ τ(x)
0 rJsds; Jτ(x) = j|J0 = i,X0 = 0

)
(1)

for i, j ∈ E and E
(
e−

∫ τ(x)
0 rJsds

)
as the E × E-matrix with these entries. Noting that

e−
∫ τ(x)
0 rJsds = e−rζ(x) we see that the matrix E

(
e−

∫ τ(x)
0 rJsds

)
contains the joint Laplace

transforms of the occupation times ζj(x).

In order to determine E
(
e−

∫ τ(x)
0 rJsds

)
, we shall distinguish the phases by the subspaces

Ea := {i ∈ E : σi > 0 or µi > 0} and Ed := E \ Ea

where phases in Ea (resp. Ed) are called ascending (resp. descending). The same arguments
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as in [5], section 3, yield

E(d,d)

(
e−

∫ τ(x)
0 rJsds

)
= E(a,d)

(
e−

∫ τ(x)
0 rJsds

)
= 0

as well as

E(d,a)

(
e−

∫ τ(x)
0 rJsds

)
= A(r)eU(r)x and E(a,a)

(
e−

∫ τ(x)
0 rJsds

)
= eU(r)x (2)

where the matrices A(r) and U(r) can be computed as follows. For arguments β ≥ 0 define

the functions φi(β) := β/µi for i ∈ Ea, σi = 0, as well as

φi(β) =
1

σi

√
2β +

µ2
i

σ2
i

− µi
σ2
i

and φ∗i (β) =
1

σi

√
2β +

µ2
i

σ2
i

+
µi
σ2
i

for i ∈ Ea, σi > 0. The iteration to determine A(r) and U(r) is slightly changed from [6],

section 2.2, to the following form: We obtain (A(r), U(r)) = limn→∞(An, Un) for initial

values A0 := 0, U0 := −diag(φi(qi + ri))i∈Ea and iterations

e′iUn+1 = −qi + ri
µi

e′i +
1

µi

∑
j∈E,j 6=i

qij e
′
j

 Ia

An

 (3)

for i ∈ Ea, σi = 0,

e′iUn+1 = −φi(qi + ri)e
′
i +

2

σ2
i

∑
j∈E,j 6=i

qij e
′
j

 Ia

An

 (φ∗i (qi + ri)I − Un)−1 (4)

for σi > 0, and

e′iAn+1 =
∑

j∈E,j 6=i

qije
′
j

 Ia

An

 ((qi + ri)I + µiUn)
−1 (5)

for i ∈ Ed. Here e′i denotes the ith canonical row base vector, qi := −qii for all i ∈ E, and Ia

is the identity matrix on Ea. The case r = 0 has been analysed earlier in [1].

Remark 1. Let us add an absorbing phase, say ∆, to the phase space E to obtain E′ =

E ∪ {∆}. Define an MMBM (X ′,J ′) on E′ as follows. The generator matrix Q′ of J ′ shall

be given by

q′ij :=



qij , i, j ∈ E, j 6= i

qii − ri, j = i ∈ E

ri, i ∈ E, j = ∆

0, i = ∆, j ∈ E′
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Further let

(µ′i, σ
′
i) :=

(µi, σi), i ∈ E

(0, 0), i = ∆

which means that the phase ∆ governs the zero process. Let τ∆ := min{t ≥ 0 : J ′t = ∆}

denote the time until absorption in ∆ and τ ′(x) := inf{t ≥ 0 : X ′t > x} the first passage time

of X ′ over the level x ≥ 0. Then

Eij
(
e−

∫ τ(x)
0 rJsds

)
= P

(
τ ′(x) < τ∆, J

′
τ ′(x) = j|J ′0 = i,X ′0 = 0

)
for i, j ∈ E′ \ {∆}, i.e. the generalised Laplace transforms of the first passage times τ(x) can

be seen as transition probabilities among the transient phases i, j ∈ E′ \ {∆} for the phase

process J ′ which terminates at a constant rate ri during {t ≥ 0 : J ′t = i}. Thus we call r the

exit rate vector.

From this perspective a phase-type distribution with parameters (α, T ) on a phase space E

can be translated as follows. Let η := −T1 denote the exit vector and tij the entries of T .

Consider a random variable Z ∼ PH(α, T ). Setting ri := ηi, qij := tij for i 6= j ∈ E and

(µi, σi) = (1, 0) for all i ∈ E yields U(r) = T and thus

P(Z > x) = Pα (τ ′(x) < τ∆|X ′0 = 0) = αeTx1

where Pα denotes the conditional probability given that P(J ′0 = i) = αi for i ∈ E′.

Example 1. A Markov-additive process (MAP) with phase-type jumps can be transformed

into a MMBM as shown in detail in [6], section 2.1. The resulting MMBM has a phase space

E = E+ ∪ Ep ∪ Eσ ∪ En ∪ E−, where

Ep = {i ∈ Ẽ : µ̃i > 0, σ̃i = 0}, En = {i ∈ Ẽ : µ̃i < 0, σ̃i = 0}, Eσ = {i ∈ Ẽ : σ̃i > 0}

and phases in E± represent parts of the jumps (see [6], section 2.1, for a precise definition).

In order to retrieve the Laplace transform of the first passage times of the original MAP (i.e.

the one with phase-type jumps) it suffices to set ri := 0 for i ∈ E+ ∪ E− and ri := γ for

i ∈ Ep ∪ Eσ ∪ En. This method is called fluid embedding and has been described in section

3 of [13], in section 2.7 of [11] or in section 2.2 of [6].

Example 2. We shall derive the joint Laplace transform of the ruin time and the accumulated

claims for the classical compound Poisson risk model. Denote the initial risk reserve by u ≥ 0.
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The claim sizes and inter–claim times shall be independent and have exponential distributions

with parameters β > 0 resp. λ > 0. The rate of premium income is denoted by c > 0. This

model has been analysed in [8]. The net profit condition is c/λ > 1/β, which is equivalent to

λ/(cβ) < 1.

