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Abstract

In this paper we consider a risk reserve process where thvalargeither claims
or capital injections) occur according to a Markovian pgrdcess. Both claim and
capital injection sizes are phase-type distributed andribdel allows for possible
correlations between these and the inter-claim times. Témipm income is mod-
elled by a Markov-modulated Brownian motion which may depen the underlying
phases of the point arrival process. For this risk reservdeinwe derive a general-
ized Gerber-Shiu measure that is the joint distributiorheftime to ruin, the surplus
immediately before ruin, the deficit at ruin, the minimakrieserve before ruin, and
the time until this minimum is attained. Numerical examplestrate the influence
of the parameters on selected marginal distributions.

1 Introduction

Gerber and Shiu [15] derived the joint distribution of thadito ruin, the surplus immedi-
ately before ruin, and the deficit at ruin. Their analysisared the classical Poisson risk

model
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whereu > 0 is the initial surplus¢ > 0 is the rate of premium incomépN; : t > 0) is
a Poisson process, aid;, j € N, are iid positive random variables modelling the claim
sizes. In this notation the time of ruin is given by

T=inf{t >0: R, <0}

while the surplus immediately before ruin and the deficituah are R, and |Rr|, re-
spectively. Given a discount rate> 0 and a non-negative functian(x,y) onx,y > 0,
Gerber and Shiu [16] investigated the function

¢(u) = Elw(Rr—, |Rr|) - € - Lircoo}| Ro = u] (1)

wherel, denotes the indicator function of some gkt This functiong has found much
attention since then and was given the name Gerber-Shiu fi@$)ion or discounted
penalty function. Many authors have contributed to its wsial where the underlying
risk reserve process has been generalised in severalidimeci he perturbed compound
Poisson model has been considered in [14, 12, 20], while Mankodulated (or regime
switching) versions are analysed in [3, 23]. There are &urtielated papers on the GS
function for the Lévy risk process [13], the fluid flow mode]| [[q, the Sparre Andersen
model with Erlang inter-claim times [17] and its perturbeatsion [18]. [8, 9] extended
the Gerber-Shiu function to a generalized discounted pehaiction (GDPF) considering
the last minimum of the surplus before ruit,. in the analysis. The new defined GDPF
can be represented as

¢a(u) = Elwg(Rr—, |Rr|, R 1) - e T I[{T<oo}‘R0 = u, (2)

wherewg; is a bounded measurable function&h.

One does not need to add more references to show that the Gi®hsmenjoy great
popularity among the research community. The almost usaleapproach of analysis
is the derivation of some (defective) renewal equationsning from a set of integro-
differential equations which are obtained via Ité’s forawir the infinitesimal generator
of the risk reserve process (see discussion to [19]).

The present paper deals with the analysis of a generalizeaeG8hiu type measure
(to be introduced in Section 2) for Markov-additive risk pegses. Combining the fea-
tures of perturbation and Markov-modulation we render sofrtee aforementioned risk
processes as special cases. The only restriction requrddd analysis in this paper is
that both claim and capital injection sizes have a phase-typresentation.

Rather than employing the mainstream approach of defertivewal equations, we
shall use a recent result presented in [11], where the j@iiloution of the space-time po-
sitions of overshoots and undershoots has been deriveddikdv-additive processes with
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phase-type jumps. Note that at times we will alternate tieefis/ords overshoot/undershoot
with deficit/surplus, in order to be consistent with the terology encountered in the re-
search areas where they are frequently used.

Our present paper aims to apply this result to the class ok®dasadditive risk pro-
cesses described in the second section. Extensive nuimexaraples shall illustrate the
effect that different market conditions can have on the GARdFits particular cases.

In the following section we shall present the model of MaHemlditive risk processes
and establish the relation to first passage times as well@slovots and undershoots for
Markov-additive processes (MAPS). In section 3 we collddihe necessary preliminary
results for MAPs that we will need later on. In particular viraglify the results from [10]
for the special kind of MAPs that we employ in this paper. #ec# contains the main
result with some corollaries. The final section acts as &atibn manual for the results
obtained in Section 4 presented on two numerical examples.

2 The insurance risk model

We begin with a Markovian random environment. L&t= (.J; : t > 0) be an irreducible
Markov (jump) process with finite state spafeand infinitesimal generator matrig =
(Gij)ijes We call J, the phase at time > 0. Each phase € E signifies a certain state
of market conditions which may affect the intensity and siéyef claims and capital
injections as well as the rate and volatility of the premiunmmame.

Based on the phase procegswe define the risk reserve proceéBs= (R, : t > 0)
as follows. Denote the initial risk reserve By := « > 0. We assume that the premium
income between claims can be modelled by a Brownian motitiergvthe parameters
(drift) and &; (variation) at timet may depend on the current phage= 7. For insurance
risk we typically have; > 0 for all i € £, which we shall assume from now on. We shall
allowa; = 0for some (or possibly all) phases, under which conditiorBif@vnian motion
becomes a linear drift. Thus the process of premium inconee Markov—modulated
Brownian motion which we denote by3,7) = ((B,,J;) : t > 0). We assume that
BO = 0.

Claims may occur in two ways. First, duriqg > 0 : J, = i}, l.e. when is in phase
i, claims occur at a constant (hazard) rafe> 0. The size of such a claim shall have a
phase-type (PH) distribution with parametefg)* and7+. Second, at time instances
of phase changes froito j # ¢ a claim may occur with probability;;. The size of such
a claim shall have a PH distribution with parametefd+ and7)*. As usual, we write
n)+ .= —T)+1 for the so-called exit rate vector of thef («")+, T)+) distribution,
wherel denotes a column vector of appropriate dimension with @atienbeing 1. Denote



the claim arrival process bV *+, 7)) = ((N;7, J,) : t > 0), i.e. letN;” denote the number
of claims that have occurred until timeDenote thesth claim size byC,,, n € N.

