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Abstract In 1995, Pacheco and Prabhu introduced the class of sod-d4dekov—additive
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ory. In this paper, the above class is generalized conditeiacluding time—inhomogeneous
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1. Introduction

Inspired by a process developed in Ezhov, Skorokhod [1@],téhm "Markov-
additive process” has been coined by Cinlar [6] in 1972. fi#neto a two-dimensional
Markov process with transition probabilities that dependooe dimension only. The
marginal process in this dimension is a Markov process. Thmgimal process in the
other dimension is a process with conditionally indepeh@d®mrements given the phase
process.

The first idea of such a process goes back to Neveu [17] in M@Bdse so-called
F-process is the class of Markov-additive processes withite fophase space. A special
case of F-processes is the class of BMAPs developed in Lowgiafit4] thirty years
later, which are now widely used in queueing theory. The fiog work of Cinlar [6]
on Markov-additive processes was followed by several etuiti the 1970s and 80s, e.g.
Arjas, Speed [1], Cinlar [7,8,9], or Ney, Nummelin [18] fasdrete time.

However, all these studies examined Markov-additive gses in the most general
case. Inthe present paper, the focus is on Markov-additvegsses which belong to the
class of Markov jump processes. Thus it is possible to eggloe many additional an-
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alytical opportunities which cannot be exploited in the gyah case of Markov-additive
processes. The present paper mainly goes along the cdianithy Pacheco, Prabhu
[19], which was written after the BMAP concept proved susbdsas a versatile arrival
process for queues. The concept developed in Pacheco,\Hbdjtwill be generalized
in this paper and, most importantly, the inhomogeneous wdkke analyzed, too.

In the present paper, the focus is on Markov-additive presvhich belong to
the class of Markov jump processes. As a reference for therythef Markov jump pro-
cesses, it will be referred to the introductory presentaiinGikhman, Skorokhod [11].
In the next section, these so-called Markov-additive jumgzesses are defined and the
transition probabilities are derived in terms of the infisimal transition rates. Section
3 states some elementary properties, mostly resulting fredefinition immediately.
Under the assumption that the additive part of the stateesfga real vector space,
transforms and expectations are derived in section 4. The specific assumption that
the increments for the additive part be non-negative imgegeevery component of the
vector space leads to the same derivations as in section theviaasier notion of z-
transforms. Since these processes represent the mostlgelass of arrival processes
for queueing theory, they will be called Markovian arrivabpesses (MAPs). MAPs are
analyzed in section 5. In the last section, laws of large remnlare given for specific
cases of Markov-additive jump processes on real vectorespac

2. Definition

Markov-additive jump processes will be defined as two-disimmal Markov jump
processes which satisfy the condition that the transitiababilities depend on one di-
mension only. The other dimension is an (additive) semisgrand the marginal process
on it turns out to have conditionally independent increraent

Definition 1. Let (N,J) = (N, ;) : t € IRJ) be a two-dimensional Markov jump
process with a locally compact and separable metric stateesp := ¥ x &. Let
o(¥) ando(®) bes-algebras orE and®, respectively, which satisfyz} € o(X) and
{y} € o(®) forall z € ¥ andy € ®. DenoteS := o(X) ® o(®) as the product
o-algebra ofo(X) ando(®). Further, let(, +) be a semi-group with neutral element
0 € . (N, J) is calledMarkov-additive jump process if the transition probabilities
satisfy the condition

P(s,t; (z,y), A x B) = P(s,t;(0,y), (A —z) X B) @
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foralls <t e IR{, (z,y) € SandA x B € S,with A —z:={s€ X :s5+z € A}.
Define

P(s,t;y, A x B) := P(s,1(0,y), A x B)

foralls <teIRf,yc ®andA x B € S.

Remark 2. The above definition postulates that the state space X x ¢ of a Markov-
additive jump process be locally compact, separable andianeBStandard results in
topology (cf. Herrlich [12], p.224,118,117) yield th&tsatisfies this condition if and
only if the state spaces and® of the marginal processes do so.

