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Abstract In 1995, Pacheco and Prabhu introduced the class of so–called Markov–additive

processes of arrivals in order to provide a general class of arrival processes for queueing the-

ory. In this paper, the above class is generalized considerably, including time–inhomogeneous

arrival rates, general phase spaces and the arrival space being a general vector space (instead

of the finite–dimensional Euclidean space). Furthermore, the class of Markov–additive jump

processes introduced in the present paper is embedded into the existing theory of jump pro-

cesses. The best known special case is the class of BMAP arrival processes.
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1. Introduction

Inspired by a process developed in Ezhov, Skorokhod [10], the term ”Markov-

additive process” has been coined by Çinlar [6] in 1972. It refers to a two-dimensional

Markov process with transition probabilities that depend on one dimension only. The

marginal process in this dimension is a Markov process. The marginal process in the

other dimension is a process with conditionally independent increments given the phase

process.

The first idea of such a process goes back to Neveu [17] in 1961,whose so-called

F-process is the class of Markov-additive processes with a finite phase space. A special

case of F-processes is the class of BMAPs developed in Lucantoni [14] thirty years

later, which are now widely used in queueing theory. The founding work of Çinlar [6]

on Markov-additive processes was followed by several studies in the 1970s and 80s, e.g.

Arjas, Speed [1], Çinlar [7,8,9], or Ney, Nummelin [18] for discrete time.

However, all these studies examined Markov-additive processes in the most general

case. In the present paper, the focus is on Markov-additive processes which belong to the

class of Markov jump processes. Thus it is possible to explore the many additional an-
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alytical opportunities which cannot be exploited in the general case of Markov-additive

processes. The present paper mainly goes along the contribution by Pacheco, Prabhu

[19], which was written after the BMAP concept proved successful as a versatile arrival

process for queues. The concept developed in Pacheco, Prabhu [19] will be generalized

in this paper and, most importantly, the inhomogeneous casewill be analyzed, too.

In the present paper, the focus is on Markov-additive processes which belong to

the class of Markov jump processes. As a reference for the theory of Markov jump pro-

cesses, it will be referred to the introductory presentation in Gikhman, Skorokhod [11].

In the next section, these so-called Markov-additive jump processes are defined and the

transition probabilities are derived in terms of the infinitesimal transition rates. Section

3 states some elementary properties, mostly resulting fromthe definition immediately.

Under the assumption that the additive part of the state space is a real vector space,

transforms and expectations are derived in section 4. The more specific assumption that

the increments for the additive part be non-negative integers in every component of the

vector space leads to the same derivations as in section 4 viathe easier notion of z-

transforms. Since these processes represent the most general class of arrival processes

for queueing theory, they will be called Markovian arrival processes (MAPs). MAPs are

analyzed in section 5. In the last section, laws of large numbers are given for specific

cases of Markov-additive jump processes on real vector spaces.

2. Definition

Markov-additive jump processes will be defined as two-dimensional Markov jump

processes which satisfy the condition that the transition probabilities depend on one di-

mension only. The other dimension is an (additive) semi-group and the marginal process

on it turns out to have conditionally independent increments.

Definition 1. Let (N; J) = ((Nt; Jt) : t 2 IR+0 ) be a two-dimensional Markov jump

process with a locally compact and separable metric state spaceS := � � �. Let�(�) and�(�) be�-algebras on� and�, respectively, which satisfyfxg 2 �(�) andfyg 2 �(�) for all x 2 � andy 2 �. DenoteS := �(�) 
 �(�) as the product�-algebra of�(�) and�(�). Further, let(�;+) be a semi-group with neutral element0 2 �. (N; J) is calledMarkov-additive jump process if the transition probabilities

satisfy the conditionP (s; t; (x; y); A �B) = P (s; t; (0; y); (A � x)�B) (1)
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for all s < t 2 IR+0 , (x; y) 2 S andA� B 2 S, with A � x := fs 2 � : s+ x 2 Ag.
Define P (s; t; y;A�B) := P (s; t; (0; y); A �B)
for all s < t 2 IR+0 , y 2 � andA�B 2 S.

Remark 2. The above definition postulates that the state spaceS := ��� of a Markov-

additive jump process be locally compact, separable and metric. Standard results in

topology (cf. Herrlich [12], p.224,118,117) yield thatS satisfies this condition if and

only if the state spaces� and� of the marginal processes do so.

