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Stationary Distributions

Let X denote a Markov chain with state space E. Let 7 denote a
probability measure on E. If P(Xy = i) = m; implies

P(X, =1i)=m; forall n€ Nand i € E, then 7 is called a
stationary distribution for X'. If 7 is a stationary distribution,
then ¢ - 7 for any ¢ > 0 is called a stationary measure.
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Theorem 2.18

Let X denote a Markov chain with state space E and transition
matrix P.
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Let X denote a Markov chain with state space E and transition
matrix P. Further, let m denote a probability distribution on E
with 7P = T,
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Let X denote a Markov chain with state space E and transition
matrix P. Further, let m denote a probability distribution on E
with 7P = 7, i.e.

Wj:Zﬂ'iPij and Zﬂ'j:].

icE jEE

for all j € E.
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Let X denote a Markov chain with state space E and transition
matrix P. Further, let m denote a probability distribution on E
with 7P = 7, i.e.

Wj:Zﬂ'iPij and Zﬂ'j:].

icE jEE

for all j € E. Then 7 is a stationary distribution for X.
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Let X denote a Markov chain with state space E and transition
matrix P. Further, let m denote a probability distribution on E
with 7P = 7, i.e.

Wj:Zﬂ'iPij and Zﬂ'j:].

icE jEE

for all j € E. Then m is a stationary distribution for X. If 7 is a
stationary distribution for X', then 7P = 7 holds.
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Proof of theorem 2.18

Let P(Xo = i) = forall i € E.

L. Breuer Chapter 2: Markov Chains



Proof of theorem 2.18

Let P(Xo = i) = for all i € E. Then P(X, = i) =P(Xo = i) for
all n € N and i € E follows by induction on n.
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Proof of theorem 2.18

Let P(Xo = i) =m; forall i € E. Then P(X, = i) =P(Xo = i) for
all n € N and i € E follows by induction on n. The case n =1
holds by assumption,
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Proof of theorem 2.18

Let P(Xo = i) =m; forall i € E. Then P(X, = i) =P(Xo = i) for
all n € N and i € E follows by induction on n. The case n =1
holds by assumption, and the induction step follows by induction
hypothesis and the Markov property.
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Proof of theorem 2.18

Let P(Xo = i) =m; forall i € E. Then P(X, = i) =P(Xo = i) for
all n € N and i € E follows by induction on n. The case n =1
holds by assumption, and the induction step follows by induction
hypothesis and the Markov property. The last statement is obvious.
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Example 2.19

Let the transition matrix of a Markov chain X be given by

08 02 0 O
02 08 0 O
0 0 04 06
0 0 06 04

P =
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Example 2.19

Let the transition matrix of a Markov chain X be given by

08 02 0 O
02 08 0 O
0 0 04 06
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P =

Then 7 = (0.5,0.5,0,0),

L. Breuer Chapter 2: Markov Chains



Example 2.19

Let the transition matrix of a Markov chain X be given by

08 02 0 O
02 08 0 O
0 0 04 06
0 0 06 04

P =

Then 7 = (0.5,0.5,0,0), ©’ = (0,0,0.5,0.5)
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Example 2.19

Let the transition matrix of a Markov chain X be given by

08 02 0 O
02 08 0 O
0 0 04 06
0 0 06 04

P =

Then 7 = (0.5,0.5,0,0), 7 = (0,0,0.5,0.5) as well as any linear
combination of them are stationary distributions for X.
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Example 2.19

Let the transition matrix of a Markov chain X be given by

08 02 0 O
02 08 0 O
0 0 04 06
0 0 06 04

P =

Then m = (0.5,0.5,0,0), 7’ = (0,0,0.5,0.5) as well as any linear
combination of them are stationary distributions for X'. This shows
that a stationary distribution does not need to be unique.
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Example 2.20: Bernoulli process

The transition matrix of a Bernoulli process has the structure
1—-p p 0 0
0 1-p p 0
0 0 1-p p

P =
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Example 2.20: Bernoulli process

The transition matrix of a Bernoulli process has the structure
1—-p p 0 0
0 1-p p 0
0 0 1-p p

P =

Hence mP = 7 implies first
7To-(1—p)=71’0 = m=0

since0 < p<1.
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Example 2.20: Bernoulli process

The transition matrix of a Bernoulli process has the structure
1—-p p 0 0
0 1-p p 0
0 0 1-p p

P =

Hence mP = 7 implies first
7To-(1—p)=71’0 = m=0

since 0 < p < 1. Assume that 7, = 0 for any n € Np.
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Example 2.20: Bernoulli process

The transition matrix of a Bernoulli process has the structure
1—-p p 0 0
0 1-p p 0
0 0 1-p p

P =

Hence mP = 7 implies first
7To-(1—p)=71’0 = m=0

since 0 < p < 1. Assume that 7, = 0 for any n € Ny. This and
the condition mP = 7 further imply for 7,1

7Tn'p+77n+1'(]-_p):7rn+l = mpy1 =0
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Example 2.20: Bernoulli process

The transition matrix of a Bernoulli process has the structure
1—-p p 0 0
0 1-p p 0
0 0 1-p p

P =

Hence mP = 7 implies first
7To-(1—p)=71’0 = m=0

since 0 < p < 1. Assume that 7, = 0 for any n € Ny. This and
the condition mP = 7 further imply for 7,1

7Tn'p+77n+1'(]-_p):7rn+l = mpy1 =0

which completes an induction argument proving 7, = 0 for all
n € Np.
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Example 2.20: Bernoulli process

