
Application
The methodologies were applied to two datasets: a Medulloblastoma data set for 

binary outcome, and a breast cancer data set for survival outcome. 

Medulloblastoma data

• The fresh frozen medulloblastoma tumor samples of 40 sonic hedgehog  (SHH) 

and 147 non-SHH (NON) tumors were available, which consists of ~22,000 

probes.

Table 1 – Medulloblastoma data: genes associated with 

group 

Figure 1 – Medulloblastoma data: posterior inclusion 

probabilities with different MCMC runs

Conclusions
• We have extended the method by Griffin et al (2018) to binary and time-to-event 

endpoints framework via data argument approach.

• The algorithm is capable of identifying related regressors to clinical outcome with 

~25,000 variables in a reasonable amount of time.

• The ASI algorithm with IRLS updating is more efficient than the ADS and ASI 

algorithm with Polya-Gamma updating in the simulation examples.
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Abstract
Advances in technology have enabled thousands of mutations to be sequenced 

simultaneously, hence providing a very powerful tool in biomarker detection and 

discovery. Such high-throughput data continues to be a challenge to statistical 

analyses because of their high-dimensionality. Modern statistical analysis such as 

regression models have been widely applied to determine which biomarkers are 

significantly correlated with outcome of interest. A powerful approach is Bayesian 

variable selection and many computational approaches have been developed for its 

use with many regressors. Most recently, Griffin et al (2018) developed a tuneable 

proposal distribution for Metropolis-Hastings sampling on model space and applied this 

to Bayesian variable in linear regression models. They demonstrated that their method 

could mix substantially faster than the standard Add-Delete-Swap sampler. We extend 

their work to logistic regression using Polya-Gamma latent variables [Polson et al 

(2013)] and Laplace approximation for binary endpoint, and accelerated failure time 

models [Sha et al (2006)] for time-to-event endpoint, via a simple data augmentation 

[Tanner et al (1987)] approach. These samplers are fast to run and mix quickly. The 

approach is demonstrated on two problems with many regressors.

Introduction
Griffin et al (2018) developed their methodology in the linear regression framework. To 

extend their work further to logistic regression models or accelerated failure time 

models is challenging, because the marginal likelihood is not available in closed form. 

Data augmentation techniques, where unobserved data or latent variables may be 

introduced, leads to a conditional Gaussian posterior distribution in these models. The 

method can then be directly applied to updates on model space. However, this 

potentially causes draw back of slow mixing due to the introduction of latent variable or 

slow run times due to time-consuming algorithms for simulation of the latent variables. 

To alleviate this problem in the logistic regression model, we consider a hybrid method 

which combines data augmentation with a method using an iteratively reweighted least 

squares approach [Gammerman (1997) and Lamnisos et al (2009)]. 

Methods
Griffin et al (2018) used a Metropolis-Hastings sampler to propose a move from model 

𝛾 to 𝛾′ be given in a product form

𝑞𝜂 𝛾, 𝛾′ =ෑ

𝑗=1

𝑝

𝑞𝜂,𝑗 𝛾𝑗 , 𝛾𝑗
′

where 𝜂 = 𝐴,𝐷 = 𝐴1, … , 𝐴𝑝, 𝐷1, … , 𝐷𝑝 , 𝑞𝜂,𝑗 𝛾𝑗 = 0, 𝛾𝑗
′ = 1 = 𝐴𝑗 and 𝑞𝜂,𝑗൫

൯

𝛾𝑗 = 1, 𝛾𝑗
′ =

0 = 𝐷𝑗. This implies that each dimension of a new value of each dimension of 𝛾 is 

independently proposed. The probability of proposing to add the 𝑗-th variable if it is 

currently excluded from the model is 𝐴𝑗 and the probability of proposing to delete the 𝑗-

th variable if it is currently included in the model is𝐷𝑗. They show that an effective 

choice for 𝐴, 𝐷 is

𝐴𝑗 = 𝜁min 1,
𝜋𝑗

1−𝜋𝑗
𝐷𝑗 = 𝜁𝑚𝑖𝑛 1,

1−𝜋𝑗

𝜋𝑗

where 𝜋𝑗 is the posterior inclusion probability for the 𝑗-th variable. The acceptance 

probability can be easily calculated since 𝑝 𝑦 𝛾 is available in analytically if conjugate 

priors are used in a linear regression model.

