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Abstract

In the present paper, the classical Brownian motion of a particle sus-
pended in an homogeneous liquid is modeled as a piecewise–deterministic
Markov process with state space inculding position as well as velocity of
the particle in motion. This model is less idealized than theclassical Wiener
or Ornstein–Uhlenbeck processes. It leads to more complex expressions for
the transition densities, but also to path properties consistent with Newto-
nian physics. It is shown that the process introduced in thispaper converges
to the Wiener process as the intensity of collisions betweenthe particle and
the molecules of the liquid tends to infinity. This describesthe point of ide-
alization in the classical models.

AMS subject classification: 60J65, 70B05, 60J25

1 Introduction

The Wiener process, developed as a model for Brownian motion(see Wiener
[11, 12]), is the most important and classical example for a stochastic process
with continuous paths. It has become important for many application fields even
before its existence as a mathematical concept (e.g. Bachelier [2] for stock prices
or Einstein [6] for molecular–kinetic heat theory). Duringits 80 years of exis-
tence, it has become the basic stochastic process for modelsin ever more fields of
application.�FB IV - Informatik, Universität Trier, 54286 Trier, Germany. fax: +49 651 201 3805, email:
breuer@info04.uni-trier.de
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Its derivation as a model for one–dimensional Brownian motion is easily de-
scribed as follows: Consider some small particle suspendedin a homogeneous
liquid. The particle will show a phenomenon called Brownianmotion, which is
caused by collisions of molecules of the liquid with the particle due to thermal
motion of the molecules. In a stochastic model of this phenomenon, the impulses
of the molecules are regarded as random and independent of the position of the
particle, since the liquid is homogeneous. Further, the different molecules can
be regarded as independent of each other. Neglecting the current impulse of the
particle and regarding only the limiting process as the inter–collision times tend
to infinitesimal small intervals, the classical derivationconcludes that the position
process of a particle under Brownian motion has independentincrements, contin-
uous paths and is homogeneous in time. Then it follows that the position process
is a Wiener process.

The modeling by a Wiener process has two sides: On the one handit yields
a reasonable approximation of the physical phenomenon, resulting in very simple
transition density functions of the process. On the other hand, the Wiener process
necessarily shows some very odd path properties like the non–differentiability at
any time, which means that the particle cannot be ascribed a velocity. The latter
is a consequence of the idealizing assumptions that the impulse of the particle
can be neglected in the description of its motion process andthat the model is
approximated by the limiting process for inter–collision tending to infinitesimal
small intervals.

The non–existence of a velocity of the particle has been overcome in the later
Ornstein–Uhlenbeck model of Brownian motion (Uhlenbeck and Ornstein [10],
see also Nelson [9], chapters 9–10). This model takes the velocity of the particle
under consideration (thus coming closer to a classical Newtonian perspective on
Brownian motion), but still is based on the transition to thelimit of infinitesimal
small inter–collision times. This results in non–differentiable paths of the velocity
process, which breaks with a Newtonian view, too. It furtherturned out that the
Ornstein–Uhlenbeck process describing the velocity of theparticle can be realized
by a Wiener process with deterministic change of the time clock and rescaling of
the state variable (see Karlin and Taylor [8], p.218).

In the present paper, a strictly Newtonian view on the phenomenon of Brown-
ian motion will be maintained. The motion process of the particle is modelled by
a Markov process which is less idealized, since it takes intoaccount the position
as well as the impulse of the particle. Furthermore, in the model presented in this
paper the particle will have real inter–collision times allowing it to move accord-
ing to classical kinetic laws during non–vanishing intervals between collisions.
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This leads to a piecewise–linear path behaviour if there areno additional forces
and to piecewise–deterministic paths otherwise.

The main mathematical concepts used in the present paper arepiecewise–
deterministic Markov processes and Markov–additive processes. The develop-
ment of the former has been initiated by Kovalenko and later Kalashnikov and
Tien under the concept of piecewise–linear Markov processes (see Gnedenko and
Kovalenko [7], section 3.3). Later the concept has been generalized by Davis
[4, 5]. A recent treatise on Markov–additive processes is given in Asmussen [1],
section II.5.

In section 2, a piecewise–deterministic model for Brownianmotion will be
introduced, and its basic properties, such as expressions for transition kernels,
infinitesimal generator and a law of large numbers, will be derived. Section 3
contains a derivation of the Fourier transforms and by such means a convergence
theorem. This, the main property to be proven in this paper, states that the present
piecewise–deterministic model will converge to the classical Wiener process as
the intensity of collisions tends to infinity.

