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Introduction

System of differential equations are at the core of exact sciences, those disciplines

readily quantified and modelled mathematically. Perhaps the most famous examples

of systems of partial differential equations are Einstein’s gravitational field equations

and Maxwell’s equations for the electromagnetic field. Many papers have considered

special cases of these equations, with specified boundary conditions, symmetries or

asymptotic behaviour. These papers rely on insight into the structure of the equations

with the additional conditions. There has been to date no coherent method, with the

notable exception of the use of symmetries, to analyse a general system of partial

differential equations, not requiring extensive training in advanced methods of pure

mathematics.

The algorithm presented in this thesis is a generally applicable, practical method that

can be applied to all systems met in physics, engineering and applied mathematics.

The theory from which the algorithm evolved, the concept of Gröbner bases for poly-

nomial ideals, has proven its power, flexibility and utility. Some of the applications

for Gröbner bases that have analogues in differential algebra are examined, and are

found to be valid in context of differential ideals.

Consider a set of equations F = {f1 = 0, . . . , fr = 0}, where the fi are polynomial

in the variables {x1, . . . , xn}, the functions {u1, . . . , un} and the derivative terms
{
Dαui =

∂|α|ui

∂xα

}
. A typical example of such an equation would be f = uxxu

2
z−3yuyy,

iii
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where subscripts denote partial derivatives. A solution to the set of equations F will

also be a solution to any equation obtained from the given set by taking derivatives,

sums, and products with other differential polynomials. The set of all such equations

is called the ideal generated by the set {f1, . . . , fr}. There is no need to be confined to

the original set of equations; one can operate with any set of equations that generates

the same ideal. Such a set of generators is called a basis.

When seeking a solution to a system of differential equations, one looks for equa-

tions implied by the given set that are in some sense simplest. “Simplest” describes

those equations with the least number of unknown functions involving derivatives

with respect to the smallest number of variables. A Gröbner basis for an algebraic

polynomial ideal has the property that it contains a least element with respect to

some ordering on the set of polynomials. Gröbner bases solve this and many other

questions; herein lies the motivation to modify Buchberger’s algorithm for differential

ideals.

Buchberger’s original definition of a Gröbner basis of a polynomial ideal is a basis

with the property that every element of the ideal reduced to zero with respect to that

basis. Not every basis is a Gröbner basis.

In 1950, J. F. Ritt defined a characteristic set of a differential ideal as a “lowest”,

“strictly increasing” sequence of differential equations in the ideal. Note the definition

presupposes an ordering on the set of equations. He proved that pseudo-reduction of

every member of the differential ideal with respect to a characteristic set necessarily

yields zero. The similarity of this property to Buchberger’s definition of a Gröbner

basis is striking. Buchberger’s algorithm to generate a Gröbner basis for a polynomial

ideal also depends upon an ordering on the set of polynomials.

The algorithm given in this thesis developed from a true differential adaptation of

Buchberger’s algorithm, during which a number of problems were met. The main
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problem is that algebraically, differential ideals do not have the property used by

Buchberger to prove termination of his algorithm. To guarantee termination of

the differential algorithm, pseudo-reduction is substituted for reduction, but pseudo-

reduction has several implications. The first is that some of the properties of Gröbner

bases only hold up to a set of differential coefficients when translated to differential

Gröbner bases. The second implication is that these differential coefficients must not

lie in the ideal. This is because pseudo-reduction involves multiplying by such terms

before reduction.

These provisos imply the output of the algorithm cannot be guaranteed to be a

differential Gröbner basis for the ideal generated by the input equations. Nevertheless,

for a large number of systems, including all linear systems, the output is indeed a

differential Gröbner basis. For other systems, it is necessary to show the differential

coefficients lie outside the ideal.

It is possible to use Buchberger’s algorithm for differential systems in a strictly alge-

braic way. After prolonging the equations to some degree, one then regards all deriva-

tive terms of that degree or lower as separate indeterminates. While the method does

not require attending to the differential coefficients discussed above, one does not

know in advance the degree of prolongation needed to obtain a complete differential

Gröbner basis and the calculation for even simple examples is too large for medium

range computers, because the number of indeterminates grows quickly as the prolon-

gation degree increases. A comparison of the algebraic and differential methods is

given in Chapter 5, in which Example 8 shows a system that utilizes both methods

to advantage.

The intersection of the algebraic and differential theories occurs for those systems of

equations that are linear (as differential equations), in one unknown, with constant

coefficients. These equations can be regarded as polynomials in the operators
∂

∂xi

,

over R, with the unknown function acting merely as an argument; alternatively one
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can use the Laplace operator to transform the equations into polynomials. Every

differential ideal consisting of such equations corresponds to a polynomial ideal, and

vice versa. In this case, a differential Gröbner basis for such an ideal transforms into

a Gröbner basis for the corresponding polynomial ideal, and vice versa.