The transition matrix of a Bernoulli process has the structure
1—-p p 0 0
0 1-p p 0
0 0 1-p p

P =

Hence mP = 7 implies first
7To-(1—p)=71’0 = m=0

since 0 < p < 1. Assume that 7, = 0 for any n € Ny. This and
the condition mP = 7 further imply for 7,1

7Tn'p+77n+1'(]-_p):7rn+l = mpy1 =0

which completes an induction argument proving 7, = 0 for all
n € Np. Hence the Bernoulli process does not have a stationary
distribution.
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Example 2.21

The solution of 7P =7 and ;. m; = 1 is unique for

(504
p 1-p

with 0 < p < 1.
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Example 2.21

The solution of 7P =7 and ;g m; = 1 is unique for

(504
p 1-p

with 0 < p < 1. Thus there are transition matrices which have
exactly one stationary distribution.
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Theorem 2.22

A transient Markov chain (i.e. a Markov chain with transient
states only) has no stationary distribution.

Proof:
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Theorem 2.22

A transient Markov chain (i.e. a Markov chain with transient
states only) has no stationary distribution.

Proof: Assume that 7P = 7 holds for some distribution 7.
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Theorem 2.22

A transient Markov chain (i.e. a Markov chain with transient
states only) has no stationary distribution.

Proof: Assume that 7P = 7 holds for some distribution 7. Further
let E = N without loss of generality.
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Theorem 2.22

A transient Markov chain (i.e. a Markov chain with transient
states only) has no stationary distribution.

Proof: Assume that 7P = 7 holds for some distribution 7. Further

let E = N without loss of generality. Choose any state m € N with
Tm > 0.
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Theorem 2.22

A transient Markov chain (i.e. a Markov chain with transient
states only) has no stationary distribution.

Proof: Assume that 7P = 7 holds for some distribution 7. Further
let E = N without loss of generality. Choose any state m € N with
7m > 0. Since Y 72, m, = 1 is bounded, there is an index M > m

such that Y07\ mp < .
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Theorem 2.22

A transient Markov chain (i.e. a Markov chain with transient
states only) has no stationary distribution.

Proof: Assume that 7P = 7 holds for some distribution 7. Further
let E = N without loss of generality. Choose any state m € N with
7m > 0. Since Y 72, m, = 1 is bounded, there is an index M > m

such that Y 07 /7y < Tm. Set € :=7mm — Y o2 4y T
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Theorem 2.22

A transient Markov chain (i.e. a Markov chain with transient
states only) has no stationary distribution.

Proof: Assume that 7P = 7 holds for some distribution 7. Further
let E = N without loss of generality. Choose any state m € N with
7m > 0. Since Y 72, m, = 1 is bounded, there is an index M > m
such that Y 07 /7y < Tm. Set € := 7, — Y 2 4, Tn. By theorem
2.17, there is an index N € N such that PN(i, m) < & for all

i< M.
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Theorem 2.22

A transient Markov chain (i.e. a Markov chain with transient
states only) has no stationary distribution.

Proof: Assume that 7P = 7 holds for some distribution 7. Further
let E = N without loss of generality. Choose any state m € N with
7m > 0. Since Y 72, m, = 1 is bounded, there is an index M > m
such that Y 07 /7y < Tm. Set € := 7, — Y 2 4, Tn. By theorem
2.17, there is an index N € N such that PN(i, m) < & for all

i < M. Then the stationarity of 7 implies

[eS) M-1 9]
wm =Y _miPN(i,m) =" mPN(i,m)+ > PN (i, m)
i=1 i=1 i=M

o0
<€+Z7T,':7Tm
i=M

which is a contradiction.



Positive / Null Recurrence

Define

Ni(n) = Z Texe=iy
k=0

as the number of visits to state / until time n.
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as the number of visits to state i until time n. Further define for a
recurrent state /i € E the mean time of return

m; = E(T,‘|Xo = i)
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Positive / Null Recurrence
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Ni(n) = Z Texe=iy
k=0

as the number of visits to state i until time n. Further define for a
recurrent state /i € E the mean time of return

m; = E(T,‘|Xo = i)

By definition m; > 0 for all / € E.
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Positive / Null Recurrence

Define

Ni(n) = Z Texe=iy
k=0

as the number of visits to state i until time n. Further define for a
recurrent state /i € E the mean time of return

m; = E(T,‘|Xo = i)

By definition m; > 0 for all i € E. A recurrent state / € E with
m; < oo will be called positive recurrent,
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Positive / Null Recurrence

Define

Ni(n) = Z Texe=iy
k=0

as the number of visits to state i until time n. Further define for a
recurrent state /i € E the mean time of return

m; = E(T,‘|Xo = i)

By definition m; > 0 for all i € E. A recurrent state / € E with
m; < oo will be called positive recurrent, otherwise i is called
null recurrent.
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Elementary renewal theorem

The elementary renewal theorem (which will be proven in chapter
4) states that
E(Ni(n)Xo=Jj) _ 1

lim =
n—o00 n m;

for all recurrent j € E
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Elementary renewal theorem

The elementary renewal theorem (which will be proven in chapter
4) states that
E(Ni(n)Xo=Jj) _ 1

lim =
n—o00 n m;

for all recurrent i € E and independently of j € E provided j < i,
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Elementary renewal theorem

The elementary renewal theorem (which will be proven in chapter
4) states that
E(Ni(n)Xo=Jj) _ 1

lim =
n—o00 n m;

for all recurrent i € E and independently of j € E provided j < i,
with the convention of 1/00 := 0.
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Elementary renewal theorem

The elementary renewal theorem (which will be proven in chapter
4) states that
E(Ni(n)Xo=Jj) _ 1

lim =
n—o00 n m;

for all recurrent i € E and independently of j € E provided j < i,
with the convention of 1/00 := 0. Thus the asymptotic rate of
visits to a recurrent state is determined by the mean recurrence
time of this state.
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Theorem 2.23

Positive recurrence and null recurrence are class properties with
respect to the relation of communication between states.

