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Abstract

In the present paper, the classical Brownian motion of aigharsus-
pended in an homogeneous liquid is modeled as a piecewiserdeistic
Markov process with state space inculding position as weNelocity of
the particle in motion. This model is less idealized thandlassical Wiener
or Ornstein—Uhlenbeck processes. It leads to more compjaessions for
the transition densities, but also to path properties stesi with Newto-
nian physics. It is shown that the process introduced inglper converges
to the Wiener process as the intensity of collisions betwhberparticle and
the molecules of the liquid tends to infinity. This describles point of ide-
alization in the classical models.

AMS subiject classification: 60J65, 70B05, 60J25

1 Introduction

The Wiener process, developed as a model for Brownian mdtea Wiener
[11, 12]), is the most important and classical example fotoglsastic process
with continuous paths. It has become important for manyiegibn fields even
before its existence as a mathematical concept (e.g. Back#lfor stock prices
or Einstein [6] for molecular—kinetic heat theory). Duriitg 80 years of exis-
tence, it has become the basic stochastic process for madesier more fields of
application.
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Its derivation as a model for one—dimensional Brownian orois easily de-
scribed as follows: Consider some small particle suspemiedhomogeneous
liquid. The particle will show a phenomenon called Brownmaation, which is
caused by collisions of molecules of the liquid with the mdetdue to thermal
motion of the molecules. In a stochastic model of this phesroon, the impulses
of the molecules are regarded as random and independerg pb#ition of the
particle, since the liquid is homogeneous. Further, thiediht molecules can
be regarded as independent of each other. Neglecting thentumpulse of the
particle and regarding only the limiting process as ther#ellision times tend
to infinitesimal small intervals, the classical derivatamncludes that the position
process of a particle under Brownian motion has indeperideréments, contin-
uous paths and is homogeneous in time. Then it follows tleaptsition process
is a Wiener process.

The modeling by a Wiener process has two sides: On the oneihgiadds
a reasonable approximation of the physical phenomenaoulfiregsin very simple
transition density functions of the process. On the othadhthe Wiener process
necessarily shows some very odd path properties like thedifi@rentiability at
any time, which means that the particle cannot be ascribedagity. The latter
is a consequence of the idealizing assumptions that thelsmmi the particle
can be neglected in the description of its motion processtlaaidthe model is
approximated by the limiting process for inter—collisi@mding to infinitesimal
small intervals.

The non—existence of a velocity of the particle has beencowee in the later
Ornstein—Uhlenbeck model of Brownian motion (Uhlenbecll @rnstein [10],
see also Nelson [9], chapters 9-10). This model takes tloeislof the particle
under consideration (thus coming closer to a classical bie\ah perspective on
Brownian motion), but still is based on the transition to i@t of infinitesimal
small inter—collision times. This results in non—diffetiable paths of the velocity
process, which breaks with a Newtonian view, too. It furthuened out that the
Ornstein—Uhlenbeck process describing the velocity optrécle can be realized
by a Wiener process with deterministic change of the timelchnd rescaling of
the state variable (see Karlin and Taylor [8], p.218).

In the present paper, a strictly Newtonian view on the phestmn of Brown-
ian motion will be maintained. The motion process of theipkris modelled by
a Markov process which is less idealized, since it takesaotmunt the position
as well as the impulse of the particle. Furthermore, in the@hpresented in this
paper the particle will have real inter—collision timesaling it to move accord-
ing to classical kinetic laws during non—vanishing intésvaetween collisions.
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This leads to a piecewise—linear path behaviour if therenaradditional forces
and to piecewise—deterministic paths otherwise.

The main mathematical concepts used in the present papgienewise—
deterministic Markov processes and Markov—additive pgees. The develop-
ment of the former has been initiated by Kovalenko and latela&hnikov and
Tien under the concept of piecewise—linear Markov procegsse Gnedenko and
Kovalenko [7], section 3.3). Later the concept has been rgéimed by Davis
[4, 5]. A recent treatise on Markov—additive processesvsm@in Asmussen [1],
section I1.5.

