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Abstract

Multivariate density estimation is approached using Bayesian nonparametric mix-
ture of normals models. Two models are developed which are both centred over a
multivariate normal distribution but make different prior assumptions about how the
unknown distribution departs from a normal distribution. The priors are applied to
density estimation of both observables and random effects (or other unobservable ran-
dom quantities). Markov chain Monte Carlo methods are described for estimation of
all models. The models are applied to density estimation for observables and the ap-
plication of a nonparametric linear mixed model to repeated cholesterol measurements
from the Framingham study.

Keywords: Dirichlet process mixture models, Mixtures of normals, Adaptive Monte
Carlo, Centring.

1 Introduction
The use of Dirichlet process mixture (DPM) models in density estimation has become
increasingly popular in Bayesian statistics, following the seminal work of Lo (1984)
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and Ferguson (1983). The mixture of normals has become the main example and
is often combined with a conjugate prior as described by Escobar and West (1995).
Suppose that y1, y2, . . . , yn are a sample of p-dimensional vectors. The model has the
following hierarchical form for multivariate observations y1, y2, . . . , yn

yi ∼ N(θi,Σi),

(θi,Σi) ∼ G,

G ∼ DP(M,H)

where N(θ,Σ) represents a multivariate normal distribution with mean θ and covari-
ance Σ, DP(M,H) represents a Dirichlet process (Ferguson, 1973) with mass param-
eter M and centring distribution H . In this case, the centring distribution H is chosen
to be N(θ|θ0, n0Σ)IW(Σ|αΣ, βΣ) where IW represents an inverse Wishart distribution
with shape parameter αΣ and mean βΣ/(αΣ − p− 1). The marginal distribution of yi
is then an infinite mixture of normals distribution. The hyperparameter θ0 is straight-
forward to choose since it is the prior mean of yi. However, it is less clear how αΣ, βΣ

and n0 should be chosen. In practice, their value has an important effect on the form
of the density estimate is often chosen by a process of “trial-and-error”.

In univariate density estimation with mixtures of normals, Griffin (2010) suggests
a simplified version of the conjugate DPM model where

yi ∼ N(θi, aσ2), 0 < a < 1, (1)

θi ∼ G,

G ∼ DP(M,H)

and nowH = N(θ|µ, (1−a)σ2). This model implies that the prior predictive distribu-
tion of yi is normal with mean µ and variance σ2. The parameter a can be interpreted
as a smoothness parameter with larger values of a leading to a prior which places
increasing mass on unimodal distributions which look increasingly normally shaped.
The model does not allow different variance for each normal component, unlike the
model of Escobar and West (1995), but the model approximate any distribution of yi
since it has full support. Griffin (2010) shows that this model leads to better perfor-
mance, in terms of out-of-sample prediction, than previously proposed “default” priors
with mixing on both the mean and variance.

This paper is concerned with extending the model of Griffin (2010) to problems
of multivariate density estimation. A useful property of the univariate model is that µ
and σ2 can be given standard priors (including the standard non-informative prior for
the normal model) so that the nonparametric analysis will tend towards a parametric
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analysis, assuming a normal distribution for yi, as a tends to 1. This allows us to centre
semiparametric models, such as linear mixed models, defined using nonparametric
priors for some distributions directly over their parametric counterparts. This theme is
developed in this paper.

The paper is organized as follows: Section 2 discusses two extensions of the uni-
variate model to multivariate problems, Section 3 describes the Markov chain Monte
Carlo algorithms needed to fit the models, Section 4 presents applications of the mod-
els to density estimation and semiparametric linear mixed effect models, Section 5 is
a discussion.

2 Models
Suppose that the density of yi is f(·) then this density is our parameter of interest in
density estimation. The model in (1) implies that

f(yi) =
∞∑
i=1

wiN(yi|θi, aσ2)

where wi are the sizes of the jumps of a Dirichlet process and θi ∼ N(µ, (1 − a)σ2),
which defines a prior on f(·). The prior mean of f(·) is

E[f(yi)|a, µ, σ2] = N(yi|µ, σ2).

Therefore, the prior mean does not depend on a and the prior for f(·) is centred over
a normal distribution with mean µ and variance σ2. The parameter a controls the
proportion of the overall variation, σ2, allocated to within-component variation (given
by aσ2) and between-component variation (given by (1 − a)σ2). Larger values of a
lead to more variation placed into the within-component variation and lead to realized
densities f(·) that look increasingly like a normal distribution. Therefore, the param-
eter can be interpret as a measure of the departure of the density of yi from a normal
distribution with larger a representing a density closer to a normal density.