Logistic Regression model for binary outcome
The logistic regression model can be used to link a categorical outcome to the 

regressors using a generalized linear model. If 𝑦𝑖~Bin 𝑛𝑖 , 𝜏𝑖 , the logistic regression 

model stipulates a linear relationship between the regressors and the probability of 

success (measured on the log-odds scale), 

𝜂𝑖 = log
𝜏𝑖

1−𝜏𝑖
= 𝛼 + 𝑋𝛾,𝑖𝛽𝛾, 𝑖 = 1,… , 𝑛

where 𝛼 is the intercept term, 𝑋𝛾,𝑖 is a 1 × 𝑝𝛾 –dimensional regressor vector, and 𝛽𝛾
is a 𝑝 × 1 -dimensional regression parameter vector. We will write 𝜃𝛾 = 𝛼, 𝛽𝛾 ′. We 

assume that the prior for 𝜃𝛾~N 0, 𝑉𝛾 for the regression coefficients and we let 𝑦𝑖
∗ =

𝑦𝑖

𝑛𝑖
. 

Our extension of the algorithm due to Griffin et al (2018) to this problem uses the 

Polya-gamma data augmentation method [Polson et al (2013)] during the tuning period 

and an automatic generic sampling method [Green (2003)] after the tuning period. The 

Polya-gamma method leads to a conditionally Gaussian posterior which allow us to 

use efficient methods to compute the Rao-Blackwellised estimates of the posterior 

inclusion probabilities in the algorithm. However, the simulation of
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Polya-Gamma random variables is slow and the automatic generic sampling method is 

much faster after the tuning period. We will describe the two parts of the algorithm 

(during the tuning period and after the tuning period) separately. 

During the tuning period, we use the Polya-Gamma method for sampling from the 

posterior of a logistic regression model. This exploits the following identity

𝑒𝜓
𝑎

1 + 𝑒𝜓 𝑏
= 2−𝑏exp 𝜅𝜓 න

0

∞

exp −𝜔𝜓2/2 𝑝 𝜓 𝑑𝜓

where 𝜅 = 𝑎 − 𝑏/2, 𝜔𝑖~PG 𝑏, 0 and PG represents a Polya-Gamma distribution, which 

is defined in Polson et al (2013). The likelihood of the logistic regression model can be 

expressed as an extended with additional latent variables 𝜔1, … , 𝜔𝑛 has the form

𝑝 𝑦,𝜔1, … , 𝜔𝑛 𝜃𝛾 , 𝛾 ∝ෑ

𝑖=1

𝑛

2−𝑛𝑖exp 𝜅𝑖 𝛼 + 𝑋𝛾,𝑖𝛽𝛾 exp −𝜔𝑖 𝛼 + 𝑋𝛾,𝑖𝛽𝛾 /2 𝑝 𝜔𝑖

where 𝜅𝑖 = 𝑛𝑖 − 𝑦𝑖 and 𝑝 𝜔𝑖 is the PG 𝑛𝑖 , 0 distribution. The identity can be used to 

show that the marginal distribution on is likelihood of the logistic regression model. If 

we assume that 𝑝 𝜃𝛾 ~N 𝜇𝛾, 𝑉𝛾 , the marginal likelihood is

𝑝 𝑦 𝛾, 𝜔1, … , 𝜔𝑛 =ෑ

𝑖=1

𝑛

2−𝑛𝑖 𝑉𝛾
−1/2

𝑋𝛾
∗′𝑋𝛾

∗ + 𝑉𝛾
−1 −1/2

× exp −
1

2
𝜇𝛾
′ 𝑉𝛾

−1𝜇𝛾 +
1

2
𝑋𝛾
∗′𝐾∗ + 𝑉𝛾

−1𝜇𝛾
′
𝑋𝛾
∗′𝑋𝛾

∗ + 𝑉𝛾
−1 −1

𝑋𝛾
∗′𝐾∗ + 𝑉𝛾

−1𝜇𝛾

where 𝑋𝛾,𝑖
∗ = 𝜔𝑖𝑋𝛾,𝑖 and .𝐾𝑖

∗ = 𝜔𝑖𝜅𝑖This is exactly the marginal likelihood for the 

linear regression mode in Griffin et al (2018) with 𝑋𝛾
∗ and 𝐾∗ playing the roles of 𝑋𝛾 and 