Remark 3. Because of equation 1, a Markov-additive jump process(N; J) is uniquely

determined by the probabilitiesP (s; t; y;A � B). Since(N; J) is a Markov jump pro-

cess, the infinitesimal transition ratesq(t; (x; y); A �B) = limh!0 P (t; t+ h; (x; y); A �B)� 1A�B(x; y)h
exist uniformly with respect to(t; (x; y); A �B) and the equalityq(t; (x; y); A �B) = q(t; (0; y); (A � x)�B) (2)

follows from equation 1. Hence, we can defineq(t; y;A�B) := q(t; (0; y); A �B)
for all t 2 IR+0 , y 2 � andA�B 2 S, and
(t; y) := �q(t; y; f(0; y)g)
(t; y; A�B) := q(t; y; (A�B) n f(0; y)g)
as well as p(t; y; A�B) := ( 
(t;y;A�B)
(t;y) for 
(t; y) > 01A�B(0; y) for 
(t; y) = 0
Finally, define the kernelQ(t) on�� � byQ(t; (x; y); A �B) := q(t; y; (A � x)�B)
for all t 2 IR+0 , (x; y) 2 S andA� B 2 S. The kernelQ(t) is called thegenerator of(N; J) at timet.
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Remark 4. By definition, a Markov-additive jump process is translation invariant or ho-

mogeneous in the first component. This leads to a self-similar structure of the generators(Q(t) : t 2 IR+0 ), which can be illustrated in the case of an homogeneous Markov-

additive jump process with� being finite and� = IN0 (the so-called Batch Markovian

Arrival Process or BMAP, see Lucantoni [14]). Here, the generatorQ, which is constant

in time, takes the form

Q = 0BBBBBBBBB�
D0D1D2D3 : : :D0D1D2 : : :D0D1 . . .D0 . . .

. . .

1CCCCCCCCCA
with m � m-matrices(Dn : n 2 IN0), m being the size of�. Omitting the first

row and first column, one obtains the matrixQ again. This self-similarity yields many

simplifications for the analysis of queues with BMAP arrivals. For a so-called level-

dependent BMAP, which does not possess this self-similarity, and for the analysis of

queues with level-dependent BMAP arrivals see Hofmann [13].

Remark 5. An example of a Markov–additive jump process with an additive space�
of infinite dimension is the class of Spatial Markovian Arrival Processes (SMAPs, see

Breuer [5]). This process is used in the modelling of mobile communication networks,

for which the location of users is important for the performance analysis of the network.

For SMAPs, a so–called arrival spaceR with measurable subsetsS 2 �(R) is defined to

represent the area in which users of the network may appear and move in. An SMAP is a

Markov–additive jump process with� being the measurable space of counting functions

on (R; �(R)). This is a subset of the vector spaceIN�(R)0 . Thus an SMAP is a special

Markovian arrival process which will be defined and further examined in section 5.

The transition probabilities of the process will be derivedas the solutions of the

Kolmogorov differential equations via the method of successive approximations by Pi-

card and Lindelöf. Let(N; J) be a Markov-additive jump process. Then the Kol-

mogorov differential equations take the following form for(N; J):�P (s; t; y;A�B)�t = Z��� q(t;w; (A � v)�B) P (s; t; y; d(v; w))



L. Breuer / Markov-Additive Jump Processes 5

for all t > s (Kolmogorov’s forward equation) and�P (s; t; y;A �B)�s = � Z��� P (s; t;w; (A � v)�B) q(s; y; d(v; w))
for all s < t (Kolmogorov’s backward equation). Both differential equations contain

a convolution in the first dimension. This is a consequence ofthe additivity which is

defined on the marginal state space�. The convolution form will be preserved in the

transition probabilities, as the next theorems show.

Theorem 6. The transition probabilities of a Markov-additive jump process can also be

expressed in the formP (s; t; y;A�B) = 1Xn=0P (n)(s; t; y;A�B)
with P (0)(s; t; y;A�B) := 1A�B(0; y)
and recursivelyP (n+1)(s; t; y;A�B) := Z ts Z��� P (n)(s; u; y; d(v; w))q(u;w; (A � v)�B)du
for all n 2 IN0.
Proof: By definition, the infinitesimal ratesq(t;x;A) are continuous int for everyx 2 S andA 2 S. Induction byn yields thatP (n)(s; t;x;A) is differentiable int for

everyn 2 IN0. Now, direct validation shows��t 1Xn=0P (n)(s; t;x;A) = ��t 1Xn=1P (n)(s; t;x;A)= 1Xn=1 ��t Z ts ZS P (n�1)(s; u;x; dy)q(u; y;A)du= 1Xn=1 ZS P (n�1)(s; t;x; dy)q(t; y;A)= ZS q(t; y;A) 1Xn=0P (n)(s; t;x; dy)
i.e. the Kolmogorov forward equation is satisfied. According to Gikhman, Skorokhod

