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1 Introduction to Stochastic Processes

1.1 Introduction

Stochastic modelling is an interesting and challenging area of proba-
bility and statistics. Our aims in this introductory section of the notes
are to explain what a stochastic process is and what is meant by the
Markov property, give examples and discuss some of the objectives
that we might have in studying stochastic processes.

1.2 Definitions

We begin with a formal definition, A stochastic process is a family
of random variables {Xθ}, indexed by a parameter θ, where θ belongs
to some index set Θ.

In almost all of the examples that we shall look at in this module,
Θ will represent time. If Θ is a set of integers, representing specific
time points, we have a stochastic process in discrete time and we
shall replace the general subscript θ by n. So we shall talk about the
discrete time process {Xn}. Sections 2–4 of the module are about
processes in discrete time.

If Θ is the real line (or some interval of the real line) we have a sto-
chastic process in continuous time and we shall replace the general
subscript θ by t and change the notation slightly, writing X(t) rather
than Xt. Sections 5–6 of the module are about processes in continuous
time.

The reason that we introduce the rather abstract notion of an index
set Θ, rather than just working with time, is that we sometimes want
to study spatial processes as well as temporal processes. In a spatial
process, Θ would be a vector, representing location in space rather
than time. For example, we might have a process {X(u,v)}, repre-
senting a random variable that varies across two-dimensional space.



MA636: Introduction to stochastic processes 1–2

Here, X(u,v) represents the value of the process at position (u, v). We
can even have processes that evolve in both time and space, so called
spatio-temporal processes. However, apart from occasional exam-
ples, spatial and spatio-temporal processes are beyond the scope of
this module.

For processes in time, a less formal definition is that a stochastic
process is simply a process that develops in time according to prob-
abilistic rules. We shall be particularly concerned with stationary
processes, in which the probabilistic rules do not change with time.

In general, for a discrete time process, the random variable Xn will
depend on earlier values of the process, Xn−1, Xn−2, . . .. Similarly, in
continuous time, X(t) will generally depend on values X(u) for u < t.

Therefore, we are often interested in conditional distributions of the
form

Pr
(
Xtk |Xtk−1

, Xtk−2
, . . . , Xt1

)
for some set of times tk > tk−1 > . . . > t1. In general, this condi-
tional distribution will depend upon values of Xtk−1

, Xtk−2
, . . . , Xt1 .

However, we shall focus particularly in this module on processes that
satisfy the Markov property, which says that

Pr
(
Xtk |Xtk−1

, Xtk−2
, . . . , Xt1

)
= Pr

(
Xtk |Xtk−1

)
.

The Markov property is named after the Russian probabilist Andrei
Andreyevich Markov (1856-1922). An informal mnemonic for remem-
bering the Markov property is this. ‘Given the present (Xk−1), the
future (Xk) is independent of the past (Xk−2, Xk−3, . . . , X1).’ The
Markov property is sometimes referred to as the ‘lack of memory’
property.

Stochastic processes that satisfy the Markov property are typically
much simpler to analyse than general processes, and most of the
processes that we shall study in this module are Markov processes.
Of course, in attempting to model any real system it will be impor-
tant to consider whether the Markov property is likely to hold.

As well as classifying time as discrete or continuous, we can also clas-
sify the random variable X as discrete or continuous. We shall see
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examples of all four combinations (discrete/continuous time in con-
junction with discrete/continuous random variable) in this module.

We end this section with a few more definitions related to stochastic
processes:

• A counting process is a process X(t) in discrete or continuous
time for which the possible values of X(t) are the natural num-
bers (0, 1, 2, . . .) with the property that X(t) is a non-decreasing
function of t. Often, X(t) can be thought of as counting the
number of ‘events’ of some type that have occurred by time t.
The basic example of a counting process is the Poisson process,
which we shall study in some detail.

• A sample path of a stochastic process is a particular realisa-
tion of the process, i.e. a particular set of values X(t) for all t
(which may be discrete of continuous), generated according to
the (stochastic) ‘rules’ of the process.