L. Breuer Chapter 2: Markov Chains



Theorem 2.23

Positive recurrence and null recurrence are class properties with
respect to the relation of communication between states.

Proof:
Assume that / <+ j for two states i,j € E
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Theorem 2.23

Positive recurrence and null recurrence are class properties with
respect to the relation of communication between states.

Proof:
Assume that i <> j for two states i,j € E and i is null recurrent.
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Theorem 2.23

Positive recurrence and null recurrence are class properties with
respect to the relation of communication between states.

Proof:

Assume that i <> j for two states i,j € E and i is null recurrent.
Thus there are numbers m, n € N with P"(i, ) > 0 and

P™(j,i) > 0.
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Theorem 2.23

Positive recurrence and null recurrence are class properties with
respect to the relation of communication between states.

Proof:

Assume that i <> j for two states i,j € E and i is null recurrent.
Thus there are numbers m, n € N with P"(i, ) > 0 and

P™(j,i) > 0. Because of the representation

E(N;(k)|Xo = i) = 2o P'(i, i), we obtain
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Proof of theorem 2.23 (contd.)

k [(+ -
O: ||m ZI:OP (I7I)
k—00 k
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Proof of theorem 2.23 (contd.)

k [(+ -
O: ||m Z/ZOP(I7I)

k—o00 k

k—m—n pJ
> lim 220 P UI) po; iy pm;

~ k—oo k
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Proof of theorem 2.23 (contd.)

k [(+ -
O: ||m Z/ZOP(I7I)

k—o00 k

> lim

k—m—n pJ
Z 'D( ) Pn(I,J)Pm(,I)

~ k—oo k
. k—m-—n Ekm”P/(_/J) . .
= | - pPn pm
kinoo K k—m— (’71) (./7’)
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Proof of theorem 2.23 (contd.)

k [(+ -
O: ||m Z/ZOP(I7I)

k—o00 k

k—m—n pJ
Z 'D( ) Pn(I,J)Pm(,I)

k—o0 k

. k—m-n »C "~ o "P/(_/ J) . .
=1 - pPn pm

kinoo K k m — (’71) (./7’)

ZI £sl=0" \JJ) PI(./ J) P"(i,j)Pm(j, i)
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Proof of theorem 2.23 (contd.)

k [(+ -
O: ||m Z/ZOP(I7I)

k—o00 k

k—m—n pJ
> lim 220 P UI) po; iy pm;

~ k—oo k
. k—m-—n Ekm”P/(_/J) . .
= | - pPn pm
kinoo K k—m— (’71) (./7’)

= lim
k—o00

P"(i, /)P, 1)
m;

k I(: ;
Z/:ol’:(fd) - P(i, j)P™(j, i)
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Proof of theorem 2.23 (contd.)

k [(+ -
O: ||m Z/ZOP(I7I)

k—o00 k

k—m—n pJ
> lim 220 P UI) po; iy pm;

~ k—oo k
. k—m-—n Ekm”P/(_/J) . .
= | - pPn pm
kinoo K k—m— (’71) (./7’)

= lim
k—o00

_ P(i)PG, )
mj

k I(: ;
Z/:ol’:(fd) - P(i, j)P™(j, i)

and thus m; = oo, which signifies the null recurrence of ;.
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Theorem 2.24

Let / € E be positive recurrent and define the mean first visit time
m; = ]E(T,'|X0 = i).
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Theorem 2.24

Let / € E be positive recurrent and define the mean first visit time
mj := E(7;|Xo = ). Then a stationary distribution 7 is given by

[ee]
mj = m,Tl . ZP(Xn =Jj,7i > n|Xo =)
n=0

forall j € E.
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Theorem 2.24

Let / € E be positive recurrent and define the mean first visit time
mj := E(7;|Xo = ). Then a stationary distribution 7 is given by

[ee]
mj = m,Tl . ZP(Xn =Jj,7i > n|Xo =)
n=0

for all j € E. In particular, m; = mi_1
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Theorem 2.24

Let / € E be positive recurrent and define the mean first visit time
mj := E(7;|Xo = ). Then a stationary distribution 7 is given by

[ee]
mj = m,Tl . ZP(Xn =Jj,7i > n|Xo =)
n=0

for all j € E. In particular, m; = mi_1 and m, = 0 for all states k
outside of the communication class belonging to i.
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Proof of theorem 2.24

First of all, 7w is a probability measure
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Proof of theorem 2.24

First of all, 7 is a probability measure since

(o] (o]
SN BXa=jimi>nXo=1)=Y > P(Xy=j,mi >n|Xo =)

JjEE n=0 n=0 jeE
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Proof of theorem 2.24

First of all, 7 is a probability measure since

(o] (o]
SN BXa=jimi>nXo=1)=Y > P(Xy=j,mi >n|Xo =)

JjEE n=0 n=0 jeE

= Z]P’(T,‘ > n‘Xo = i) =m;
n=0
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Proof of theorem 2.24

First of all, 7 is a probability measure since

(o] (o]
SN BXa=jimi>nXo=1)=Y > P(Xy=j,mi >n|Xo =)

JjEE n=0 n=0 jeE

= Z]P’(T,‘ > n‘Xo = i) =m;
n=0

The particular statements in the theorem are obvious from the
definition of 7
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Proof of theorem 2.24

First of all, 7 is a probability measure since

(o] (o]
SN BXa=jimi>nXo=1)=Y > P(Xy=j,mi >n|Xo =)

JjEE n=0 n=0 jeE

o0
= Z]P’(T,‘ > n‘Xo = i) =m;
n=0
The particular statements in the theorem are obvious from the
definition of m and the fact that a recurrent communication class is
closed.
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Proof of theorem 2.24 (contd.)