[11], p.317 (theorem 3), the solution to the Kolmogorov forward equation is unique.f���
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By induction, one can prove thatP (n)(s; t; y;A�B) = Z ts Z uns : : : Z u2s| {z }n integrals (Q(u1) : : : Q(un)) ((0; y); A �B) du1 : : : dun
(3)

with Q(u) denoting the generator at timeu 2 [s; t℄. An iteration for computing the

transition probabilities is given by starting withP0(s; t; y;A�B) := 1A�B(0; y)
and iterating byPn+1(s; t; y;A�B) := Z ts ZS Pn(s; u; y; d(v; w))q(u;w; (A�v)�B)du+1A�B (0; y)

(4)

for all n 2 IN0.
3. Elementary Properties

Some elementary properties for Markov–additive jump processes can be taken

from Çinlar [6] and Ezhov, Skorokhod [10], who examined the more general class of

Markov–additive processes. This section contains some properties which mostly are im-

mediate consequences of the definition 1. Obviously, the basic sample path properties of

Markov jump processes hold for the subclass of Markov-additive jump processes, too.

Furthermore, the distribution of the holding time in a stateof the additive space� can

be given. An immediate result is

Theorem 7. Let (N; J) be a Markov–additive jump process with state space� � �.

Then the marginal processJ is a Markov jump process with state space� and transition

probabilities P�(s; t; y;B) = P (s; t; y;��B)
for all s < t 2 IR+0 , y 2 � andB 2 �(�).
Remark 8. This theorem gives rise to a method of analysis which regardsthe marginal

processJ as the independent underlying Markov jump process that conditions the ad-

ditive processN . The marginal state space� shall be calledphase spaceof (N; J), a

single element of� is called aphase. The marginal processJ shall be calledphase pro-
cessof (N; J), whileN shall be calledadditive processof (N; J). The next theorem
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shows thatN has conditionally independent increments givenJ . Furthermore, theorem

11 yields a representation of the generator as the product oftwo kernels.

Theorem 9. Let (N; J) be a Markov-additive jump process with state space� � �.

DefineT := infft 2 IR+ : Nt 6= N0g as the holding time of the marginal processN in

a state of�. Further, define the sub-Markov kernelP (T > t) on� byP (T > t)(y;B) := P (T > t; Jt 2 BjJ0 = y)
for all t 2 IR+, y 2 � andB 2 �(�). Then for alls; t 2 IR+,P (T > t+ s) = P (T > t)P (T > s)
and furthermore,P (T > t)(y;B) = 1Xn=0 Z t0 Z un0 : : : Z u20| {z }n integrals (Q0(u1) : : : Q0(un)) (y;B) du1 : : : dun (5)

with Q0(t)(y;B) := Q(t; y; f0g �B)
for all t 2 IR+0 , y 2 � andB 2 �(�).
Proof: The first equation follows from the definition ofP (T > t) and the fact that(N; J) is a Markov-additive jump process. For the second equation,note that the holding

time T is identical to the first hitting timeTA of the setA := � n f0g � �. This

equals the life time of the cut–off Markov jump process with state space� and generator(Q0(t) : t 2 IR+0 ). Then statement 5 is merely the form for the transition probability

kernel of the cut–off process, which follows from theorem 6.f���
Remark 10. This result contains the statements of theorems 6.9 and 6.11in Pacheco,

Prabhu [19] as the special case of(N; J) being homogeneous,� = IN r0 and� being

countable.

For later use, a fundamental theorem will be stated which asserts the existence of

a representation of the infinitesimal transition rates (resp. the transition probabilities) as

the product of a kernel on the phase space� (which is a function� � �(�) ! [0; 1℄)
and a kernel from� into the additive space� (which is a function�� �(�) ! [0; 1℄).
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Theorem 11. For everyt 2 IR+0 andy 2 �, there is a kernelKt;y : � � �(�) ! IR
such that Q(t; y;A�B) = ZB Q(t; y;�� dz)Kt;y(z;A)
for all A 2 �(�) andB 2 �(�). Furthermore, for everys < t 2 IR+0 andy 2 �, there

is a kernelLs;t;y : �� �(�) ! IR such thatP (s; t; y;A�B) = ZB P (s; t; y;�� dz)Ls;t;y(z;A)
for all A 2 �(�) andB 2 �(�). The kernelsKt;y andLs;t;y are almost surely uniquely

determined.