We further allow for capital injections, i.e. sudden in@es of the risk reserve at par-
ticular time instances. Here we use the same model as fotdime arrival process. Thus
we may see a capital injection durigg > 0 : J, = i} at a constant rate; > 0. Its size
shall have a PH distribution with paramete#§)~ and7~. At time instances of phase
changes from to j # ¢ a capital injection may occur with probabili/;. The size of
such an injection shall have a PH distribution with paramseté’)~ and7)~. Again we
definen(@- .= —T)-1 for i, j € E. We further denote the process generating capital
injections by(N~,J) = ((N;,J,) : t > 0), i.e. let N, denote the number of capital
injections that have occurred until tinte Denote the size of theth injection by K,

n € N.

Thus the point arrival process is a Markovian point procé4BR) with parameter

matricesD, andD; on E having entries

. M o L, - .
Dy,ij = C{“—)\i_)\i’ _ ]_Z and D5 = ):i+)\i7 _ ]_Z
Gij- (L—=pf—p;), J#1 Gij - (0 +p5), JFi
where we assume thﬁ]; +p; < 1foralli,j e E.

As expected, we observe that the sum of the elements in eaadf the matrixDy+ D,
equals). A common phase space enables us to model correlationsdrefveent arrivals,
claim/capital injection sizes, and the premium incomes Bhown in [5] that the class of
MPPs is dense within the class of marked point processethdfuit is shown in [24] that
the class of phase—type distributions is dense within thescbf all distributions on the
positive real numbers. Thus we incur no serious restrigtiagenerality.

With the definitions above, the risk reserve procRss (R, : t > 0) is given by

N N7
Ri=u+B - Co+ Y K,=u+B —C+8,
n=1 n=1

for ¢t > 0, where¢, represents the aggregate claim process&nithe aggregate capital
infusion process. The net profit condition for such an insoearisk model can be written
as

Efr[Bl] > Eﬁ[@l] — Ef([.ﬁl] (3)

see [22, 21, 5]. This has traditionally been called Marko\aarival process and abbreviated as MAP.
Since we use the shortcut MAP for the more general class okdwaiadditive processes already, we prefer
to use the term Markovian point process and the abbreviieR instead. Some authors use the shortcut
MATrP.



where7 is the stationary distribution of , i.e.#Q) = 0 and#1 = 1. In terms of the given
parameters this translates into

Z mc; > Z ; ()\Z_a(”)_ (T(ii)—)—l 1_ )\:_a(”)"' (T(ii)+)_1 1)

icE icE
S m S (s (009) 1= et (200 )
icE  J#i

In typical applications many of the parametpf;sand A turn out to be zero, which re-
duces the number of terms in the sums above. In all examples gn this paper the
parameterg;; will vanish.

We denote the net loss processBy= (X, : t > 0) whereX, := u — R, forallt > 0.
Then the proces@’? T ) is a Markov-additive process (MAP) with phase—type jumps. |
order to determine the GDPF for the risk reserve processitegcabove, we shall make
use of a recently published quintuple law for MAPs, see [This it will help to translate
the variables derived from the risk reserve prod@dssato variables related to the net loss
processY.

Clearly, X, = 0. The time of ruin is given by

T=if{t>0:R, <0} =inf{t >0: X, >u} = 7(u)

where7(u) is the first passage time to levelof the net loss proces¥. The surplus
immediately before ruin and the deficit at ruin are then givgn

Ry =u— X,;(u)_ and |RT‘ = X;-(u) —Uu

respectively. Thus it suffices to look at undershoots andshvamts for MAPS in order to
determine the surplus prior to and the deficit at ruin underribk reserve process. As
mentioned before, in this paper we go a step further and eledditionally the minimal
surplus before ruin, i.e.

Ry :=min{R :t <T}=u—max{X;:t < 7(u)} :=u— My
and the time until this minimum is reached, i.e.
S(Ry) :=min{t > 0: R, = Ry} = max{t > 0: X, = Mz} = Gz 4)

The last equality holds because we have excluded constaitrfrovements and allowed
only phase-type jumps. An actuarial motivation for the gsiglof R - andS(R ;) is pro-
vided in [9], p.92: "The lower this minimum, the worse the ficang conditions that can
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be negotiated by the company with capital providers. Sniyiléhe closer the last mini-
mum was to the bankruptcy level, and the shorter the timeselhpince that minimum, the
more urgent was the need to correct the course and steer esvaylangerous waters."

The main result of this paper is an explicit formula for thengmlized Gerber-Shiu
measure defined as a density function

fy(x,y,2) de dy dz :==E (e‘”S(ET)_'Y*'(T_S(ET)); Rpr_ € dz,|Ry| € dy, Ry € dz)
)
wherev,~* > 0 are time discounting factors aid< z < u. Note thatR , < Ry = u
such thatf, .- (z,y, 2) = 0 for z > w.

There are two singular points fdt .. One isR ; = wu, which means that the risk
reserve will never fall below the initial value before ruinonirs by a claim. In this case
S(R ;) = 0. The other singular point i® , = 0, which means that ruin occurs by
creeping, i.e. not by a claim but by the volatility of the piam income process. In this
caseS(R ;) =T andRr_ = |Rr| = 0 follow necessarily.

This result provides all the information that is usually tzoned in the GDPF. In ad-
dition, it yields the distributions of(R ;) and R . Given a discount raté > 0 and a
non-negative penalty function(x,y, z) onz,y,z > 0, the original GDPF (2) can be
determined by setting = +* = ¢§ as follows

(bG(u) = / / wg(x,y, Z>f575<l’,y72) dz dx dy
z,y=0 J z=0

+/ wg(z,y,u) E [6_5T; Ry_ €dx,|Rr| € dy,R = U]

,y=0

+we(0,0,0) E[e™"; Ry = |Ry| = R 7 = 0).

In particular, the ternf” | f55(z,y, 2) dz4+E [e™°T; Ry— € dx, |Ry| € dy, R ; = u] may
be seen as the original Gerber-Shiu density function.