We consider a MMBM (X ,J ) which is defined as follows. Let the phase space be given

by E = {1, 2}. The parameters are given by σ1 = σ2 = 0, µ1 = 1, µ2 = −c, and

Q =

−β β

λ −λ


Then the ruin time T (u) for the compound Poisson model coincides with the occupation time

in phase 2 until the first passage time τ(u) given that we start with X0 = 0. Likewise,

the accumulated claims until ruin, denoted by D(u), coincides with the occupation time in

phase 1 until τ(u). The joint Laplace transform of D(u) and T (u) with arguments r1 and r2,

respectively, is given by

E
(
e−r1D(u)e−r2T (u)|X0 = 0, J0 = 2

)
= e′2 E

(
e−

∫ τ(u)
0 rJsds

)
1 = A(r)eU(r)u

where A(r) and U(r) are real numbers. They can be computed by formulas (3) and (5) as the

fixed points

U(r) = −(β + r1) + βA(r) and A(r) = λ · (λ+ r2 − cU(r))−1

with minimal positive solution

A(r) =
1

2cβ

(
λ+ r2 + c · (β + r1)−

√
(λ+ r2 + c · (β + r1))2 − 4λcβ

)
from which U(r) can be readily computed. For r1 = 0 we obtain the Laplace transform of the

time of ruin, for which the result is the same as equation (5.38) in [8], see example 5 in [5] for

the comparison.

2.2. Occupation times before an exit from an interval

For l < u, define τ(l, u) := inf{t ≥ 0 : Xt /∈ [l, u]} which is the exit time of X from the

interval [l, u]. We shall need an expression for

Ψ+
ij(l, u|x) := E

(
e−

∫ τ(l,u)
0 rJsds;Xτ(l,u) = u, Jτ(l,u) = j|J0 = i,X0 = x

)
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where x ∈ [l, u] and i, j ∈ E. Define the matrix Ψ+(l, u|x) := (Ψ+
ij(l, u|x))i,j∈E . A formula

for Ψ+(l, u|x) has been derived in [13]. In order to state it we need some additional notation.

In order to simplify this notation, we shall from now on exclude the case of a phase i ∈ E with

µi = σi = 0.

Let (X+,J ) denote the original MMBM and define the process (X−,J ) =d (−X+,J ),

where =d denotes equality in distribution. The two processes have the same generator matrix

Q for J , but the drift parameters are different. Denoting variation and drift parameters for X±

by σ±i and µ±i , respectively, this means σ−i = σ+
i and µ−i = −µ+

i for all i ∈ E.

Let A±(r) and U±(r) denote the matrices that determine the first passage times of X±

in (2). We shall write A± = A±(r) and U± = U±(r) if we do not wish to underline the

dependence on r. Distinguish the ascending phases into the spaces Es := {i ∈ Ea : σi = 0}

and Eσ := {i ∈ Ea : σi > 0} and let Is resp. Iσ denote the identity matrices on Es resp. Eσ .

We call a phase i ∈ Es strictly ascending. Define the matrices

C+ := C+(r) :=

0 Iσ

A+(r)

 and C− := C−(r) :=

A−(r)

Iσ 0

 (6)

of dimensions (Eσ ∪ Ed)× Ea and Ea × (Eσ ∪ Ed), respectively. Further define

W+ := W+(r) :=

 Ia

A+(r)

 and W− := W−(r) :=


A−(r)

Iσ 0

0 Id


which are matrices of dimensionsE×Ea andE×(Eσ∪Ed). Finally, letZ± := C±eU

±·(u−l).

Then equation (23) in [13] states that

Ψ+(l, u|x) =
(
W+eU

+·(u−x) −W−eU
−·(x−l)C+eU

+·(u−l)
)
·
(
I − Z−Z+

)−1
(7)

for l ≤ x ≤ u. By reflection at the initial level x, we obtain from (7)

Ψ−(l, u|x) := E
(
e−

∫ τ(l,u)
0 rJsds;Xσ(l,u) = l|X0 = x

)
=
(
W−eU

−·(x−l) −W+eU
+·(u−x)C−eU

−·(u−l)
)
·
(
I − Z+Z−

)−1
(8)

for l ≤ x ≤ u. Note that the expressions in (7) and (8) depend on a choice of r.

Example 3. To continue example 2, we obtain A−(r) and U−(r) by solving

U−(r) = −λ+ r2

c
+
λ

c
A−(r) and A−(r) = β ·

(
β + r1 − U−(r)

)−1
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This yields

A−(r) =
1

2λ

(
(c · (β + r1) + λ+ r2)−

√
(c · (β + r1) + λ+ r2)2 − 4cβ

)
whence U−(r) may be readily obtained.

3. Some remarks on scale functions

Noting that (I − Z−Z+)
−1

=
∑∞
n=0 (Z−Z+)

n and Z−Z+ represents a crossing over

the interval [l, u] from u to l and back, formula (7) has a clear probabilistic interpretation.

The term W+eU
+·(u−x) simply yields the event that X exits from u. The correction term

W−eU
−·xZ+ refers to the event thatX descends below l before exiting from u. Multiplication

by (I − Z−Z+)
−1 yields all possible combinations with any number of subsequent (down and

up) crossings over the complete interval [l, u].