Proof: See Bauer [2], p.397 (withC = ���(�)), or Bourbaki [4], p.39 (withp = pr2),
since the chargeQ(t; y; :) can be represented as the difference of two finite measures.

4. Markov-Additive Jump Processes on a Real Vector Space

Now assume that(�;+) is a real vector space. Then(�;+) has a base(bi : i 2 I)
with some index setI, and every elementx 2 � has a unique representation(
i : i 2 I)
in IRI with respect to this base (cf. Nef [16], p.46). Denote the bijective mapping

between an elementx 2 � and its representation(
i : i 2 I) by f : � ! IRI . In

order to simplify the notation in the following, an elementx 2 � and its representationf(x) 2 IRI shall be identified. Further, denote the projection fromIRI to the i-th
component bypri : IRI ! IR.

Under this assumption, transforms as well as expectations can be derived for the

marginal processN of a Markov-additive jump processes(N; J). Using the structure

of the vector space, we can define the expectation of a Markov-additive jump processes

with state space�� � as follows:

Definition 12. Let (N; J) be a Markov-additive jump process with state space� � �
and(�;+) be a real vector space. TheexpectationE(Nt�Ns) of the marginal processN during the time interval℄s; t℄ is defined as the kernel on� with entriesE(Nt �Ns)(y;B) := (E(pri(Nt �Ns) � 1B(Jt)jJs = y) : i 2 I)

For real valued random variables, the Fourier transform hasproved very useful,

especially for determining moments (cf. Bauer [2], pp.183-223). The same analytical

method shall be applied here for every dimension of the vector space�.
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Definition 13. Let (N; J) be a Markov-additive jump process with state space� � �
and(�;+) be a real vector space. Then theFourier transform N�s;t of (N; J) over the

time interval℄s; t℄ shall be defined as the functionr ! N�s;t(r) withN�s;t(r)(y;B) := �Z 1�1 ei�r
 P (s; t; y; pr�1j (d
)�B) : j 2 I�
for all r 2 IR, y 2 � andB 2 �(�), with i denoting the imaginary unit in the spaceC
of complex numbers.

Remark 14. Note that by theorem 11, the distributionP (s; t; y; pr�1j (d
) � B) can be

written as P (s; t; y; pr�1j (d
)�B) = ZB P (s; t; y;�� dz)Ls;t;y(z; d
)
with some kernelLs;t;y from � to �. Hence the representationprj(N�s;t(r)(y;B)) := ZB Z 1�1 ei�r
 Ls;t;y(z; d
) P (s; t; y;�� dz)
holds and thus every componentprj(N�s;t(r)) is a kernel on�.

Theorem 15. For everyj 2 I, y 2 �, B 2 �(�) and t 2 IR+0 , define the kernel'Q(j)(t)(r) on� by its entries'Q(j)(t)(r)(y;B) := Z 1�1 ei�r
 Q(t; y; pr�1j (d
) �B)= ZB Z 1�1 ei�r
 Kt;y(z; pr�1j (d
)) Q(t; y;�� dz)
with some kernelKt;y from � to � (see theorem 11 for the second equality). Then the

Fourier transform of(N; J) over the time interval℄s; t℄ can be written asN�s;t(r) = 0BBB� 1Xn=0 Z ts Z uns : : : Z u2s| {z }n integrals 'Q(j)(u1)(r) : : : 'Q(j)(un)(r) du1 : : : dun : j 2 I1CCCA
(5)

for all r 2 IR, with the summand forn = 0 being the identity kernelId on�.
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Proof: Fix i 2 I as well asy 2 � andB 2 �(�). According to formula 3, thejth component ofN�s;t(r)(y;B) equalsprj(N�s;t(r)(y;B)) = 1Xn=0 Z 1�1 ei�r
 P (n)(s; t; y; pr�1j (d
) �B)= 1Xn=0 Z ts Z uns : : : Z u2s| {z }n integrals Z 1�1 ei�r
 (Q(u1) : : : Q(un)) ((0; y); pr�1j (d
)�B)du1 : : : dun= 1Xn=0 Z ts Z uns : : : Z u2s ZIR��Q(u1; y; d(
1; y1))ei�r
1 : : :: : : ZIR��Q(un�1; yn�2; d(
n�1; yn�1))ei�r
n�1 ZIR�B Q(un; yn�1; d(
n; yn))ei�r
ndu1 : : : dun
(6)

by writing out the convolution
 = 
1 + : : : + 
n explicitly. Further, application of