Remark 3. Because of equation 1, a Markov-additive jump progégsJ) is uniquely
determined by the probabilitieB(s, ¢; y, A x B). Since(N, J) is a Markov jump pro-
cess, the infinitesimal transition rates

o(t: (z,1), A x B) = Ai‘% P(t,t + h; (as,y),Ahx B) — 1axp(z,y)
_)

exist uniformly with respect t¢t, (z,y), A x B) and the equality
q(t: (z,y), A x B) = q(t;(0,y), (A — z) x B) )
follows from equation 1. Hence, we can define
q(tiy, A x B) := q(t;(0,y), A x B)
forallt ¢ IRT,y € ®andA x B € S, and

Y(ty) == —q(t;y,{(0,9)})

Y(t,y, A x B) := q(t;y, (A x B)\ {(0,9)})

as well as

Y(t,y,Ax B)

f
p(t,y, A x B) := { ¥(E9) or (t,y) >0
laxp(0,y) for ~(t,y)=0

Finally, define the kernel(¢) on ¥ x ® by
Q(t; (z,y), A x B) :=q(t;y, (A — z) x B)

forallt € IR, (z,y) € SandA x B € S. The kernelQ(t) is called thegenerator of
(N, J) at timet.
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Remark 4. By definition, a Markov-additive jump process is translatiovariant or ho-
mogeneous in the first component. This leads to a self-gistilacture of the generators
(Q(t) : t € IR]), which can be illustrated in the case of an homogeneous Marko
additive jump process witfe being finite and = IN (the so-called Batch Markovian
Arrival Process or BMAP, see Lucantoni [14]). Here, the gatwr 0, which is constant
in time, takes the form

DyDy D3 Ds...

Dy Dy D, ...
Q= Do Dy’
DOI'

with m x m-matrices(D,, : n € INy), m being the size ofb. Omitting the first
row and first column, one obtains the matéagain. This self-similarity yields many
simplifications for the analysis of queues with BMAP arrsialFor a so-called level-
dependent BMAP, which does not possess this self-sinyijaaitd for the analysis of
gueues with level-dependent BMAP arrivals see Hofmann [13]

Remark 5. An example of a Markov—additive jump process with an additpace>

of infinite dimension is the class of Spatial Markovian AaliWProcesses (SMAPs, see
Breuer [5]). This process is used in the modelling of mobdenmunication networks,
for which the location of users is important for the perfonoa analysis of the network.
For SMAPs, a so—called arrival spaBavith measurable subsefse o(R) is defined to
represent the area in which users of the network may appdanawe in. An SMAP is a
Markov—additive jump process witf being the measurable space of counting functions
on (R,o(R)). This is a subset of the vector spaEég(m. Thus an SMAP is a special
Markovian arrival process which will be defined and furthesrained in section 5.

The transition probabilities of the process will be deriaithe solutions of the
Kolmogorov differential equations via the method of susagsapproximations by Pi-
card and Lindelof. Let{N,J) be a Markov-additive jump process. Then the Kol-
mogorov differential equations take the following form {av, .J):

OP(stiy. AxB) _ / q(t;w, (A —v) x B) P(s,t;y,d(v,w))
ot Dxd
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for all ¢ > s (Kolmogorov's forward equation) and

Pty AXB) [ piy g (A=) x B) qlsy, d(v, w))
0s Y xd

for all s < ¢ (Kolmogorov’'s backward equation). Both differential equations contain
a convolution in the first dimension. This is a consequencéh@fadditivity which is
defined on the marginal state space The convolution form will be preserved in the
transition probabilities, as the next theorems show.

Theorem 6. The transition probabilities of a Markov-additive jump pess can also be
expressed in the form

o0
P(s,t;y,Ax B) =Y P™(s,t;y, A x B)

n=0
with
PO (s, t;y, A x B) :=14,5(0,y)
and recursively
PO (s 4y, A x B) / [P sy d(o,w)) (i, (4 =) x B)du

forall n € INy.