2 The Joint Process of Position and Velocity

The model of Brownian motion, which will be introduced in this section, first
is developed under negligence of any additional forces besides the influence of
the collisions upon the motion of the particle. In remark 1, it is sketched how
additional forces like friction or external force fields canbe incorporated into the
model without changing its characteristics.

Under this convention, the movement of the particle will be linear (following
its present impulse) between collisions. Since the molecules of the suspending
liquid are assumed as independent, the times of collisions can be modelled as a
Poisson process with some (high) intensity�. At an instant of collision the particle
immediately receives an additional impulse by the colliding molecule, which leads
to a (usually minor) change of its velocity. This change willbe represented by
some distribution functionF , which reasonably is to be assumed as a normal
distribution. Without restriction of generality, we can asssume that the particle
has unit mass, thus identifying the values of impulse and velocity.

This model leads to a piecewise–linear path of the particle,the future of which
at any time is completely determined by its present positionand velocity (which
equals its impulse). Hence we can model the motion as a piecewise–linear Markov
process (see Gnedenko and Kovalenko [7], section 3.3) with states denoting the
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present position and velocity of the particle.
The velocity processV can be modeled by a compound Poisson process (see

e.g. Karlin and Taylor [8], pp.426–440), i.e.Vt = NtXk=1 Yk
where the processN = (Nt : t 2 IR+0 ) is a Poisson process with some intensity�
and(Yk : k 2 IN) are iid with common distribution functionF and characteristic
function'Y . Then the characteristic function'Vt of Vt is given by'Vt(u) = exp (��t(1� 'Y (u)))
for all u 2 IR. Further, the distribution function ofVt is given byP (Vt � x) = 1Xn=0 (�t)nn! e��tF (n)(x)
for all x 2 IR, with F (n) denoting then–fold convolution of the distribution
functionF .

Let Z = (X; V ) = ((Xt; Vt) : t 2 IR+0 ) denote the joint process of positionXt and velocityVt, denoting position and velocity of the particle at timet 2 IR+0 .
Assuming that besides the impulses that the particle receives there is no other force
influencing the path of the particle, we know that between consecutive collisions
the position of the particle changes in a deterministic (even in a linear) way.

Hence the joint processZ can be modelled as a piecewise–deterministic pro-
cess (PDMP) without intrinsic jumps (see Davis [5], and Breuer [3] for this special
class). The state space ofY is E = IR2 with its usual Borel�–algebra, denoted
by B2. The processZ has jump rate�, which is independent of the state of the
process, and a jump transition measureQ defined byQ((x; v); A�℄�1; w℄) := 1A(x) � F (w � v)
for all v; w; x 2 IR andA 2 B. Clearly,Q is translation–invariant in the second
dimension. Between jumps, we have a deterministic motion according to the flow
function defined by �t(x; v) := (x+ t � v; v)
for all t 2 IR+0 andx; v 2 IR. The value�t(x; v) gives the state of the process
at time t provided that no jump (i.e. here: no collision) has occured and the
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process was in state(x; v) at time0. We note that�s(�t(x; v)) = �t+s(x; v) for
all s; t 2 IR+0 andx; v 2 IR. The definition of the PDMP model is concluded by
stating that the set� which induces intrinsic jumps is empty and thust�(x) =1
for all x 2 E.

Clearly, the processZ is homogeneous. LetP (t; x;A) denote the conditional
probability thatZ is in some statey 2 A 2 B2 at time t 2 IR+0 given thatZ is in statex 2 E at time0. Further, letP (t) denote the kernel with entriesP (t)(x;A) = P (t; x;A) for all x 2 E andA 2 B2. Define the identity kernel onE by I((x; v); A � B) := 1A(x)1B(v) for all x; v 2 IR andA;B 2 B. Further
define the generator kernelG := �(Q� I). Define for a kernelK : E � E ! IR
and a functionf : E ! E the operationK Æf(x;A) := K(f(x); A) for all x 2 E
andA 2 E .