The stationarity of 7 is shown as follows.
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Proof of theorem 2.24 (contd.)

The stationarity of 7 is shown as follows. First we obtain

mp=m Y B = i > X = 1)
n=0
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Proof of theorem 2.24 (contd.)

The stationarity of 7 is shown as follows. First we obtain

mp=m Y B = i > X = 1)
n=0

= m LSRG = o > alXo = 1)

n=1
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Proof of theorem 2.24 (contd.)

The stationarity of 7 is shown as follows. First we obtain

mp=m Y B = i > X = 1)
n=0

= m LSRG = o > alXo = 1)

n=1

o0
:mfl-ZIP’(X,,:j,T,- >n—1|Xp = 1)

n=1

since Xo = X;, = i in the conditioning set {Xo = i}.
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Proof of theorem 2.24 (contd.)

The stationarity of 7 is shown as follows. First we obtain

mp=m Y B = i > X = 1)
n=0

= m LSRG = o > alXo = 1)

n=1

o0
:mfl-ZIP’(X,,:j,T,- >n—1|Xp = 1)

n=1

since Xo = X;, = i in the conditioning set {Xo = i}. Further,

L. Breuer Chapter 2: Markov Chains



Proof of theorem 2.24 (contd.)

P(X, =j, 7 >n—1,X =)
P(Xo = i)

P(X,=j,1i>n—1Xo=1i)=
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Proof of theorem 2.24 (contd.)

P(X, =j, 7 >n—1,X =)
P(Xo = i)

P(X,=j,1i>n—1Xo=1i)=

—Z (Xn=Jj,Xn-1=k,7i >n—1,X0=1)
P(XOZI)

keE
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Proof of theorem 2.24 (contd.)

P(X, =j, 7 >n—1,X =)
P(Xo = i)

P(X,=j,1i>n—1Xo=1i)=

—Z (Xn=Jj,Xn-1=k,7i >n—1,X0=1)
P(XOZI)

keE

_ZP(X,-, :j,Xn_]_ = k,T,‘ > n—l,X() = I)

Py P(Xn_lzk,Ti> n—l,oni)

P(Xp_1 = k,7i >n—1,X = i)
P(Xo = i)
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Proof of theorem 2.24 (contd.)

P(X, =j, 7 >n—1,X =)
P(Xo = i)

P(X,=j,1i>n—1Xo=1i)=

—Z (Xn=Jj,Xn-1=k,7i >n—1,X0=1)
P(XOZI)

keE

_ZP(X,-, :j,Xn_]_ = k,T,‘ > n—l,X() = I)

Py P(Xn_lzk,Ti> n—l,oni)

P(Xp_1 = k,7i >n—1,X = i)
P(Xo = i)

= Zpij(anl =k, 7, >n-— 1|Xo = i)
keE
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Proof of theorem 2.24 (contd.)

Hence we obtain

o0
= mfl . ZZpij(anl =k, Ti>n— 1|X0 = i)
n=1 keE
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Proof of theorem 2.24 (contd.)

Hence we obtain

o0
= mfl . ZZpij(anl =k, Ti>n— 1|X0 = i)
n=1 keE

= Zpkj . mflzIP’(X,, = k,1i > n|Xp =)
keE n=0
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Proof of theorem 2.24 (contd.)

Hence we obtain

o0
= mfl . ZZpij(anl =k, Ti>n— 1|X0 = i)
n=1 keE

= Zpkj . mflzIP’(X,, = k,1i > n|Xp =)
keE n=0

= Z Tk Pkj

keE

which completes the proof.
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Let X denote an irreducible, positive recurrent Markov chain.
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Theorem 2.25

Let X denote an irreducible, positive recurrent Markov chain.
Then X has a unique stationary distribution.
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Theorem 2.25

Let X denote an irreducible, positive recurrent Markov chain.
Then X has a unique stationary distribution.

Proof:
Existence has been shown in theorem 2.24.
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Theorem 2.25

Let X denote an irreducible, positive recurrent Markov chain.
Then X has a unique stationary distribution.

Proof:
Existence has been shown in theorem 2.24. Uniqueness of the

stationary distribution can be seen as follows.
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Theorem 2.25

Let X denote an irreducible, positive recurrent Markov chain.
Then X has a unique stationary distribution.

Proof:

Existence has been shown in theorem 2.24. Uniqueness of the
stationary distribution can be seen as follows. Let 7 denote the
stationary distribution as constructed in theorem 2.24
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Let X denote an irreducible, positive recurrent Markov chain.
Then X has a unique stationary distribution.

Proof:

Existence has been shown in theorem 2.24. Uniqueness of the
stationary distribution can be seen as follows. Let 7 denote the
stationary distribution as constructed in theorem 2.24 and i the
positive recurrent state that served as recurrence point for .
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Theorem 2.25

Let X denote an irreducible, positive recurrent Markov chain.
Then X has a unique stationary distribution.