3 Preliminaries

Looking at the problem from the angle described above andderdo obtain results per-
tinent to the insurance risk proceBg we first need to collect some necessary preliminary
results for MAPs from the existing literature. This shall the purpose of the present
section.



3.1 Markov-additive processes with phase-type jumps

The joint net loss and phase proc¢as 7) form a MAP with the following parameters.
The phase space is and the infinitesimal generator matrix fgt is Q. The real-valued
level processt = (X, : t > 0) evolves like a Lévy procesk® with parameterg; := —c;
(drift), 52 (variation), and Lévy measure

vi(dr) = )\;_H{CE>O} Qi+ eXp(T(iiHJJ)T)(M)"'dx
+ A ey @7 exp(=T~2)n "~ dz (6)

during intervals when the phase equals E. Whenever7 jumps from a staté € E to
another stateé € E, j + i, this may be accompanied (with probabilji;J/) by an upward
jump of X with distribution function/;} = PH( ()+, 7G)+) or (with probabilityp;;) by
a downward jump with distribution functlo o= PH(a(”) TU)-). Denote the order
of PH(a@W* T)+) py mw

The main advantage of the PH restriction on the jump didtiobs is the possibility
of transforming the jumps into a succession of linear piedexponential duration (each
with slope 1 or -1) and retrieving the original process vianapte time change, see [4],
section 8, or [6]. This will transform our original MAP prageY into a new one, denoted
by X, in which there will be a time evolution during those periadsen the claims and
the capital |nject|ons are paid. This is done in the follogwmay. Without the jumps, the
Lévy processt ¥ during a phaseé € E is either a linear drift (of slopg;) or a Brownian
motion (with parameters; and;i;). Considering this MAP (without the jumps) we can
partition its phase spadg into the subspaceB,, (for positive drifts), £, (for Brownian
motions), andv,, (for negative drifts). We thus define

E,={icE:ji;>06=0}E,={icFE:j<0,6=0}E,={icE:é >0}

()
Note thatE = E,U E, U E,, since we have excluded the casegpf= 57 = 0 for any
phase € F. Then we introduce two new phase spaces

By = {(i,jh %) 1 4,] € By UE,UE,, 1<k < m? )

to model the jumps. Define now the enlarged phase spaceF, U E U E_. We define
the modified MAP(X', 7) over the enlarged phase spdcas follows. Set the parameters
(ui, 02, 1v;) fori € E as

+1,0,0 € F
(o) i= 4 E DO TE B (©)
(@;,67,0), ie E=E,UE,UE,
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The modified phase procegsis determined by its generator matix = (g;;); jee-
For this the construction above yields

Gii — AT — A7 h=icE
Gn-(1—ph —p3), he€Eh+#i
qih = 1 (i)+ h h .. (10)
Aag T, h = (iyi, k, %)
~ ij)+ .o
qu;l;alg]) ) h = ('Lv]akai)
fori € F as well as
) E= i)+
(a5, %), (6,51 %) = Tlgl]) and  qjrs); = n,i]) (11)
fori,j € Eandl < k,l < m;;. For later use we defing := —¢,; forall i € E.

We denote the MAP constructed in (9), (10), and (11) &Y 7). The original level
processY is retrieved via the time change

t
C(t) = / 1J5€E dS and Xc(t) = Xt (12)
0

forall ¢t > 0. The inverses of the cumulant functionsfor the so—called ascending phases
i€ B, :=E,.UE,U E, can be given explicitly as

b (13)

L 28+ 4 icE,

Example 1 We consider the classical compound Poisson model. Insmdimes and
claim sizes are iid exponential with parameter 0 andg > 0, respectively. The rate of

premium income ig > 0. The net profit condition is theh/(c5) < 1. This model has
been examined in [16]. Under our notation the net loss at titaé) is given by

B i€ E,UE,
¢z‘(5) =

N
=30, (14)
n=0

where(V; : t > 0) is a Poisson process with intenskynd theC',,, n € N, are iid random
variables with exponential distribution of parameterThe net loss process can be anal-
ysed as a MAP with exponential (and hence phase—type) yp®gitnps with parametet.
For this, we would need only one phase, Fe= {1}. This phase governs a Lévy process
with parameters = 0, i = —c, and(dz) = Ae " [dx for all z > 0.



We obtain the modified MARX', 7) as follows. The new phase space is given as
E = {(1,1),1}, whereE, = {(1,1)}, E, = {1}, andE, = E, = E_ = (. We
setA; = A andmy; = 1 since the positive jumps have an exponential distributibime
parameters are given by, 1) = o1 = 0, pa1y = 1, . = —¢, v1,1) = 1 = 0, according
to (9). The generator matrix for the phase proc&ss given as

_ (=8 B
according to (10) and (11).

Example 2 To illustrate the use of environment phases we resort to ample first pre-
sented in [6]. There is a predominant normal stategnd a “rare" state3 to represent
periods of contagion. The system switches frarto B at ratea 4, and fromB to A at rate
ag. EnvironmentA features standard claim rates and claim sizes, while emviemtalB
features a supplemental stream of claims due to a highlgtioiges disease.

Claims occur in two ways. There is at all times a Poisson m®e@th parametef;
of small exponential claims, their mean beiﬁl-g While in environmentaB, there is in
addition a second process, with parameéteof exponential claims; their expected value
e 1
is .

The following five states are identified:

. environment, normal claim payment in progress;

. environmeni3, normal claim payment in progress;

1
2
3. environmeni3, contagion claim payment in progress.
4. environment4, during an interval between claims;

5

. environmeni3, during an interval between claims;

ThusE, = {1,2,3} andE,, = {4,5}. The generator foy is

—p 0 0 1 0
0 —H1 0 0 M1
Q= 0 0 —pw 0 2 : (15)
(51 0 0 —Qq — (51 A
0 51 52 ap —OéB—51 —52



The parameters fot’ are

(0,1,0), ie€d{l1,2,3}
(1,00, v4) = (0, —c4,0), i=4
(0,—03,0), = 5

wherec, andcp are the rates of premium collection in environments A anaéBpectively.