The parameterisation of the model in terms of a smoothness parameter, a, and a
fixed prior mean, µ, for f(·) which does not depend on the smoothness parameter
defines a useful model for univariate density estimation. Extending these ideas to a
multivariate model, with p-dimensional observations yi, would imply that the prior
should have the property that

E[f(yi)|a, µ,Σ] = N(yi|µ,Σ) (2)

where µ is a p-dimensional mean vector, Σ is a p × p-dimensional covariance matrix
and a is a vector of remaining smoothness parameters. A direct extension of the model
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in (1) would define yi ∼ N(θi, aΣ) and H = N(θ|µ, (1− a)Σ) leading to the required
centring property in (2) but would imply that the prior for the marginal distribution
of yij is the model in (1) with σ2 replaced by Σjj , θ replaced by θj and smoothness
parameter a. The departures from normality would be the same for all variables. This
will often be unrealistically simple in practice since there may be dimensions or direc-
tions in which the marginal distributions are close to normality and other dimensions
or directions in which the marginal distributions are far from normal, e.g. multi-modal.

Two models will be defined which allow different levels of smoothing for dif-
ferent dimensions of direction of yi. Both models have the centring property that
E[f(yi)|a, µ,Σ] = N(yi|µ,Σ). The idea that there may be some dimensions of yi
whose marginal distribution is closer to normality than others will underlie Model 1
and the idea that there may be some directions of yi in which the marginal distribution
is close to normality will underlie Model 2.

Model 1 defines smoothness parameters a1, a2, . . . , ap and assumes that

yi ∼ N(yi|θi, A1/2ΣA1/2),

θi ∼ G,

G ∼ DP(M,H)

where
H = N(θ|µ,Σ−A1/2ΣA1/2)

and A1/2 is a p× p-dimensional matrix of the form

A1/2 =


√
a1 0

. . .

0 √
ap

 . (3)

The model is only well-defined if both covariance matrices are positive-definite which
is true if 0 < aj < 1 for all j. The covariance matrix A1/2ΣA1/2 is clearly positive
definite (since it is a product of positive definite matrices) and so f(yi|θi, a,Σ) is well-
defined. The positive-definiteness of Σ − A1/2ΣA1/2 can be shown in the following
way. Clearly

Σ−A1/2ΣA1/2 = (I −A1/2)Σ(I +A1/2)− ΣA1/2 +A1/2Σ

and so
xT (Σ−A1/2ΣA1/2)x = xT (I −A1/2)Σ(I +A1/2)x

for any vector x of appropriate length. The matrix (I − A1/2)Σ(I + A1/2) is clearly
positive-definite since it is the product of positive-definite matrices and so Σ−A1/2ΣA1/2

is also positive-definite.
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The model implies that the components of the mixture have the same correlation
matrix as the correlation matrix of the data since the (j, k)-th term of A1/2ΣA1/2 is
√
ajakΣjk and so the correlation between yij and yik conditional on θi is Σij√

ΣiiΣjj
.

The prior for the marginal distribution of yij follows the model in (1) with µ replaced
by µj , σ2 replaced by Σjj and a replaced by aj . Therefore, the departure from nor-
mality in dimension j is controlled by aj .

a1 = 0.02 a1 = 0.2 a1 = 0.8

a2 = 0.02
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Figure 1: Four realisations of the density under Model 1 for different value of a1 and a2

with M = 5 and zero correlation.

Figure 1 shows realizations from the model when p = 2 with different values of
a1 and a2. Clearly, the interpretation of the smoothness parameters is the same as the
univariate models: larger values of ak imply that the distribution of yik is increasingly
normal and, small values of ak tend to lead to multi-modal marginal distributions
of yik. The multi-modality of the joint distribution depends on the value of both a1

and a2. In the Figure, small values for both a1 and a2 lead to a distribution with
many modes whereas the combination of a small value for a1 and a large value for
a2 leads to a few modes (and similarly for large a1 and small a2). The effect of
introducing correlation between a1 and a2 is shown in Figure 2. The distribution is
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Figure 2: Four realisations of the density under Model 1 for different value of a1 and a2

with M = 5 and correlation of 0.5.

close to a normal distribution if both a1 and a2 are large. Small values of a1 and a2

leads to distributions with many modes where each component distribution have the
same correlation. The effect of a small a1 and a large a2 is interesting and illustrates
an important consequence of choosing this model. The marginal distribution of y1 is
multi-modal and the marginal distribution of y2 is close to normality. Consequently,
the joint distribution is constructed from several components with small variances in
the first dimension and large variances in the second dimension.