theorem 11 leads toprj(N�s;t(r)(y;B)) == 1Xn=0 Z ts Z uns : : : Z u2s Z� Z 1�1 ei�r
1Ku1;y(y1; pr�1j (d
1))Q(u1; y;�� dy1)) : : :: : : Z� Z 1�1 ei�r
n�1Kun�1;yn�2(yn�1; pr�1j (d
n�1))Q(un�1; yn�2;�� dyn�1)ZB Z 1�1 ei�r
nKun;yn�1(yn; pr�1j (d
n))Q(un; yn�1;�� dyn) du1 : : : dun= 1Xn=0 Z ts Z uns : : : Z u2s Z� 'Q(j)(u1)(r)(y; dy1) : : : ZB 'Q(j)(un)(r)(yn�1; dyn)du1 : : : dun= 1Xn=0 Z ts Z uns : : : Z u2s �'Q(j)(u1)(r) : : : 'Q(j)(un)(r)� (y;B) du1 : : : dun
(7)

Theorem 16. Define the kernelM (j)(t) on� byM (j)(t)(y;B) := Z 1�1 
 Q(t; y; pr�1j (d
)�B)
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for all t 2 IR, y 2 � andB 2 �(�). Then the expectation of the marginal processN
over the time interval℄s; t℄ is given byE(Nt �Ns) = �Z ts P�(s; u) M (j)(u) P�(u; t) du : j 2 I�
Proof: The expectationE(Nt �Ns) can be computed asE(Nt �Ns) = �i � ddrN�s;t(r)����r=0
recognizing that the differentiation can be performed component-wise. Then thejth
component ofE(Nt �Ns) isprj(E(Nt �Ns)) == �i � 1Xn=1 Z ts Z uns : : : Z u2s| {z }n integrals ddr �'Q(j)(u1)(r) : : : 'Q(j)(un)(r)�����r=0 du1 : : : dun
according to the preceding theorem 15. Applying the productrule of differentiation, this

equalsprj(E(Nt �Ns)) == �i � 1Xn=1 Z ts Z uns : : : Z u2s| {z }n integrals nXl=1 'Q(j)(u1)(0) : : : 'Q(j)(ul�1)(0)� ddr'Q(j)(ul)(r)����r=0�'Q(j)(ul+1)(0) : : : 'Q(j)(un)(0) du1 : : : dun= 1Xl=1 1Xn=l Z ts Z uns : : : Z ul+2s| {z }n�l integrals Z ul+1sZ uls : : : Z u2s| {z }l�1 integrals 'Q(j)(u1)(0) : : : 'Q(j)(ul�1)(0)du1 : : : dul�1��i � ddr'Q(j)(ul)(r)����r=0� dul 'Q(j)(ul+1)(0) : : : 'Q(j)(un)(0) dul+1 : : : dun
(8)

Acknowledging that�i � ddr'Q(j)(ul)(r)����r=0 (y;B) = Z 1�1 
 Q(ul; y; pr�1j (d
)�B) = M (j)(ul)(y;B)
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is the expectation kernel of thejth component and'Q(j)(u)(0)(y;B) = Q(u; y;��B)
is the infinitesimal transition rate of the phase process leads toprj(E(Nt �Ns)) == Z ts 0BBB� 1Xl=1 Z uls : : : Z u2s| {z }l�1 integrals 'Q(j)(u1)(0) : : : 'Q(j)(ul�1)(0) du1 : : : dul�11CCCAM (j)(ul)0BBBB� 1Xn=l Z tul Z unul : : : Z ul+2ul| {z }n�l integrals 'Q(j)(ul+1)(0) : : : 'Q(j)(un)(0) dul+1 : : : dun1CCCCA dul= Z ts P�(s; ul)M (j)(ul)P�(ul; t) dul

(9)f���
5. Markovian Arrival Processes

In queueing theory, the most important notion is that of the number of users or

customers in the system (which is the queue or the queueing network). The values of

this are limited to the setIN 0 of non-negative integers. Thus for most applications in

queueing theory, the use of Markov-additive processes(N; J) on real vector spaces (of

dimensionjIj) with IN I0-valued marginal processN suffices.

If the support of the marginal processN is onIN I0, i.e. if P (pri(Nt) 2 IN 0) = 1
for all i 2 I and t 2 IR+0 , then the easier notion of a z-transform serves the same

purposes as the Fourier transform. In this section, the sameanalysis as in the preceding

section 4 shall be carried out using z-transforms.