Apart from finding the least element in the ideal with respect to some ordering,

there are a number of ways in which differential Gröbner bases can be used. One can

systematically eliminate a subset of the unknowns or differentiations with respect to a

subset of the variables, to see what the given equations imply in the lower dimensional

setting. In many cases it is then possible to solve the system “form the bottom up”,

much as one solves a linear system by putting it into echelon form. In fact, the echelon

form of a linear (algebraic) system is an example of a Gröbner basis for a system of

polynomials of degree one. Differential Gröbner bases yield a basis for the equations

in the differential ideal that depend only on the unknowns and variables of interest.

Thus the algorithm can be used to attempt to generate Pommaret’s “resolvents” and

“cascade decomposition” of the differential ideal ([42, 17].) This theory is discussed

fully in Chapter 4 under the title of ellimination ideals.

Another problem that can be solved by differential Gröbner bases, is the problem of

finding the ideal of compatibility conditions, also called the resolvent system. One

can go further, and find the compatibility conditions for the ideal of compatibility

conditions, and so forth. The entire sequence of such compatibility ideals, or resol-

vent systems, is called the Janet resolution. This sequence can be compared to the

algebraic syzygy resolution of a polynomial ideal. In fact, in the case of systems

of equations that are linear, with one unknown and with constant coefficients, the

resolution of the system is precisely the dual of the chain of syzygy modules of the

corresponding algebraic system in the operators. Chapter 4 contains the method

whereby the differential Gröbner basis calculation can be utilized to generate the

resolution of the differential ideal.
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The theoretical foundations, the characterisation theorem for differential Gröbner

bases, and the algorithms are presented in Chapter 2. The algorithms in this thesis

have termination and correctness proved for systems of equations that are polynomials

in variables, the unknowns and their derivatives, over R or C. Examples are discussed

in Chapter 3.

Other ways to use the algorithm are discussed in Chapter 5. It is possible to view some

systems containing transcendental functions of the unknowns as being differential

polynomials, since their defining differential equations are polynomial. For example,

the differential equation defining u = sin(x) is uxx +u = 0. When arbitrary functions

of the unknowns are involved, the algorithm terminates leading to equations that must

be satisfied by the arbitrary functions if a solution is to exist. In solving equations, it

is efficacious to seek factors and then set the factors to zero, since the factors will give

rise to simpler equations. This is the first step to writing the ideal as an intersection

of simpler ideals, whose generators are irreducible, and where at least one factor of

an equation in the ideal is already in the ideal. Such ideals are called prime ideals.

The difficulty in dealing with differential ideals is that a differential ideal generated

by a single irreducible polynomial will not necessarily be prime. A first step towards

finding the prime decomposition of a differential ideal is given here by describing a

branching generalization of the differential Gröbner basis algorithm.

The final chapter, Chapter 6, is concerned with formal integrability and involutivity,

and the relation of these concepts to differential Gröbner bases. We show that dif-

ferential Gröbner bases satisfy the first condition of being formally integrable. The

second condition requires an extra condition: transversality of the loci of the equa-

tions, in the relevant jet bundle.

We then find an equivalent formulation of involutivity that involves the symbol equa-

tions themselves rather than the kernel of the symbol. In this equivalent formulation,
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the obstructions to involutivity are syzygies of the symbol equations provided the sys-

tem is integrable. The differential Gröbner basis algorithm is thus used to calculate

all integrability conditions, and can be adapted to calculate symbolic syzygies, just as

Buchberger’s algorithm can calculate algebraic syzygies. The highest multiplication

needed in the algorithm at any stage of a “symbolic” Janet Resolution provides the

answer to how much differentiation is needed in order to make the system involutive.

The algorithm to generate a differential Gröbner basis as presented in this thesis

has been implemented as a package in MAPLETM for the Macintosh and for Apollo

Workstations (UNIX). A “User’s Manual”, a short description of each procedure and a

complete listing of the code appear in the Appendices. The longer examples described

in Chapters 3, 4 and 5 were calculated with this package.

The idea that Buchberger’s algorithm was adaptable to the differential case, and the

realization that syzygy and resolution were similar concepts belong to the supervising

professor Dr. E. D. Fackerell, who was stimulated by a comparison of algebraic

calculations in the Bayer and Stillman programme Macaulay with the description

of the linear Janet sequence in Stormark ([53]). The precise formulation, proofs

and implementation of the algorithm, and the theorems concerning involutivity and

integrability are the work of the author. A list of further research directions appears

in the Appendix. Other unsolved problems can be found in Ritt’s Appendix ([43].)
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Chapter 1

GRÖBNER BASES IN

POLYNOMIAL RINGS

This chapter consists of a discussion of concepts, theorems and examples relevant to

the study of Gröbner bases in algebraic polynomial rings, to serve as an introduction

to the thesis. The chapter concludes with a discussion of applications and extensions

that are of interest to people concerned with differential equations.