Since Z+ = C+eU
+·(u−l) we can write Ψ+(l, u|x) in the form

Ψ+(l, u|x) =
(
W+e−U

+·(x−l) −W−eU
−·(x−l)C+

)(
e−U

+·(u−l) − C−eU
−·(u−l)C+

)−1

This comes closer to the usual expression of the exit time distribution in terms of scale func-

tions. For instance, let X be a Brownian motion with variation σ > 0 and drift µ ∈ R. We

then obtain

U± =
±µ−

√
µ2 + 2γσ2

σ2

Denote r := −U+ and s := U−. Then

Ψ+(0, b|x) =
erx − esx

erb − esb
(9)

cf. [9], (2.12 - 2.15), where the γ-scale function is given as g(x) = erx − esx.

As we can see from (9), scale functions as solutions to the two-sided exit problem are

determined only up to a multiplicative constant. The usual unique definition of the γ-scale

function W (γ)(x) for a Lévy process with cumulant function ψ is in terms of its Laplace

transform ∫ ∞
0

e−βxW (γ)(x) dx =
1

ψ(β)− γ
(10)

for β > Φ(γ), where Φ denotes the right inverse of ψ, see (8.5) in [14].

For the case of a Markov-modulated Brownian motion with σi > 0 for all i ∈ E we

can extend the notion of γ-scale functions. In this case there are no matrices A± and thus
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W± = C± = I . For a vector v = (v1, . . . , vm) define the diagonal matrix with entries taken

from v by ∆v := diag(vi)i∈E . With σ2 := (σ2
1 , . . . , σ

2
m) and µ := (µ1, . . . , µm) we obtain

by the same arguments as for (7) in [5]

∆r = ∆σ2/2U(r)2 −∆µU(r) +Q

(use the function in (1) instead of fij(x) as defined in (4) of [5]). Note that there is a typo in

equation (8) of [5], where it should state −∆µ instead of +∆µ. Define the scalar cumulant

functions ψi(β) := σ2
i /2β

2 + µiβ for i ∈ E and write ψ(β) := (ψ1(β), . . . , ψm(β)).

Then the (matrix-valued) cumulant function of (X+,J ) is given as K(β) = ∆ψ(β) + Q,

see proposition XI.2.2 in [2]. This yields

K(β)−∆r = ∆σ2/2(β2I − U2
+) + ∆µ(βI + U+)

=
(
∆σ2/2(βI − U+) + ∆µ

)
(βI + U+) (11)

where we write U+ = U+(r). Similarly for the negative process (X−,J ) we obtain

∆r = ∆σ2/2U
−(r)2 + ∆µU

−(r) +Q

and hence

K(β)−∆r = ∆σ2/2(β2I − U2
−) + ∆µ(βI − U−)

=
(
∆σ2/2(βI + U−) + ∆µ

)
(βI − U−) (12)

where we write U− = U−(r). We propose

W (r)(x) =
(
e−U+·x − eU−·x

)
· C, x ≥ 0

to be called the r-scale function of (X ,J ), where the constant C remains to be determined.

Let ‖U+‖ denote the largest absolute value of any eigenvalue of U+. For β > ‖U+‖ we

evaluate

(K(β)−∆r) ·
∫ ∞

0

e−βxW (r)(x) dx

= (K(β)−∆r) ·
(
(βI + U+)−1 − (βI − U−)−1

)
· C

=
(
∆σ2/2(βI − U+) + ∆µ −∆σ2/2(βI + U−)−∆µ

)
· C

= −∆σ2/2 · (U+ + U−) · C
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where the second equality is due to (11) and (12). With C := −(U+ +U−)−1 ·∆2/σ2 we thus

obtain

(K(β)−∆r)

∫ ∞
0

e−βxW (r)(x) dx = I

for β > ‖U+‖, which justifies the name "r-scale function".

Remark 2. In order to compare the above proposal with results obtained in [11], section 7.5,

we first translate the notation U+ = Λ and r = q · 1. Further note that eU−·x = P(J(τ{−x}))

and Π = I , since E = Eσ . Thus equation (7.7) in [11] translates as W̃ (x) = e−U+·x− eU−·x.

Moreover, equation (7.9) in [11] together with the above determination of the matrix C yields

the expression L = −(U+ + U−)−1 · ∆2/σ2 for the matrix of expected local times at 0.

Equation (7.4) in [11] then leads to an expresssion

Lq(x) = −
(
I − eU+·xeU−·x

)
· (U+ + U−)−1 ·∆2/σ2

for the matrix of expected local times at 0 before the first passage over a level x ≥ 0.

4. Occupation times for level and phase process in two intervals

While occupation times for the phase process have been obtained in [13, 6] and only needed

some translation in section 2, the more interesting (and more difficult) part of our investigation

are occupation times of the level process in different intervals. Their distribution will be

derived in this section for the case of two contiguous intervals. A general recursion scheme for

more than two intervals will be provided in section 5.

4.1. Occupation times before an exit from an interval

Recall the definition of the exit times of X from an interval [l, u], namely

τ(l, u) := inf{t ≥ 0 : Xt < l or Xt > u} (13)

where X0 ∈ [u, l]. Choose some b ∈]l, u[ and define

ζ1,j(l, u) :=

∫ τ(l,u)

0

I{Xt<b,Jt=j} dt and ζ2,j(l, u) :=

∫ τ(l,u)

0

I{Xt>b,Jt=j} dt

for j ∈ E. Further define the column vectors ζk(l, u) := (ζkj(l, u) : j ∈ E) for k ∈ {1, 2}.

The random variables ζ1j(l, u) and ζ2j(l, u) yield the occupation times of (X ,J ) in the sets

[l, b[×{j} and ]b, u]× {j}, j ∈ E, before the level process leaves the interval [l, u].
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Choose any exit rate vectors rk = (rkj : j ∈ E) for k ∈ {1, 2}. We shall derive an

expression for

E+(l, u|a) := E
(
e−r1ζ1(l,u)e−r2ζ2(l,u);Xτ(l,u) = u|X0 = a

)
where l < a < u. This provides the joint Laplace transform of the occupation times ζkj(l, u)

before the first exit of [l, u], restricted to the exit occurring at u.

