Two EPSRC-funded postgraduate scholarships
Available from Sept 25th, 2006, on the topic

Symmetric variational methods

To apply, send a CV, names and emails of three referees, and a letter saying why you are
interested in this project, to Prof. E. Mansfield, IMSAS, University of Kent, Canterbury CT2 7TNF
UK or electronically to E.L.Mansfield@kent.ac.uk.

Applications close 31st July.

You should have a good first class degree in Mathematics, and be able to work in a small team.
Experience with either Maple or Matlab would be helpful.

Summary in non-technical language: Suppose you are given a dirty photocopy and you need to
touch it up. The human eye is very good at guessing how missing pieces of curves should be joined
up. Now suppose you have hundreds of such copies. Can a computer do it? The problem is that we
can do these things without knowing how we do it. A computer has to be told exactly what to do,
in the computer’s own language. This means we need to solve the problem of edge completion using
mathematics. This project is a contribution to this and similar problems which can be described in
the same mathematical terms. Basically, we try lots of different completions and ask, which looks
best? Formulating what it means to “look best” using already solved mathematical problems is the

key to success.

About the project

The projects concerns variational problems which have an inbuilt symmetry. The two main tech-
niques used, in addition to the classical Calculus of Variations, are moving frames and discrete
variational methods.

Motivational Example Consider the curve completion or “inpainting” problem. Suppose we are
given a partially obscured curve in the plane, as in Figure 1,

Fig. 1: A curve in the plane with occlusions Fig. 2: Which infilling is best?

and we wish to fill in the parts of the curve that are missing. If the missing bit is small, then
a straight line edge can be a cost effective solution, but this doesn’t always give an aesthetically
convincing look. Considering possible solutions to the curve completion problem, Figure 2, we arrive

at three requirements on the resulting curve,



e it should look smooth to the human eye,

e if we rotate and translate the obscured curve and then fill it in, the result should be the same

as filling it in and then rotating and translating,
e it should be the “simplest possible” in some sense.

The first requirement means that we have boundary conditions to satisfy as well as a function space
in which we are working. The second means the formulation of the problem needs to be equivariant
with respect to the standard action of the Euclidean group in the plane, as in Figure 3. This condition
arises naturally: for example, if the image being repaired is a dirty photocopy, the result should not
depend on the angle at which the original is fed into the photocopier. All three conditions can be
satisfied if we require the resulting curve to be such as to minimise an integral which is invariant

under the group action,
/L(s, K, Kg, - --) ds, (1)

where s is arc length and k the euclidean curvature, together with the relevant boundary conditions.
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Fig. 3: The solution is equivariant.

One particular Lagrangian which is invariant under the euclidean group and which has been well
studied is [ x®ds. Solutions of the Euler-Lagrange equation,
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are known as Euler’s elastica. Modern applications include computer vision (the seminal paper is
by Mumford [8]), the study of materials such as the draping problem [3], and numerical analysis
([2] is a seminal paper). This particular Lagrangian is not suited to the smooth curve completion
problem (count the boundary conditions!) and [ k3 ds (Euler spirals) has been proposed instead by
some authors. However, smoothness is not necessary to fool the human eye, so other function spaces
are considered.

Lagrangians that are invariant under the Euclidean or Lorentz groups abound in physics and
engineering. Computer generated solutions of the curve minimising such Lagrangians are also of
interest to computer animators, since it is well known that animations only look convincing if the
objects involved obey the relevant physical laws.

While rooted in classical applied analysis, the project builds on work which has appeared only

in the last 6 years. The seminal papers by Fels and Olver [4] on the moving frame method appeared



in 1998-99, while the Kogan and Olver paper [5] on the invariantized variational complex appeared
in 2004. The PT’s simplification [7] is to appear, as is her paper on Noether’s theorem for finite
difference and finite element Lagrangians [6)].
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