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Abstract

In this paper we consider a risk reserve process where the arrivals (either claims
or capital injections) occur according to a Markovian pointprocess. Both claim and
capital injection sizes are phase-type distributed and themodel allows for possible
correlations between these and the inter-claim times. The premium income is mod-
elled by a Markov-modulated Brownian motion which may depend on the underlying
phases of the point arrival process. For this risk reserve model we derive a general-
ized Gerber-Shiu measure that is the joint distribution of the time to ruin, the surplus
immediately before ruin, the deficit at ruin, the minimal risk reserve before ruin, and
the time until this minimum is attained. Numerical examplesillustrate the influence
of the parameters on selected marginal distributions.

1 Introduction

Gerber and Shiu [15] derived the joint distribution of the time to ruin, the surplus immedi-
ately before ruin, and the deficit at ruin. Their analysis covered the classical Poisson risk
model

Rt = u+ ct−
Nt
∑

j=1

Xj
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whereu ≥ 0 is the initial surplus,c > 0 is the rate of premium income,(Nt : t ≥ 0) is
a Poisson process, andXj, j ∈ N, are iid positive random variables modelling the claim
sizes. In this notation the time of ruin is given by

T = inf{t ≥ 0 : Rt < 0}

while the surplus immediately before ruin and the deficit at ruin areRT− and |RT |, re-
spectively. Given a discount rateδ ≥ 0 and a non-negative functionw(x, y) onx, y ≥ 0,
Gerber and Shiu [16] investigated the function

φ(u) = E[w(RT−, |RT |) · e
−δT · I{T<∞}|R0 = u] (1)

whereIA denotes the indicator function of some setA. This functionφ has found much
attention since then and was given the name Gerber-Shiu (GS)function or discounted
penalty function. Many authors have contributed to its analysis, where the underlying
risk reserve process has been generalised in several directions. The perturbed compound
Poisson model has been considered in [14, 12, 20], while Markov-modulated (or regime
switching) versions are analysed in [3, 23]. There are further related papers on the GS
function for the Lévy risk process [13], the fluid flow model [7, 1], the Sparre Andersen
model with Erlang inter-claim times [17] and its perturbed version [18]. [8, 9] extended
the Gerber-Shiu function to a generalized discounted penalty function (GDPF) considering
the last minimum of the surplus before ruinR T in the analysis. The new defined GDPF
can be represented as

φG(u) = E[wG(RT−, |RT |, R T ) · e
−δT · I{T<∞}|R0 = u], (2)

wherewG is a bounded measurable function onR
3
+.

One does not need to add more references to show that the GS functions enjoy great
popularity among the research community. The almost universal approach of analysis
is the derivation of some (defective) renewal equations, coming from a set of integro-
differential equations which are obtained via Itô’s formula or the infinitesimal generator
of the risk reserve process (see discussion to [19]).

The present paper deals with the analysis of a generalized Gerber-Shiu type measure
(to be introduced in Section 2) for Markov-additive risk processes. Combining the fea-
tures of perturbation and Markov-modulation we render someof the aforementioned risk
processes as special cases. The only restriction required for the analysis in this paper is
that both claim and capital injection sizes have a phase-type representation.

Rather than employing the mainstream approach of defectiverenewal equations, we
shall use a recent result presented in [11], where the joint distribution of the space-time po-
sitions of overshoots and undershoots has been derived for Markov-additive processes with
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phase-type jumps. Note that at times we will alternate the use of words overshoot/undershoot
with deficit/surplus, in order to be consistent with the terminology encountered in the re-
search areas where they are frequently used.

Our present paper aims to apply this result to the class of Markov–additive risk pro-
cesses described in the second section. Extensive numerical examples shall illustrate the
effect that different market conditions can have on the GDPFand its particular cases.

In the following section we shall present the model of Markov-additive risk processes
and establish the relation to first passage times as well as overshoots and undershoots for
Markov-additive processes (MAPs). In section 3 we collect all the necessary preliminary
results for MAPs that we will need later on. In particular we simplify the results from [10]
for the special kind of MAPs that we employ in this paper. Section 4 contains the main
result with some corollaries. The final section acts as a utilization manual for the results
obtained in Section 4 presented on two numerical examples.

2 The insurance risk model

We begin with a Markovian random environment. LetJ̃ = (J̃t : t ≥ 0) be an irreducible
Markov (jump) process with finite state spaceẼ and infinitesimal generator matrix̃Q =
(q̃ij)i,j∈Ẽ. We call J̃t the phase at timet ≥ 0. Each phasei ∈ Ẽ signifies a certain state
of market conditions which may affect the intensity and severity of claims and capital
injections as well as the rate and volatility of the premium income.

Based on the phase processJ̃ , we define the risk reserve processR = (Rt : t ≥ 0)
as follows. Denote the initial risk reserve byR0 := u ≥ 0. We assume that the premium
income between claims can be modelled by a Brownian motion, where the parametersci
(drift) and σ̃i (variation) at timet may depend on the current phaseJ̃t = i. For insurance
risk we typically haveci > 0 for all i ∈ Ẽ, which we shall assume from now on. We shall
allow σ̃i = 0 for some (or possibly all) phases, under which condition theBrownian motion
becomes a linear drift. Thus the process of premium income isa Markov–modulated
Brownian motion which we denote by(B, J̃ ) = ((Bt, J̃t) : t ≥ 0). We assume that
B0 = 0.

Claims may occur in two ways. First, during{t ≥ 0 : J̃t = i}, i.e. whenJ̃ is in phase
i, claims occur at a constant (hazard) rateλ+i ≥ 0. The size of such a claim shall have a
phase-type (PH) distribution with parametersα(ii)+ andT (ii)+. Second, at time instances
of phase changes fromi to j 6= i a claim may occur with probabilityp+ij . The size of such
a claim shall have a PH distribution with parametersα(ij)+ andT (ij)+. As usual, we write
η(ij)+ := −T (ij)+

1 for the so-called exit rate vector of thePH(α(ij)+, T (ij)+) distribution,
where1 denotes a column vector of appropriate dimension with all entries being 1. Denote
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the claim arrival process by(N+, J̃ ) = ((N+
t , J̃t) : t ≥ 0), i.e. letN+

t denote the number
of claims that have occurred until timet. Denote thenth claim size byCn, n ∈ N.

We further allow for capital injections, i.e. sudden increases of the risk reserve at par-
ticular time instances. Here we use the same model as for the claim arrival process. Thus
we may see a capital injection during{t ≥ 0 : J̃t = i} at a constant rateλ−i ≥ 0. Its size
shall have a PH distribution with parametersα(ii)− andT (ii)−. At time instances of phase
changes fromi to j 6= i a capital injection may occur with probabilityp−ij . The size of
such an injection shall have a PH distribution with parametersα(ij)− andT (ij)−. Again we
defineη(ij)− := −T (ij)−

1 for i, j ∈ Ẽ. We further denote the process generating capital
injections by(N−, J̃ ) = ((N−

t , J̃t) : t ≥ 0), i.e. letN−
t denote the number of capital

injections that have occurred until timet. Denote the size of thenth injection byKn,
n ∈ N.