Definition 17. Let (N; J) be a Markov-additive jump process with state space� � �
and(�;+) be a real vector space having a base(bi : i 2 I). If the marginal processN
has supportIN I0, then(N; J) shall be calledMarkovian arrival process.
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Remark 18. The homogeneity of the first component implies that Markovian arrival pro-

cesses have only non-negative increments in the first dimension. This follows from prop-

erty 1, since for everyn 2 �, k 2 IN and any dimensioni 2 I of the vector space,P (s; t; (n; y); pr�1i (pri(n)� k)�B) = P (s; t; y; pr�1i (�k)�B) = 0
because ofpr�1i (�k) 62 IN I0.
Definition 19. Let (N; J) be a Markovian arrival process. Define thez-transform of(N; J) over the time interval℄s; t℄ as the functionz ! N(s; t; z) with values being the

kernels on� which are determined byN(s; t; z)(y;B) :=  1Xn=0P (pri(Nt �Ns) = n; Jt 2 BjJs = y) zn : i 2 I!
for all z 2 Cwith jzj � 1, y 2 � andB 2 �(�).
Theorem 20. For everyi 2 I, k 2 IN0 andt 2 IR+0 , define the kernelsQ(i)k (t) on� byQ(i)k (t)(y;B) := Q(t; y; pr�1i (k)�B)
for all y 2 � andB 2 �(�). Then the z-transform of(N; J) over the time interval℄s; t℄
can be written asN(s; t; z) == 0BBB� 1Xn=0 Z ts Z uns : : : Z u2s| {z }n integrals 1Xk=0Q(i)k (u1)zk : : : 1Xk=0Q(i)k (un)zk du1 : : : dun : i 2 I1CCCA
for all z 2 Cwith jzj � 1.
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Proof: Fix i 2 I as well asy 2 � andB 2 �(�). According to formula 3, theith
component ofN(s; t; z)(y;B) equalsN(s; t; z)(y;B) = 1Xk=0 1Xn=0P (n)(s; t; y; pr�1i (k)�B) � zk= 1Xk=0 1Xn=0 Z ts Z uns : : : Z u2s| {z }n integrals (Q(u1) : : : Q(un)) ((0; y); pr�1i (k)�B) du1 : : : dun � zk= 1Xn=0 Z ts Z uns : : : Z u2s| {z }n integrals 1Xk=0 Xk1+:::+kn=k �Q(i)k1 (u1) : : : Q(i)kn(un)� (y;B) � zk du1 : : : dun= 1Xn=0 Z ts Z uns : : : Z u2s| {z }n integrals  1Xk=0Q(i)k (u1)zk : : : 1Xk=0Q(i)k (un)zk! (y;B) du1 : : : dun
since the z-transform of the convolution of the kernelsQ(i)k1 (u1; ) : : : ; Q(i)kn(un) equals

the product of the z-transforms ofQ(i)k1 (u1); : : : ; Q(i)kn(un).f���
Remark 21. Note that

P1k=0Q(i)k (uj)zk is a kernel on� for everyj 2 IN and thus every

product
P1k=0Q(i)k (u1)zk : : :P1k=0Q(i)k (un)zk is a kernel on�, too.

Theorem 22. The expectation of the marginal processN over the time interval℄s; t℄ is

given byE(Nt �Ns) =  Z ts P�(s; u) 1Xk=1 k �Q(i)k (u) P�(u; t) du : i 2 I! (9)

Proof: The expectationE(Nt �Ns) can be computed asE(Nt �Ns) = ddzN(s; t; z)����z=1
recognizing that the differentiation can be performed component-wise. Then theith
component ofE(Nt) ispri(E(Nt �Ns)) == 1Xn=1 Z ts Z uns : : : Z u2s| {z }n integrals ddz  1Xk=0Q(i)k (u1)zk : : : 1Xk=0Q(i)k (un)zk!�����z=1 du1 : : : dun
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Denote the generator of the phase process at timeu byQ�(u) and note thatQ�(u) = 1Xk=0Q(i)k (u)
is independent ofi 2 I. Applying the product rule of differentiation yieldspri(E(Nt �Ns)) == 1Xn=1 Z ts Z uns : : : Z u2s| {z }n integrals nXl=1Q�(u1) : : : Q�(ul�1) 1Xk=1 kQ(i)k (ul)!Q�(ul+1) : : :: : : Q�(un) du1 : : : dun= 1Xl=1 1Xn=l Z ts Z uns : : : Z ul+2s| {z }n�l integrals Z ul+1s Z uls : : : Z u2s| {z }l�1 integrals Q�(u1) : : : Q�(ul�1)du1 : : : dul�1 1Xk=1 kQ(i)k (ul)! dulQ�(ul+1) : : : Q�(un) dul+1 : : : dun= Z ts 0BBB� 1Xl=1 Z uls : : : Z u2s| {z }l�1 integrals Q�(u1) : : : Q�(ul�1)du1 : : : dul�11CCCA 1Xk=1kQ(i)k (ul)0BBBB� 1Xn=l Z tul Z unul : : : Z ul+2ul| {z }n�l integrals Q�(ul+1) : : : Q�(un) dul+1 : : : dun1CCCCAdul= Z ts P�(s; ul) 1Xk=1 kQ(i)k (ul)!P�(ul; t) dul