Proof: By definition, the infinitesimal rateg(¢; z, A) are continuous irt for every
z € SandA € S. Induction byn yields thatP(") (s, t; 2, A) is differentiable int for
everyn € INy. Now, direct validation shows

p Zp s, t;x, A) = ZP s tyx, A)
=Z _/ /p(“*U(s,u;x,dy)q(u:,y,A)du
n=1 ot s /S
=Y [ PO V(s i dy)altiy. A
n=1

=/ q(t;y, A) Y P (s, bz, dy)
S n=0

i.e. the Kolmogorov forward equation is satisfied. Accogdin Gikhman, Skorokhod
[11], p.317 (theorem 3), the solution to the Kolmogorov fardiequation is unique.
©
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By induction, one can prove that

P(")(S,t;y,AxB):/St/sun.../sw (Q(ur) .. Qun)) ((0,y), A x B) duy ... dun

—_——
n integrals

3)
with Q(u) denoting the generator at time € [s,¢]. An iteration for computing the
transition probabilities is given by starting with

Py(s,t;y, A x B) :=144p(0,y)

and iterating by

t

Pn-l—l(sat;yaAXB) ::/ /SPn(S,U;y,d(U,w))Q(UQUJ, (A_U)XB)du+1AXB(0ay)
s

4)

forall n € IN,.

3. Elementary Properties

Some elementary properties for Markov—additive jump psees can be taken
from Cinlar [6] and Ezhov, Skorokhod [10], who examined therengeneral class of
Markov—additive processes. This section contains som@epties which mostly are im-
mediate consequences of the definition 1. Obviously, thie sample path properties of
Markov jump processes hold for the subclass of Markov-addjump processes, too.
Furthermore, the distribution of the holding time in a statéhe additive spac& can
be given. An immediate result is

Theorem 7. Let (N, J) be a Markov—additive jump process with state space .
Then the marginal proceskis a Markov jump process with state spakand transition
probabilities

P®(s,t;y, B) = P(s,t;y,% x B)

foralls <t e IR},y € ®andB € o(®).

Remark 8. This theorem gives rise to a method of analysis which regéuelsnarginal
process/J as the independent underlying Markov jump process thatittond the ad-
ditive processV. The marginal state spadeshall be calledphase spacef (N, J), a
single element od is called gphase The marginal process shall be callegphase pro-
cessof (N, J), while N shall be callecadditive processof (N, .J). The next theorem
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shows thatV has conditionally independent increments giverFurthermore, theorem
11 yields a representation of the generator as the produwaiodfernels.

Theorem 9. Let (N, J) be a Markov-additive jump process with state space .
DefineT := inf{t € IR" : N; # Ny} as the holding time of the marginal proce€sn
a state of. Further, define the sub-Markov kerre(T' > ¢) on ® by

P(T > t)(y,B) := P(T > t,J; € BlJy =)
forallt € IR",y € ® andB € o(®). Then for alls, ¢ € IR,
P(T >t+s)=P(T >t)P(T > s)

and furthermore,

P(T > t)(y, B) = Z/Ot/ou/ou (Qo(w1) - - Qo(un)) (v, B) dus ... dun, (5)

=0
n integrals

with
Qo(t)(y, B) == Q(t;y,{0} x B)
forallt € IR{,y € ® andB € o (®).

Proof: The first equation follows from the definition @*(7T" > ¢) and the fact that
(N, J) is a Markov-additive jump process. For the second equatioie, that the holding
time T is identical to the first hitting tim&’y of the setA := ¥ \ {0} x ®. This
equals the life time of the cut—off Markov jump process withts spac& and generator
(Qo(t) : t € IRJ). Then statement 5 is merely the form for the transition pbdty

kernel of the cut—off process, which follows from theorem 6.
©

Remark 10. This result contains the statements of theorems 6.9 andi®.Pacheco,
Prabhu [19] as the special case(df, .J) being homogeneous; = INj and ® being
countable.

For later use, a fundamental theorem will be stated whichresthe existence of
a representation of the infinitesimal transition ratesp(réise transition probabilities) as
the product of a kernel on the phase spéc@vhich is a function® x o(®) — [0, 1])
and a kernel fron® into the additive spacE (which is a function® x o(3) — [0, 1]).
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Theorem 11. For everyt € IR; andy € ®, there is a kermeK,, : ® x o(X) — IR
such that

Qm%AwaaLQm%2xwmw@A>

forall A € o(X) andB € o(®). Furthermore, for every < ¢t € IR] andy € @, there
isakernelL,;, : ® x o(X) — IR such that

Pls,tiy Ax B) = [ Plotiy, £ x d2) Loy (2, 4)
B

forall A € o(X) andB € o(®). The kernelsk; , and L, ;,, are almost surely uniquely
determined.