Thus the point arrival process is a Markovian point process (MPP)1 with parameter
matricesD0 andD1 on Ẽ having entries

D0;ij =

{

q̃ii − λ+i − λ−i , j = i

q̃ij · (1− p+ij − p−ij), j 6= i
and D1;ij =

{

λ+i + λ−i , j = i

q̃ij · (p
+
ij + p−ij), j 6= i

where we assume thatp+ij + p−ij ≤ 1 for all i, j ∈ Ẽ.
As expected, we observe that the sum of the elements in each row of the matrixD0+D1

equals0. A common phase space enables us to model correlations between point arrivals,
claim/capital injection sizes, and the premium income. It is shown in [5] that the class of
MPPs is dense within the class of marked point processes. Further, it is shown in [24] that
the class of phase–type distributions is dense within the class of all distributions on the
positive real numbers. Thus we incur no serious restrictionin generality.

With the definitions above, the risk reserve processR = (Rt : t ≥ 0) is given by

Rt = u+Bt −

N+
t
∑

n=1

Cn +

N−

t
∑

n=1

Kn =: u+Bt − Ct + Kt,

for t ≥ 0, whereCt represents the aggregate claim process andKt the aggregate capital
infusion process. The net profit condition for such an insurance risk model can be written
as

Eπ̃[B1] > Eπ̃[C1]− Eπ̃[K1]. (3)

1see [22, 21, 5]. This has traditionally been called Markovian arrival process and abbreviated as MAP.
Since we use the shortcut MAP for the more general class of Markov–additive processes already, we prefer
to use the term Markovian point process and the abbreviationMPP instead. Some authors use the shortcut
MArP.
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whereπ̃ is the stationary distribution of̃J , i.e. π̃Q̃ = 0 andπ̃1 = 1. In terms of the given
parameters this translates into

∑

i∈Ẽ

π̃ici >
∑

i∈Ẽ

π̃i

(

λ−i α
(ii)−

(

T (ii)−
)−1

1− λ+i α
(ii)+

(

T (ii)+
)−1

1

)

+
∑

i∈Ẽ

π̃i
∑

j 6=i

q̃ij

(

p−ijα
(ij)−

(

T (ij)−
)−1

1− p+ijα
(ij)+

(

T (ij)+
)−1

1

)

In typical applications many of the parametersp±ij andλ±i turn out to be zero, which re-
duces the number of terms in the sums above. In all examples given in this paper the
parametersp±ij will vanish.

We denote the net loss process byX̃ = (X̃t : t ≥ 0) whereX̃t := u−Rt for all t ≥ 0.
Then the process(X̃ , J̃ ) is a Markov-additive process (MAP) with phase–type jumps. In
order to determine the GDPF for the risk reserve process described above, we shall make
use of a recently published quintuple law for MAPs, see [11].Thus it will help to translate
the variables derived from the risk reserve processR into variables related to the net loss
processX̃ .

Clearly,X̃0 = 0. The time of ruin is given by

T = inf{t ≥ 0 : Rt < 0} = inf{t ≥ 0 : X̃t > u} =: τ̃(u)

where τ̃ (u) is the first passage time to levelu of the net loss process̃X . The surplus
immediately before ruin and the deficit at ruin are then givenby

RT− = u− X̃τ̃(u)− and |RT | = X̃τ̃(u) − u

respectively. Thus it suffices to look at undershoots and overshoots for MAPs in order to
determine the surplus prior to and the deficit at ruin under the risk reserve process. As
mentioned before, in this paper we go a step further and derive additionally the minimal
surplus before ruin, i.e.

R T := min{Rt : t < T} = u−max{X̃t : t < τ̃ (u)} := u− M̃τ̃(u)

and the time until this minimum is reached, i.e.

S(RT ) := min{t ≥ 0 : Rt = RT} = max{t ≥ 0 : X̃t = M̃τ̃(u)} =: G̃τ̃(u) (4)

The last equality holds because we have excluded constant (null) movements and allowed
only phase-type jumps. An actuarial motivation for the analysis ofR T andS(R T ) is pro-
vided in [9], p.92: "The lower this minimum, the worse the financing conditions that can
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be negotiated by the company with capital providers. Similarly, the closer the last mini-
mum was to the bankruptcy level, and the shorter the time elapsed since that minimum, the
more urgent was the need to correct the course and steer away from dangerous waters."

The main result of this paper is an explicit formula for the generalized Gerber-Shiu
measure defined as a density function

fγ,γ∗(x, y, z) dx dy dz := E
(

e−γS(RT )−γ∗·(T−S(RT ));RT− ∈ dx, |RT | ∈ dy, RT ∈ dz
)

(5)
whereγ, γ∗ ≥ 0 are time discounting factors and0 < z < u. Note thatR T ≤ R0 = u
such thatfγ,γ∗(x, y, z) = 0 for z > u.

There are two singular points forR T . One isR T = u, which means that the risk
reserve will never fall below the initial value before ruin occurs by a claim. In this case
S(R T ) = 0. The other singular point isR T = 0, which means that ruin occurs by
creeping, i.e. not by a claim but by the volatility of the premium income process. In this
caseS(R T ) = T andRT− = |RT | = 0 follow necessarily.

This result provides all the information that is usually contained in the GDPF. In ad-
dition, it yields the distributions ofS(R T ) andR T . Given a discount rateδ ≥ 0 and a
non-negative penalty functionwG(x, y, z) on x, y, z ≥ 0, the original GDPF (2) can be
determined by settingγ = γ∗ = δ as follows

φG(u) =

∫ ∞

x,y=0

∫ u

z=0

wG(x, y, z)fδ,δ(x, y, z) dz dx dy

+

∫ ∞

x,y=0

wG(x, y, u) E
[

e−δT ;RT− ∈ dx, |RT | ∈ dy, R T = u
]

+ wG(0, 0, 0) E[e
−δT ;RT− = |RT | = R T = 0].

In particular, the term
∫ u

z=0
fδ,δ(x, y, z) dz+E

[

e−δT ;RT− ∈ dx, |RT | ∈ dy, R T = u
]

may
be seen as the original Gerber-Shiu density function.