Proof:

Existence has been shown in theorem 2.24. Uniqueness of the
stationary distribution can be seen as follows. Let 7 denote the
stationary distribution as constructed in theorem 2.24 and i the
positive recurrent state that served as recurrence point for .
Further, let v denote any stationary distribution for X.
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Theorem 2.25

Let X denote an irreducible, positive recurrent Markov chain.
Then X has a unique stationary distribution.

Proof:

Existence has been shown in theorem 2.24. Uniqueness of the
stationary distribution can be seen as follows. Let 7 denote the
stationary distribution as constructed in theorem 2.24 and i the
positive recurrent state that served as recurrence point for .
Further, let v denote any stationary distribution for X'. Then there
is a state j € E with v; >0
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Theorem 2.25

Let X denote an irreducible, positive recurrent Markov chain.
Then X has a unique stationary distribution.

Proof:

Existence has been shown in theorem 2.24. Uniqueness of the
stationary distribution can be seen as follows. Let 7 denote the
stationary distribution as constructed in theorem 2.24 and i the
positive recurrent state that served as recurrence point for .
Further, let v denote any stationary distribution for X'. Then there
is a state j € E with v; > 0 and a number m € N with

P™(j,i) >0,
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Theorem 2.25

Let X denote an irreducible, positive recurrent Markov chain.
Then X has a unique stationary distribution.

Proof:

Existence has been shown in theorem 2.24. Uniqueness of the
stationary distribution can be seen as follows. Let 7 denote the
stationary distribution as constructed in theorem 2.24 and i the
positive recurrent state that served as recurrence point for .
Further, let v denote any stationary distribution for X'. Then there
is a state j € E with v; > 0 and a number m € N with

P™(j,i) > 0, since X is irreducible.
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Proof of theorem 2.25 (contd.)

Consequently we obtain

=Y wP™(k,i) > viP™(j,i) >0
keE
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Proof of theorem 2.25 (contd.)

Consequently we obtain
=Y wP™(k,i) > viP™(j,i) >0
keE

Hence we can multiply v by a factor ¢ > 0 such that
C-Vj=T= 1/m,-.
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Proof of theorem 2.25 (contd.)

Consequently we obtain
=Y wP™(k,i) > viP™(j,i) >0
keE

Hence we can multiply v by a factor ¢ > 0 such that
c-vi=m; =1/m;. Denote ¥ :=c-v,
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Proof of theorem 2.25 (contd.)

Consequently we obtain
=Y wP™(k,i) > viP™(j,i) >0
keE

Hence we can multiply v by a factor ¢ > 0 such that
c-vi=mi=1/mj. Denote 7 :=c-v, i.e Uy :=c-v forall k € E.
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Proof of theorem 2.25 (contd.)

Consequently we obtain
=Y wP™(k,i) > viP™(j,i) >0
keE

Hence we can multiply v by a factor ¢ > 0 such that
c-vi=mi=1/mj. Denote 7 :=c-v, i.e Uy :=c-v forall k € E.
|:et P denote the transition matrix P without the ith column, i.e.
P = (Pnk)hkee with

B — Phks Kk Fi
"o, k=i
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Proof of theorem 2.25 (contd.)

Consequently we obtain

=Y wP™(k,i) > viP™(j,i) >0
keE

Hence we can multiply v by a factor ¢ > 0 such that
c-vi=mi=1/mj. Denote 7 :=c-v, i.e Uy :=c-v forall k € E.
|:et P denote the transition matrix P without the ith column, i.e.
P = (Pnk)hkee with

B — Phks Kk Fi
"o, k=i

Denote further the Dirac measure on i by &', i.e

) 1 =
=1 """
0, k#i
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Proof of theorem 2.25 (contd.)

Then the stationary distribution 7 can be represented by

o0
T = mi_l'd’ZP”
n=0
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Proof of theorem 2.25 (contd.)

Then the stationary distribution 7 can be represented by

o0
-1 i Hn
T=m;" -9 Z P
n=0
We first claim that

m;v = 5 + m,-ﬁ.E’
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Proof of theorem 2.25 (contd.)

Then the stationary distribution 7 can be represented by

. o0
= m,-_1 -0 Z P"
n=0
We first claim that
m;v = 5 + m,-ﬁ.E’

This is clear for the entry 7;
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Proof of theorem 2.25 (contd.)

Then the stationary distribution 7 can be represented by

. o0
= m,-_1 -0 Z P"
n=0
We first claim that
m;v = 5 + m,-ﬁ.E’

This is clear for the entry 7; and easily seen for ) with k # |
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Proof of theorem 2.25 (contd.)

Then the stationary distribution 7 can be represented by

. o0
= m,-_1 -0 Z P"
n=0
We first claim that
m;v = 5 + m,-ﬁ.E’

This is clear for the entry 7; and easily seen for ) with k # |
because in this case

(D/B)k :C'(I/P)k :C'Vk:ﬂk
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Proof of theorem 2.25 (contd.)

Now we can proceed with the same argument to see that

mip = &' + (6" + mipP)P = ' + 6'P + mipP? = ..
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Proof of theorem 2.25 (contd.)

Now we can proceed with the same argument to see that

mip = &' + (6" + mipP)P = ' + 6'P + mipP? = ..

= 5’§: ﬁ;n = m;m
n=0
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Proof of theorem 2.25 (contd.)

Now we can proceed with the same argument to see that

mip = &' + (6" + mipP)P = ' + 6'P + mipP? = ..

= 5’§: ﬁ;n = m;m
n=0

Hence 7 already is a probability measure
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Proof of theorem 2.25 (contd.)

Now we can proceed with the same argument to see that

mip = &' + (6" + mipP)P = ' + 6'P + mipP? = ..