In section 2, a piecewise—deterministic model for Browmaotion will be
introduced, and its basic properties, such as expressansansition kernels,
infinitesimal generator and a law of large numbers, will bevee. Section 3
contains a derivation of the Fourier transforms and by suelama a convergence
theorem. This, the main property to be proven in this papates that the present
piecewise—deterministic model will converge to the clesisWiener process as
the intensity of collisions tends to infinity.

2 The Joint Process of Position and Velocity

The model of Brownian motion, which will be introduced ingfgection, first
is developed under negligence of any additional forcesdessihe influence of
the collisions upon the motion of the particle. In remarktlisisketched how
additional forces like friction or external force fields da@incorporated into the
model without changing its characteristics.

Under this convention, the movement of the particle will ine&r (following
its present impulse) between collisions. Since the moéscaof the suspending
liquid are assumed as independent, the times of collisiansbe modelled as a
Poisson process with some (high) intensityAt an instant of collision the particle
immediately receives an additional impulse by the collichmolecule, which leads
to a (usually minor) change of its velocity. This change Ww# represented by
some distribution functiorf’, which reasonably is to be assumed as a normal
distribution. Without restriction of generality, we cansagme that the particle
has unit mass, thus identifying the values of impulse andoisi

This model leads to a piecewise—linear path of the particefuture of which
at any time is completely determined by its present poskiaeh velocity (which
equals its impulse). Hence we can model the motion as a pieeelwmear Markov
process (see Gnedenko and Kovalenko [7], section 3.3) watesdenoting the



present position and velocity of the particle.
The velocity proces$” can be modeled by a compound Poisson process (see
e.g. Karlin and Taylor [8], pp.426—440), i.e.

Ny

V=) Y

k=1

where the proces¥ = (N; : t € IRy ) is a Poisson process with some intensity
and(Y; : k£ € IN) are iid with common distribution functiof' and characteristic
functionyy-. Then the characteristic functian, of V; is given by

pvi(u) = exp (=AL(1 = gy (u)))

for all u € IR. Further, the distribution function df; is given by

P(V,<z) = Z m LM ()

n=0

for all z € IR, with F") denoting then—fold convolution of the distribution
function F.

Let Z = (X,V) = ((X;,V;) : t € IR{) denote the joint process of position
X; and velocityV;, denoting position and velocity of the particle at time IR, .
Assuming that besides the impulses that the particle reséiere is no other force
influencing the path of the particle, we know that betweerseountive collisions
the position of the particle changes in a deterministicrjgaea linear) way.

Hence the joint process can be modelled as a piecewise—deterministic pro-
cess (PDMP) without intrinsic jJumps (see Davis [5], and B3] for this special
class). The state space Yfis E = IR* with its usual Boreb—algebra, denoted
by B%. The processZ has jump rate\, which is independent of the state of the
process, and a jump transition meas@rdefined by

Q((z,v), AX] — oo, w|) := 14(z) - F(w — v)

forall v,w,x € IR andA € B. Clearly,@ is translation—invariant in the second
dimension. Between jumps, we have a deterministic moticorakng to the flow
function defined by

Oy(x,v) = (x+1-v,v)

forall t € IRj andx,v € IR. The valued,;(z,v) gives the state of the process
at timet provided that no jump (i.e. here: no collision) has occurad the
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process was in state, v) at time0. We note thatb, (®,(z, v)) = &4, 5(x, v) for

all s,t € IR andz,v € IR. The definition of the PDMP model is concluded by
stating that the seh which induces intrinsic jumps is empty and thuér) =
forallz € E.

Clearly, the proces& is homogeneous. L&k (t; 2, A) denote the conditional
probability thatZ is in some statgy € A € B? at timet € IR{ given that
Z isin statex € FE at time0. Further, letP(¢) denote the kernel with entries
P(t)(xz,A) = P(t;x, A) forall z € E andA € B Define the identity kernel on
E by I((z,v),A X B) := 14(x)1g(v) forall z,v € IR and A, B € B. Further
define the generator kern@l:= A\(QQ — I). Define forakerneK : E x £ — IR
and a functiory : E — E the operatioX o f(z, A) :== K(f(x), A)forallz € E
andA € £.