Example 3 The joint density function of the surplus prior to ruin and teficit at ruin has
been derived in [7] for the fluid flow case from an insurancespective. The fluid queue
{(Ly, J;) : t > 0} as defined on p. 434 therein is a MAP with phase sgace S; U S,

and parameters
0,1,0 €5
(Uuﬂz‘,%): (’ ’ )’ Z.E '
(0,—1,0), i€ S,

Tll T12

r= (Tzl T22)
Phases inS; are considered as premium income phases, while phasgs pertain to
claims. Not counting the time during claim phasesYihand setting., := u, which shall
denote the initial risk reservd(L;, J;) : t > 0} uniquely defines a risk reserve process
Row = Ly, t > 0, via the time changé€(t) := fot 17.es,ds. Thus the approach in [7]
is very similar to the present paper, only the parametersnare restricted (they do not
allow perturbations by diffusion).

It is therefore quite simple to compare results betweenjid]the present paper. The
net claim amount at time> 0 is X, := u — R,. For the modified MAR X, 7), we obtain
E,=E,=FE_=0andE, = Sy, E, = S;. Comparing the notations for the generator
matrix of the phase processg, we get the block partition

Q= (Q++ Q+—) _ <T22 T21)
Q-+ Q- T, Tn

The assumption = 1 therein translates to, = —1 for all i € E,, in our notation.

as well as generator matrix

3.2 First passage times

Of central use in the present paper will be the matri¢ég) andU (~y) that determine the
Laplace transforms for the first passage times of MAPs witisphtype jumps as given in
[10]. Define7(x) :=inf{t > 0: X; >z} andr(z) :=inf{t > 0: X; > z}forallz >0
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and assume that, = 0. The time change in (12) yieldSx) = ¢(7(z)) = fOT(z) 1, cpds,
i.e. we may compute expectations ovér) using the distribution of the modified MAP
(X,J) only. Fory > 0 denote

Byjle ™) = Ble ™7, Sy = jlJo = i, Xo = 0]

forall 7, j € E. Note that the phasés; may be taken from the enlarged phase space
thus we include phasésj € E, U E_ that model the jumps. Lét[e—7®)] denote the
matrix with these entries and write

Efe—7@)] = (E@a [e77@] Egq[e7)]
Eqale™™] Eale™)]

in obvious block notation with respect to the subspages= £, U E, U E, (ascending
phases) and; = F,, U E_ (descending phases).

Since a first passage to a level above cannot occur in a desgepithse, we obtain
first P(J, ) = j) = 0forall j € E; and thusE g q)[e 7] = E(,.9[e77@] = 0 where
0 denotes a zero matrix of suitable dimension. The exporidatia

e—’ﬁ'(x) — 6—“/f07(w) 1J56Eds

as well as path continuity ot’ and spatial homogeneity 0f’, 7) lead to the functional
equation
E;[e™7@+9)] = Z Eg[e "By [e77®)]
keE,

foralli € F andj € E,. Hence we obtain
E(d@) [e—“ﬁ(r)] _ A(y)eU(”’)x and E(w) [e—'ﬁ(w)] — UMz (16)

for some sub—generator matiiXy) of dimensionE, x E, and a sub—transition matrix
A() of dimensionE,; x E,, cf. equation (6) in [10].

Write €] for theith canonical row base vector, according to context eithe pon £,
or on E,. According to [11], the matriced () andU(y) can be determined by successive
approximation as the limit of the sequeri¢éd.,,, U,,) : n > 0) with initial valuesA, := 0,
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Uy := —diag(¢i(q; + 7)Licr,ug, + ¢i(¢)lick, )icr, and the following iteration:

7 Ia . B
e;LUn+1_ZT/§l] Zjl-i- _'_nl(c Dt 6;» <An) forh:<7’7.]7k7+> €E+!
i 1 .
6;Un+1:—q +7€2—|—— Z qij 6;» </Ila) fOrZEEp,
Hi ' JEE,j#i "
1, _ )
GAnii= Y G (A ) (g + )T+ pUy) " fori e E,,
JEE,j#i "
A = Z qije; (1{1“> (¢l — Un)_1 fori: e £_, and
JEE,j#i "

€;Unt1 = —0i(q; +7)e; + % Z Gij €] (ia) (0@ + I =U)"" (A7)
U jER.j#i "

for i € E,. Note thatl, represents an identity matrix whose dimension is given By th

number of ascending phases frdm.

Example 4 Coming back to example 1, it is shown in [10], example 5, thatltaplace
transform of the first passage tiri¢r) := inf{t > 0 : X, > =} to a levelz > 0 is given
by

B—R

Ele™7®] = A(y)e"™”  where A(y) = B

Uly)=-R

and

“R=— <)\+v—cﬁ V(B =7 =2+ 1cB7)
which coincides with equatlon (4.24) in [16], noting thais denoted as there.

3.3 Time-reversed MAPs

Denote the number of phasesihby m := |E|. Letn® = (m,...,m,) denote the sta-
tionary phase distribution, which can be computedrgy = 0 and71 = > " | m; = 1,
where0 denotes the zero row vector amdhe column vector with all entries being one.
Define the matridxQ* = (q;;)ijer bY q;; := 7;q;:/m for all i, j € E or in shorter notation
Q" == A'Q'A,, whereA, = diag(my, ..., T,) is the diagonal matrix with entry; in

its ith row and the superscriptlenotes transposition of a matrix. Then the Markov pro-
cess with state spade and generator matri@* is a time—reversed version of the original
phase proces§. We denote it by7* = (J; : t > 0).

12



Based on7* we define a time-reversélt’™*, 7*) of the original MAP (X, 7) by the
rule thatX* evolves like a Lévy process with parameters; (drift) and o2 (variation)
during intervals when the time—reversed phdsequals € E. Note that the sign change
of they; leads ol = E4, E; = E,, E;, = E,, andE; = E,. We denote the first
passage times farv*, 7*) by 7*(x) := inf{t > 0: X > x} for any levelz > 0.