= 5’§: ﬁ;n = m;m
n=0

Hence 7 already is a probability measure and thus ¢ = 1.
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Proof of theorem 2.25 (contd.)

Now we can proceed with the same argument to see that

mip = &' + (6" + mipP)P = ' + 6'P + mipP? = ..

= 5’§: ﬁ;n = m;m
n=0

Hence 7 already is a probability measure and thus ¢ = 1. This
yields v = ¥ = 7 and thus the statement.
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Theorem 2.27

Let X denote an irreducible, positive recurrent Markov chain.
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Theorem 2.27

Let X denote an irreducible, positive recurrent Markov chain.
Then the stationary distribution 7 of X is given by

1
7r-—m1—
J =y

J E(7j|Xo = J)

for all j € E.

L. Breuer Chapter 2: Markov Chains



Theorem 2.27

Let X denote an irreducible, positive recurrent Markov chain.
Then the stationary distribution 7 of X is given by

T = m*1 = 71
P E(rlXo =)
for all j € E.
Proof:

Since all states in E are positive recurrent,
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Theorem 2.27

Let X denote an irreducible, positive recurrent Markov chain.
Then the stationary distribution 7 of X is given by

T = m*1 = 71
P E(rlXo =)
for all j € E.
Proof:

Since all states in E are positive recurrent, the construction in
theorem 2.24 can be pursued for any inital state j.
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Theorem 2.27

Let X denote an irreducible, positive recurrent Markov chain.
Then the stationary distribution 7 of X is given by

T = m*1 = 71
P E(rlXo =)
for all j € E.
Proof:

Since all states in E are positive recurrent, the construction in
theorem 2.24 can be pursued for any inital state j. This yields
T = mJ._1 for all j € E.
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Theorem 2.27

Let X denote an irreducible, positive recurrent Markov chain.
Then the stationary distribution 7 of X is given by

T = m*1 = 71
P E(rlXo =)
for all j € E.
Proof:

Since all states in E are positive recurrent, the construction in
theorem 2.24 can be pursued for any inital state j. This yields
= m=1 for all j € E. The statement now follows from the

J
uniqueness of the stationary distribution.
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For an irreducible, positive recurrent Markov chain,
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Theorem 2.28

For an irreducible, positive recurrent Markov chain, the stationary
probability 7; of a state j coincides with its asymptotic rate of
recurrence,
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Theorem 2.28

For an irreducible, positive recurrent Markov chain, the stationary
probability 7; of a state j coincides with its asymptotic rate of
recurrence, i.e.

E(N(mXo=1)

lim fi

n—00 n

forallje E
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Theorem 2.28

For an irreducible, positive recurrent Markov chain, the stationary
probability 7; of a state j coincides with its asymptotic rate of
recurrence, i.e.

E(N; Xo=1
i B =)
n—o0 n

for all j € E and independently of / € E.
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Theorem 2.28

For an irreducible, positive recurrent Markov chain, the stationary
probability 7; of a state j coincides with its asymptotic rate of
recurrence, i.e.

E(Nj(n)[Xo =17) _

lim 7TJ'
n—o00 n

for all j € E and independently of i € E. Further, if an asymptotic
distribution p; = limp_,oc P(X, = j) for all j € E does exist,
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Theorem 2.28

For an irreducible, positive recurrent Markov chain, the stationary
probability 7; of a state j coincides with its asymptotic rate of
recurrence, i.e.

E(Nj(n)[Xo =17) _

lim 7TJ'
n—o00 n

for all j € E and independently of i € E. Further, if an asymptotic
distribution p; = limp_,oc P(X, = j) for all j € E does exist, then it
coincides with the stationary distribution.

L. Breuer Chapter 2: Markov Chains



Theorem 2.28

For an irreducible, positive recurrent Markov chain, the stationary
probability 7; of a state j coincides with its asymptotic rate of
recurrence, i.e.

E(Nj(n)[Xo =17) _

lim 7TJ'
n—o00 n

for all j € E and independently of i € E. Further, if an asymptotic
distribution p; = limp_,oc P(X, = j) for all j € E does exist, then it
coincides with the stationary distribution. In particular, it is
independent of the initial distribution of X.
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Proof of theorem 2.28

The first statement immediately follows from the elementary
renewal theorem.
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Proof of theorem 2.28

The first statement immediately follows from the elementary
renewal theorem. For the second statement, it suffices to employ

E(N;(n)[Xo = i) = 2o P'(i.J).
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Proof of theorem 2.28

The first statement immediately follows from the elementary
renewal theorem. For the second statement, it suffices to employ
E(N;(n)|Xo = i) = >_]_o P'(i,j). If an asymptotic distribution
does exist,
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Proof of theorem 2.28

The first statement immediately follows from the elementary
renewal theorem. For the second statement, it suffices to employ
E(N;(n)|Xo = i) = >_]_o P'(i,j). If an asymptotic distribution
does exist, then for any initial distribution v we obtain

o o nye -
(vP"); ;y, nIl_)rr;OP (1,))
1

pj =

= lim
n—oo
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Proof of theorem 2.28

The first statement immediately follows from the elementary
renewal theorem. For the second statement, it suffices to employ
E(N;(n)|Xo = i) = >_]_o P'(i,j). If an asymptotic distribution
does exist, then for any initial distribution v we obtain

o e o
pj = lim (vP"); = 2; lim P"(i,j)
1

= g v; lim E/ 0P Zl/,ﬂj
n—o0

i€eE icE
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Proof of theorem 2.28