There are some simple cases. For l < a < b < u we obtain

E+(l, u|a) = Ψ+
r1(l, b|a) E+(l, u|b)

by path continuity, and similarly, for l < b < a < u, we observe that

E+(l, u|a) = Ψ+
r2(b, u|a) + Ψ−r2(b, u|a) E+(l, u|b)

Thus it suffices to determine E+(l, u|b). Write for any matrix M of dimension E × E the

block notation

M =:

M(a,a) M(a,d)

M(d,a) M(d,d)

 =:
(
M(.,a) M(.,d)

)
according to ascending (Ea) or descending phases (Ed). Clearly E+

(.,d)(l, u|b) = 0, since u

cannot be passed from below in a descending phase. Discerning between initial phases, we

find that

E+
(d,a)(l, u|b) = Ψ+

r1(l, b|b)(d,a) E
+
(a,a)(l, u|b)

such that it remains to determine E+
(a,a)(l, u|b). Write for a matrix M of dimension Ea × Ea

M =:

M(s,s) M(s,σ)

M(σ,s) M(σ,σ)

 =:

M(s,.)

M(σ,.)


in obvious block notation. Conditioning on the number n of possible returns to the level b in

a strictly ascending phase (i.e. one from Es) before exiting the interval [l, u] at u, we observe

that

E+
(s,.)(l, u|b) =

∞∑
n=0

(
Ψ−r2Ψ+

r1

)n
(s,s)

((
Ψ+

r2

)
(s,.)

+
(
Ψ−r2Ψ+

r1

)
(s,σ)

E+
(σ,.)(l, u|b)

)
=
(
Is −

(
Ψ−r2Ψ+

r1

)
(s,s)

)−1 ((
Ψ+

r2

)
(s,.)

+
(
Ψ−r2Ψ+

r1

)
(s,σ)

E+
(σ,.)(l, u|b)

)
where Is indicates the identity matrix on Es, Ψ±r2 = Ψ±r2(b, u|b), and Ψ+

r1 shall denote the

(Eσ ∪Ed)×Ea block of Ψ+
r1(l, b|b). We have thus reduced the problem to the determination

of E+
(σ,.)(l, u|b).
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Theorem 1. Write U±k := U±(rk) for k ∈ {1, 2}. For l < b < u,

E+
(σ,.)(l, u|b) = 2

(
(D1)(σ,σ) + (D2C

+
1 )(σ,σ)

)−1

×
(
0(σ,s) Iσ

) (
U+

2 + C−2 U
−
2 C

+
2

) (
e−U

+
2 ·(u−b) − C−2 eU

−
2 ·(u−b)C+

2

)−1

where the constant matrices D1 and D2 are given in lemmata 1 and 2.

Proof: We employ the following approximation: Assume that the exit rate vector changes

from r2 to r1 at b − ε for downward crossings of b and from r1 to r2 at b + ε for upward

crossings. Then we let ε ↓ 0.

To be more precise, assume that X0 = b + ε and define t0 := 0 as well as the times

sn := min{t > tn−1 : Xt = b − ε}, tn := min{t > sn : Xt = b + ε} for all n ∈ N, where

min ∅ :=∞. Let N := max{n ∈ N0 : tn < τ(l, u)}. Note that on {Xτ(l,u) = u} there is for

each sn < τ(l, u) a tn with sn < tn < τ(l, u) due to path continuity. We consider

E(ε) := E(σ,a)

(
e
−

∑N
n=1

∫ sn
tn−1

r2eJsds−
∫ τ(l,u)
tN

r2eJsdse−
∑N
n=1

∫ tn
sn

r1eJsds;Xτ(l,u) = u|X0 = b+ ε

)
This converges towards

E(σ,a)

(
e−

∫ τ(l,u)
0 r1eJs I{Xs<b}dse−

∫ τ(l,u)
0 r2eJs I{Xs>b}ds;Xτ(l,u) = u|X0 = b

)
= E+

(σ,a)(l, u|b)

as ε ↓ 0, since limε↓0
∫ τ(l,u)

0
I{b−ε<Xt<b+ε}dt = 0 a.s.

Write Ψ−2 (ε) for the Ea × (Eσ ∪ Ed)-block of Ψ−r2(b − ε, u|b + ε) and Ψ+
2 (ε) for the

Ea × Ea-block of Ψ+
r2(b − ε, u|b + ε). Further write Ψ+

1 (ε) for the (Eσ ∪ Ed) × Ea-block

of Ψ+
r1(l, b+ ε|b− ε). Summing up over the number of down and up crossings of the interval

[b− ε, b+ ε] before leaving the interval [l, u] at u, we obtain

E(ε) =
(
0(σ,s) Iσ

) ∞∑
n=0

(
Ψ−2 (ε)Ψ+

1 (ε)
)n

Ψ+
2 (ε)

=
(
0(σ,s) Iσ

) (
Ia −Ψ−2 (ε) Ψ+

1 (ε)
)−1

I(ε) I(ε)−1 Ψ+
2 (ε)

First we consider limε↓0

(
0(σ,s) Iσ

) (
Ia −Ψ−2 (ε)Ψ+

1 (ε)
)−1

I(ε). Since

lim
ε↓0

(
0(σ,s) Iσ

)
Ψ−2 (ε)Ψ+

1 (ε) =
(
Iσ 0(σ,d)

)
Ψ+

1 (ε) =
(
0(σ,s) Iσ

)
we find that limε↓0 Ψ−2 (ε)Ψ+

1 (ε) is an upper triagonal block matrix. We thus obtain

lim
ε↓0

(
0(σ,s) Iσ

) (
Ia −Ψ−2 (ε)Ψ+

1 (ε)
)−1

I(ε) =
(
0(σ,s) D

)
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for an Eσ × Eσ matrix D that is given by