4 Main result

We necessarily have < R , < u, whereR , = u means that the risk reserve does
not fall below its initial valueu before a claim causes ruin. The ca8g. = 0 means
that passage occurs by creeping, i.e. ruin is not caused layma lout by the volatility in
premium income.

Our aim is to derive a computable expression for the measefiead! in equations).
Note that using the connections (developed in Section 2ydwt the risk procesB; and
the MAP proceséﬁ} one can write

E [e—vS(E )= (T-S(R T)); Ry_ € dx, ‘RT‘ cdy,R € dz]
= E [e"yéﬂ")”*(ﬂ“)_é*(")); u— X}(u)_ € dx,)z}(u) —u € dy,u— Mf-(u) € dz,]
(18)

wherey, v* > 0 are arguments for the double Laplace transfarng, > 0, and0 < z < w.
Note that necessarily > u — z. It is then clear that on one side the knowledge of the
time to ruin, the surplus prior to ruin, the deficit at ruinetiminimum prior to ruin and
the time of the minimum in the risk proces&s correspond on the other side to finding the
first passage time over a levelthe undershoot and the overshoot at this passage time, the
maximum before this passage time and the time of this maxifourthe MAP X;. Thus
we can make use of the quintuple law for MAPs as derived in.[ThHe results shall be
phrased in terms of the variabl&s Ry, Rr_, R, andS(R;) as they are more immediate
to insurance risk.

We shall use the parameters of the modified M@A®, 7) as constructed in section
3.1. SetP = Aq‘lQ + I, where( denotes the generator matrix gf, see (10) and (11),

andA, is the diagonal matrix with entries = —g¢;; for all i € E. Definepf.;.“_) = 9,5 for
i€ E, andpf.;“_) .= p,;; fori € B, UE,, j € E, U E_. Further define
(+7_) . (+’_) (N7+) p— .. ~ . .
P = (pij >ieEa,jeEgUEd and P = (ng 1i6E)26E,]6E+ (19)
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The matricesP*~) and P">*) subsume the transition probabilities from ascending to
descending phases and from continuous to positive jumpeghesspectively. Write

A¢> = diag(@(%))ie}za and A¢>* = diag(@(%)heﬁ:,, + ¢*(Qi)1ieEguEn)ieE (20)
and define the block diagonal matrfix = diag (7))
vectorn = (n'@)

(i)eBxE and the block column

(i)eBx B Finally, define the diagonal matrices
11" = diag(1/m)icr,uE, and I, = diag(m;l;c5)jer (21)

Now we can state the main results. Note thHtdenotes the transpose of a matkik 7,
the identity matrix ont,,, and/} the identity matrix on&, U E;.

Theorem 1 Let (R, J ) denote a Markov-additive risk process with phase—typentai
and possible capital injections. Lét denote its initial phase distribution, i.é; =
P(J, = i) for all i € E. Define the row vectonr = (o; : i € E) on the phase space
Ebyaq; :=a foralli e Eanda; :=0fori e E. UE_. Then

E [6_75@ )V T=5&1). R ede,|Ry| €dy,u— R, € dz, |

Ia \ oz p pl+o)
= e AyP'™
(A(7)> ¢

* * /
(HN (A jﬁj )) eU*(w*)-(z—(u—x»H:) Age PTGl
forall v,v* > 0,0 < z < u,x >u— z andy > 0.

If the process starts in a phase F with ¢; > 0 andg; = 0, then the singular case
R ; = uis possible. This implie$(R ;) = 0 andRr_ > w. The remaining quadruple
law is given in the following corollary. For* = 0 andE, = () it yields equation (3.6) in
[2] and theorem 1 in [23].

Corollary 1 Leta be an initial phase distribution with support drj, and definex as in
theorem 1. Then

E [e_V*T; RT— € d!lf, |RT| € dyvﬂT = U,:|

A* * /
— o <HN < (7 )) eU*(fy*).(m_u)Hz) A¢*P(~,+)€T-(:B+y)n

IEJUEd

Another singular case that may arise is given in the foll@xarollary. The reasoning
is the same as for theorem 1. Note that in typical insuranpdicgbions there are no
negative premiums and thu$, = () for the net loss process.
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Corollary 2 Ruin by diffusion
The probability for ruin by diffusion is given as

_ Ia u
E [6 ’YT; RT— = 07 |RT| = OvﬁT = 0] -« <A<7)) 6U(7) 1EPUEU

wherelg, g, is a column vector of dimensidn, with ith entry being) for i € E, and1
forie E,U E,.

Corollary 3 Deficit at ruin
The unconditional deficit at the time of ruin has a phase-gig&ibution with represen-

tation PH <a A%E)) eVOup T ) wherelp, denotes the diagonal matrix di, with

entries 1 for rows € E, and 0 otherwise. The probability of a zero deficit at ruin igayi
as

]a u
P(‘RT‘ = 0) = (A(O)) eU(O) 1EpUEg
wherelg, g, is defined as in corollary 2.

Remark 1 For comparisons of the results in this paper to existinglteguthe literature
we direct the interested reader to section 4 of [11].

5 Numerical illustrations

In the last section we consider two particular cases totithtis some of our main results.
Both cases shall serve as guidance to theorem 1, explairiregewto find the relevant
formulas needed to compute the ingredients for it.