The idea underlying Model 2 is that there are linear transforms of the data for
which the marginal distribution is relatively normal and other linear transformations
for which the marginal distribution is far from normal. This is achieved by defining
zi = B−1(yi − µ) and assuming that zi1, zi2, . . . , zip are independent and follow the
model in (1) with µ = 0, σ2 = 1 and smoothness parameter aj . This implies that
zi is centred over a multivariate normal distribution with mean (0, 0, . . . , 0) and the
identity matrix Ip as its covariance matrix. Therefore, yi is centred over N(µ,BBT )
and a natural choice for B, which will be followed in this paper, is the Cholesky
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Figure 3: Four realisations of the density under Model 2 for different value of a1 and a2

with M = 5 and correlation of 0.5.

decomposition of the covariance matrix Σ. The model for yi is then

yi ∼ N(θi, BA?BT )

θi ∼ DP(MH)

where H = N(θ|µ,BBT − BA?BT ) and A∗ is a diagonal matrix with non-zero
elements a1, a2, . . . , ap.

Model 1 and Model 2 will be the same if the correlation between yi1 and yi2 is
zero. However, they differ in terms of how correlation is introduced. Unlike Model 1,
Model 2 rotates the distribution if the correlation is non-zero. Realisations of this prior
with a correlation of 0.5 are shown in Figure 3. Clearly small values of a1 and a2 lead
to distributions with many modes and typically well-seperated components. The value
of a = 0.2 and larger give rise to distribution with less modes and a more cohesive
distribution.
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3 Density estimation in random effect models
The distribution of unobserved quantities, such as random effects, will often have an
unknown form. Bayesian approaches to density estimation can be naturally extended
to this problem by assuming a nonparametric prior for the unknown distribution and
so defines a semiparametric model. The Linear Mixed Model (LMM) will be the main
focus of interest in this section although the ideas extend naturally to other models
with random effects. The usual Normal LMM assumes that responses yi1, . . . , yiT are
observed for the i-th individual with regressors Xi1, . . . , XiT and Zi1, . . . , ZiT where

yit = α+Xitβ + Zitγi + εit,

γi
i.i.d.∼ N(µ,Σ)

and εit are mutually independent and εit ∼ N(0, σ2). The model makes the distinc-
tion that β are the same for all individuals and so Xit has the same effect for all
individuals whereas γi varies from individual-to-individual and so allows for different
effects of Zit across individuals. The parameters of the model are then given pri-
ors which often have the form: β ∼ N(0,Σβ), α ∼ N(0, σα), µ ∼ N(0,Σµ) and
Σ ∼ IW(η,Υ). The main focus of interest is usually the regression parameters β
and the hyperparameters µ. A nonparametric specification for the distribution of γi
defines a semiparametric model and leads to robust estimates of the regression coeffi-
cients.Initial work on Bayesian nonparametric estimation in these models is described
by Bush and MacEachern (1996) and Kleinman and Ibrahim (1998). These assume
that the distribution of γi follows a Dirichlet process mixture model. In this paper,
specific forms of Dirichlet process mixture model (Model 1 and Model 2) are used to
define LMM-Model 1 and LMM-Model 2. LMM-Model 1 assumes

γi ∼ N(θi, A1/2ΣA1/2)

θi ∼ DP(MH)

where H = N(θ|µ,Σ− A1/2ΣA1/2), A is defined in (3) and β, α, µ and Σ are given
the priors for the Normal LMM. The model conditional on β, α, µ and Σ is centred
over the normal model and the nonparametric model is the same as the parametric
model model if a1, a2, . . . , ap are all equal to one. Similarly, LMM-Model 2 can be
defined by assuming that

γi ∼ N(θi, BA?BT )

θi ∼ DP(MH)

where H = N(θ|µ,BBT −BA?BT ), A? is a diagonal matrix with non-zero elements
a1, a2, . . . , ap and β, α, µ and Σ are given the priors for the Normal LMM. Once again
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the model conditional on β, α, µ and Σ is centred over the normal model with mean µ
and variance-covariance matrix Σ = BBT and the nonparametric model is the same
as the parametric model model if a1, a2, . . . , ap are all equal to one.

In both models inference about a1, a2, . . . , ap provides information about the di-
mensions in which the distribution departs from normality. This is indicated by small
values of ai. Larger values of ai will lead to an analysis which is closer to the para-
metric analysis and so allows us to take advantage of the normal assumption if it is
supported by the data.