The first statement immediately follows from the elementary
renewal theorem. For the second statement, it suffices to employ
E(N;(n)|Xo = i) = >_]_o P'(i,j). If an asymptotic distribution
does exist, then for any initial distribution v we obtain

o e o
pj = lim (vP"); = 2; lim P"(i,j)
1

= g v; lim E/ 0P g Vi
n—o0
i€eE i€eE
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Let X denote a Markov chain with transition matrix

-0
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Let X denote a Markov chain with transition matrix

-0

Then X has no asymptotic distribution,
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Let X denote a Markov chain with transition matrix

01
>~ (o)
Then X has no asymptotic distribution, but a stationary
distribution, namely 7 = (1/2,1/2).
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Theorem 2.31

An irreducible Markov chain with finite state space F is positive
recurrent.
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Theorem 2.31

An irreducible Markov chain with finite state space F is positive
recurrent.

Proof:
For all n€ N and i € F we have

> Pij)=1

JeF
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Theorem 2.31

An irreducible Markov chain with finite state space F is positive
recurrent.

Proof:
For all n€ N and i € F we have

> Pij)=1

JeF

Hence it is not possible that lim,_ P"(i,j) =0 for all j € F.
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Theorem 2.31

An irreducible Markov chain with finite state space F is positive
recurrent.

Proof:
For all n€ N and i € F we have

> Pij)=1

JeF

Hence it is not possible that lim,_ P"(i,j) =0 for all j € F.
Thus there is one state h € F such that

> P(i, h) = rip = finrhy = 00
n=0
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Theorem 2.31

An irreducible Markov chain with finite state space F is positive
recurrent.

Proof:
For all n€ N and i € F we have

> Pij)=1

JeF

Hence it is not possible that lim,_ P"(i,j) =0 for all j € F.
Thus there is one state h € F such that

o
> " P"(i, h) = rip = finrhn = o0
n=0
which means by corollary 2.15 that h is recurrent
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Theorem 2.31

An irreducible Markov chain with finite state space F is positive
recurrent.

Proof:
For all n€ N and i € F we have

> P(ij) =1
JeF

Hence it is not possible that lim,_ P"(i,j) =0 for all j € F.
Thus there is one state h € F such that

> P(i, h) = rip = finrhy = 00
n=0

which means by corollary 2.15 that h is recurrent and by
irreducibility that the chain is recurrent.
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Theorem 2.31

An irreducible Markov chain with finite state space F is positive
recurrent.

Proof:
For all n€ N and i € F we have

> P(ij) =1
JeF

Hence it is not possible that lim,_ P"(i,j) =0 for all j € F.
Thus there is one state h € F such that

> P(i, h) = rip = finrhy = 00
n=0

which means by corollary 2.15 that h is recurrent and by
irreducibility that the chain is recurrent.
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Proof of theorem 2.31

If the chain were null recurrent,
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Proof of theorem 2.31

If the chain were null recurrent, then according to the elementary
renewal theorem

n—oo N

1 n
lim =" Pk(i,j) =0
k=1

would hold for all j € F,
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Proof of theorem 2.31

If the chain were null recurrent, then according to the elementary
renewal theorem

n—oo N

1 n
lim =" Pk(i,j) =0
k=1

would hold for all j € F, independently of / because of
irreducibility.
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Proof of theorem 2.31

If the chain were null recurrent, then according to the elementary
renewal theorem

1 n
lim =" Pk(i,j) =0
k=1

n—oo N

would hold for all j € F, independently of / because of
irreducibility. But this would imply that

dim P77 ) =0

for all j € F,
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Proof of theorem 2.31

If the chain were null recurrent, then according to the elementary
renewal theorem

1 n
lim =" Pk(i,j) =0
k=1

n—oo N

would hold for all j € F, independently of / because of
irreducibility. But this would imply that

dim P77 ) =0

for all j € F, which contradicts our first observation in this proof.
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Proof of theorem 2.31

If the chain were null recurrent, then according to the elementary
renewal theorem

n—oo N

1 n
lim =" Pk(i,j) =0
k=1

would hold for all j € F, independently of / because of
irreducibility. But this would imply that

lim P"(i,j) =0

n—oo

for all j € F, which contradicts our first observation in this proof.
Hence the chain must be positive recurrent.
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The Geo/Geo/1 queue in discrete time
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The Geo/Geo/1 queue in discrete time

Choose any parameters 0 < p,q < 1.
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The Geo/Geo/1 queue in discrete time

Choose any parameters 0 < p,qg < 1. Let the arrival process be
distributed as a Bernoulli process with parameter p
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The Geo/Geo/1 queue in discrete time

Choose any parameters 0 < p,qg < 1. Let the arrival process be
distributed as a Bernoulli process with parameter p and the service
times (S, : n € Np) be iid
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The Geo/Geo/1 queue in discrete time

Choose any parameters 0 < p,qg < 1. Let the arrival process be
distributed as a Bernoulli process with parameter p and the service
times (S, : n € Np) be iid according to the geometric distribution
with parameter q.
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Theorem 2.34 (memoryless property)

Let S be distributed geometrically with parameter g,
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Theorem 2.34 (memoryless property)

Let S be distributed geometrically with parameter g, i.e. let
P(S = k)= (1— q)k"1q forall k € N.
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Theorem 2.34 (memoryless property)

Let S be distributed geometrically with parameter g, i.e. let
P(S = k) = (1 — q)k~1q for all k € N. Then
P(S=k|S>k—-1)=q,
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Theorem 2.34 (memoryless property)

Let S be distributed geometrically with parameter g, i.e. let
P(S = k) = (1 — q)k~1q for all k € N. Then
P(S = k|S > k — 1) = q, independently of k.
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Theorem 2.34 (memoryless property)

Let S be distributed geometrically with parameter g, i.e. let
P(S = k) = (1 — q)k~1q for all k € N. Then
P(S = k|S > k — 1) = q, independently of k.