D = lim
ε↓0

ε
(
Iσ −

(
Ψ−2 (ε)Ψ+

1 (ε)
)

(σ,σ)

)−1

= −
(

lim
ε↓0

1

ε

((
Ψ−2 (ε)Ψ+

1 (ε)
)

(σ,σ)
− Iσ

))−1

= −
(
d

dε

(
Ψ−2 (ε)Ψ+

1 (ε)
)

(σ,σ)

∣∣∣∣
ε=0

)−1

= −

((
d

dε
Ψ−2 (ε)

∣∣∣∣
ε=0

Ψ+
1 (0)

)
(σ,σ)

+

(
Ψ−2 (0)

d

dε
Ψ+

1 (ε)

∣∣∣∣
ε=0

)
(σ,σ)

)−1

= −
((
D2C

+
1

)
(σ,σ)

+ (D1)(σ,σ)

)−1

see [4], section I.1.3, as well as lemmata 1 and 2 for the last two equalities. In a similar manner,

since limε↓0 Ψ+
2 (ε)(σ,a) = 0, we obtain

lim
ε↓0

ε−1 Ψ+
2 (ε)(σ,a) =

d

dε
Ψ+

2 (ε)(σ,a)

∣∣∣∣
ε=0

= D3

according to lemma 3. Altogether this yields the expression in the statement.

�

Example 4. Consider a finite buffer with capacity u > 0. The buffer content is modelled by a

Brownian motion with parameters µ < 0 (drift) and σ > 0 (variation). This corresponds to a

phase space E = Eσ = {1} consisting of one element only. Thus C± = 1.

Assume that there is a level b ∈]0, u[ above which there is a higher cost attached. We wish

to compute the Laplace transform of the time spent above the level b along with the probability

of a buffer overflow. To shorten considerations, we assume that the initial buffer content is b.

Then the Laplace transform we aim for can be computed as E+(0, b, u) with exit rate vectors

r1 = 0 and r2 = γ, where γ is the argument for the Laplace transform. Thus we need to

determine only U±1 and U±2 , which are real numbers. We obtain

U±k = − 1

σ

√
2rk +

µ2

σ2
± µ

σ2

for k ∈ {1, 2}, according to (4). Since µ < 0, this yields U+
1 = 2µ/σ2 and U−1 = 0. Hence

D1 = 2
2µ/σ2

1− e2µ/σ2·b



Occupation times for MMBMs 13

and, after abbreviating W := 2
σ

√
2γ + µ2

σ2 ,

E+(0, u|b) =

(
2µ/σ2

1− e2µ/σ2·b +
U−2 e

−U−2 ·(u−b) + U+
2 e

U+
2 ·(u−b)

e−U
−
2 ·(u−b) − eU+

2 ·(u−b)

)−1

× U+
2 + U−2

e−U
+
2 ·(u−b) − eU−2 ·(u−b)

=

(
−2µ/σ2

1− e2µ/σ2·b +
−U−2 − U

+
2 e
−W ·(u−b)

1− e−W ·(u−b)

)−1
W

1− e−W ·(u−b)
eU

+
2 ·(u−b)

=

(
−2µ/σ2

1− e2µ/σ2·b +
W

1− e−W ·(u−b)
+ U+

2

)−1
W

1− e−W ·(u−b)
eU

+
2 ·(u−b)

since U+
2 + U−2 = − 2

σ

√
2γ + µ2

σ2 = −W .

Example 5. Considering Brownian motion as in the previous example, but this time with exit

rates r1 = r2 = γ, we obtain U±1 = U±2 =: u±. This yields

D1 = 2
u+e−u

+·(b−l) + u−eu
−·(b−l)

e−u+·(b−l) − eu−·(b−l)

and

D2 = 2
u−e−u

−·(u−b) + u+eu
+·(u−b)

e−u−·(u−b) − eu+·(u−b) = 2
u−e−u

+·(u−b) + u+eu
−·(u−b)

e−u+·(u−b) − eu−·(u−b)

Thus

E
(
e−γτ(l,u);Xτ(l,u) = u|X0 = b

)
=

u+ + u−

e−u+·(u−b) − eu−·(u−b)

×

(
u+e−u

+·(b−l) + u−eu
−·(b−l)

e−u+·(b−l) − eu−·(b−l)
+
u−e−u

+·(u−b) + u+eu
−·(u−b)

e−u+·(u−b) − eu−·(u−b)

)−1

Extending the fractions by (e−u
+·(b−l) − eu−·(b−l))(e−u+·(u−b) − eu−·(u−b)) yields

E
(
e−γτ(l,u);Xτ(l,u) = u|X0 = b

)
= (u+ + u−)(e−u

+·(b−l) − eu
−·(b−l))

×
(

(u+e−u
+·(b−l) + u−eu

−·(b−l))(e−u
+·(u−b) − eu

−·(u−b))

+ (u−e−u
+·(u−b) + u+eu

−·(u−b))(e−u
+·(b−l) − eu

−·(b−l))
)−1

= (u+ + u−)(e−u
+·(b−l) − eu

−·(b−l))

×
(
u+e−u

+·(u−l) − u−eu
−·(u−l) + u−e−u

+·(u−l) − u+eu
−·(u−l)

)−1

=
e−u

+·(b−l) − eu−·(b−l)

e−u+·(u−l) − eu−·(u−l)

which is the classical result, cf. equation (2.17) in [9].
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4.2. Occupation times before a first passage

Choose some b < u ∈ R. Define the column vectors ζk(u) := (ζkj(u) : j ∈ E) for

k ∈ {1, 2} via their entries

ζ1,j(u) :=

∫ τ(u)