4 Computational Methods
Both Model 1 and Model 2 are conjugate Dirichlet process mixture models and so
can be fitted using standard Pólya urn scheme methods described in MacEachern
(1998). The choice of a Dirichlet process prior implies there are K distinct values of
θ1, θ2, . . . , θn which will be denoted θ(1), θ(2), . . . , θ(K). Latent variables s1, s2, . . . , sn

are introduced to link these values so that θi = θ(si).

4.1 Model 1

The parameter µ and Σ are assumed to have the priors µ ∼ N(µ0,Σµ) and Σ ∼
IW(η,Υ). Let Σj = A1/2ΣA1/2, Σ0 = Σ− A1/2ΣA1/2 and nj = #{i|si = j}. The
full conditional distributions are as follows.

Updating s

Let K− be the number of distinct values for θ1, . . . θi−1, θi+1, . . . , θn and n−j =
#{k|sk = j, k 6= i}. The full conditional distribution of si is

p(si = j) ∝ njN
(
yi
∣∣θ?j ,Σ?

j

)
, j = 1, 2, . . . ,K−

and
p(si = K− + 1) ∝MN (yi |µ,Σ)

where

θ?j =
(
n−j Σ−1

k + Σ−1
0

)−1

Σ−1
k

∑
{k|sk=j,k 6=i}

yk + Σ−1
0 µ0


and

Σ?
j =

(
n−j Σ−1

k + Σ−1
0

)−1
.
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After updating s1, s2, . . . , sn, the values of θ(1), θ(2), . . . , θ(K) are sampled from their
full conditional distribution θ(j) ∼ N(θ?j ,Σ

?
j ) where

θ?j =
(
njΣ−1

k + Σ−1
0

)−1

Σ−1
k

∑
{k|sk=j}

yk + Σ−1
0 µ0


and

Σ?
j =

(
njΣ−1

k + Σ−1
0

)−1
.

Updating µ

The full conditional distribution of µ is N(µ|µ†,Σ†) where

µ† =
(
KΣ−1

0 + Σ−1
µ

)−1

(
Σ−1

0

K∑
i=1

θ(i) + Σ−1
µ µ0

)
,

Σ† =
(
KΣ−1

0 + Σ−1
µ

)−1
.

Updating Σ and a

The covariance matrix Σ and a can be updated in the following way. We reparametrise
Σ to (P, σ2

1, . . . , σ
2
p) where P is the (p×p)-dimensional correlation matrix with terms

Pij =
Σij

Σ1/2
11 Σ1/2

22

and σ2
j = Σjj and update these parameters using a Metropolis-Hastings random walk.

The full conditional distribution is

p(Σ) ∝ Σ−n/2k ΣK/2
0 exp

−1
2

 n∑
i=1

(yi − θi)TΣ−1
k (yi − θi)T +

K∑
j=1

(θ(j) − µ)TΣ−1
0 (θ(j) − µ)

 .

The value of σ2
j is updated with aj . The new value of σ2

j is proposed as σ2
j
′ =

σ2
j exp{φ2

jε}where ε ∼ N(0, 1) and the new value of aj is proposed as a′j = (1+aj)/(1−aj) exp{νjε}−1
(1+aj)/(1−aj) exp{νjε}+1 .

Let Σ′ be the values of the covariance matrix with σ2
j and aj replaced by σ2

j
′ and a′j .

The new values is accepted with probability

max

1,
p(a′j)p(Σ

′)|Σ′|(η+p+1)/2 exp
{
−tr
(

ΥΣ′−1
)
/2
}
σ2
j
′(p+1)/2

(
1

1+a′j
+ 1

1−a′j

)
p(aj)p(Σ)|Σ|(η+p+1)/2 exp {−tr (ΥΣ−1) /2}σ2

j
(p+1)/2

(
1

1+aj
+ 1

1−aj

)
 .
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The new value of Pij is proposed as P ′ij = (1+Pij)/(1−Pij) exp{ζijε}−1
(1+Pij)/(1−Pij) exp{ζijε}+1 . Let Σ′ be the

values of the covariance matrix with Pij replaced by P ′ij . The new value is accepted
with probability

max

1,
p(Σ′)|Σ′|(η+p+1)/2 exp

{
−tr
(

ΥΣ′−1
)
/2
}(

1
1+P ′ij

+ 1
1−P ′ij

)
p(Σ)|Σ|(η+p+1)/2 exp {−tr (ΥΣ−1) /2}

(
1

1+Pij
+ 1

1−Pij

)
 .