3 Preliminaries

Looking at the problem from the angle described above and in order to obtain results per-
tinent to the insurance risk processRt, we first need to collect some necessary preliminary
results for MAPs from the existing literature. This shall bethe purpose of the present
section.
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3.1 Markov-additive processes with phase-type jumps

The joint net loss and phase process(X̃ , J̃ ) form a MAP with the following parameters.
The phase space is̃E and the infinitesimal generator matrix for̃J is Q̃. The real–valued
level process̃X = (X̃t : t ≥ 0) evolves like a Lévy process̃X (i) with parameters̃µi := −ci
(drift), σ̃2

i (variation), and Lévy measure

ν̃i(dx) = λ+i I{x>0} α
(ii)+ exp(T (ii)+x)η(ii)+dx

+ λ−i I{x<0} α
(ii)− exp(−T (ii)−x)η(ii)−dx (6)

during intervals when the phase equalsi ∈ Ẽ. WheneverJ̃ jumps from a statei ∈ Ẽ to
another statej ∈ Ẽ, j 6= i, this may be accompanied (with probabilityp+ij) by an upward
jump ofX̃ with distribution functionF̃+

ij = PH(α(ij)+, T (ij)+) or (with probabilityp−ij) by
a downward jump with distribution functioñF−

ij = PH(α(ij)−, T (ij)−). Denote the order
of PH(α(ij)±, T (ij)±) bym±

ij .
The main advantage of the PH restriction on the jump distributions is the possibility

of transforming the jumps into a succession of linear piecesof exponential duration (each
with slope 1 or -1) and retrieving the original process via a simple time change, see [4],
section 8, or [6]. This will transform our original MAP processX̃ into a new one, denoted
by X , in which there will be a time evolution during those periodswhen the claims and
the capital injections are paid. This is done in the following way. Without the jumps, the
Lévy processX̃ (i) during a phasei ∈ Ẽ is either a linear drift (of slopẽµi) or a Brownian
motion (with parameters̃σi and µ̃i). Considering this MAP (without the jumps) we can
partition its phase spacẽE into the subspacesEp (for positive drifts),Eσ (for Brownian
motions), andEn (for negative drifts). We thus define

Ep := {i ∈ Ẽ : µ̃i > 0, σ̃i = 0}, En := {i ∈ Ẽ : µ̃i < 0, σ̃i = 0}, Eσ := {i ∈ Ẽ : σ̃i > 0}.
(7)

Note thatẼ = Ep ∪ Eσ ∪ En, since we have excluded the case ofµ̃i = σ̃2
i = 0 for any

phasei ∈ Ẽ. Then we introduce two new phase spaces

E± := {(i, j, k,±) : i, j ∈ Ep ∪ Eσ ∪ En, 1 ≤ k ≤ m±
ij} (8)

to model the jumps. Define now the enlarged phase spaceE = E+ ∪ Ẽ ∪ E−. We define
the modified MAP(X ,J ) over the enlarged phase spaceE as follows. Set the parameters
(µi, σ

2
i , νi) for i ∈ E as

(µi, σ
2
i , νi) :=

{

(±1, 0, 0), i ∈ E±

(µ̃i, σ̃
2
i , 0), i ∈ Ẽ = Ep ∪ Eσ ∪ En

(9)
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The modified phase processJ is determined by its generator matrixQ = (qij)i,j∈E.
For this the construction above yields

qih =



















q̃ii − λ+i − λ−i , h = i ∈ Ẽ

q̃ih · (1− p+ih − p−ih), h ∈ Ẽ, h 6= i

λ±i α
(ii)±
k , h = (i, i, k,±)

q̃ij · p
±
ij · α

(ij)±
k , h = (i, j, k,±)

(10)

for i ∈ Ẽ as well as

q(i,j,k,±),(i,j,l,±) = T
(ij)±
kl and q(i,j,k,±),j = η

(ij)±
k (11)

for i, j ∈ Ẽ and1 ≤ k, l ≤ mij . For later use we defineqi := −qii for all i ∈ E.
We denote the MAP constructed in (9), (10), and (11) by(X ,J ). The original level

processX̃ is retrieved via the time change

c(t) :=

∫ t

0

1Js∈Ẽ ds and X̃c(t) = Xt (12)

for all t ≥ 0. The inverses of the cumulant functionsψi for the so–called ascending phases
i ∈ Ea := E+ ∪ Ep ∪ Eσ can be given explicitly as

φi(β) =

{

β

µi
, i ∈ E+ ∪ Ep

1
σi

√

2β +
µ2
i

σ2
i

− µi

σ2
i

, i ∈ Eσ

(13)

Example 1 We consider the classical compound Poisson model. Inter–claim times and
claim sizes are iid exponential with parameterλ > 0 andβ > 0, respectively. The rate of
premium income isc > 0. The net profit condition is thenλ/(cβ) < 1. This model has
been examined in [16]. Under our notation the net loss at timet ≥ 0 is given by

X̃t =
Nt
∑

n=0

Cn − ct (14)

where(Nt : t ≥ 0) is a Poisson process with intensityλ and theCn, n ∈ N, are iid random
variables with exponential distribution of parameterβ. The net loss process can be anal-
ysed as a MAP with exponential (and hence phase–type) positive jumps with parameterβ.
For this, we would need only one phase, i.e.Ẽ = {1}. This phase governs a Lévy process
with parameters̃σ = 0, µ̃ = −c, andν̃(dx) = λe−βxβdx for all x > 0.
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We obtain the modified MAP(X ,J ) as follows. The new phase space is given as
E = {(1, 1), 1}, whereE+ = {(1, 1)}, En = {1}, andEσ = Ep = E− = ∅. We
setλ1 = λ andm11 = 1 since the positive jumps have an exponential distribution.The
parameters are given byσ(1,1) = σ1 = 0, µ(1,1) = 1, µ1 = −c, ν(1,1) = ν1 = 0, according
to (9). The generator matrix for the phase processJ is given as

Q =

(

−β β
λ −λ

)

according to (10) and (11).

Example 2 To illustrate the use of environment phases we resort to an example first pre-
sented in [6]. There is a predominant normal state,A and a “rare" stateB to represent
periods of contagion. The system switches fromA toB at rateαA and fromB toA at rate
αB. EnvironmentA features standard claim rates and claim sizes, while environmentalB
features a supplemental stream of claims due to a highly infectious disease.

Claims occur in two ways. There is at all times a Poisson process with parameterδ1
of small exponential claims, their mean being1

µ1
. While in environmentalB, there is in

addition a second process, with parameterδ2 of exponential claims; their expected value
is 1

µ2
.

The following five states are identified:

1. environmentA, normal claim payment in progress;

2. environmentB, normal claim payment in progress;

3. environmentB, contagion claim payment in progress.

4. environmentA, during an interval between claims;

5. environmentB, during an interval between claims;

ThusE+ = {1, 2, 3} andEn = {4, 5}. The generator forJ is

Q =













−µ1 0 0 µ1 0
0 −µ1 0 0 µ1

0 0 −µ2 0 µ2

δ1 0 0 −αA − δ1 αA

0 δ1 δ2 αB −αB − δ1 − δ2













. (15)
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The parameters forX are

(µi, σi, νi) =











(0, 1, 0), i ∈ {1, 2, 3}

(0,−cA, 0), i = 4

(0,−cB, 0), i = 5

wherecA andcB are the rates of premium collection in environments A and B, respectively.