• The increments of a process are the changes X(t) − X(s) be-
tween time points s and t (s < t). Processes in which the in-
crements for non-overlapping time intervals are independent and
stationary (i.e. dependent only on the lengths of the time inter-
vals, not the actual times) are of particular importance. Random
walks, which we study extensively in Chapter 2, are a good ex-
ample. General processes of this type are called Lévy processes,
and include the Poisson process (Chapter 5) and Brownian mo-
tion (Chapter 6).

1.3 Stochastic and deterministic models

Stochastic models can be contrasted with deterministic models. A
deterministic model is specified by a set of equations that describe
exactly how the system will evolve over time. In a stochastic model,
the evolution is at least partially random and if the process is run
several times, it will not give identical results. Different runs of a
stochastic process are often called realisations of the process.
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Deterministic models are generally easier to analyse than stochastic
models. However, in many cases stochastic models are more realistic,
particulary for problems that involve ‘small numbers’. For example,
suppose we are trying to model the management of a rare species,
looking at how different strategies affect the survival of the species.
Deterministic models will not be very helpful here, because they will
predict that the species either definitely becomes extinct or definitely
survives. In a stochastic model, however, there will be a probability of
extinction, and we study how this is affected by management practices.

In recent years, the distinction between deterministic and stochas-
tic models has been blurred slightly by the development of chaotic
models. A chaotic model is a deterministic model that is extremely
sensitive to the values of some of the parameters in the model. Making
a very small change to the values of these parameters can make the
outcome of the model completely different. Some people have argued
that systems that are normally regarded as stochastic processes are
better regarded as chaotic deterministic systems, as exemplified by
this quote:

A mountain stream, a beating heart, a smallpox epidemic, and a col-
umn of rising smoke are all examples of dynamic phenomena that
sometimes seem to behave randomly. In actuality, such processes ex-
hibit a special order that scientists and engineers are only just begin-
ning to understand. This special order is ’deterministic chaos’, or
chaos, for short.

My own, doubtless biased, view is that stochastic models are, in gen-
eral, much more useful than models based on deterministic chaos. But
in any event, chaos theory uses quite different mathematical techniques
and is outside the scope of this module.

1.4 Examples of stochastic processes

In this section, we offer an eclectic collection of examples of stochastic
processes, to give you some idea of the wide range of application areas.
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1.4.1 Exchange rates

Figure 1: Exchange rate between British pound and Japanese yen over
the period 1/1/02-31/7/04. Upper graph shows true exchange rate,
lower graph shows a simulation of a random walk model.

The upper panel of Figure 1 shows the exchange rate between the
British pound and the Japanese yen from 1st January 2002 to 31st
July 2004. Over this period, the average exchange rate was 191.1 yen
to one pound. The lower panel shows a simulation of a type of sto-
chastic process called a random walk. We will be studying random
walks in Section 2 of this module. In the random walk model, the
daily changes in exchange rate are independent normal random vari-
ables with zero mean and standard deviation of 1.206 (matching the
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standard deviation in the observed data). Whilst the detailed patterns
are of course different, the two series have a similar structure. Note
that in the random walk model, upward and downward movements in
the exchange rate are equally likely, and there is no scope for making
money through currency speculation except by luck.

1.4.2 Photon emission

Photons are minute particles of light. Under some circumstances, a
light source will emit photons at random (according to what is called a
Poisson process, which we will study in section 5). Individual photons
are too faint to be detected by the human eye, but electronic photon
detectors can detect single photons. However, there is a problem with
these machines. Immediately after they have detected a photon, there
is a short time period, known as the dead time, during which no new
photons can be detected.

The number of photons detected by the machine therefore underesti-
mates the actual number of photons emitted by the light source and
we need to correct the observed number of photons to get an estimate
of the true number. It’s clear that a relatively complicated correction
will be needed because when the light source is emitting photons at
a low rate, the chances of two photons being emitted close enough
together to be affected by dead time is quite small, whereas when the
emission rate is high, many photons will be missed. To tackle this
problem it is necessary to set up a stochastic model that models both
the emission of photons and the dead time effect and then to study
the distribution of the observed number of photons and see how this
is related to the number actually emitted.