The variance of the increments ζij , νj and φj are tuned using the adaptive scheme of
Atchadé and Rosenthal (2005) with a target acceptance rate of 0.3.

Updating M

The full conditional distribution for M is

p(M)
Γ(M)

Γ(M + n)
MK

and can be updated using a Metropolis-Hastings random walk step. The variance of
the increments is tuned using the adaptive scheme of Atchadé and Rosenthal (2005).

4.2 Model 2

We define Σ = BBT and assume the priors µ ∼ N(µ0,Σµ) and Σ ∼ IW(η,Σ0).
Model 2 can be updated in the same way as Model 1 with Σk = BA1/2A1/2BT and
Σ0 = BBT −BA1/2A1/2BT .

4.3 LMM-Model 1

The model in Section 3 can be fitted using a Gibbs sampler with the updating scheme
as follows. The parameters s and µ are updated marginalizing over γ which lead to
much better mixing of the sampler than the Gibbs sampler including γ at all steps.

Updating β

The full conditional distribution of β is

N

(σ−2
n∑
i=1

T∑
t=1

X ′itXit + Λβ

)−1

σ−2
n∑
i=1

T∑
t=1

X ′it (yit − Zitγi) ,

(
σ−2

n∑
i=1

T∑
t=1

X ′itXit + Λβ

)−1

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Updating σ2

The full conditional distribution of σ2 is

Ga

(
α+ nT, β +

n∑
i=1

T∑
t=1

(yi −Xitβ − Zitγi)2

)

Updating s

The full conditional distribution of si is

p(si = j) ∝ njN
(
y?i

∣∣∣Ziθ(j), ZiA
1/2ΣA1/2ZTi + σ2

)
, j = 1, 2, . . . ,K−

and
p(si = K− + 1) ∝MN

(
y?i
∣∣Ziµ,ZiΣZTi + σ2

)
where

y?ik = yik −Xikβ

If si = K− + 1 then θ(K−+1) is sampled from N (θ?,Σ?) where

θ? = (Z ′i(ZiΣkZ
T
k + σ−2IT )−1Zi + Σ−1

0 )−1(Z ′i(ZiΣkZ
T
k + σ−2IT )−1yi + Σ−1

0 µ)

and
Σ? = (Z ′i(ZiΣkZ

T
k + σ−2IT )−1Zi + Σ−1

0 )−1

where Σk = A1/2ΣA1/2 and Σ0 = Σ−A1/2ΣA1/2

Updating θ

The full conditional distribution of θ(k) is N (θ?,Σ?) where

θ? =

 ∑
i|si=k

Z ′i(ZiΣkZ
T
k + σ−2IT )−1Zi + Σ−1

0

−1 ∑
i|si=k

Z ′i(ZiΣkZ
T
k + σ−2IT )−1yi + Σ−1

0 µ


and

Σ? =

 ∑
i|si=k

Z ′i(ZiΣkZ
T
k + σ−2IT )−1Zi + Σ−1

0

−1

Updating γ

The full conditional distribution for γi is

N

(σ−2
T∑
t=1

Z ′itZit + Σ−1
k

)−1(
σ−2

T∑
t=1

Zit(yit −Xitβ) + Σ−1
k µsi

)
,

(
σ−2

T∑
t=1

Z ′itZit + Σ−1
k

)−1

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Updating Σ and a

The covariance matrix Σ and a can be updated in the following way. We reparametrise
Σ to (P, σ2

1, . . . , σ
2
p) where P is the (p×p)-dimensional correlation matrix with terms

Pij =
Σij

Σ1/2
11 Σ1/2

22

and σ2
j = Σjj and update these parameters using a Metropolis-Hastings random walk.

The full conditional distribution is

p(Σ) ∝ Σ−n/2k ΣK/2
0 exp

−1
2

 n∑
i=1

(γi − θi)TΣ−1
k (γi − θi)T +

K∑
j=1

(θ(j) − µ)TΣ−1
0 (θ(j) − µ)

 .

The value of σ2
j is updated with aj . The new value of σ2

j is proposed as σ2
j
′ =

σ2
j exp{φ2

jε}where ε ∼ N(0, 1) and the new value of aj is proposed as a′j = (1+aj)/(1−aj) exp{νjε}−1
(1+aj)/(1−aj) exp{νjε}+1 .

Let Σ′ be the values of the covariance matrix with σ2
j and aj replaced by σ2

j
′ and a′j .