Example 3 The joint density function of the surplus prior to ruin and the deficit at ruin has
been derived in [7] for the fluid flow case from an insurance perspective. The fluid queue
{(Lt, Jt) : t ≥ 0} as defined on p. 434 therein is a MAP with phase spaceS = S1 ∪ S2

and parameters

(σi, µi, νi) =

{

(0, 1, 0), i ∈ S1

(0,−1, 0), i ∈ S2

as well as generator matrix

T =

(

T11 T12
T21 T22

)

Phases inS1 are considered as premium income phases, while phases inS2 pertain to
claims. Not counting the time during claim phases (inS2) and settingL0 := u, which shall
denote the initial risk reserve,{(Lt, Jt) : t ≥ 0} uniquely defines a risk reserve process
Rc′(t) := Lt, t ≥ 0, via the time changec′(t) :=

∫ t

0
1Js∈S1ds. Thus the approach in [7]

is very similar to the present paper, only the parameters aremore restricted (they do not
allow perturbations by diffusion).

It is therefore quite simple to compare results between [7] and the present paper. The
net claim amount at timet ≥ 0 is X̃t := u−Rt. For the modified MAP(X ,J ), we obtain
Ep = Eσ = E− = ∅ andE+ = S2, En = S1. Comparing the notations for the generator
matrix of the phase processJ , we get the block partition

Q =

(

Q++ Q+−

Q−+ Q−−

)

=

(

T22 T21
T12 T11

)

The assumptionc = 1 therein translates toµi = −1 for all i ∈ En in our notation.

3.2 First passage times

Of central use in the present paper will be the matricesA(γ) andU(γ) that determine the
Laplace transforms for the first passage times of MAPs with phase–type jumps as given in
[10]. Defineτ̃ (x) := inf{t ≥ 0 : X̃t > x} andτ(x) := inf{t ≥ 0 : Xt > x} for all x ≥ 0
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and assume thatX0 = 0. The time change in (12) yields̃τ(x) = c(τ(x)) =
∫ τ(x)

0
1Js∈Ẽds,

i.e. we may compute expectations overτ̃ (x) using the distribution of the modified MAP
(X ,J ) only. Forγ ≥ 0 denote

Eij [e
−γτ̃(x)] := E[e−γτ̃ (x); Jτ(x) = j|J0 = i, X0 = 0]

for all i, j ∈ E. Note that the phasesi, j may be taken from the enlarged phase spaceE,
thus we include phasesi, j ∈ E+ ∪ E− that model the jumps. LetE[e−γτ̃ (x)] denote the
matrix with these entries and write

E[e−γτ̃ (x)] =

(

E(a,a)[e
−γτ̃(x)] E(a,d)[e

−γτ̃(x)]
E(d,a)[e

−γτ̃ (x)] E(d,d)[e
−γτ̃ (x)]

)

in obvious block notation with respect to the subspacesEa = E+ ∪ Ep ∪ Eσ (ascending
phases) andEd = En ∪ E− (descending phases).

Since a first passage to a level above cannot occur in a descending phase, we obtain
first P(Jτ(x) = j) = 0 for all j ∈ Ed and thusE(d,d)[e

−γτ̃ (x)] = E(a,d)[e
−γτ̃ (x)] = 0 where

0 denotes a zero matrix of suitable dimension. The exponential form

e−γτ̃(x) = e−γ
∫ τ(x)
0 1

Js∈Ẽ
ds

as well as path continuity ofX and spatial homogeneity of(X ,J ) lead to the functional
equation

Eij [e
−γτ̃ (x+y)] =

∑

k∈Ea

Eik[e
−γτ̃(x)]Ekj [e

−γτ̃(y)]

for all i ∈ E andj ∈ Ea. Hence we obtain

E(d,a)[e
−γτ̃(x)] = A(γ)eU(γ)x and E(a,a)[e

−γτ̃(x)] = eU(γ)x (16)

for some sub–generator matrixU(γ) of dimensionEa × Ea and a sub–transition matrix
A(γ) of dimensionEd ×Ea, cf. equation (6) in [10].

Write e′i for theith canonical row base vector, according to context either onE, onEa,
or onEd. According to [11], the matricesA(γ) andU(γ) can be determined by successive
approximation as the limit of the sequence((An, Un) : n ≥ 0) with initial valuesA0 := 0,
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U0 := −diag(φi(qi + γ)1i∈Eσ∪Ep
+ φi(qi)1i∈E+)i∈Ea

and the following iteration:

e′hUn+1 =

m+
ij
∑

l=1

T
(ij)+
kl e′(i,j,l,+) + η

(ij)+
k e′j

(

Ia
An

)

for h = (i, j, k,+) ∈ E+,

e′iUn+1 = −
qi + γ

µi

e′i +
1

µi

∑

j∈E,j 6=i

qij e
′
j

(

Ia
An

)

for i ∈ Ep,

e′iAn+1 =
∑

j∈E,j 6=i

qije
′
j

(

Ia
An

)

((qi + γ)I + µiUn)
−1 for i ∈ En,

e′iAn+1 =
∑

j∈E,j 6=i

qije
′
j

(

Ia
An

)

(qiI − Un)
−1 for i ∈ E−, and

e′iUn+1 = −φi(qi + γ)e′i +
2

σ2
i

∑

j∈E,j 6=i

qij e
′
j

(

Ia
An

)

(φ∗
i (qi + γ)I − Un)

−1 (17)

for i ∈ Eσ. Note thatIa represents an identity matrix whose dimension is given by the
number of ascending phases fromEa.

Example 4 Coming back to example 1, it is shown in [10], example 5, that the Laplace
transform of the first passage timeτ̃ (x) := inf{t ≥ 0 : X̃t > x} to a levelx > 0 is given
by

E[e−γτ̃ (x)] = A(γ)eU(γ)x where A(γ) =
β −R

β
, U(γ) = −R

and

−R =
1

2c

(

λ+ γ − cβ −
√

(cβ − γ − λ)2 + 4cβγ
)

which coincides with equation (4.24) in [16], noting thatγ is denoted asδ there.