According to Breuer [3], theorem 2 (withG instead ofQ), the transition prob-
ability kernelP (t) can be expressed asP (t) = 1Xn=0 Z t0 Z tn0 : : :Z t20 (G Æ �t1)(G Æ �t2�t1) : : :: : : (G Æ �tn�tn�1)(I Æ �t�tn) dt1 : : : dtn
for all t 2 IR+0 , the sum entry forn = 0 being the kernelI Æ �t. This can be
computed as the limitP (t) = limn!1 Pn(t) of the sequenceP0(t) := I Æ �t for
all t 2 IR+0 , and Pn+1(t) := Z t0 (G Æ �u)Pn(t� u) du+ I Æ �t
for all t 2 IR+0 andn 2 IN 0.

Likewise, according to Breuer [3], theorem 1, another expression for the tran-
sition probability kernelP (t) is given byP (t) = 1Xn=0 Z t0 Z tn0 : : : Z t20 e��t1�(Q Æ �t1)e��(t2�t1)�(Q Æ �t2�t1) : : :: : : e��(tn�tn�1)�(Q Æ �tn�tn�1)e��(t�tn)(I Æ�t�tn) dt1 : : : dtn= 1Xn=0 e��t�n Z t0 Z tn0 : : :Z t20 (Q Æ �t1)(Q Æ �t2�t1) : : :: : : (Q Æ �tn�tn�1)(I Æ �t�tn) dt1 : : : dtn
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for all t 2 IR+0 , the sum entry forn = 0 being the kernele��t(I Æ �t). A compu-
tation of this expression as a limit of an iteration sequenceis similar as above. We
further obtain by substitutionP (t) = 1Xn=0 e��t�n Z t0 Z t�s10 : : :Z t�s1�:::�sn0 (Q Æ �s1)(Q Æ �s2) : : :: : : (Q Æ �sn)(I Æ �sn+1) ds1 : : : dsn+1= 1Xn=0 e��t�n(Q Æ �)�nt
defining(Q Æ �)�0t := I Æ �t for all t 2 IR+0 , and iteratively(Q Æ�)�nt := Z t0 (Q Æ �u)(Q Æ �)�(n�1)t�u du
for all t 2 IR+0 andn 2 IN .

Remark 1 The above considerations are valid for any flow function� onE. Thus
other factors like a frictional force can be taken into account as well by simply
changing the definition of�. In particular, a Brownian motion under influence of
a deterministic external force field can be represented by the same model.

Assuming thatF has a Lebesgue density functionf , we can represent the
transition density ofZ bypt((x; v);(y; w)) = 1Xn=2 e��t�n Z � � �ZP si<t;P vi=w�v;P sivi�1+sn+1vn=y�x nYi=1 f(vi) ds1 : : : dsn dv1 : : : dvn= 1Xn=2 e��t�n Z � � �ZP vi=w�v nYi=1 f(vi) �n�1L (L(v0; : : : ; vn)) dv1 : : : dvn
for all t 2 IR+0 andx; y; v; w 2 IR. Here, we have definedv0 := v, sn+1 :=t �Pni=1 si and denoted then–dimensional Lebesgue measure by�nL. Further,L(v0; : : : ; vn) denotes the set of solution vectors(s1; : : : ; sn) to the equationnXi=1 sivi�1 + sn+1vn = y � x () nXi=1 si(vi�1 � vn) = y � x� tvn
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with si > 0 for all i � n and
Pni=1 si < t. The casesn = 0; 1 can be neglected,

since for a model of Brownian motion the parameter� will be very large and thuse��t very small.

Theorem 1 For the marginal processX, the convergencelimt!1 Xtt = E(F )
holds almost certainly, independent of the initial velocity V0.
Proof: Let Ti andVi denote the time and the velocity of the particle between thei � 1st and theith change of velocity (i.e. collision of the particle), respectively.
Clearly, the sequences(Ti : i 2 IN) and (Vi : i 2 IN) are iid with common
distributionsExp(�) andF , respectively. Furthermore, the sequence(Ti �Vi : i 2IN) is iid with meanE(Ti � Vi) = E(F )=�.

Since asymptotically the initial velocity and the time after the last jump do not
matter, we obtainlimt!1 Xtt = limn!1Pni=1 Ti � ViPni=1 Ti = limn!1Pni=1 Ti � Vin � limn!1Pni=1 Tin = E(F )=�1=�
almost certainly, according to the strong law of large numbers.f���

SinceZ is a piecewise–deterministic process, its infinitesimal generator is
given as in Davis [4], theorem 5.5, byAg(x; v) = v � �g(x; v)�x + � � ZIR(g(x; v + w)� g(x; v))dF (w)
for all functionsg : IR2 ! IR differentiable in the first argument and measurable
with respect toB in the second. SinceZ has no intrinsic jumps, we do not need a
boundary condition as in Davis [4], equation (5.4), for the domain of the generator.