The new values is accepted with probability

max

1,
p(a′j)p(Σ

′)|Σ′|(η+p+1)/2 exp
{
−tr
(

ΥΣ′−1
)
/2
}
σ2
j
′(p+1)/2

(
1

1+a′j
+ 1

1−a′j

)
p(aj)p(Σ)|Σ|(η+p+1)/2 exp {−tr (ΥΣ−1) /2}σ2

j
(p+1)/2

(
1

1+aj
+ 1

1−aj

)
 .

The new value of Pij is proposed as P ′ij = (1+Pij)/(1−Pij) exp{ζijε}−1
(1+Pij)/(1−Pij) exp{ζijε}+1 . Let Σ′ be the

values of the covariance matrix with Pij replaced by P ′ij . The new value is accepted
with probability

max

1,
p(Σ′)|Σ′|(η+p+1)/2 exp

{
−tr
(

ΥΣ′−1
)
/2
}(

1
1+P ′ij

+ 1
1−P ′ij

)
p(Σ)|Σ|(η+p+1)/2 exp {−tr (ΥΣ−1) /2}

(
1

1+Pij
+ 1

1−Pij

)
 .

The variance of the increments ζij , νj and φj are tuned using the adaptive scheme of
Atchadé and Rosenthal (2005) with a target acceptance rate of 0.3.

Updating M

The full conditional distribution for M is

p(M)
Γ(M)

Γ(M + n)
MK

and can be updated using a Metropolis-Hastings random walk step. The variance of
the increments is tuned using the adaptive scheme of Atchadé and Rosenthal (2005).
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Updating µ

The full conditional distribution for µ is

N

((
KΣ−1

0 + Σ−1
µ

)−1

(
Σ−1

0

K∑
k=1

θ(k) + Σ−1
µ µ0

)
,
(
KΣ−1

0 + Σ−1
µ

)−1

)
.

4.4 LMM-Model 2

The sampler for LMM-Model 1 can be used with Σk = BA1/2A1/2BT and Σ0 =
BBT −BA1/2A1/2BT .

5 Examples
The models for Bayesian density estimation are applied to two problems in bivari-
ate density estimation for observables, and a simulated and a real data example for
unobservable random effects in a linear mixed model.

5.1 Bivariate density estimation: Old faithfull data

Data measuring the waiting time between eruptions and the duration of the eruption
of the Old Faithful geyser in Yellowstone National Park are available in the R package
‘datasets’ and have become a popular data set for bivariate density estimation. Model
1 and Model 2 were fitted with two prior settings for ai. The first prior setting assumes
that ai follows a uniform distribution, which is a natural default choice for parameters
on (0, 1), and will be written as Be(1, 1), a Beta distribution with both parameters
equal to ones. The second choice is ai ∼ Be(1, 10), a Beta distribution with param-
eters 1 and 10, which places more mass on small values of ai and so more mass is
placed on distributions which are far from a normal distribution (Griffin, 2010). The
parameters µ and Σ are given the priors µ ∼ N(ȳ, 104) and Σ ∼ IW(p+ 2, Σ̂) where
ȳ and Σ̂ are the sample mean and variance-covariance matrix of the data. This choice
ensures that the prior mean of Σ is Σ̂.

The posterior mean density of the observations and the data are shown in Figure 4
For all models and all priors, the estimated density is bimodal with one mode around
(2, 55) and another mode around (4.5, 80) and follows the data. The density around
(4.5, 80) is clearly skewed. The posterior distribution of a1 and a2 for Model 1 are
summarized in Table 1. The posterior median of a1 is much smaller than those of a2

for both priors. The results indicate that the marginal density of duration is close to
normal but the marginal density of waiting time is far from normal. Results for a1 and
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Figure 4: Contour plots of the posterior mean density under Models 1 and 2 with two
different priors for a1 and a2 for the Old Faithfull data (observations are shown as dots).

a1 a2

Be(1, 1) 0.12 (0.04, 0.24) 0.31 (0.14, 0.51)
Be(1, 10) 0.09 (0.03, 0.19) 0.20 (0.08, 0.37)

Table 1: The posterior distribution of a1 and a2 summarized as the posterior median and
95% credible interval for the Old Faithfull data using Model 1 with two different priors for
a1 and a2.

a2 are harder to interpret in Model 2 since the prior and likelihood is invariant to the
permutation of a1 and a2 and no results are presented.