Proof: See Bauer [2], p.397 (withh = ¥ x o(®)), or Bourbaki [4], p.39 (withp = prs),
since the chargé(t; y, .) can be represented as the difference of two finite measures.

4, Markov-Additive Jump Processes on a Real Vector Space

Now assume that:, +) is a real vector space. ThéR, +) has a baséb; : i € 1)
with some index sef, and every element € ¥ has a unique representation : i € I)
in IR with respect to this base (cf. Nef [16], p.46). Denote thedtije mapping
between an element € X and its representatiofr; : i € I) by f : ¥ — IR, In
order to simplify the notation in the following, an elemant X and its representation
f(z) € IR' shall be identified. Further, denote the projection fréd to the i-th
component byr; : IR" — IR.

Under this assumption, transforms as well as expectatiande derived for the
marginal proces$V of a Markov-additive jump processé#/, .J). Using the structure
of the vector space, we can define the expectation of a Maaklolitive jump processes
with state spac& x & as follows:

Definition 12. Let (N, J) be a Markov-additive jump process with state space &
and(X, +) be areal vector space. Thgpectation E(N; — N,) of the marginal process
N during the time interva)s, ¢ is defined as the kernel ahwith entries

E(Ny = Ni)(y, B) := (E(pri(Ny — N) - 1p(Ji)|Js = y) 1 i € 1)
For real valued random variables, the Fourier transformpnaged very useful,

especially for determining moments (cf. Bauer [2], pp.223). The same analytical
method shall be applied here for every dimension of the vesgace>.
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Definition 13. Let (N, J) be a Markov-additive jump process with state space &
and(X, +) be areal vector space. Then fheurier transform N7, of (N, J) over the
time intervalls, ¢] shall be defined as the functien— N ,(r) with

m .
N2 ) B)i= ([ e Plsstiypr; Hde) < B) i e 1)

forallr € IR,y € ® andB € o(®), with 7 denoting the imaginary unit in the space
of complex numbers.

Remark 14. Note that by theorem 11, the diStributid?(s,t;y,prj_l(dc) x B) can be
written as

P(s,t;y,pr; ' (dc) x B) = /BP(s,t;y,Z x dz) L ,t,(2, de)

with some kerneL, ; ,, from @ to X. Hence the representation

oo
PN B) = [ [ Ly (zde) Pls,ti, S x d2)
—0o0
holds and thus every component;(N;,(r)) is a kernel ord.

Theorem 15. For everyj € I,y € ®, B € o(®) andt € IR}, define the kernel
Yo (r) on @ by its entries

Pqu( ()Y, B) = /OO e’ Q(t;y,prj_l(dc) x B)

— o0

0o .
= [ ] e Kuyle,pr o) QUisy, 2 x d2)
B J—

with some kerneK; , from ® to X (see theorem 11 for the second equality). Then the
Fourier transform of NV, J) over the time intervals, ¢] can be written as

0 t prun us
N (r) = Z// / 000 () (T) - Py () dus . dun : j € T
77«:0_,_/

n integrals
5)
for all » € IR, with the summand forn = 0 being the identity kerneld on ®.
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Proof: Fixi € I aswellasy € ® andB € o(®). According to formula 3, the
jth.component ofV;,(r)(y, B) equals

pri(NZ(r)(y, B)) = Z[ e’ P (s, t;y, prt (de) x B)

B é M,_// | @) Qun)) (0,9). 777 (de) x B)

n integrals

duq U,
o t prun U .
= Z/ / / / Q(u1;y,d(c1,y1))e"™™ " ...
n—o”s Js s Rx®

: Q(un—l;yn—?ad(cn—layn—l))ei.rcn71 / Q(un;yn_1,d(cn,yn))ei'”"
Rx® RxB

duy ...duy,

(6)

by writing out the convolutiorr = ¢; + ... + ¢, explicitly. Further, application of
theorem 11 leads to

prj(Ng(r)(y, B)) =
o0 t run us oo 1
:Z// / // "M Ky y(y1,pr; (de1))Q(ui;y, ¥ x dy1)) ...
n—0’s Js s ®J—-oc
[D/ e Ky s Un1, 075 (den—1))Q(tn— 15 Yn—2, = X dyn_1)
o0