According to Breuer [3], theorem 2 (with instead of?), the transition prob-
ability kernel P(¢) can be expressed as

:g/ot/ot”.../OtQ(Goq%l)(Go@tZtl)...

. (G o} @tn,tn_l)([ o q)t,tn) dt1 e dt

n

for all t € IR, the sum entry fon = 0 being the kernel o ®,. This can be
computed as the limiP(¢) = lim,_, ., P,(t) of the sequencé;(t) := I o &, for
allt € IR}, and

Py i(t) = /Ut(Go(b VPo(t —u) du+1o0®d,

forall ¢ € IR andn € IN,.
Likewise, according to Breuer [3], theorem 1, another esgian for the tran-
sition probability kernelP(¢) is given by

o Altn—tn_1 )\(Qo‘btn b )e M (T o®, ) d,y, ... dy

tn to
_Z —/\t)\n/ / / O(Ptl O(Ptg tl)“‘

(Qoq)tn_t )(qu)t tn) dtl“‘dn

n



forallt € IR;, the sum entry fon = 0 being the kernet=*!(7 o ®;). A compu-
tation of this expression as a limit of an iteration sequassamilar as above. We
further obtain by substitution

P(t) = nf;e”xl /Ot /OHI . /0”1”'5“@ 0®, )(Qod,,)...

Qo d,)(Tod,,, ) ds,...d

Sn41
— Ze—)\t)\n(Q o q));kn
n=0
defining(Q o ®);% := I o ®, for all t € IR, and iteratively

Qow" = Qo w)Qod " dn

forallt € IR; andn € IN.

Remark 1 The above considerations are valid for any flow functioon £. Thus
other factors like a frictional force can be taken into actoas well by simply
changing the definition ob. In particular, a Brownian motion under influence of
a deterministic external force field can be represented &gdme model.

Assuming thatF' has a Lebesgue density functigin we can represent the
transition density o/ by

]

pi((z,v),(y, w)) = Zef’\t)\n / / H f(v;) dsy...ds, dvy...dv,

n=2 S8 <t, > v, =w—v,
X sivi—1+Sp41vn=y—2

:ie—”)\”/---/ﬁf(vi) 1N (L(v, o)) doy . dun

n=2 S vi=w—wv

forallt € IR{ andz,y,v,w € IR. Here, we have defined, := v, s, =
t— > " s; and denoted the—dimensional Lebesgue measure /gy Further,
L(vy, ..., v,) denotes the set of solution vectdss, . . ., s,) to the equation

n

n
E SiVi_1 + Spp1iUp =y —T <> E Si(vis1 —vp) =y —x — tu,
i=1 i=1



with s; > O foralli < nand) !  s; <t The cases = 0,1 can be neglected,
since for a model of Brownian motion the parametevill be very large and thus
e~ very small.

Theorem 1 For the marginal procesX’, the convergence

X
lim =X = E(F)

t—o00

holds almost certainly, independent of the initial velpdig.

Proof: LetT; andV; denote the time and the velocity of the particle between the
i — 1st and theth change of velocity (i.e. collision of the particle), respively.
Clearly, the sequencdq; : i € IN) and(V; : i € IN) are iid with common
distributionsExzp(\) and F', respectively. Furthermore, the sequefite V; : i €
IN) is iid with meanE(T; - V;) = E(F)/ .

Since asymptotically the initial velocity and the time attee last jump do not
matter, we obtain

Xt . Z?:l Tz ' Vz

Iim — = lim &= —— = lim
n
t—soo t n—oo E i1 Zl n—oo

Z?ﬂTi Vi lim Z?ﬂTi _ E(F)/)‘
n n—00 n 1/A
almost certainly, according to the strong law of large nurabe
&)
Since 7 is a piecewise—deterministic process, its infinitesimalegator is
given as in Davis [4], theorem 5.5, by

. aggi, 0) . /]R(g(x,v +w) — g(z,v))dF (w)

for all functionsg : IR* — IR differentiable in the first argument and measurable
with respect td3 in the second. Sinc& has no intrinsic jumps, we do not need a
boundary condition as in Davis [4], equation (5.4), for tewin of the generator.