𝑦 in their notation. This allows us to calculated the Metropolis-Hastings acceptance 

probability for a new model and to calculate the Rao-Blackwellised estimates of 𝜋𝑖. The 

latent variables 𝜔1, … , 𝜔𝑛 can be updated by first sampling 𝛽𝛾 according to 

𝛽𝛾~N 𝑋𝛾
∗′𝑋𝛾

∗ + 𝑉𝛾
−1 −1

𝑋𝛾
∗′𝐾∗ + 𝑉𝛾

−1𝜇𝛾 , 𝑋𝛾
∗′𝑋𝛾

∗ + 𝑉𝛾
−1 −1

and then sampling 𝜔~PG 𝑛𝑖 , 𝑋𝛾,𝑖𝛽𝛾 . Polson et al (2013) describe efficient algorithms 

for the generation of Polya-Gamma distributed random variables. 

After the tuning period, we use the automatic generic sampling method [Green (2003)]. 

The method samples from the joint posterior distribution of 𝜃𝛾 and 𝛾 using a reversible 

jump MCMC method with proposal 

𝑞 𝛾, 𝜃𝛾 , 𝛾′, 𝜃𝛾
′ = q 𝜃𝛾 , 𝜃𝛾

′ 𝛾, 𝛾′ q 𝛾, 𝛾′

Where q 𝜃𝛾 , 𝜃𝛾
′ 𝛾, 𝛾′ is the automatic generic method proposal and q 𝛾, 𝛾′ is the ASI 

proposal. 

The automatic generic method proposal, q 𝜃𝛾 , 𝜃𝛾
′ 𝛾, 𝛾′ , assumes that there is a normal 

approximation to the posterior distribution of 𝜃𝛾 with mean መ𝛽𝛾 and variance-covariance 

matrix Σ𝛾. The approximation is found using the iteratively reweighted least squares 

algorithm described in Gammerman (1997) . The starting point takes 𝜃𝛾 and removes 

dimensions for which 𝛾𝑖 = 1 and 𝛾𝑖
′ = 0 and adds zero in dimensions for which 𝛾𝑖 = 0

and 𝛾𝑖
′ = 1. We will denote the mean of the approximation for 𝛾′ as መ𝛽𝛾′ and the 

variance-covariance matrix as Σ𝛾′ . Let C Σ represent the Cholesky decomposition of 