Specifyingg as a density functiong(t; x; v) on IR2 and depending on timet, we can obtain the probability law of the process by setting the initial value
functiong(0; :; :) to the density at time0 and then solving the partial differential
equation�g(t; x; v)�t = v � �g(t; x; v)�x + � � ZIR(g(t; x; v + w)� g(t; x; v))dF (w)
with the above initial value. This provides a determinationof the density transi-
tion function by non–stochastic means and thus a purely analytical treatment of
stochastic processes having such infinitesimal generators.
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3 Convergence to the Wiener Process

The processZ = (X; V ) consists of a simple Markov jump componentV , which
is independent, and of the componentX, which is a uniform translation process
conditional onV . This structure allows an analysis ofZ along the lines of the the-
ory of Markov–additive processes (see Asmussen [1], section II.5 and references
therein).

For everyt 2 IR+0 , define the conditional Fourier transform kernelX�t of X
givenV by its entriesX�t (s)(v;W ) := E �eisXt � 1W (Vt)jV0 = v� (1)

for all s 2 IR, v 2 IR andW 2 B. Analogous to proposition 5.2 in chapter 2 of
Asmussen [1], we obtain

Theorem 2 Assume thatF is Lebesgue dominated with density functionf : IR!IR+0 . Define�(v;W ) := � � (F (W � v)� 1W (v)) andU(v;W ) := v � 1W (v) for
all v 2 IR andW 2 B. Then for everyt 2 IR+0 the conditional Fourier transform
kernelX�t ofX givenV can be expressed byX�t (s) = et(�+isU)
for all s 2 IR.

Proof: For all v 2 IR, let Sv = (Svt : t 2 IR+0 ) denote a uniform translation
process with driftv, i.e. P (Svt 2 AjSv0 = x) = 1A(x + vt) for all x 2 IR andA 2 B. SinceF is Lebesgue dominated andX is conditional uponV (hence
dominated by it), the Lebesgue densitiesft(s; v; w) := E �eisXt; Vt = wjV0 = v�
of the conditional expectations in definition (1) exist. Forthem we obtain the
linear approximationft+h(s; v; w) = ft(s; v; w)(1� �h)eisw + ZIR ft(s; v; u)�hf(w� u) du= ft(s; v; w)(1 + h(isw)) + h��ZIR ft(s; v; u)f(w� u) du� ft(s; v; w)�= ft(s; v; w)�1 + h(isw) + h ZIR ft(s; v; u)�(f(w� u)� ft(s; v; w)) du�
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omitting the terms of sizeo(h). This implies�X�t (s)�t = X�t (s)(� + isU)
for all t 2 IR. Since� is bounded, the operatoret(�+isU) = et�eistU does exist
for all t 2 IR+0 ands 2 IR. Because ofX�0 (s) = I it solves the above differential
equation. IfA(t) were another solution with the same initial condition, thenthe
difference�(t) := X�t � A(t) would be differentiable with derivative�0(t) = 0,
hence�(t) would be constant int. Since�(0) = 0, the only solution is given byX�t : s! et(�+isU).f���
Theorem 3 Let F (�) = N(0; �2=�) denote the distribution function of the nor-
mal distribution with mean0 and variance�2=�. Further, denote the marginal
position process ofZ(�) with jump rate� and impulse distributionF (�) byX(�).
Then the limitX of the processesX(�) with initial velocity0 for � ! 1 is the
Wiener process with mean0 and variance�2 under a deterministic change of the
time scale.

Proof: The marginal Fourier transform ofX(�) under initial velocity0 is given
by X�t (�; s)(0; IR) = Æ0et�etisU1IR
with 1IR denoting the constant function onIR with value1. Since for�!1, the
measureÆ0et� tends to the normal distribution� with mean0 and variance�2t,
andÆxU1IR = x for all x 2 IR, we obtainX�t (s)(0; IR) = ZIR etisxdN(0;�2t)(x) = ��t2(s)
which is the Fourier transform of the Wiener process with mean 0 and variance�2
at timet2.f���
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