5.2 Bivariate density estimation: Aircraft data

Bowman and Azzalini (1997) describe bivariate density estimation for data related to
a study of the development of aircraft technology originally analysed by Saviotti and
Bowman (1984). This will be re-analyzed using the methods described in this paper.
The data contain six characteristics (total engine power, wing span, length, maximum
take-off weight, maximum speed and range) of aircraft designs. The first two principal
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components are shown in figure and can be interpreted as “size” and “speed adjusted
for size”. Further details are given in the reference. The priors for ai, µ and Σ were
chosen in the same way as in the example in Section 5.1.

Be(1, 1) Be(1, 10)

Model 1
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Figure 5: Contour plots of the posterior mean density under Models 1 and 2 with two
different priors for a1 and a2 for the aircraft data (observations are shown as dots).

Figure 5 shows a scatterplot of the data and the posterior mean density of the
observations across both models and prior settings for ai. The results are robust to
these choices. The posterior mean gives a good description of the data. In particular,
the higher density of points around -4 for the first dimension x1 is well captured.
The posterior distributions of a1 and a2 for Model 1 under the two priors for ai are

a1 a2

Be(1, 1) 0.11 (0.06, 0.24) 0.10 (0.05, 0.20)
Be(1, 10) 0.09 (0.04, 0.19) 0.08 (0.04, 0.15)

Table 2: The posterior distribution of a1 and a2 summarized as the posterior median and
95% credible interval for the aircraft data using Model 1 with two different priors for a1

and a2.

summarised in Table 2. The posterior medians for both a1 and a2 are close to 0.1
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indicating that there are similar levels of non-normality in both variables, as illustrated
by the posterior mean densities.

5.3 Nonparametric linear mixed model: Simulated Data

The nonparametric linear mixed model of Section 3 was applied to a simulated data set.
The design of the simulated data sets follows from Ghidey et al. (2004). It is assumed
that observations, yi1, yi2, . . . , yi6 are made at 6 time points ti = (0, 2, 4, 6, 8, 10) and
that

Yij = β0 + β1tij + γ0i + γ1itij + εij

where εij ∼ N(0, 0.04). This linear growth model where the intercept and slope are
assumed to be different for each individual. Data were generated from this model with
β0 = 2.35 and β1 = 0.28. Two distributions were assumed for the random effect
γ = (γ0, γ1):

• Example 1

γ ∼ N

((
0
0

)
,

(
0.15 0.02
0.02 0.04

))
• Example 2

γ ∼ 0.5×N

((
−1
0

)
,

(
0.15 0.02
0.02 0.04

))
+0.5×N

((
1
0

)
,

(
0.15 0.02
0.02 0.04

))
.

Example 1 assumes a normal distribution for the random effects whereas Example 2
assumes that they are drawn from a mixture of two normal distributions. The marginal
distribution of b0 in Example 2 is bi-modal whereas the marginal distribution of b1 is
normal. A sample was generated from the two examples with n = 200.

The posterior mean density under Models 1 and 2 for Example 1, shown in Fig-
ure 6, is a good estimate of the true random effects distribution. In Model 1, the poste-
rior medians of a1 and a2 are 0.21 and 0.17 respectively indicating that both marginal
distributions are close to normal. The estimates of the regression parameters β0 and
β1, shown in Table 3, are very similar for the parametric model (which is correctly
specified) and both nonparametric models. Therefore, the two nonparametric models
can replicate the parametric analysis when it is supported by the data.

The posterior means of the unknown density under Models 1 and 2 for Example 2
are shown in Figure 7. Both estimates show the bi-modal random effects distribution
generating the data. The posterior medians of a1 and a2 are 0.09 and 0.21 indicating
that the marginal distribution of b1 is less normally distributed than b2 and that b2 is
close to normally distributed which both match the properties of the model used to
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Figure 6: Contour plots of the posterior mean density of γ under Models 1 and 2 with two
different priors for a1 and a2 for Example 1.

generate the data. The esimated regression coefficients for Example 2 are shown in
Table 4. Both two nonparametric models and the parametric models show very similar
results for the posterior median. However, the parametric model underestimates the
uncertainty in the estimate of β0, since it assumes a normal distribution for b0 rather
than the true bi-modal distribution.