3.3 Time–reversed MAPs

Denote the number of phases inE by m := |E|. Let π = (π1, . . . , πm) denote the sta-
tionary phase distribution, which can be computed byπQ = 0 andπ1 =

∑m

i=1 πi = 1,
where0 denotes the zero row vector and1 the column vector with all entries being one.
Define the matrixQ∗ = (q∗ij)i,j∈E by q∗ij := πjqji/πi for all i, j ∈ E or in shorter notation
Q∗ := ∆−1

π Q′∆π, where∆π = diag(π1, . . . , πm) is the diagonal matrix with entryπi in
its ith row and the superscript′ denotes transposition of a matrix. Then the Markov pro-
cess with state spaceE and generator matrixQ∗ is a time–reversed version of the original
phase processJ . We denote it byJ ∗ = (J∗

t : t ≥ 0).
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Based onJ ∗ we define a time-reversal(X ∗,J ∗) of the original MAP(X ,J ) by the
rule thatX ∗ evolves like a Lévy process with parameters−µi (drift) andσ2

i (variation)
during intervals when the time–reversed phaseJ∗

t equalsi ∈ E. Note that the sign change
of theµi leads toE∗

± = E∓, E∗
p = En, E∗

n = Ep, andE∗
σ = Eσ. We denote the first

passage times for(X ∗,J ∗) by τ ∗(x) := inf{t ≥ 0 : X∗
t > x} for any levelx ≥ 0.

4 Main result

We necessarily have0 ≤ R T ≤ u, whereR T = u means that the risk reserveR does
not fall below its initial valueu before a claim causes ruin. The caseR T = 0 means
that passage occurs by creeping, i.e. ruin is not caused by a claim but by the volatility in
premium income.

Our aim is to derive a computable expression for the measure defined in equation(5).
Note that using the connections (developed in Section 2) between the risk processRt and
the MAP process̃Xt one can write

E
[

e−γS(R T )−γ∗·(T−S(R T ));RT− ∈ dx, |RT | ∈ dy, R T ∈ dz
]

= E

[

e−γG̃τ̃(u)−γ∗(τ̃ (u)−G̃τ̃(u)); u− X̃τ̃(u)− ∈ dx, X̃τ̃(u) − u ∈ dy, u− M̃τ̃(u) ∈ dz,
]

(18)

whereγ, γ∗ ≥ 0 are arguments for the double Laplace transform,x, y ≥ 0, and0 ≤ z ≤ u.
Note that necessarilyx ≥ u − z. It is then clear that on one side the knowledge of the
time to ruin, the surplus prior to ruin, the deficit at ruin, the minimum prior to ruin and
the time of the minimum in the risk processRt correspond on the other side to finding the
first passage time over a levelu, the undershoot and the overshoot at this passage time, the
maximum before this passage time and the time of this maximumfor the MAPX̃t. Thus
we can make use of the quintuple law for MAPs as derived in [11]. The results shall be
phrased in terms of the variablesT ,RT ,RT−,RT , andS(RT ) as they are more immediate
to insurance risk.

We shall use the parameters of the modified MAP(X ,J ) as constructed in section
3.1. SetP = ∆−1

q Q + I, whereQ denotes the generator matrix ofJ , see (10) and (11),

and∆q is the diagonal matrix with entriesqi = −qii for all i ∈ E. Definep(+,−)
ij := δij for

i ∈ Eσ andp(+,−)
ij := pij for i ∈ E+ ∪ Ep, j ∈ En ∪ E−. Further define

P (+,−) :=
(

p
(+,−)
ij

)

i∈Ea,j∈Eσ∪Ed

and P (∼,+) := (pij1i∈Ẽ)i∈E,j∈E+ (19)
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The matricesP (+,−) andP (∼,+) subsume the transition probabilities from ascending to
descending phases and from continuous to positive jump phases, respectively. Write

∆φ := diag(φi(qi))i∈Ea
and ∆φ∗ := diag(φi(qi)1i∈Ep

+ φ∗(qi)1i∈Eσ∪En
)i∈E (20)

and define the block diagonal matrixT = diag
(

T (ij)
)

(i,j)∈Ẽ×Ẽ
and the block column

vectorη =
(

η(ij)
)

(i,j)∈Ẽ×Ẽ
. Finally, define the diagonal matrices

Π∗
a = diag(1/πi)i∈Eσ∪Ed

and Π∼ = diag(πj1j∈Ẽ)j∈E (21)

Now we can state the main results. Note thatM ′ denotes the transpose of a matrixM , Ia
the identity matrix onEa, andI∗a the identity matrix onEσ ∪ Ed.

Theorem 1 Let (R, J̃ ) denote a Markov-additive risk process with phase–type claims
and possible capital injections. Let̃α denote its initial phase distribution, i.e.̃αi :=
P(J̃0 = i) for all i ∈ Ẽ. Define the row vectorα = (αi : i ∈ E) on the phase space
E byαi := α̃i for all i ∈ Ẽ andαi := 0 for i ∈ E+ ∪ E−. Then

E
[

e−γS(R T )−γ∗(T−S(R T );RT− ∈ dx, |RT | ∈ dy, u− R T ∈ dz,
]

= α

(

Ia
A(γ)

)

eU(γ)z∆φP
(+,−)

(

Π∼

(

A∗(γ∗)
I∗a

)

eU
∗(γ∗)·(z−(u−x))Π∗

a

)′

∆φ∗P (∼,+)eT ·(x+y)η

for all γ, γ∗ ≥ 0, 0 < z < u, x > u− z, andy > 0.

If the process starts in a phasei ∈ Ẽ with ci > 0 andσ̃i = 0, then the singular case
R T = u is possible. This impliesS(R T ) = 0 andRT− > u. The remaining quadruple
law is given in the following corollary. Forγ∗ = 0 andEσ = ∅ it yields equation (3.6) in
[2] and theorem 1 in [23].

Corollary 1 Let α̃ be an initial phase distribution with support onEn and defineα as in
theorem 1. Then

E
[

e−γ∗T ;RT− ∈ dx, |RT | ∈ dy, R T = u,
]

= α

(

Π∼

(

A∗(γ∗)
IEσ∪Ed

)

eU
∗(γ∗)·(x−u)Π∗

a

)′

∆φ∗P (∼,+)eT ·(x+y)η

Another singular case that may arise is given in the following corollary. The reasoning
is the same as for theorem 1. Note that in typical insurance applications there are no
negative premiums and thusEp = ∅ for the net loss process.
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Corollary 2 Ruin by diffusion
The probability for ruin by diffusion is given as

E
[

e−γT ;RT− = 0, |RT | = 0, R T = 0
]

= α

(

Ia
A(γ)

)

eU(γ)u
1Ep∪Eσ

where1Ep∪Eσ
is a column vector of dimensionEa with ith entry being0 for i ∈ E+ and1

for i ∈ Ep ∪ Eσ.

Corollary 3 Deficit at ruin
The unconditional deficit at the time of ruin has a phase-typedistribution with represen-

tationPH

(

α

(

Ia
A(0)

)

eU(0)uIE+, T

)

whereIE+ denotes the diagonal matrix onEa with

entries 1 for rowsi ∈ E+ and 0 otherwise. The probability of a zero deficit at ruin is given
as

P(|RT | = 0) = α

(

Ia
A(0)

)

eU(0)u
1Ep∪Eσ

where1Ep∪Eσ
is defined as in corollary 2.