Specifyingg as a density function(t, z,v) on IR* and depending on time
t, we can obtain the probability law of the process by setthng initial value
functiong(0, ., .) to the density at tim@ and then solving the partial differential
equation

MZU.M_F)\./R(L(](LLU—!—U))—g(t:xav))dF(w)

Ag(z,v) =wv

ot 0x

with the above initial value. This provides a determinatwdnhe density transi-
tion function by non—stochastic means and thus a purelyytcal treatment of
stochastic processes having such infinitesimal generators
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3 Convergence to the Wiener Process

The process’ = (X, V') consists of a simple Markov jump componéntwhich
is independent, and of the componént which is a uniform translation process
conditional onV. This structure allows an analysisBfalong the lines of the the-
ory of Markov—additive processes (see Asmussen [1], Setitid and references
therein).

For everyt € IR;, define the conditional Fourier transform kerdé! of X
givenV by its entries

X7 ()0, W) = B (5 - 1y (V)| = v) ®

forall s € IR, v € IR andWW € B. Analogous to proposition 5.2 in chapter 2 of
Asmussen [1], we obtain

Theorem 2 Assume thak' is Lebesgue dominated with density functfon/k —
IR . DefineA(v, W) :== X+ (F(W —v) — 1y (v)) andU (v, W) := v - 1y (v) for
allv € IR andW € B. Then for every € IR the conditional Fourier transform
kernel X; of X givenV can be expressed by

Xt*(S) — et(A-{—isU)
forall s € IR.

Proof: For allv € IR, letS” = (Sy : t € IR]) denote a uniform translation
process with drift, i.e. P(Sy € A|Sy = z) = 1a(x + vt) for all z € IR and
A € B. SinceF is Lebesgue dominated and is conditional uponl” (hence
dominated by it), the Lebesgue densities

fi(s,v,w) = F (eiSXt, Vi=w|Vy = v)

of the conditional expectations in definition (1) exist. Fbem we obtain the
linear approximation

fren(s,v,w) = fi(s,v,w)(1 — Ah)e™™ + /th(s,v, u)Ahf(w —u) du
= fi(s,v,w)(1 + h(isw)) + hA </}R fe(s,v,u) f(w—u) du— fi(s,v, w)>
= fi(s,v,w) <1 + h(isw) + h/]th(s,v,u))\(f(w —u) — fi(s,v,w)) du>
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omitting the terms of size(h). This implies

0X; (5)
ot

for all + € IR. SinceA is bounded, the operatef* V) = ¢tV does exist
forall ¢t € IR{ ands € IR. Because of\;(s) = I it solves the above differential
equation. IfA(t) were another solution with the same initial condition, thies
differenceA(t) := X; — A(t) would be differentiable with derivativa'(t) = 0,
henceA(t) would be constant in. SinceA(0) = 0, the only solution is given by
X5 — ellMist),

©

= X7 (s)(A +isU)

Theorem 3 Let F(\) = N(0,0%/)) denote the distribution function of the nor-
mal distribution with mear®) and variances?/). Further, denote the marginal
position process of () with jump rate\ and impulse distributiod’(\) by X ()).
Then the limitX of the processed (\) with initial velocity 0 for A — oc is the
Wiener process with mednand variances? under a deterministic change of the
time scale.

Proof: The marginal Fourier transform of (\) under initial velocity0 is given
by
X7 (N, 5)(0, IR) = spet etV

with 1 denoting the constant function dR with valuel. Since forA — oc, the
measurei,e’* tends to the normal distributioh with mean0 and variancert,
andé,Ulr = x for all z € IR, we obtain

X*(5)(0, IR) = /R AN g o (2) = B (s)

which is the Fourier transform of the Wiener process with meand variance

at timet?.
©
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