0

I{Xt<b,Jt=j} dt and ζ2,j(u) :=

∫ τ(u)

0

I{Xt>b,Jt=j} dt

for j ∈ E. Further choose any exit rate vectors rk = (rkj : j ∈ E) for k ∈ {1, 2}. We shall

derive an expression for

E+(u|a) := E
(
e−r1ζ1(u)e−r2ζ2(u)|X0 = a

)
where a < u, thus providing the joint Laplace transform of the occupation times ζkj(u). There

are three cases: If a < u < b, then
∑
j∈E ζ1,j(u) = τ(u) and thus

E+(u|a) = E
(
e−

∫ τ(u)
0 r1eJsds|X0 = a

)
which has been determined in (2). If a < b < u, then

E+(u|a) = E
(
e−

∫ τ(b)
0 r1eJsds|X0 = a

)
E+(u|b)

where again the first factor is known via (2). Finally, if b < a < u, then

E+(u|a) = Ψ+
r2(b, u|a) + Ψ−r2(b, u|a)E+(u|b)

where the terms Ψ+
r2 and Ψ−r2 are given in (7) and (8). Thus it suffices to determine E+(u|b)

for b < u. Clearly E+
(.,d)(u|b) = 0, since u cannot be passed from below in a descending

phase. We further find the relation

E+
(d,a)(u|b) = E(d,a)

(
e−r1ζ1(b)|X0 = b

)
E+

(a,a)(u|b)

such that it remains to determineE+
(a,a)(u|b). Conditioning on the number n of possible returns

to the level b in a strictly ascending phase i ∈ Es before passing the level u, we observe that

E+
(s,a)(u|b) =

∞∑
n=0

(
Ψ−r2C

+(r1)
)n

(s,s)

((
Ψ+

r2

)
(s,a)

+
(
Ψ−r2C

+(r1)
)

(s,σ)
E+

(σ,a)(u|b)
)

=
(
Is −

(
Ψ−r2C

+(r1)
)

(s,s)

)−1 ((
Ψ+

r2

)
(s,a)

+
(
Ψ−r2C

+(r1)
)

(s,σ)
E+

(σ,a)(u|b)
)

where Is indicates the identity matrix on Es, Ψ±r2 = Ψ±r2(b, u|b), and C+(r1) is given in (6).

We have thus reduced the problem to the determination of E+
(σ,a)(u|b). This can be obtained

as the limit E+
(σ,a)(u|b) = liml→−∞E+

(σ,a)(l, u|b).
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Corollary 1. Write U±k := U±(rk) for k ∈ {1, 2} and assume that ‖r1‖ > 0. Then

E+
(σ,a)(u|b) = E(σ,a)

(
e−r1ζ1(u)e−r2ζ2(u)|X0 = b

)
= 2

((
D2C

+
1

)
(σ,σ)

+
(
2U+

1

)
(σ,σ)

)−1

×
(
0(σ,s) Iσ

) (
U+

2 + C−2 U
−
2 C

+
2

) (
e−U

+
2 ·(u−b) − C−2 eU

−
2 ·(u−b)C+

2

)−1

for b < u, where the matrix D2 is given in lemma 2.

Proof: Looking at the formula in theorem 1 we find that only D1 depends on l. For l → −∞

we obtain from lemma 1

lim
l→−∞

D1 = lim
l→−∞

2
(
0(σ,s) Iσ

)(
U+

1 e
−U+

1 ·(b−l) + C−1 U
−
1 e

U−1 ·(b−l)C+
1

)
×
(
e−U

+
1 ·(b−l) − C−1 eU

−
1 ·(b−l)C+

1

)−1

= lim
l→−∞

2
(
0(σ,s) Iσ

)(
U+

1 + C−1 U
−
1 e

U−1 ·(b−l)C+
1 e

U+
1 ·(b−l)

)
×
(
Ia − C−1 eU

−
1 ·(b−l)C+

1 e
U+

1 ·(b−l)
)−1

= 2
(
0(σ,s) Iσ

)
U+

1

since ‖r1‖ > 0 implies that U+
1 is a strict sub-generator matrix and liml→−∞ eU

+
1 ·(b−l) = 0.

�

Example 6. For the compound Poisson risk model with exponential claims the phase space is

E = Es ∪ Ed, i.e. Eσ = ∅. Thus E+
(a,a)(u|b) = E+

(s,s)(u|b) for which the formula before the

corollary yields

E+
(s,s)(u|b) =

(
1− e′1Ψ−r2A

+(r1)
)−1

e′1Ψ+
r2

as C+(r1) = A+(r1) and Ψ±r2 are simply column vectors on E. Setting r1 = (0, γ), r2 = 0

and b = 0 we obtain the Laplace transform (with argument γ) of the time spent above the

initial risk reserve u before ruin. The values for r2 yield A+
2 = λ/(cβ) and U+

2 = λ/c− β as

well as A−2 = 1 and U−2 = 0. Hence

e′1Ψ−r2 =
1− e−(β−λ/c)·(u−b)

1− λ
cβ e
−(β−λ/c)·(u−b)

and e′1Ψ+
r2 =

1− λ
cβ

1− λ
cβ e
−(β−λ/c)·(u−b)

e−(β−λ/c)·(u−b)

while the values for r1 yield

A+(r1) =
1

2cβ

(
λ+ γ + c · β −

√
(λ+ γ + c · β)2 − 4λcβ

)
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5. Occupation times in more than two intervals

We now consider a a finite number of thresholds b1 < . . . < bN . We can determine

occupation times of (X ,J ) before a first passage or an exit from an interval in the following

way. Fix the respective rate exit vector rk for the (open) intervals Ik, k ∈ {1, . . . , N + 1},

resulting from b1 < . . . < bN . Define τ+(x) := inf{t ≥ 0 : Xt > x} and the column vectors