5.1 Classical Poisson case with both positive and negativenps

In the first case we consider a risk process with linear premiat ratec > 0 which
is superposed by two compound Poisson processes. One oftidgepositive jumps of
exponential size with parametért > 0 and jump intensit\* > 0. The other one has
negative jJumps of exponential size with parameter> 0 and jump intensity\~ > 0.
Together this forms a Lévy procedaswith parameters. = —c for the drift, 02 = 0 (i.e.
there is no diffusion part), and Lévy measure

I/(dﬂf) = )\+ . I[{x>0} . €_B+Iﬁ+ dx + AT H{x<0} . 6_6imﬁ_ dz.
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The processY can of course be represented as a MQNPJ ) with trivial phase space
E = 1 and the trivial generator matri@ = 0 for 7. According to section 3.1 we construct
the MAP (X', J) as follows. The enlarged phase spateonsists of the subsets, = {1},

E. ={(1,1,1,+)},andE_ = {(1,1,1, —)}, according to (7) and (8). The subséis
and E, are empty. For ease of notation, denote the jump phasés-by (1,1, 1, +) and
1- = (1, 1,1, —). The parameters for each phase are set according to (9) as

(1,0,0), =1+
(Miagiyyi) - (—C, 0,0), 1 =1

The generator matrig for 7 is given by (10 - 11) as

-t BT 0
Q=1 A —x A
0 5 =6

where\ = AT + \~. This completely defines the MARY, 7). The matricesA(v) and
U(~) have dimensioR x 1 and1 x 1, respectively. According to (17), they are determined
as the limit(U(v), A(vy)) = lim, (U, Ay), with initial valuesA, = 0 andU, = —f5+
and iteration

n+1 _6 +6+

A = ()\+ + )\_e/l_An) ,

A+v—cU,

/ 1 -
el_An+1 = ﬁﬁ 6/1An (22)

Heree| ande)_ are the canonical row base vectors on the sgace- {1,1—}. Using
A(vy) = (a1, az)" after trivial calculations we obtain

U=—-3"+5"a,

. )\++)\_CL2
NN
a9 = B_al .

- —=U

(23)
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In this case, the scalax, given in (13) yieldsA, = 5™ according to (20). The transition
matrix of phase changes is given by

0O 1 0
_ -1 _ At A~
P=A'"Q+I=|2" 0 A
0 1 0
According to (19) we obtain the row vectd?*~) = (1,0) and the column vector

P~ = (0, %, 0)'. The matricedl. andIl are determined by the stationary row vector

7w which satisfiesr) = 0 andw1 = 1. We thus obtain

(1 B AT _ B _ X
T+ = )\—+ )\—Jrﬂ—_ ) 771—7T1+)\—+> 7T1——7T1+)\—+6—_,

which determinesl.. = diag(0,m,0) andIl} = diag(1/m,1/m ) according to (21).
In order to compute the matrices (y*) andU*(v*), we first need to determine the time-
reversion(X*, 7*) of (X, 7). This is described in section 3.3. The generator maprix
of J* is given byQ* = A-'Q'A,. It turns out thal)* = Q, i.e. J is reversible. The
other parameters @¢ft*, 7*) are

(=1,0,0), i=1+
(uiyof,v7) =4 (c,0,0), i=1
(17 07 0)7 1 =1-
ThusE! = E,UE; = {1,1-} andE}; = E* = 14 which means tha/*(~*) is a matrix
of dimension2 x 2 and A*(v*) is a row vector of dimensioh x 2. According to (17),

the pair(U*(~*), A*(~*)) is determined as the limiim,,_,.. (U}, A*) with initial values
Al = 0andU; = diag(—(A +v)/c, —f~) and iteration

1 Upn=—0ei_+87ey=(=5,587),

A 1
U = =5l (N AT A,
A =B (BT -Ur) T (24)

wheree, denotes theth canonical row vector on the spaé& = {1,1—}. Writing
A*(v*) = (af, a}) andU* = U*(v*), we obtain

U= (—— tora et %)
B —6”
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and due to the third equation (24) we have to solve

+ Ay AT o AT s AT
) (7T TR )~ o

This determines all ingredients we need from the time-se@MAP(X*, 7*). According

to (20), Ay« = diag(0, \/c,0). The matrixP™*) is a column vector of dimension 3. We
obtain P>+ = (0, A*/\,0)’ according to (19). Regarding the positive jump part, we
obtain finally the parametef§ = —3* andn = 1. This completes the derivations that
we need for Theorem 1.

Example 5 Our numerical example that illustrates this case is takem f{26], Table 1.
The authors consider the classical risk process with claicesrring at a rate ™ = 1 and
claims sizes with meafit = 1. The numerical ruin probabilities are calculated for saler
values of the initial surplus and premium rates. Note that for this we used Theorem 1
together with the Gaver-Stehfest Laplace transform nwakprocedure (see [25]). Some
values are illustrated in the following table.

TABLE 5.1 : Ruin probabilities for the classical case - "onlgims"

t ‘u‘ c=20 c=20.1 c=10.9 c=1 c=1.1
10 | 0 ]0.999999 0.999962 0.858597 0.822716 0.785428
101 0.479780 0.401569 0.055613 0.042251 0.031984

100 | 0 10.999995 0.999989 0.979087 0.943611 0.889980
101 0.999641 0.99991 0.671573 0.447682 0.260392

oo | 0 1 1 1 1 0.909091
10 1 1 1 1 0.366264

As one can see the values agree with those in [26]. As therigaxdindition isc > 1
the infinite time ruin probabilities are equalt@xcept for the case= 1.1. We purposely
chose values for < 1 to analyze the ruin probabilities in the capital injecti@se, where
the safety loading condition will be satisfied for a largerga of values for.

We now compare these results to the more general case thatescapital injections.

For this we assume the rate of capital injection occurretzé® A\~ = 1 and the mean
injection amount3~ = 1. Under this scenario the positive safety loading condi{@®n
reduces to

¢ > ATE[C] — A\ E[K] = ATt — A8~ = 0.