5.4 Nonparametric linear mixed model: Cholesterol Data

The use of the model for density estimation in a linear mixed model are illustrated
using repeated cholesterol measurements for a sample of 200 subjects from the Fram-
ingham study. The data was originally analysed by Zhang and Davidian (2001) and
has been subsequently re-analysed by Ghidey et al. (2004) and Ho and Hu (2008). The
measurements for taken every 2 years for a period of 10 years. There are two fixed
effects, age and sex, and the intercept and the effect of time are assumed to be random
effects drawn from a bivariate distribution. Assuming a nonparametric specification
for the distribution leads to a semiparametric model. The full model can be written

Yij = β0i + β1agei + β2sexi + β3itij + εij
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Model 1
Be(1, 10) Be(1, 1)

β0 2.34 (2.28, 2.40) 2.34 (2.29, 2.40)
β1 0.28 (0.25, 0.31) 0.28 (0.25, 0.31)
a1 0.209 (0.055, 0.464) 0.706 (0.240, 0.980)
a2 0.175 (0.046, 0.423) 0.612 (0.158, 0.972)

Model 2
Be(1, 10) Be(1, 1)

β0 2.34 (2.29, 2.40) 2.34 (2.29, 2.40)
β1 0.28 (0.25, 0.31) 0.28 (-0.25, 0.31)

Parametric
β0 2.35 (2.29, 2.40)
β1 0.28 (0.25, 0.31)

Table 3: The posterior distribution of the regression coefficients summarized as the poste-
rior median and 95% credible interval for Example 1 using parametric Normal model and
Models 1 and Model 2 with two different priors for a1 and a2.

(
β0i

β3i

)
∼ F

where Yij is the j-th observation for the i-th subject, tij is the time of the measure-
ment, agei and sexi are the measured covariates for the i-th subject. It is assumed
that εij

i.i.d.∼ N(0, σ2) and F is assumed to follow Model 1 or Model 2. The posterior
means of F under the different models and different prior settings are shown in Fig-
ure 8. The estimated distribution show a positive correlation between the intercept and
the slope. The distribution is not close to normally distributed with the iso-contour
not so tightly packed for larger values of the intercept. The posterior means of the
marginal distributions for the intercept and slope are shown in Figure 9. The intercept
has a clear positive skewness for all models and all priors whereas the slope has a
negative skewness which becomes more pronounced for the Be(1, 10) prior.

The estimated regression coefficients for the data under the two models with the
two beta priors are shown in Table 5. The estimates for the slope under the two models
for both prior setting are similar and are relatively robust. The posterior median of the
intercept parameter varies more across the different models and differ from the value
for the parametric analysis. The Be(1, 1) prior for both models led to results closer
to the value for the parametric analysis. A little surprisingly, the posterior median of
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Figure 7: Contour plots of the posterior mean density of γ under Models 1 and 2 with two
different priors for a1 and a2 for Example 2.

a1 is larger than a2 showing that the marginal distribution of the intercept is closer
to normality than the marginal distribution of the slope. This is due to heavier than
normal tails in the posterior mean distributions of a2. The effect of age has very
similar posterior median values across all models fitted to the data. However, there is
difference between the estimate of the effect of sex under the nonparametric models,
which have posterior medians close to -0.06, and the parametric model, which has a
median of -0.041.

6 Discussion
This paper has presented methods for Bayesian nonparametric density estimation for
multivariate data and a semiparametric linear mixed model with an unknown random
effects distribution. The prior for the unknown distribution is centred over a nor-
mal distribution, in the sense that the prior predictive distribution of an observation
y conditional on µ and Σ is a normal distribution with mean µ and variance Σ. Two
specifications are considered. One assumes parameters that measure the departure
from normalty in each dimensions. The second assumes that a rotated version of y is
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Model 1
Be(1, 10) Be(1, 1)

β0 2.34 (2.13, 2.55) 2.34 (2.13, 2.55)
β1 0.29 (0.26, 0.32) 0.29 (0.26, 0.32)
a1 0.093 (0.025, 0.210) 0.119 (0.040, 0.270)
a2 0.208 (0.064, 0.445) 0.659 (0.189, 0.960)

Model 2
Be(1, 10) Be(1, 1)

β0 2.34 (2.13, 2.55) 2.34 (2.13, 2.55)
β1 0.29 (0.26, 0.32) 0.29 (0.26, 0.32)

Parametric
β0 2.34 (2.13, 2.55)
β1 0.29 (0.26, 0.32)

Table 4: The posterior distribution of the regression coefficients summarized as the poste-
rior median and 95% credible interval for Example 2 using parametric Normal model and
Models 1 and Model 2 with two different priors for a1 and a2.

centred over a normal distribution with covariance given by the identity matrix. Semi-
parametric linear mixed models can be defined by assuming that the distribution of the
random effects is modelled using one of these nonparametric models. The semipara-
metric model is then centred over the semiparametric model and the inference can be
“shrunk” towards the parametric model when the data supports the parametric model.
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