0o .
/B/ ez'rC”Kumyn_l(yn,prjl(dcn))Q(un;yn,l, Y X dyy) duy . .. duy

o0 t [run us
= Z/ / / /SDQ(j)(ul )y, dyy) - / PO (un) (1) (Yn—1, dyn)
n=0’s /s s 0]
duy . ..du

© 13 Un U2
:TLZ_U/S /S /5 (‘PQ(i)(ul)(T)...(,DQ(j)(un)(’l")) (y,B) duy ...du,
(7

Theorem 16. Define the kernel/ () (¢) on @ by

]

MO @)y, B)i= [ e QUey,pr;(de) x B)

— 00
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forallt € IR,y € ® andB € o(®). Then the expectation of the marginal procéss
over the time intervals, t] is given by

t ,
E(N, - N,) = (/ PO (s, u) MO () P®(u, ) du : j € 1)
S
Proof: The expectatior/(N; — N,) can be computed as

od o,
E(N; — Ng) = —i - a Ngy(r)
T

r=0

recognizing that the differentiation can be performed congmt-wise. Then thgth
component o2 (N; — Ny) is

pri(E(Ny — Ny)) =

Z/s / /uz d (pQ(ﬂ () (T )"'(pQ(J')(un)(?"))

n zntegrals

dui ...duy,
r=0

according to the preceding theorem 15. Applying the produletof differentiation, this
equals

pri(E(Ny — Ny)) =

00t n
Z/ / / Z(:OQ(J) @) (0) - 006 , 1)(0)
1o

n integrals

d
(%@Q(])(ul)( )

o0

SELLL

I=1n

) PO (1) (0) -+ PO (un) (0) dur ... duy

n—I mtegrals

Uy u2
/ / P00 () (0) -+ 0gu) () (0)dur ... dug
S S

[—1 integrals

. d
(= e

0) duy WQ(j)(qu)(O) e WQ(j)(un)(O) duji1 ... dup

r=
Acknowledging that

. d
- %(’DQ(”(M)(T)

@B = [ cQUuiy.pry(de) x B) = MU () (5. B)

— o0
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is the expectation kernel of thigh component and
P ) (0)(y; B) = Q(u;y, S x B)
is the infinitesimal transition rate of the phase procesddéa
prj(E(Ny — Ns)) =

—/ Z/ / P00 () (0) -+ 0guirw, 1) (0) dur ... du MY (u))

-1 mtegrals

© t Un Ul+2
Z/ / e / PO (ur31)(0) - P00 () (0) duryy ... dup | duy
u; u;

n—I integrals

t .
= / P (s, u) MY (1)) P® (1, ) du
S

9)

5. Markovian Arrival Processes

In queueing theory, the most important notion is that of thenber of users or
customers in the system (which is the queue or the queueingpri§. The values of
this are limited to the sefV, of non-negative integers. Thus for most applications in
queueing theory, the use of Markov-additive proceg9és/) on real vector spaces (of
dimension|I|) with IN}-valued marginal proces¥ suffices.

If the support of the marginal procedgis on IN{, i.e. if P(pr;(N;) € INg) = 1
foralli € I andt € IR, then the easier notion of a z-transform serves the same
purposes as the Fourier transform. In this section, the saralysis as in the preceding
section 4 shall be carried out using z-transforms.

Definition 17. Let (N, J) be a Markov-additive jump process with state space &
and(X, +) be a real vector space having a bése: 7 € I). If the marginal proces®/
has supporiN, then(N, .J) shall be calledarkovian arrival process.
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Remark 18. The homogeneity of the first component implies that Markoéerival pro-
cesses have only non-negative increments in the first diowenshis follows from prop-
erty 1, since for every, € X3, k € IN and any dimension € I of the vector space,

P(s,t; (n,y),pri_l(pri(n) — k) x B) = P(s,t;y,pri_l(—k) x B)=0

because opr; ' (—k) ¢ IN}.