1.4.3 Epidemic models

Figure 2, which is from a World Health Organisation report, shows
the progress of the SARS epidemic in 2002-3. The data plotted are
the number of new cases reported each week worldwide. The data
exclude 2527 probable cases of SARS (mostly from Beijing) in which
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the data of onset is unknown. This is an example of a discrete time

Figure 2: Daily number of new cases of SARS worldwide during the
period 1/11/02–10/7/03. each day

stochastic process. The variable of interest (number of cases) is also
discrete. Many sophisticated mathematical models of epidemics have
been developed. These incorporate factors such as the number of con-
tacts that an infected person makes with non-infected people, and the
chances that the infection will be passed on during one of these con-
tacts. These models help us to understand the factors that determine
whether an epidemic is likely to get a hold and affect a large propor-
tion of the population (like the BSE epidemic in cattle in the UK), or
whether it is more likely to affect just a few people and then die out.
The models can also be used to predict the effects of interventions -
how will it affect the epidemic if we vaccinate 50% of the population?

1.4.4 Earthquakes

Figure 3 shows the occurrences large earthquakes in Alaska during the
period 1900-1965. On average, there was roughly one earthquake per
year, but in the actual record there are some fairly lengthy periods
with no earthquakes, and other periods with several earthquakes in
close succession. Is this just what we might expect by chance? Or
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does it provide evidence of some clustering of earthquakes in time? If
there is clustering, how can we model it? Is clustering related to the
magnitudes of the earthquake?

Figure 3: Times of occurrence of 65 earthquakes of magnitude 7.0 or
greater in Alaska, 1900-1965.

These questions are typical of those that arise when studying point
processes processes in which we observe the location of events in time
or space. For another example, astronomers are interested in the clus-
tering of galaxies, because this can provide clues to the origins of the
universe. For earthquakes, some very sophisticated stochastic mod-
els of earthquake occurrence have been developed, that incorporate
aspects of the underlying geophysics.

1.4.5 Budding Yeast

The yeast species used in brewing and baking, Saccharomyces cere-
visiae reproduces by budding (Figure 4). The adult cell, which we
call the mother cell, produces a bud which grows and eventually
separates from the mother to produce a new daughter cell. The
mother cell then produces another bud, after a random time M . The
daughter cell, on the other hand, first has to increase in size until it
reaches maturity, which takes a random time D. Then it behaves like
a mother cell, producing a bud after random time M . Altogether,
therefore, the time from when the bud was produced until it produces
its own offspring bud is D + M .

What can we say about this process? Will the population eventually
stabilise in some way, so that, for example, the proportion of daughter
cells in the population approaches some fixed value? If so, how does
this depend on the distribution of the random variables M and D?
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Figure 4: Electron microscope picture of budding yeast cells.

Eventually, of course, yeast cells die, after they have produced perhaps
20–40 buds. What effect does this have on the population structure?

1.4.6 Diploid and tetraploid plants

Here we look at one more example in a little more detail. Many
plant species are diploid, meaning that they carry two copies of each
of their genes (like humans). However, some species can also exist
as tetraploids, with four copies of each gene. The question of how
tetraploid plants arise is of great interest to evolutionary biologists.

The following very simple model, based on some genetics that we
won’t discuss here, mimics some aspects of this process. We have a
population of n annual plants, which die at the end of each year, and
are replaced by n of their offspring (so the population size remains
constant). Initially, all n plants are diploid. In subsequent years,
if there are d diploid plants in the current generation, the number
of diploid plants in the next generation is a random variable with
distribution Bin(n, p) where

p =
u2d2

u2d2 + (n − ud)2 ,

and where u is a parameter in the range (0, 1); the larger the value of
u, the greater the tendency to produce diploid offsrping plants (and
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so the greater the value of p). Notice that this process satisfies the
Markov property as the distribution of the number of diploids in the
next generation depends only on the number in the current generation.