The numerical values for the ruin probabilities are illagd in the table below.
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TABLE 5.2 : Ruin probabilities for the classical case - “o and capital injections”

t ‘u‘ c=0 c=01 ¢=0.9 c=1 c=1.1

10 | 0 | 0.872239 0.846041 0.605712 0.578405 0.552538
101 0.086230 0.067593 0.008527 0.006604 0.008142
100 | 0 ]0.960050 0.930334 0.616260 0.585779 0.557662
10| 0.581408 0.423523 0.013280 0.009308 0.006685
oo | 0 1 0.950124 0.616264 0.587861 0.557663
10 1 0.576998 0.013282 0.009307 0.006685

Comparing Tables 6.1 and 6.2., we remark that by addingalapjections the ruin
probabilities will decrease. For the case- 0, as the safety condition is not satisfied the
infinite time ruin probabilities will be equal to 1. Howevéoy values ofc > 0, unlike the
"only claim" case, the infinite time ruin probabilities wide strictly smaller than.

To illustrate some of the new quantities introduced in ttapgr, we first consider the
density of the minimum surplus prior to rufd - for a choice of the premium rate= 0.1.
As before, we consider two cases the “only claims” case, dlsawe¢he both “claims and
capital injections” case. The two densities are presemteld following graph with the
dotted line representing the density in the “only claimsSegaand the full line the density
in the both “claims and capital injections” case. The ihgarplus is setup at = 10. For
this choice of the premium rate we remind the reader thatifigte time ruin probability
in the “only claims” case i$ and this is in accordance with the fact that the total are@und
the dotted line isl. However, when capital injections are considered, nothaldample
paths will lead to ruin, the ruin probability calculated hetfirst part of the example being
0.576998. When integrating the area under the full line density weimlst. 576954. Using
Corollary 1 we obtain the value of the mass pointiat 10 being0.000044. This very
small value can be explained by the fact that in average métaof valuel, being much
smaller when compared with the initial surplus= 10. Furthermore, adding these two
numbers will give us the corresponding value of the infirirteetruin probability. Another
observation for this example is the difference in scale betwthe two densities. One can
easily remark that the pdf of the minimum surplus prior tarig roughly?2 times less
likely in the “claims and capital injections” case than ie tlonly claims” case.

A last numerical illustration related to this example isigeated to the comparison
between the time to ruin and the time until the minimum swgdtior to ruin. For that
we considerc = 0.1 in the case when we deal with both claims and capital injastio
When one considers the time of the minimum surplus before, e has to take into
consideration the mass point(afor this quantity denoted by (R,.). For that purpose, in
the table below we calculated the cdf of the time of ruin arelahe for the time of the

19



1.0\r

1
N [ Only claims I
|a
|
Lt '

081

—_ Claimsand capitalinjectiol

Figure 1: The density of the minimum surplus prior to ruin.

minimum surplus prior to ruin for various valuesicéndu.

TABLE 5.3 : Finite and infinite time ruin probabilities
| t [PT<t) P(S(Ry)<t) P(S(Ry)<i)+P(S(Ry)=0)
1

u=1 0.27410 0.21920 0.56873
10 || 0.70601 0.45858 0.85388
100 || 0.86583 0.53604 0.88557
oo | 0.90389 0.55436 0.90389
u=10| 1 0.00041 0.00139 0.00143
10 || 0.06759 0.09256 0.09260
100 || 0.42352 0.43970 0.43974
oo || 0.57699 0.57695 0.56799

Note that the mass points for the time of the minimum surptigs po ruin at0 are0.34953,
whenu = 1, and0.00004, whenu = 10. As expected, one can easily check based on
the values obtained in the table that the time of ruin randanmble7 is greater than
the time of the minimum surplus prior to ruifi( 2,) under the usual stochastic order,
T = S(R;). We also note the significant role played by the mass poifitadtthe time

of the minimum prior to ruin for small values of the initialrplus. For large values
of the initial surplus this mass point becomes negligiblehesprobability of dropping
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below the initial surplus without being ruined increases: Approaches infinity, the area
under the cdfs in both cases is equal, and this is in perfexrdance to the fact that
P(T = o0) = P(S(R;) = o0). In those sample paths where the surplus drifts to infinity
without reaching level 0, the time of the minimum surplupto ruin does not appear in

a finite horizon either.

5.2 A contagion model with negative jumps

In the second subsection we consider the contagion modal Ewample 2. We let the
premiums to be collected at rateg cz > 0 which is superposed by a MPP for the claims

with 5 5
_ [ T@a— 01 g o 1 0
DO_( ap —043—51—52)7 Dl_(O (51+52>.

Claims occur in two ways. There is at all times a Poisson m®edth parameted,

of small exponential claims, their mean beiﬁg While in environmentB, there is in
addition a second process, with parameéteof exponential claims; their expected value
is L.

Wngurther assume that the drift parameters @ke= —ca, jip = —cp. The process
X can be represented as a MAR', 7) with phase spacé& = FE, = {14,135} and
—Q g «

4 ) for 7. According to section 3.1 we construct
ap  —Qp

the MAP (X, 7) as follows. The enlarged phase spdceonsists of the subsefs, =
{14,158}, By = {(14,14,1,+),(15,15,1,4),(15,15,2,+)}, according to (7) and (8).
For simplicity we let the subsefs, and £, to be empty. Indeed one can consider a more
general case (for e.g. assuming different volatilitiesaoteenvironments! and B), but
this implies tedious calculations that we prefer to omitehdfor ease of notation, denote
the jump phases by = (14,14,1,+), 1} = (1,15,1,+) and2}, = (1p,15,2,+).
The parameters for each phase are set according to (9) as

the generator matrig =

(1,0,0),  i=1%1%,2%
(Mi)aiv Vi) = (_CA707 0)7 1= 1A
(—CB,0,0), 1= 1B

The generator matrig) can be easily obtain from equation (15) using the lexicolgicg
order. This completely defines the MARX', 7). The matricesA(y) and U(y) have
dimension2 x 3 and3 x 3, respectively. According to (17) (ignoring the detail$)ey
are determined as the limiv/ (), A(vy)) = lim,— 0 (Un, 4,), With initial valuesA4, = 0
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1 0 0

andU, = 0 —u 0 and iteration

0 0 —H2

pr 0
Un+1:U0+ 0 1251 An,

U

aat+d1+y _aa S0 0

( an ﬂ) Angt = AnpaUn = (i? 5 5_) (25)

cB cB ¢B CB

Furthermore the system in (25) can be reduced to a matrixaRiequation in terms aofi,
of the form

a9 0 _aatdr aa 1 0

(C(‘i‘ o 6_2) | oft _antsies | A+ AU+A| O | A=0. (26)
¢B CB CcB cB 0 i

Note that equation (26) generalizes equation (12) from@6}iie Laplace transform of a

busy period in the sense that the premium rates can vary athengarious states of the
economy.