Definition 19. Let (N, .J) be a Markovian arrival process. Define théransform of
(N, J) over the time interva)s, ¢] as the functiore — N (s, ¢; z) with values being the
kernels on® which are determined by

N(s,t;2)(y, B) := (i P(pri(N; — Ng) =n,Jy € B|J; =y) 2" i € I)

n=0
forall z € Cwith |z] < 1,y € ® andB € o(®).

Theorem 20. For everyi € I, k € INy andt € IR, define the kernelé)gf)(t) on® by
QY 1)y, B) == Qty,pry ' (k) x B)

forally € ® andB € o(®). Then the z-transform dfV, J) over the time intervals, ¢]
can be written as

N(s,t;2z) =

o t run uy X . o .
= Z/ / / ZQ,(;)(ul)zk...ZQ,(;)(un)zk dui...duy:1 €1
e NG 5 k=0 k=0

n integrals

for all z € Cwith |z| < 1.



14 L. Breuer / Markov-Additive Jump Processes

Proof: Fixi € I aswell agy € ® andB € o(®). According to formula 3, théth
component ofV (s, ¢; z) (y, B) equals

N(s,t;2)(y ];)ZOP (s,t;y,pri ' (k) x B) - 2F
t
= Uy, 0, ,ri_lk B) duy ...du, - 2"
kZ;Z// [ Q) @) (0. (1) x B) din

n integrals
oo

ST S (el alen) 5 i
nmtegrals

‘i/gt/ / (ZQk w)z ZQk Un)2 ) B) dus ... duy,

n mtegrals

since the z-transform of the convolution of the kern@féf (uy,) ... ,Q,(fg(un) equals

the product of the z-transforms k? (u1)y ..., Q](Q(un).
©

Remark 21. Note thatzk 0 Qk (u;)z* is a kernel onb for every;j € IN and thus every
product)-pZ OQk (uy)2b ... 305 OQk (u,)2* is a kernel onb, too.

Theorem 22. The expectation of the marginal proc€$sover the time intervals, ¢ is
given by

B(N, (/P‘Dsu Zk Q0 (u P‘b(ut)duzef> ©)

Proof: The expectatior(N; — Ny) can be computed as

d
E(Ny — Ns) = EN(SJ; 2)

recognizing that the differentiation can be performed congmt-wise. Then théth
component ofF/ (V) is

z=1

pri(E(Ny — Ny)) =

= i/gt/ /w d (00 )(ul)zkng)(un)zk>

n=la———
n integrals
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Denote the generator of the phase process atdilme@® () and note that

is independent of € 1. Applying the product rule of differentiation yields
pri(E(Ny — Ny)) =

—i/:/ / anQq’ul ®(uy 1) (Zka ul> O

n integrals

. Q‘I’(un duy . .. duy,
Sl U2 U1 (I)
=> > / / / / / / Q% (u1) ... Q% (w—1)duy ... dui_;
1=1n=1
n—I integrals I— lmtegrals
(Z kQ ) duQ® (uig1) ... Q% (uy) dujyy - .. duy,
k=1

kQS) (uy)

K

/t OC/ /s Q% (wr) ... Q% (wy—1)dus ... du;

: k
l 1 integrals

ul+2
// / ) .. Q% (uy) dugyy - - . duy, | du
up Jup

-~

n—I integrals

/ P‘1> (s, 1) (Z ka ) ) (ul,t) duy

1

(10)

remembering that the transition probabilities of the phpsgcess are denoted by
P?(s,1).
©

Remark 23. The first moment formulae given in Pacheco, Prabhu [19], réma06.15
and corollary 6.16(a), can be obtained from this theorenhaspecial case dfv, J)
being homogeneou; = INj and® being countable.
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6. Laws of Large Numbers

For some special cases of Markov-additive jump processesairvector spaces,
the asymptotic behaviour can be described in terms of stlang of large numbers.
First, this will be done for processes with periodic gerasat The case of homogeneous
processes shall turn out to be a corollary of the periodie.clasthis section, convergence
on the vector space shall be defined in a weak sense as convergence in every damens
of ..

Definition 24. A Markov—additive jump procedsV, .J) with time—dependent generator
(Q(t) : t € IRY) is calledperiodic with period T > 0 if Q(s + T) = Q(s) for every

s € [0,T[. A family (¢s : s € [0,T]) of probability distributions shall be called a
periodic family of asymptotic distributions for the phase proceskif

I T3 s = asll = 0 as m — o0

in total variation for alls € [0, T'[, independently from the initial distribution.