Proof:

P(S=kS>k—1
P(S=k|S>k—1)= (M5>k—D )
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Theorem 2.34 (memoryless property)

Let S be distributed geometrically with parameter g, i.e. let
P(S = k) = (1 — q)k~1q for all k € N. Then
P(S = k|S > k — 1) = q, independently of k.

Proof:
P(S=k,S5>k-1
P(S=k|S>k—-1)= (IP’(S>k—1) )
_ P(S=k)
CP(S>k-1)
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Theorem 2.34 (memoryless property)

Let S be distributed geometrically with parameter g, i.e. let
P(S = k) = (1 — q)k~1q for all k € N. Then
P(S = k|S > k — 1) = q, independently of k.

Proof:
P(S=k,S>k—1
P(S=k|S>k—-1)= (IP(5>/<—1) )
_ P(S=k)
CP(S>k-1)
_(1-9* g _
1—qf1t ¢
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The Geo/Geo/1 queue as a Markov chain

Let @, denote the number of users in the system at time n € Np.
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The Geo/Geo/1 queue as a Markov chain

Let @, denote the number of users in the system at time n € Np.
Then the state space is E = Np.
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The Geo/Geo/1 queue as a Markov chain

Let @, denote the number of users in the system at time n € Np.
Then the state space is E = Np.
The transition probabilities are pg1 := p, poo := 1 — p,
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The Geo/Geo/1 queue as a Markov chain

Let @, denote the number of users in the system at time n € Np.

Then the state space is E = Np.
The transition probabilities are pp1 := p, pgo := 1 — p, and

p(1-q), j=i+1
pij=qPq+(1—p)(l—q) j=i
q(1 - p). j=i-1

for i > 1.
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Transition matrix

Thus the transition matrix is triagonal,
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Transition matrix

Thus the transition matrix is triagonal, i.e.
1—-p p 0

q(l—p) pg+(1—-p)(1—-q) p(l—q)
0 q(1—p) pq+(1—p)(1—aq)

P =
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Transition matrix

Thus the transition matrix is triagonal, i.e.
1—-p p 0

q(l—p) pg+(1—-p)(1—-q) p(l—q)
0 q(1—p) pq+(1—p)(1—aq)

P =

Abbreviate p' := p(1 — q) and ¢’ := q(1 — p).
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Stationarity condition for the Geo/Geo/1 queue

Then the condition 7P =«
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Stationarity condition for the Geo/Geo/1 queue

Then the condition 7P = m means

mo = mo(1 — p) + M4
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Stationarity condition for the Geo/Geo/1 queue

Then the condition 7P = m means

mo = mo(1 — p) + M4

m =mop+mi(l —p—q')+ mq
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Stationarity condition for the Geo/Geo/1 queue

Then the condition 7P = m means

mo = mo(1 — p) + M4

m =mop+mi(l —p—q')+ mq

and
TTh = 7Tn—1P/ + 7rn(1 - (p/ + q/)) + 7rn+1ql

for all n > 2.
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Stationary distribution - 1

We try the geometric form
Tp41l = Tp - F

foralln>1, with0 < r <1.
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Stationary distribution - 1

We try the geometric form
Tp41l = Tp - F
for all n > 1, with 0 < r < 1. Then stationarity yields

0=mpp —mnr(p' + ¢') + mar’q
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Stationary distribution - 1

We try the geometric form
Tp41l = Tp - F
for all n > 1, with 0 < r < 1. Then stationarity yields

0=mpp —mnr(p' + ¢') + mar’q

=7, (p/_ r(p’+q’)+r2q’)

L. Breuer Chapter 2: Markov Chains



Stationary distribution - 1

We try the geometric form
Tptl = Tp - r

for all n > 1, with 0 < r < 1. Then stationarity yields
0=mpp —mnr(p' + q') + warq’

=7, (p/_ r(p’+q’)+r2q’)

/

and hence r = p'/q
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Stationary distribution - 1

We try the geometric form
Tp41l = Tp - F
for all n > 1, with 0 < r < 1. Then stationarity yields

0=mpp’ —mnr(p +q') + Tar’q

=7, (p'—r(p’+q’)+r2q’)
and hence r=p'/q' <1 < p<q.
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Stationary distribution - 1

We try the geometric form
Tp41l = Tp - F
for all n > 1, with 0 < r < 1. Then stationarity yields

0=mpp’ —mnr(p +q') + Tar’q

=7, (p/ - r(p’+q’)+r2q’)
and hence r = p'/q’ <1 < p < q. Further,

_ P _
T = To—, = 70
q
with p := p/q,
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Stationary distribution - 2

and

1
™= (m1(p’ + q') — mop)
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Stationary distribution - 2

and
_ 1 / ’
™= (m1(p' +q') = mop)

1 /p
== (q,(p’+ q) - p) o
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Stationary distribution - 2

and
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Stationary distribution - 2

and
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Stationary distribution - 3

Normalisation of 7 yields

=S (1025 (2)")
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Stationary distribution - 3

Normalisation of 7 yields

=S (1025 (2)")

and hence

o (55 ()7)
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Stationary distribution - 3

Normalisation of 7 yields

=S (1025 (2)")

and hence

( p i P’ n—1\ !
a = \q

Verify this as an exercise!
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