w0 0
In this case A, given in (13) yields| 0 x; 0 | according to (20). The transition
0 0 pe
matrix of phase changes is given by
0 0 0 1 0
0 0 0 0 1
P=A'Q+1= 0 0 0 0 1
[ a
04141-51 0 0 0 a1i51
0 51 52 a2 0
a+61+d02 az+d1+02 az+d1+d2
10
According to (19) we obtain the matriR(*~) = |0 1| and the matrixP(~*) =
0 1
& 0 0 : :
(a1+51 5 5 ) The matricedl.. andIl; are determined by the stationary
0 ag+014+02  as+01402 .
row vectorr which satisfiesr() = 0 and71 = 1. We thus obtain
T+ = aBéle 7T+:7T+a—A 7T+:7T+'u1—52
M aubopn + (g + o) (81 + pa)pn’ e Tlag %5 B pgdy
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. H1 . o)
—7T1+— 7TlB—7T1A—,

™
A4y’ ap

A

which determines$l. = diag(0,0,0,m ,,m,) andIl} = diag(1/m ,,1/m,) according
to (21). Similar steps will lead to the calculation of the rwds A*(v*) andU*(v*), but
to avoid repetition we omit them here. We further pursue &ortext numerical example.

Example 6 We assume that the standard claims will occur according twssBn process
atrated; = 1 and infectious claims will occur at rate = 10 during the contagion periods.
Standard claim amounts have médp, = 1/5, while the mean size of an infectious claim
is1/uy =15/ = 3. Itis assumed that the rate at which the system enters teetiofis
environment isy4, = 0.02 and the return rate to the standard environmentgs= 1, so
that in98% of the cases the system will be in the standard environmeatcisider nine
different scenarios for the finite and infinite time ruin pabidities in order to illustrate the
effect of changing the premium rates in each environmentedisas changing the initial
phase distribution of the environment denoted here3by- (54, 55). The numerical
results are presented in the following table.

TABLE 5.4 : Finite and infinite time ruin probabilities far= 1

{Ba, B} | t |ea=1,c5=1 ca=1lc5=10 cx=10,c5=1

{0.5,0.5} 1 0.45065 0.22929 0.44124
10 0.52062 0.47475 0.44814

100 0.72879 0.65028 0.47204

1000 0.83439 0.71527 0.47251

00 0.84665 0.71643 0.47251

{0.9,0.1} 1 0.10454 0.05222 0.08955
10 0.21905 0.17552 0.10140

100 0.55820 0.44851 0.13744

1000 0.73016 0.55092 0.14105

00 0.75013 0.55274 0.14105

{0.1,0.9} 1 0.79675 0.40636 0.79293
10 0.82219 0.77403 0.79408

100 0.89947 0.85206 0.80313

1000 0.93863 0.87962 0.80396

00 0.94317 0.88011 0.80396

We first remark that for, = 1 andcg = 1 ands = {0.5,0.5} we recover the results
obtained in [6]. Furthermore, if we keep the initial proldapivector the same, but we
increase the rate at which premiums will be collected in tifedtious environment by
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a factor of10 the ruin probabilities will decrease as expected. A simgfiect can be
observed when we choosg = 10 andcg = 1. An interesting thing is the fact that the in-
crease in premium rate will produce a wider range of valueg®ruin probabilities when
the increase happens in the infectious phase rather thastahdard phase. This shows
once again the importance of the contagion environmentigetfye rare occurrences of
this environment (onl2% of the time). Finally, a change in the initial phase disttibo
plays an important role in the value of the ruin probab#itiés it can be seen from the
values illustrated in Table 5.4, a start of the system in tifiectious environment with a
higher probability will produce a higher finite time ruin [ability.

In the end we also consider the density of the minimum of thiplss prior to ruin,
under this MPP contagion model. To better asses the effecharige in the premium
rates between the environmental phases we fixed the inradlgbility vector to bes =
{0.5,0.5}. The following graphs present density of the minimum swusgdtior to ruin for
u = 1 andu = 10.
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Figure 2: The density of the minimum surplus prior to ruins 1.
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Figure 3: The density of the minimum surplus prior to ruin= 10.

In both graphs the upper curve corresponds to the€asel, cg = 1, the middle one
tocy = 1, cg = 10 and the one below to the case = 10, cz = 1. As expected, when the
premium rates are at the smallest level, the probability@ated to the minimum surplus
prior to ruin has the higher scale. Increasing the premiussran each environment will
decrease the associated infinite time ruin probabilitie ieaplicitly the probability of
obtaining the same level of the minimum surplus prior to ruin

Whenu = 1 we observe an increasing behavior in the density of the mimraurplus
prior to ruin in contrast to the decreasing behavior obtiinethe case: = 10. This is
somehow expected and can be explained due to the changeratithéetween the area
under the continuous part density and the mass point padgn@snoves from; = 1 to
u = 10. The last table illustrates how the cdf of the minimum susgduor to ruin can be
decomposed in two parts: the area under the continuoustgemsi the mass point at,
for both values, = 1 andu = 10.

TABLE 5.4 : Decomposition of the cdf of the minimum surplugoptto ruin
‘ ‘cAzl,chl ca=1l,cg=10 c4=10,cp =1

u =1 | continuous part  0.31277 0.23672 0.14447
mass point 0.53387 0.47970 0.32803
u = 10 | continuous part 0.75830 0.57297 0.34712
mass point 0.02653 0.02384 0.01631
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