(10)

remembering that the transition probabilities of the phaseprocess are denoted byP�(s; t).f���
Remark 23. The first moment formulae given in Pacheco, Prabhu [19], theorem 6.15

and corollary 6.16(a), can be obtained from this theorem as the special case of(N; J)
being homogeneous,� = IN r0 and� being countable.
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6. Laws of Large Numbers

For some special cases of Markov-additive jump processes onreal vector spaces,

the asymptotic behaviour can be described in terms of stronglaws of large numbers.

First, this will be done for processes with periodic generators. The case of homogeneous

processes shall turn out to be a corollary of the periodic case. In this section, convergence

on the vector space� shall be defined in a weak sense as convergence in every dimension

of �.

Definition 24. A Markov–additive jump process(N; J) with time–dependent generator(Q(t) : t 2 IR+0 ) is calledperiodic with period T > 0 if Q(s + T ) = Q(s) for everys 2 [0; T [. A family (qs : s 2 [0; T [) of probability distributions shall be called a

periodic family of asymptotic distributions for the phase processJ ifkJ�nT+s � qsk ! 0 as n!1
in total variation for alls 2 [0; T [, independently from the initial distribution�.

Theorem 25. Let (N; J) denote a periodic Markov-additive jump process with periodT and be(N;+) a real vector space with base(bi : i 2 I). Let the phase processJ
have a periodic family of asymptotic distributions(�t : t 2 [0; T [). Define the mean rate

vector during a period length by� :=  1T Z T0 Z� d�t(y) Z 1�1 
 Q(t; y; pr�1i (d
)� �) dt : i 2 I!
Assume thatkpri(E(Nt))k < M(t) <1 for all i 2 I andt 2 [0; T ℄. ThenNtt ! �P -almost surely for all initial distributions.

Proof: Because of property 1, the evolution of the process(N; J) does only depend

on the initial distribution� of J0 on the phase space�. Since further every initial

valueN0 6= 0 vanishes fort ! 1, we can assumeN0 = 0 almost surely without

loss of generality. LetN�t denote the marginal processN at timet under initial phase

distribution�. Further, let't = �P�(0; t) denote the distribution of the phase process

at timet.
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Choose any" > 0. Then there is a numberk 2 IN such thatk�P�(0; nT )��0k <" for all n � k and the representationNtt = 1t �NkT + (Nbt=T 
T �NkT ) + (Nt �Nbt=T 
T )�= 1t NkT + 1t N'kT(bt=T 
�k)T + 1t (Nt �Nbt=T 
T )
holds because of the periodicity of the process. Since the expectation kernelE(Ns) is

bounded for alls 2 IR0, the first and the last term will vanish fort!1 almost surely.

The second term equals1t N'kT(bt=T 
�k)T = 1t N�0(bt=T 
�k)T + 1t N'kT��0(bt=T 
�k)T = 1t bt=T 
�1Xm=k N�0T + 1t N'kT��0(bt=T 
�k)T
(10)

since�0 = �0P�(0; T ) is invariant. The first term of this sum tends tolimt!1 1t bt=T 
�1Xm=k N�0T = limt!1 (bt=T 
 � k)Tt 1(bt=T 
 � k)T bt=T 
Xm=k+1N�0T= limt!1 (bt=T 
 � k)Tt � limn!1 1(n� k)T nXm=k+1N�0T= 1T E(N�0T ) = �
almost surely, according to Kolmogorov’s law of large numbers (cf. Bauer [2], p.86) and

theorem 16. The assumptionk�P�(0; kT ) � �0k < " impliesP �N'kT(bt=T 
�k)T 6= N�0(bt=T 
�k)T � < " (10)

which means thatN'kT��0(bt=T 
�k)T = N'kT(bt=T 
�k)T �N�0(bt=T 
�k)T = 0
with probability 1 � ". Hence with probability1 � ", the convergenceNtt ! � holds.