the matrix Σ and recall that 𝑝𝛾 = σ𝑖=1
𝑝

𝛾𝑖 is the dimension of model 𝛾𝑖. The automatic 

generic proposal is 

𝜃𝛾
′ =

𝜇′ + 𝐶 Σ𝛾′ 𝜈 1

𝑝
𝛾′
+1

if 𝑝𝛾′ < 𝑝𝛾

𝜇′ + 𝐶 Σ𝛾′ 𝜈 if 𝑝𝛾′ = 𝑝𝛾

𝜇′ + 𝐶 Σ𝛾′
𝜈

𝑢
if 𝑝𝛾′ > 𝑝𝛾

where 𝜈 = 𝐶 Σ𝛾
−1

𝜃𝛾 − መ𝛽𝛾 , . 1
𝑚 represents the first 𝑚 components of a vector and 

𝑢~N 0, 𝐼𝑝
𝛾′
−𝑝𝛾 . The use of this proposal leads to the acceptance probability

min 1,
𝜋 𝑦 𝛾′, 𝜃𝛾′ 𝑞 𝛾′,𝛾 𝐶 Σ

𝛾′
N 𝑢 0, 𝐼𝑝𝛾−𝑝𝛾′

𝜋 𝑦 𝛾, 𝜃𝛾 𝑞 𝛾,𝛾′ 𝐶 Σ𝛾
if 𝑝𝛾′ < 𝑝𝛾

min 1,
𝜋 𝑦 𝛾′, 𝜃𝛾′ 𝑞 𝛾′,𝛾 𝐶 Σ

𝛾′

𝜋 𝑦 𝛾, 𝜃𝛾 𝑞 𝛾,𝛾′ 𝐶 Σ𝛾
if 𝑝𝛾′ = 𝑝𝛾

min 1,
𝜋 𝑦 𝛾′, 𝜃𝛾′ 𝑞 𝛾′,𝛾 𝐶 Σ

𝛾′

𝜋 𝑦 𝛾, 𝜃𝛾 𝑞 𝛾,𝛾′ 𝐶 Σ𝛾 N 𝑢 0, 𝐼𝑝𝛾−𝑝𝛾′
if 𝑝𝛾′ > 𝑝𝛾

Accelerated failure time model for survival outcome
The accelerate failure time (AFT) can be used to model censored survival 

outcomes. This is a parametric survival model that assumes that the individual 

survival time depends on the multiplicative effect of an unknown function of 

regressors over a baseline survival time . We will follow Sha et al (2006) by using 

this model for Bayesian variable selection with censored outcomes, where missing 

times are easy to sample. Here, we consider parametric AFT models under normal 

and t distributional assumptions for 𝜖𝑖. The AFT model (on the log-scale) can be 

written as,

log 𝑡𝑖 = 𝛼 + 𝑥𝛾,𝑖𝛽𝛾 + 𝜎𝜖𝑖, 𝑖 = 1,… , 𝑛

where 𝑡𝑖 is the survival time, 𝛼 is the intercept term, 𝑥𝛾,𝑖 is a 𝑝𝛾 × 1 –dimensional 

regressor vector, 𝛽𝛾 is a 𝑝𝛾 × 1 –dimensional vector of regression coefficients and 

the errors 𝜖𝑖~F where F is a standardized distribution such as the standard normal 

or t distribution. 

We assume that some observations have been (right) censored at time 𝑐𝑖 < 𝑡𝑖 so 

that we observe 𝑡𝑖
∗ = min 𝑡𝑖 , 𝑐𝑖 and 𝛿𝑖 = 𝐼 𝑡𝑖 > 𝑐𝑖 . We define 𝑤𝑖 = log 𝑡𝑖 . The AFT 

model can then be expressed using data augmentation [Tanner et al (1987)] by 

imputing the censored times 𝑤𝑖 = log 𝑡𝑖
∗ if 𝛿𝑖 = 1 and 𝑤𝑖 > log 𝑡𝑖

∗ if 𝛿𝑖 = 0.

This leads to the linear regression model

𝑊 = 𝛼1 + 𝑋𝛾𝛽𝛾 + 𝜎𝜖

where 𝜖 = 𝜖1, … , 𝜖𝑛
′. 

If 𝜖𝑖~𝑁 ,0 1 , we can update 𝛾 using the modified ASI algorithm. To update 𝑤𝑖, we 

simulate 𝜎2 and 𝛽𝛾 using

𝜎−2~Ga 𝑛/2, 𝑊′𝑊 −𝑊′𝑋𝛾 𝑋𝛾
′𝑋𝛾 + 𝑉𝛾

−1
𝑋𝛾
′𝑊 /2

and

𝛽𝛾~N 𝑋𝛾
′𝑋𝛾 + 𝑉𝛾

−1
𝑋𝛾
′𝑊,𝜎2 𝑋𝛾

′𝑋𝛾 + 𝑉𝛾
−1

.

This allows 𝑤𝑖’s if 𝛿𝑖 = 0 to be updated by 𝑤𝑖~TN𝑥>𝑡𝑖
∗ 𝑥𝛾,𝑖𝛽𝛾, 𝜎

2 where 

TN𝑥>𝑎 𝜇, 𝜎2 represents a normal distribution with mean 𝜇 and variance 𝜎2

truncated to 𝑎,∞ . 