Remark 1 For comparisons of the results in this paper to existing results in the literature
we direct the interested reader to section 4 of [11].

5 Numerical illustrations

In the last section we consider two particular cases to illustrate some of our main results.
Both cases shall serve as guidance to theorem 1, explaining where to find the relevant
formulas needed to compute the ingredients for it.

5.1 Classical Poisson case with both positive and negative jumps

In the first case we consider a risk process with linear premiums at ratec > 0 which
is superposed by two compound Poisson processes. One of themhas positive jumps of
exponential size with parameterβ+ > 0 and jump intensityλ+ > 0. The other one has
negative jumps of exponential size with parameterβ− > 0 and jump intensityλ− > 0.
Together this forms a Lévy process̃X with parametersµ = −c for the drift,σ2 = 0 (i.e.
there is no diffusion part), and Lévy measure

ν(dx) = λ+ · I{x>0} · e
−β+xβ+ dx+ λ− · I{x<0} · e

−β−xβ− dx.
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The processX̃ can of course be represented as a MAP(X̃ , J̃ ) with trivial phase space
Ẽ = 1 and the trivial generator matrix̃Q = 0 for J̃ . According to section 3.1 we construct
the MAP(X ,J ) as follows. The enlarged phase spaceE consists of the subsetsEn = {1},
E+ = {(1, 1, 1,+)}, andE− = {(1, 1, 1,−)}, according to (7) and (8). The subsetsEσ

andEp are empty. For ease of notation, denote the jump phases by1+ = (1, 1, 1,+) and
1− = (1, 1, 1,−). The parameters for each phase are set according to (9) as

(µi, σi, νi) =











(1, 0, 0), i = 1+

(−c, 0, 0), i = 1

(−1, 0, 0), i = 1−

The generator matrixQ for J is given by (10 - 11) as

Q =





−β+ β+ 0
λ+ −λ λ−

0 β− −β−





whereλ = λ+ + λ−. This completely defines the MAP(X ,J ). The matricesA(γ) and
U(γ) have dimension2×1 and1×1, respectively. According to (17), they are determined
as the limit(U(γ), A(γ)) = limn→∞(Un, An), with initial valuesA0 = 0 andU0 = −β+

and iteration

Un+1 = −β+ + β+e′1An,

e′1An+1 =
1

λ+ γ − cUn

(

λ+ + λ−e′1−An

)

,

e′1−An+1 =
1

β− − Un

β−e′1An. (22)

Heree′1 ande′1− are the canonical row base vectors on the spaceEd = {1, 1−}. Using
A(γ) = (a1, a2)

′ after trivial calculations we obtain

U = −β+ + β+a1,

a1 =
λ+ + λ−a2
λ+ γ − cU

,

a2 =
β−a1
β− − U

.

(23)
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In this case, the scalar∆φ given in (13) yields∆φ = β+ according to (20). The transition
matrix of phase changes is given by

P = ∆−1
q Q+ I =





0 1 0
λ+

λ
0 λ−

λ

0 1 0



 .

According to (19) we obtain the row vectorP (+,−) = (1, 0) and the column vector
P (∼,+) = (0, λ

+

λ
, 0)′. The matricesΠ∼ andΠ∗

a are determined by the stationary row vector
π which satisfiesπQ = 0 andπ1 = 1. We thus obtain

π1+ =

(

1 +
β+

λ+
+
β+

λ+
λ−

β−

)−1

, π1 = π1+
β+

λ+
, π1− = π1+

β+

λ+
λ−

β−
,

which determinesΠ∼ = diag(0, π1, 0) andΠ∗
a = diag(1/π1, 1/π1−) according to (21).

In order to compute the matricesA∗(γ∗) andU∗(γ∗), we first need to determine the time-
reversion(X ∗,J ∗) of (X ,J ). This is described in section 3.3. The generator matrixQ∗

of J ∗ is given byQ∗ = ∆−1
π Q′∆π. It turns out thatQ∗ = Q, i.e.J is reversible. The

other parameters of(X ∗,J ∗) are

(µ∗
i , σ

∗
i , ν

∗
i ) =











(−1, 0, 0), i = 1+

(c, 0, 0), i = 1

(1, 0, 0), i = 1−

.

ThusE∗
a = Ep ∪E∗

+ = {1, 1−} andE∗
d = E∗

− = 1+ which means thatU∗(γ∗) is a matrix
of dimensions2 × 2 andA∗(γ∗) is a row vector of dimension1 × 2. According to (17),
the pair(U∗(γ∗), A∗(γ∗)) is determined as the limitlimn→∞(U∗

n, A
∗
n) with initial values

A∗
0 = 0 andU∗

0 = diag(−(λ+ γ)/c,−β−) and iteration

e′1−U
∗
n+1 = −β−e′1− + β−e′1 = (−β−, β−),

e′1U
∗
n+1 = −

λ + γ

c
e′1 +

1

c

(

λ−e′1− + λ+A∗
n

)

,

A∗
n+1 = β+e′1

(

β+I − U∗
n

)−1
, (24)

wheree′i denotes theith canonical row vector on the spaceE∗
a = {1, 1−}. Writing

A∗(γ∗) = (a∗1, a
∗
2) andU∗ = U∗(γ∗), we obtain

U∗ =

(

−λ+γ

c
+ λ+

c
a∗1

λ+

c
a∗2 +

λ−

c

β− −β−

)

,
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and due to the third equation (24) we have to solve

(a∗1, a
∗
2)

(

β+ + λ+γ

c
− λ+

c
a∗1 −λ+

c
a∗2 −

λ−

c

−β− β+ + β−

)

= (β+, 0).

This determines all ingredients we need from the time-reversed MAP(X ∗,J ∗). According
to (20),∆φ∗ = diag(0, λ/c, 0). The matrixP (∼,+) is a column vector of dimension 3. We
obtainP (∼,+) = (0, λ+/λ, 0)′ according to (19). Regarding the positive jump part, we
obtain finally the parametersT = −β+ andη = β+. This completes the derivations that
we need for Theorem 1.

Example 5 Our numerical example that illustrates this case is taken from [26], Table 1.
The authors consider the classical risk process with claimsoccurring at a rateλ+ = 1 and
claims sizes with meanβ+ = 1. The numerical ruin probabilities are calculated for several
values of the initial surplusu and premium ratesc. Note that for this we used Theorem 1
together with the Gaver-Stehfest Laplace transform numerical procedure (see [25]). Some
values are illustrated in the following table.

TABLE 5.1 : Ruin probabilities for the classical case - "onlyclaims"

t u c = 0 c = 0.1 c = 0.9 c = 1 c = 1.1

10 0 0.999999 0.999962 0.858597 0.822716 0.785428
10 0.479780 0.401569 0.055613 0.042251 0.031984

100 0 0.999995 0.999989 0.979087 0.943611 0.889980
10 0.999641 0.99991 0.671573 0.447682 0.260392

∞ 0 1 1 1 1 0.909091
10 1 1 1 1 0.366264

As one can see the values agree with those in [26]. As the loading condition isc > 1
the infinite time ruin probabilities are equal to1 except for the casec = 1.1. We purposely
chose values forc ≤ 1 to analyze the ruin probabilities in the capital injection case, where
the safety loading condition will be satisfied for a larger range of values forc.