Figure 5 shows a simulation of this process with a population of n = 10
plants and with u = 0.85. Eventually, the diploid plants become
extinct, but this takes 65 generations. When extinction does occur,
it occurs quite rapidly (after 58 generations, the population was still
entirely diploid). Note that we wouldn’t predict this behaviour if we
observed say the first 50 generations only.

This simulation is fairly typical in that there is eventually a fairly
rapid extinction of diploids, but the time at which this occurs is very
variable. In 10 further simulation runs with the same parameter val-
ues, the extinction times were, in ascending order, 12, 17, 18, 22, 33,
70, 72, 93, 102, 315.

Figure 5: Simulating the extinction of diploid plants with u = 0.85.

The long period of apparently stable fluctuation before sudden ex-
tinction can be seen even more clearly by increasing u to 0.9. Fig-
ure 6 shows a simulation of this process. Extinction occurs after 1711
generations, but the population was still entirely diploid after 1705
generations.

In biological terms, the model shows that a population in which the
majority of plants are diploid for a long time can nonetheless switch to
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being entirely tetraploid over a relatively small number of generations.
Although this is a very simplified model, much more complex models,
that are more realistic biologically, predict similar behaviour.

Figure 6: Simulating the extinction of diploid plants with u = 0.9.

1.5 Modelling

Mathematical models, be they deterministic or stochastic, are in-
tended to mimic real world systems. In particular, they can be used
to predict how systems will behave under specified conditions. In sci-
entific work, we may be able to conduct experiments to see if model
predictions agree with what actually happens in practice. But in many
situations, experimentation is impossible. Even if experimentation is
conceivable in principle, it may be impractical for ethical or financial
reasons. In these circumstances, the model can only be tested less
formally, for example by seeking expert opinion on the predictions of
the model.

The examples in the previous section introduce a diverse collection
of stochastic models. Others will be presented later in the module.
Practical modelling is an art as much as a science. In particular, it’s
important to try to model at the right level of detail. Too little detail
and the model will not be able to make useful predictions; too much
and the model may become unwieldly and impractical. Meteorological
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modelling provides a good example – short-term forecasting, medium-
range forecasting and long-term predictions of climate change involve
three quite different modelling approaches.

It’s important to remember that ‘all models are wrong’ in the sense
that they are only approximations of reality. What is of interest is
whether the model is useful for the purposes for which we want to
apply it.

Most real-world models will need to be implemented on a computer.
Developing and testing software for models is important but outside
the scope of this module. Of course, the fact that a model produces
nice computer output does not in itself imply that the model has any
validity. Generally a model will need to go through several cycles of
improvement before it is finalised. Sometimes, attempting to model a
system highlights the fact that there is little information about some
aspects of the system and it is necessary to collect new data to try to
fill in the gaps.

1.6 Aims of this module

Our aim in this module is to study the basic theory of stochastic
processes in discrete and continuous time. We use mathematical
techniques to explore the behaviour of these processes. Once these
processes are understood, they can be incorporated into real-world
models, but this is outside the scope of this particular module.

An alternative way of exploring stochastic processes is to use simula-
tion. Where possible, a mathematical analysis is preferable, because it
gives us formulae that explain general behaviour. Simulations have to
assume particular values for any unknown parameters in the process.
However, simulation is useful for

• Checking analytical results

• Exploring models that are too complex to analyse mathemati-
cally
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The example of diploid and tetraploid plants shows how we can use
simulation to explore a process. In fact, the process described is an
example of a Markov chain, and this can be studied analytically, using
techniques that we will look at in Section 4. However, if we start to
make the model more realistic, by including more biological features, it
soon becomes too complex to analyse mathematically and simulation
becomes essential.

One thing that we won’t be doing in this module, except in rare ex-
amples, is looking at how to fit stochastic models to real data. This
is complicated by the fact that the data are not usually independent
and it can be quite hard, for example, to write down a likelihood. The
module MA639: Time Series Modelling has more focus on statistical
analysis.