ζ+
k (u) := (ζ+

kj(u) : j ∈ E), k ∈ {1, . . . , N + 1}, with entries

ζ+
kj(u) :=

∫ τ+(u)

0

I{Xt∈Ik,Jt=j} dt

for j ∈ E. As before, we shall abbreviate

E+(u|a) := E
(
e−

∑N+1
k=1 rkζ

+
k (u)|X0 = a

)
for a < u. Similarly, define τ−(x) := inf{t ≥ 0 : Xt < x} as well as the column vectors

ζ−k (u) := (ζ−kj(u) : j ∈ E), k ∈ {1, . . . , N + 1}, with entries

ζ−kj(u) :=

∫ τ−(u)

0

I{Xt∈Ik,Jt=j} dt

for j ∈ E. We shall write

E−(l|a) := E
(
e−

∑N+1
k=1 rkζ

−
k (u)|X0 = a

)
for l < a. Define the column vectors ζk(l, u) := (ζkj(l, u) : j ∈ E), k ∈ {1, . . . , N + 1},

with entries

ζkj(l, u) :=

∫ τ(l,u)

0

I{Xt∈Ik,Jt=j} dt

for j ∈ E. We write

E+(l, u|a) := E
(
e−

∑N+1
k=1 rkζk(l,u);Xτ(l,u) = u|X0 = a

)
for l < a < u, as well as

E−(l, u|a) := E
(
e−

∑N+1
k=1 rkζk(l,u);Xτ(l,u) = l|X0 = a

)
The matrices E+(u|a) and E+(l, u|a) have been determined in sections 4.2 and 4.1, respec-

tively. The matrices E−(l|a) and E−(l, u|a) are determined in the same way after reflection

at the initial level a, i.e. interchanging A+ and U+ with A− and U−, cf. the relation between

(7) and (8).
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5.1. Occupation times before a first passage

We seek a computational scheme for E+(u|a) where a < u. If u ≤ b2, then the solution is

given by the results in section 4.2 with b = b1. For u > b2 let k := max{n ≥ 2 : bn < u}.

Path continuity yields for a ≤ bk < u

E+(u|a) = E+(bk|a) E+(u|bk)

where

E+(u|bk) = E+(bk−1, u|bk) + E−(bk−1, u|bk)E+(bk|bk−1)E+(u|bk)

which implies

E+(u|bk) =
(
I − E−(bk−1, u|bk)E+(bk|bk−1)

)−1
E+(bk−1, u|bk)

In the case bk < a < u we obtain

E+(u|a) = Ψ+
k+1(bk, u|a) + Ψ−k+1(bk, u|a)E+(u|bk)

where Ψ+
k+1 and Ψ−k+1 denote the two-sided exit matrices as defined in (7) and (8) with param-

eters taken from the k + 1st regime. Since the matrices E+(bk−1, u|bk) and E−(bk−1, u|bk)

have been determined in section 4.1, this provides a recursion scheme for E+(u|a).

5.2. Occupation times before an exit from an interval

We shall determine E+(l, u|a) with l < a < u. First note that the problem can be

reduced to the results obtained in section 5.1 by exploiting the probabilistic interpretation at

the beginning of section 3. This yields

E+(l, u|a) =
(
E+(u|a)− E−(l|a)E+(u|l)

) (
I − E−(l|u)E+(u|l)

)−1

We further wish to provide a recursion that involves only matrices of the form E±(x, y|z). For

h := min{n ≥ 1 : bn > l}, the matrix E+(l, bh+1|bh) has been determined in section 4.1.

Define k := max{n ≥ 1 : bn < u}. If k = h, then E+(l, u|a) is given by the results in

section 4.1. Thus assume that k > h ≥ 1. We obtain by path continuity

E+(l, u|a) = E+(l, bk|a)E+(l, u|bk)

where

E+(l, u|bk) = E+(bk−1, u|bk) + E−(bk−1, u|bk)E+(l, bk|bk−1)E+(l, u|bk)
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This yields

E+(l, u|bk) =
(
I − E−(bk−1, u|bk)E+(l, bk|bk−1)

)−1
E+(bk−1, u|bk)

Since the matrices E+(bk−1, u|bk) and E−(bk−1, u|bk) have been determined in section 4.1,

this provides a recursion scheme for E+(l, u|a).

Appendix

In this appendix, the lemmata that have been used in the proof of theorem 1 are collected.

Recall the abbreviations Ψ+
1 (ε) for the (Eσ ∪ Ed) × Ea-block of Ψ+

r1(l, b + ε|b − ε), Ψ−2 (ε)

for the Ea × (Eσ ∪ Ed)-block of Ψ−r2(b − ε, u|b + ε), and Ψ+
2 (ε) for the Ea × Ea-block of

Ψ+
r2(b− ε, u|b+ ε). Further let 0(σ,d) and 0(σ,s) denote the zero matrices on Eσ ×Ed and on

Eσ × Es, respectively.