We now compare these results to the more general case that includes capital injections.
For this we assume the rate of capital injection occurrencesto beλ− = 1 and the mean
injection amountβ− = 1. Under this scenario the positive safety loading condition(3)
reduces to

c > λ+E[C]− λ−E[K] = λ+β+ − λ−β− = 0.

The numerical values for the ruin probabilities are illustrated in the table below.
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TABLE 5.2 : Ruin probabilities for the classical case - “claims and capital injections”

t u c = 0 c = 0.1 c = 0.9 c = 1 c = 1.1

10 0 0.872239 0.846041 0.605712 0.578405 0.552538
10 0.086230 0.067593 0.008527 0.006604 0.008142

100 0 0.960050 0.930334 0.616260 0.585779 0.557662
10 0.581408 0.423523 0.013280 0.009308 0.006685

∞ 0 1 0.950124 0.616264 0.587861 0.557663
10 1 0.576998 0.013282 0.009307 0.006685

Comparing Tables 6.1 and 6.2., we remark that by adding capital injections the ruin
probabilities will decrease. For the casec = 0, as the safety condition is not satisfied the
infinite time ruin probabilities will be equal to 1. However,for values ofc > 0, unlike the
"only claim" case, the infinite time ruin probabilities willbe strictly smaller than1.

To illustrate some of the new quantities introduced in this paper, we first consider the
density of the minimum surplus prior to ruinR T for a choice of the premium ratec = 0.1.
As before, we consider two cases the “only claims” case, as well as the both “claims and
capital injections” case. The two densities are presented in the following graph with the
dotted line representing the density in the “only claims” case, and the full line the density
in the both “claims and capital injections” case. The initial surplus is setup atu = 10. For
this choice of the premium rate we remind the reader that the infinite time ruin probability
in the “only claims” case is1 and this is in accordance with the fact that the total area under
the dotted line is1. However, when capital injections are considered, not all the sample
paths will lead to ruin, the ruin probability calculated in the first part of the example being
0.576998. When integrating the area under the full line density we obtain0.576954. Using
Corollary 1 we obtain the value of the mass point atu = 10 being0.000044. This very
small value can be explained by the fact that in average a claim is of value1, being much
smaller when compared with the initial surplusu = 10. Furthermore, adding these two
numbers will give us the corresponding value of the infinite time ruin probability. Another
observation for this example is the difference in scale between the two densities. One can
easily remark that the pdf of the minimum surplus prior to ruin is roughly2 times less
likely in the “claims and capital injections” case than in the “only claims” case.

A last numerical illustration related to this example is designated to the comparison
between the time to ruin and the time until the minimum surplus prior to ruin. For that
we considerc = 0.1 in the case when we deal with both claims and capital injections.
When one considers the time of the minimum surplus before ruin, one has to take into
consideration the mass point at0 for this quantity denoted byS(RT ). For that purpose, in
the table below we calculated the cdf of the time of ruin and the one for the time of the
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Figure 1: The density of the minimum surplus prior to ruin.

minimum surplus prior to ruin for various values oft andu.

TABLE 5.3 : Finite and infinite time ruin probabilities
t P (T ≤ t) P (S(RT ) ≤ t) P (S(RT ) ≤ t) + P (S(RT ) = 0)

u = 1 1 0.27410 0.21920 0.56873
10 0.70601 0.45858 0.85388
100 0.86583 0.53604 0.88557
∞ 0.90389 0.55436 0.90389

u = 10 1 0.00041 0.00139 0.00143
10 0.06759 0.09256 0.09260
100 0.42352 0.43970 0.43974
∞ 0.57699 0.57695 0.56799

Note that the mass points for the time of the minimum surplus prior to ruin at0 are0.34953,
whenu = 1, and0.00004, whenu = 10. As expected, one can easily check based on
the values obtained in the table that the time of ruin random variableT is greater than
the time of the minimum surplus prior to ruinS(RT ) under the usual stochastic order,
T � S(RT ). We also note the significant role played by the mass point at0 of the time
of the minimum prior to ruin for small values of the initial surplus. For large values
of the initial surplus this mass point becomes negligible asthe probability of dropping
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below the initial surplus without being ruined increases. As t approaches infinity, the area
under the cdfs in both cases is equal, and this is in perfect accordance to the fact that
P (T = ∞) = P (S(RT ) = ∞). In those sample paths where the surplus drifts to infinity
without reaching level 0, the time of the minimum surplus prior to ruin does not appear in
a finite horizon either.

5.2 A contagion model with negative jumps

In the second subsection we consider the contagion model from Example 2. We let the
premiums to be collected at ratescA, cB > 0 which is superposed by a MPP for the claims
with

D0 =

(

−αA − δ1 αA

αB −αB − δ1 − δ2

)

, D1 =

(

δ1 0
0 δ1 + δ2

)

.

Claims occur in two ways. There is at all times a Poisson process with parameterδ1
of small exponential claims, their mean being1

µ1
. While in environmentB, there is in

addition a second process, with parameterδ2 of exponential claims; their expected value
is 1

µ2
.

We further assume that the drift parameters areµ̃A = −cA, µ̃B = −cB. The process
X̃ can be represented as a MAP(X̃ , J̃ ) with phase spacẽE = En = {1A, 1B} and

the generator matrix̃Q =

(

−αA αA

αB −αB

)

for J . According to section 3.1 we construct

the MAP (X ,J ) as follows. The enlarged phase spaceE consists of the subsetsEn =
{1A, 1B}, E+ = {(1A, 1A, 1,+), (1B, 1B, 1,+), (1B, 1B, 2,+)}, according to (7) and (8).
For simplicity we let the subsetsEσ andEp to be empty. Indeed one can consider a more
general case (for e.g. assuming different volatilities in each environmentsA andB), but
this implies tedious calculations that we prefer to omit here. For ease of notation, denote
the jump phases by1+A = (1A, 1A, 1,+), 1+B = (1B, 1B, 1,+) and2+B = (1B, 1B, 2,+).
The parameters for each phase are set according to (9) as

(µi, σi, νi) =











(1, 0, 0), i = 1+A, 1
+
B, 2

+
B

(−cA, 0, 0), i = 1A

(−cB, 0, 0), i = 1B

.