Theorem 25. Let (N, J) denote a periodic Markov-additive jump process with period
T and be(N, +) a real vector space with bagk : i € I). Let the phase procesk
have a periodic family of asymptotic distributio(, : ¢ € [0, T[). Define the mean rate
vector during a period length by

A= (%/{)T[I)dﬂ't(y) /O:OCQ(t;y,pril(dc) x D) dt:iEI)

Assume thaflpr; (E(N;))|| < M(t) < oo foralli € I andt € [0,T]. Then

— = A
t

P-almost surely for all initial distributions.

Proof: Because of property 1, the evolution of the proceS¥s.J) does only depend
on the initial distributiony of Jy on the phase spaceé. Since further every initial
value Ny # 0 vanishes fort — oo, we can assumé&/, = 0 almost surely without
loss of generality. LefV/* denote the marginal proce3é at timet under initial phase
distribution . Further, letp; = . P®(0,t) denote the distribution of the phase process
at timet.
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Choose any > 0. Then there is a numbére IN such that|uP® (0, nT) — || <
¢ for all n > k and the representation

Ny

|
T (Nir + (N gy - NkT) + (N = Nymy)

1
_NkT + N(L];;FTJ KT + 7 (Nt Lt/TjT)
holds because of the periodicity of the process. Since theatation kerneE(Ny) is

bounded for alk € IRy, the first and the last term will vanish fer— oo almost surely.
The second term equals

t/T|—
1 1
PrT ) YT —T0 - PrT —T0
N(Lt/TJ BT = N(Lt/TJ wr T 3Ny R = Z: N (t/T|—RyT
(10)
sincerny = wUP‘I’(O,T) is invariant. The first term of this sum tends to
1t/T] - _ [t/T)
t—o0 t o taoo t (Lt/ | — k) i
_ i /T =KT 1 ~ o
= t BLES (n— k)T mzk;ﬂ Ny
= ZB(NF®) = A

T
almost surely, according to Kolmogorov’'s law of large numshef. Bauer [2], p.86) and
theorem 16. The assumptidpP® (0, kT) — my|| < € implies

P (N(ﬁ';/TT v % N or ) <e (10)
which means that
2] o _ @Y T —
N =wyr = Nr)—wyr = Ngyr—gyr =0

with probability 1 — . Hence with probabilityl — ¢, the convergencé\;—t — A holds.
Sincee can be chosen arbitrarily small, there can be na\setith P(N) > 0 such that
Nelw) 2, Aforallw € N.

Remark 26. If there is a norm orE (e.g. the supremum nortfx|| := sup;c; |pri(z)|
for all z € ¥) andX: is complete with respect to this norm, i.e.ifis a Banach space,
then the above theorem is valid for convergence in termseofittim on>, too. This can
be proven in exactly the same way by using the strong law gélaumbers on Banach
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spaces (cf. Mourier [15] or Beck [3]) instead of Kolmogomlaw of large numbers,
which is a statement for real-valued random variables.

Theorem 27. Let (N, J) denote an homogeneous Markov-additive jump process and
be (N, +) a real vector space with bagg : i € I). Assume that the phase proceks
has an asymptotic distribution Define the mean rate vector by

A—(/dw /_ c Qy,pr; (dc)x@):ié[)

If A\ < oo, then

N,
=L
t

P-almost surely for all initial distributions.

Proof: This follows immediately from theorem 25, since an homogesegrrocess with
asymptotic distributionr is a periodic process with arbitrary period len@th> 0 and
periodic family(m;, = 7 : t € [0, T]) of asymptotic distributions. Furthermore,

/dﬂ / ¢ Q(y,pry ' (de)x®) = / /dm / ¢ Q(t;y,pri " (de)x D) dt

holds for alli € I, sinceQ(t;y, pr; ' (dc) x ®) = Q(y, pr; ' (dc) x ®) is constant irt.
©

Remark 28. The statement of this theorem is the same as the result ireBacRrabhu
[19], theorem 6.17, if one specifiés= IN( and® being countable.
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