If 𝜖𝑖~𝑡𝜈, we can write 

𝑊 = 𝛼1 + 𝑋𝛾𝛽𝛾 + 𝜎𝑆𝜖

Where 𝑠 = diag 𝑠1
2, … , 𝑠𝑛

2 and 𝑠𝑖
−2~Ga 𝜈/2, 𝜈/2 . We can update 𝛾 using the 

modified ASI algorithm with the marginal likelihood

𝑝 𝑦 𝛾, 𝑠1
2, … , 𝑠𝑛

2

=ෑ

𝑖=1

𝑛

𝑉𝛾
−1/2

𝑋𝛾
′𝑆𝑋𝛾 + 𝑉𝛾

−1 −1/2
exp

1

2
𝑊′𝑆𝑋𝛾 𝑋𝛾

′𝑆𝑋𝛾 + 𝑉𝛾
−1 −1

𝑋𝛾
′𝑆𝑊

To update 𝑤𝑖, we simulate 𝜎2and 𝛽𝛾 using

𝜎−2~Ga 𝑛/2, 𝑊′𝑆𝑊 −𝑊′𝑆𝑋𝛾 𝑋𝛾
′𝑆𝑋𝛾 + 𝑉𝛾

−1
𝑋𝛾
′𝑆𝑊 /2

and 

𝛽𝛾~N 𝑋𝛾
′𝑆𝑋𝛾 + 𝑉𝛾

−1
𝑋𝛾
′ 𝑆𝑊, 𝜎2 𝑋𝛾

′𝑆𝑋𝛾 + 𝑉𝛾
−1

.

This allows 𝑤𝑖’s if 𝛿𝑖 = 0 to be updated by 𝑤𝑖~TN𝑥>𝑡𝑖
∗ 𝑥𝛾,𝑖𝛽𝛾, 𝑠𝑖

2𝜎2 where 

TN𝑥>𝑎 𝜇, 𝜎2 represents a normal distribution with mean 𝜇 and variance 𝜎2

truncated to 𝑎,∞ . The scales 𝑠𝑖
2 can be updated using 𝑠𝑖

−2~Ga ൬

൰

𝜈 + 1 /2, ቂ

ቃ

𝜈 +

𝑤𝑖 − 𝛼 − 𝑋𝛾,𝑖𝛽𝛾
2
/2 .

Simulation result
We generate some simulate data based on the logistic regression models (which 

will appear in the manuscript). We compared the performance of the Add-Delete-

Swap (ADS) algorithm, ASI algorithm with IRLS and ASI algorithm with Polya-

Gamma. The performance of the ADS algorithm is relatively consistent for all data 

sets . The ASI algorithm with IRLS updating is more efficient than the ADS algorithm 

for all data sets but generally performs better as 𝑛 increases. The ASI algorithm with 

Polya-Gamma updating is always outperformed by the ASI algorithm with IRLS 

updating and sometimes by the ADS algorithm. This is due to the introduction of 

latent variables which slow the mixing of the algorithm. 

Figure 2 – Breast cancer data: posterior inclusion 

probabilities with different MCMC runs

Breast cancer data

• We consider each patient’s failure time as the outcome of interest as in Sha et al 

(2006). Patient who did not experience distant metastases within the five years 

constitute censored cases. This is differ from van’t Veer et al. (2012), where they 

tackled the analysis as a classification problem. 

• The gene expression levels were monitored using two-channel arrays with 

~25,000 probes. Transcript abundance of genes were estimated using the 

intensity ratio with respect to a reference pool obtained by combining cRNA

samples from all tissues. 

• Two patients had several missing gene expression levels and were removed from 

the analysis. 

• In van’t Veer et al. (2002) a pre-processing of the data was conducted before they 

applied their method. Here, we considered all genes (~25,000) for  the analysis. 

Table 2 - Breast cancer data: genes associated with time 

to distant metastasis
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