The generator matrixQ can be easily obtain from equation (15) using the lexicographical
order. This completely defines the MAP(X ,J ). The matricesA(γ) andU(γ) have
dimension2 × 3 and3 × 3, respectively. According to (17) (ignoring the details), they
are determined as the limit(U(γ), A(γ)) = limn→∞(Un, An), with initial valuesA0 = 0
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andU0 =





−µ1 0 0
0 −µ1 0
0 0 −µ2



 and iteration

Un+1 = U0 +





µ1 0
0 µ1

0 µ2



An,

(

αA+δ1+γ

cA
−αA

cA

−αB

cB

αB+δ1+δ2+γ

cB

)

An+1 − An+1Un =

( δ1
cA

0 0

0 δ1
cB

δ2
cB

)

. (25)

Furthermore the system in (25) can be reduced to a matrix Riccati equation in terms ofA,
of the form

( δ1
cA

0 0

0 δ1
cB

δ2
cB

)

+ [

(

−αA+δ1
cA

αA

cA
αB

cB
−αB+δ1+δ2

cB

)

− γI]A+AU0+A





µ1 0
0 µ1

0 µ2



A = 0. (26)

Note that equation (26) generalizes equation (12) from [6] for the Laplace transform of a
busy period in the sense that the premium rates can vary amongthe various states of the
economy.

In this case,∆φ given in (13) yields





µ1 0 0
0 µ1 0
0 0 µ2



 according to (20). The transition

matrix of phase changes is given by

P = ∆−1
q Q+ I =













0 0 0 1 0
0 0 0 0 1
0 0 0 0 1
δ1

α1+δ1
0 0 0 α1

α1+δ1

0 δ1
α2+δ1+δ2

δ2
α2+δ1+δ2

α2

α2+δ1+δ2
0













.

According to (19) we obtain the matrixP (+,−) =





1 0
0 1
0 1



 and the matrixP (∼,+) =

(

δ1
α1+δ1

0 0

0 δ1
α2+δ1+δ2

δ2
α2+δ1+δ2

)

. The matricesΠ∼ andΠ∗
a are determined by the stationary

row vectorπ which satisfiesπQ = 0 andπ1 = 1. We thus obtain

π1+
A
=

αBδ1µ2

αAδ2µ1 + (αa + αb)(δ1 + µ1)µ2
, π1+

B
= π1+

A

αA

αB

, π2+
B
= π1+

B

µ1δ2
µ2δ1

,
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π1A = π1+
A

µ1

δ1
, π1B = π1A

αA

αB

,

which determinesΠ∼ = diag(0, 0, 0, π1A, π1B ) andΠ∗
a = diag(1/π1A, 1/π2A) according

to (21). Similar steps will lead to the calculation of the matricesA∗(γ∗) andU∗(γ∗), but
to avoid repetition we omit them here. We further pursue to the next numerical example.

Example 6 We assume that the standard claims will occur according to a Poisson process
at rateδ1 = 1 and infectious claims will occur at rateδ2 = 10 during the contagion periods.
Standard claim amounts have mean1/µ1 = 1/5, while the mean size of an infectious claim
is 1/µ2 = 15/µ1 = 3. It is assumed that the rate at which the system enters the infectious
environment isαA = 0.02 and the return rate to the standard environment isαB = 1, so
that in98% of the cases the system will be in the standard environment. We consider nine
different scenarios for the finite and infinite time ruin probabilities in order to illustrate the
effect of changing the premium rates in each environment, aswell as changing the initial
phase distribution of the environment denoted here byβ = (βA, βB). The numerical
results are presented in the following table.

TABLE 5.4 : Finite and infinite time ruin probabilities foru = 1

{βA, βB} t cA = 1, cB = 1 cA = 1, cB = 10 cA = 10, cB = 1

{0.5, 0.5} 1 0.45065 0.22929 0.44124
10 0.52062 0.47475 0.44814
100 0.72879 0.65028 0.47204
1000 0.83439 0.71527 0.47251
∞ 0.84665 0.71643 0.47251

{0.9, 0.1} 1 0.10454 0.05222 0.08955
10 0.21905 0.17552 0.10140
100 0.55820 0.44851 0.13744
1000 0.73016 0.55092 0.14105
∞ 0.75013 0.55274 0.14105

{0.1, 0.9} 1 0.79675 0.40636 0.79293
10 0.82219 0.77403 0.79408
100 0.89947 0.85206 0.80313
1000 0.93863 0.87962 0.80396
∞ 0.94317 0.88011 0.80396

We first remark that forcA = 1 andcB = 1 andβ = {0.5, 0.5} we recover the results
obtained in [6]. Furthermore, if we keep the initial probability vector the same, but we
increase the rate at which premiums will be collected in the infectious environment by
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a factor of10 the ruin probabilities will decrease as expected. A similareffect can be
observed when we choosecA = 10 andcB = 1. An interesting thing is the fact that the in-
crease in premium rate will produce a wider range of values for the ruin probabilities when
the increase happens in the infectious phase rather than thestandard phase. This shows
once again the importance of the contagion environment despite the rare occurrences of
this environment (only2% of the time). Finally, a change in the initial phase distribution
plays an important role in the value of the ruin probabilities. As it can be seen from the
values illustrated in Table 5.4, a start of the system in the infectious environment with a
higher probability will produce a higher finite time ruin probability.

In the end we also consider the density of the minimum of the surplus prior to ruin,
under this MPP contagion model. To better asses the effect ofchange in the premium
rates between the environmental phases we fixed the initial probability vector to beβ =
{0.5, 0.5}. The following graphs present density of the minimum surplus prior to ruin for
u = 1 andu = 10.
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Figure 2: The density of the minimum surplus prior to ruin,u = 1.
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Figure 3: The density of the minimum surplus prior to ruin,u = 10.

In both graphs the upper curve corresponds to the casecA = 1, cB = 1, the middle one
to cA = 1, cB = 10 and the one below to the casecA = 10, cB = 1. As expected, when the
premium rates are at the smallest level, the probability associated to the minimum surplus
prior to ruin has the higher scale. Increasing the premium rates in each environment will
decrease the associated infinite time ruin probabilities and implicitly the probability of
obtaining the same level of the minimum surplus prior to ruin.

Whenu = 1 we observe an increasing behavior in the density of the minimum surplus
prior to ruin in contrast to the decreasing behavior obtained in the caseu = 10. This is
somehow expected and can be explained due to the change in theratio between the area
under the continuous part density and the mass point part, asone moves fromu = 1 to
u = 10. The last table illustrates how the cdf of the minimum surplus prior to ruin can be
decomposed in two parts: the area under the continuous density and the mass point atu,
for both valuesu = 1 andu = 10.

TABLE 5.4 : Decomposition of the cdf of the minimum surplus prior to ruin
cA = 1, cB = 1 cA = 1, cB = 10 cA = 10, cB = 1

u = 1 continuous part 0.31277 0.23672 0.14447
mass point 0.53387 0.47970 0.32803

u = 10 continuous part 0.75830 0.57297 0.34712
mass point 0.02653 0.02384 0.01631
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