Lemma 1. For l < b,

D1 :=
(
Iσ 0(σ,d)

) d

dε
Ψ+

1 (ε)

∣∣∣∣
ε=0

= 2
(
0(σ,s) Iσ

)(
U+

1 e
−U+

1 ·(b−l) + C−1 U
−
1 e

U−1 ·(b−l)C+
1

)(
e−U

+
1 ·(b−l) − C−1 eU

−
1 ·(b−l)C+

1

)−1

Proof: According to (7),(
Iσ 0(σ,d)

)
Ψ+

1 (ε) =
(
Iσ 0(σ,d)

)(
C+

1 e
U+

1 ·(2ε) − eU
−
1 ·(b−l−ε)C+

1 e
U+

1 ·(b−l+ε)
)

×
(
Ia − C−1 eU

−
1 ·(b−l+ε)C+

1 e
U+

1 ·(b−l+ε)
)−1

=
(
0(σ,s) Iσ

)(
eU

+
1 ·(2ε) − C−1 eU

−
1 ·(b−l−ε)C+

1 e
U+

1 ·(b−l+ε)
)

×
(
Ia − C−1 eU

−
1 ·(b−l+ε)C+

1 e
U+

1 ·(b−l+ε)
)−1

=
(
0(σ,s) Iσ

)(
e−U

+
1 ·(b−l−ε) − C−1 eU

−
1 ·(b−l−ε)C+

1

)
×
(
e−U

+
1 ·(b−l+ε) − C−1 eU

−
1 ·(b−l+ε)C+

1

)−1

After abbreviating

F (ε) := e−U
+
1 ·(b−l−ε) − C−1 eU

−
1 ·(b−l−ε)C+

1 , G(ε) := e−U
+
1 ·(b−l+ε) − C−1 eU

−
1 ·(b−l+ε)C+

1

we apply the formal rules of derivation for functions of a real variable (see [4], sections I.1.3-4)

to obtain

D1 =
(
0(σ,s) Iσ

) (
F ′(0)G(0)−1 − F (0)G(0)−1G′(0)G(0)−1

)
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where F (0) = G(0) = e−U
+
1 ·(b−l) − C−1 eU

−
1 ·(b−l)C+

1 and

F ′(0) = U+
1 e
−U+

1 ·(b−l) + C−1 U
−
1 e

U−1 ·(b−l)C+
1 = −G′(0)

This yields the statement.

�

Lemma 2. For b < u,

D2 :=
(
0(σ,s) Iσ

) d

dε
Ψ−2 (ε)

∣∣∣∣
ε=0

= 2
(
Iσ 0(σ,d)

)(
U−2 e

−U−2 ·(u−b) + C+
2 U

+
2 e

U+
2 ·(u−b)C−2

)(
e−U

−
2 ·(u−b) − C+

2 e
U+

2 ·(u−b)C−2

)−1

Proof: According to (8),(
0(σ,s) Iσ

)
Ψ−2 (ε) =

(
0(σ,s) Iσ

)(
C−2 e

U−2 2ε − eU
+
2 ·(u−b−ε)C−2 e

U−2 ·(u−b+ε)
)

×
(
I − C+

2 e
U+

2 ·(u−b+ε)C−2 e
U−2 ·(u−b+ε)

)−1

=
(
Iσ 0(σ,d)

)(
eU
−
2 2ε − C+

2 e
U+

2 ·(u−b−ε)C−2 e
U−2 ·(u−b+ε)

)
×
(
I − C+

2 e
U+

2 ·(u−b+ε)C−2 e
U−2 ·(u−b+ε)

)−1

=
(
Iσ 0(σ,d)

)(
e−U

−
2 ·(u−b−ε) − C+

2 e
U+

2 ·(u−b−ε)C−2

)
×
(
e−U

−
2 ·(u−b+ε) − C+

2 e
U+

2 ·(u−b+ε)C−2

)−1

We abbreviate

F (ε) := e−U
−
2 ·(u−b−ε)−C+

2 e
U+

2 ·(u−b−ε)C−2 , G(ε) := e−U
−
2 ·(u−b+ε)−C+

2 e
U+

2 ·(u−b+ε)C−2

where F (0) = G(0) = e−U
−
2 ·(u−b) − C+

2 e
U+

2 ·(u−b)C−2 and

F ′(0) = U−2 e
−U−2 ·(u−b) + C+

2 U
+
2 e

U+
2 ·(u−b)C−2 = −G′(0)

Hence

D2 =
(
Iσ 0(σ,d)

) (
F ′(0)G(0)−1 − F (0)G(0)−1G′(0)G(0)−1

)
= 2

(
Iσ 0(σ,d)

)
F ′(0)G(0)−1

which is the statement.

�
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Lemma 3. For b < u,

D3 :=
(
0(σ,s) Iσ

) d

dε
Ψ+

2 (ε)

∣∣∣∣
ε=0

= −2
(
0(σ,s) Iσ

) (
U+

2 + C−2 U
−
2 C

+
2

) (
e−U

+
2 ·(u−b) − C−2 eU

−
2 ·(u−b)C+

2

)−1

Proof: According to (7),(
0(σ,s) Iσ

)
Ψ+

2 (ε) =
(
0(σ,s) Iσ

)(
eU

+
2 ·(u−b−ε) − C−2 eU

−
2 2εC+

2 e
U+

2 ·(u−b+ε)
)

×
(
Ia − C−2 eU

−
2 ·(u−b+ε)C+

2 e
U+

2 ·(u−b+ε)
)−1

=
(
0(σ,s) Iσ

)(
e−U

+
2 ·2ε − C−2 eU

−
2 2εC+

2

)
×
(
e−U

+
2 ·(u−b+ε) − C−2 eU

−
2 ·(u−b+ε)C+

2

)−1

We abbreviate

F (ε) = e−2U+
2 ε − C−2 e2U−2 εC+

2 , G(ε) = e−U
+
2 ·(u−b+ε) − C−2 eU

−
2 ·(u−b+ε)C+

2

to obtain F ′(0) = −2
(
U+

2 + C−2 U
−
2 C

+
2

)
and further

(
0(σ,s) Iσ

)
F (0) = 0(σ,a) as well as

G(0) = e−U
+
2 ·(u−b) − C−2 eU

−
2 ·(u−b)C+

2 . Altogether this yields

D3 =
(
0(σ,s) Iσ

) (
F ′(0)G(0)−1 − F (0)G(0)−1G′(0)G(0)−1

)
=
(
0(σ,s) Iσ

)
F ′(0)G(0)−1

which is the statement.

�
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