Since" can be chosen arbitrarily small, there can be no setN with P (N) > 0 such thatNt(!)t 6! � for all ! 2 N .f���
Remark 26. If there is a norm on� (e.g. the supremum normkxk := supi2I jpri(x)j
for all x 2 �) and� is complete with respect to this norm, i.e. if� is a Banach space,

then the above theorem is valid for convergence in terms of the norm on�, too. This can

be proven in exactly the same way by using the strong law of large numbers on Banach
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spaces (cf. Mourier [15] or Beck [3]) instead of Kolmogorov’s law of large numbers,

which is a statement for real-valued random variables.

Theorem 27. Let (N; J) denote an homogeneous Markov-additive jump process and

be (N;+) a real vector space with base(bi : i 2 I). Assume that the phase processJ
has an asymptotic distribution�. Define the mean rate vector by� := �Z� d�(y) Z 1�1 
 Q(y; pr�1i (d
)� �) : i 2 I�
If � <1, then Ntt ! �P -almost surely for all initial distributions.

Proof: This follows immediately from theorem 25, since an homogeneous process with

asymptotic distribution� is a periodic process with arbitrary period lengthT > 0 and

periodic family(�t = � : t 2 [0; T [) of asymptotic distributions. Furthermore,Z� d�(y) Z 1�1 
 Q(y; pr�1i (d
)��) = 1T Z T0 Z� d�t(y) Z 1�1 
 Q(t; y; pr�1i (d
)��) dt
holds for alli 2 I, sinceQ(t; y; pr�1i (d
)� �) = Q(y; pr�1i (d
) � �) is constant int.f���
Remark 28. The statement of this theorem is the same as the result in Pacheco, Prabhu

[19], theorem 6.17, if one specifies� = IN r0 and� being countable.

References

[1] E. Arjas, T.P. Speed (1973): ”Topics in Markov-AdditiveProcesses”, Math. Scandinav. 33,

pp.171-192

[2] H. Bauer (1991): ”Wahrscheinlichkeitstheorie”, Walter de Gruyter (Berlin)

[3] A. Beck (1963): ”On the strong law of large numbers”, in: F. Wright: ”Ergodic Theory”, Aca-

demic Press (New York), pp.21-53

[4] N. Bourbaki (1969): ”Intégration”, Diffusion C.C.L.S.(Paris)

[5] L. Breuer (2000): ”Spatial Queues”, Ph.D. thesis, University of Trier

[6] E. Çinlar (1972): ”Markov Additive Processes I,II”, Z. Wahrscheinlichkeitstheorie verw. Geb.

24, pp.85-93,95-121

[7] E. Çinlar (1975): ”Lévy Systems of Markov Additive Processes”, Z. Wahrscheinlichkeitstheorie

verw. Geb. 31, pp.175-185



L. Breuer / Markov-Additive Jump Processes 19

[8] E. Çinlar (1977): ”Markov Additive Processes and Semi-Regeneration”, Proc. 5th Conf. Probab.

Theory, Brasov 1974, pp.33-49

[9] E. Çinlar (1982): ”Regenerative systems and Markov additive processes”, Seminar on Stochastic

Processes in Evanston, Illinois, March 1982, Prog. Probab.Stat. 5, pp.123-147

[10] I.I. Ezhov, A.V. Skorokhod (1969): ”Markov processes with homogeneous second component”,

Theory of Probability and its Applications 14, pp.1–13, 652–667

[11] I. Gikhman, A. Skorokhod (1969): ”Introduction to the Theory of Random Processes”, W.B.

Saunders Company

[12] H. Herrlich (1986): ”Topologie I: Topologische Räume”, Heldermann Verlag (Berlin)

[13] J. Hofmann (1998): ”The BMAP/G/1 queue with level dependent arrivals”, dissertation at the

University of Trier, Dept. of Mathematics and Computer Science

[14] D. Lucantoni (1991): ”New Results on the Single Server Queue with a Batch Markovian Arrival

Process”, Comm. Statist. - Stochastic Models, Bd. 7(1), pp.1-46

[15] E. Mourier (1953): ”Elements Aleatoires dans un espacede Banach”, Ann. Inst. H. Poincare 13,

pp.161–244

[16] W. Nef (1977): ”Lehrbuch der linearen Algebra”, Birkhäuser (Basel)

[17] J. Neveu (1961): ”Une Generalisation des Processus a Acroissements Positifs Independants”,

Abh. math. Sem. Univ. Hamburg 25, pp.36-61

[18] P. Ney, E. Nummelin (1987): ”Markov additive processesI,II”, Ann. Probab. 15, pp.561-

592,593-609

[19] A. Pacheco, N.U. Prabhu (1995): ”Markov-additive processes of arrivals”, in: Dshalalow (ed.):

”Advances in Queueing”, CRC Press