1.1 Polynomial Rings

Let x1, x2, . . . , xn be a fixed set of indeterminates, and fix a field F, of constants and

coefficients, taken to be one of Q, R or C, for convenience. If α = (α1, α2, . . . αn)

is an n-tuple of non-negative integers (i.e. a multi-index) we write the monomial

term xα1
1 xα2

2 . . . xαn
n as xα. In this notation, multiplication of monomials is given

by the addition of the multi-indices, which are added like vectors, i.e. component-

wise: xαxβ = xα+β, where α + β = (α1 + β1, . . . , αn + βn). (Components of multi-

indices are italicized so that the components of the multi-index α, namely α1, α2, . . .

1
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can be distinguished from two distinct multi-indices α1, α2.) The polynomial ring

F[x1, x2, . . . , xn] is the set of all finite sums having the form Σcαxα, where cα ∈ F.

Sums and products in F[x1, x2, . . . , xn] have the usual formulae:

∑
cαxα +

∑
dαxα =

∑
(cα + dα)xα,

(
∑

cαxα).(
∑

cβxβ) =
∑

δ

(
∑

α+β=δ

cαcβxδ)

An ideal I of a ring R is a subset of R such that

1. a1 ∈ I and a2 ∈ I =⇒ a1 − a2 ∈ I

2. a ∈ I and r ∈ R =⇒ r.a ∈ I.

The subset B = {b1, b2, . . . , bm} of I is a basis of I if every element of I can be written

in the form r1b1 + r2b2 + · · · + rmbm, where ri ∈ R. We write I = 〈b1, b2, . . . , bm〉F,
and say I is generated by B.

Example 1 (a polynomial ideal). The subset I of F[x, y, z] consisting of all poly-

nomials of the form

p1(x, y, z).x2 + p2(x, y, z).y

where p1 and p2 are arbitrary polynomials, is an ideal of F[x, y, z]. The ideal I is

generated by {x2, y}, that is, {x2, y} is a basis for I, and we write I = 〈x2, y〉F.

1.2 Orderings on Monomials

All the operations and calculations we shall perform on polynomials require knowledge

of the “leading monomial”, the coefficient of the leading monomial, and so forth.

There are many ways of deciding which is the leading monomial, all of which require
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a total ordering on the set of monomials. The ordering on the monomials must be

compatible in the sense that

xα > xβ =⇒ xδ.xα > xδ.xβ

where α, β, δ are multi-indices. The monomial 1 = x0 is the least monomial in any

polynomial ring. We define the most important orderings in use today, and how to

obtain more general orderings.1

LEXICOGRAPHIC ORDER

In the lexicographic order we have xα > xβ if there exists an i such that α1 = β2,

α2 = β2, . . . , αi > βi. This order has the property that any monomial involving

x1, x2, . . . , xi−1 is greater than any monomial free of x1, x2, . . . , xi−1. In the lexico-

graphic order, if the leading monomial of a polynomial is free of x1, x2, . . . , xi−1, then

so is every monomial in that polynomial.

INVERSE LEXICOGRAPHIC ORDER

In the inverse-lexicographic order we have xα > xβ if there exists an i such that

αn = βn, αn−1 = βn−1, . . . , αi > βi. This order has the property that any monomial

involving xn, xn−1, . . . , xn−i is greater than any monomial free of xn, xn−1, . . . , xn−i.

In the inverse lexicographic order, if the leading monomial of a polynomial is free of

xn, xn−1, . . . , xn−i. then so is every monomial in that polynomial.

Any ordering on the indeterminates generates a “lexicographic” ordering with respect

to the ordering on the indeterminates.

TOTAL DEGREE ORDER

If α = (α1, α2, . . . , αn) is a multi-index then |α| = α1 + α2 + · · · + αn is called the

degree of α. In the total degree ordering we say xα > xβ if |α| > |β|, or if |α| = |β|
then there exists an i such that α1 = β1, α2 = β2, . . . , αi > βi.

1A discussion of the various terminologies dealing with term orderings in use in the Gröbner basis
literature is given by Sit [49], “Some comments on Term-Ordering in Gröbner Basis Computations”.
He points to imprecisions in labelling term-orderings; the terminology given here follows Bayer.
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REVERSE-LEXICOGRAPHIC ORDER

In the reverse lexicographic ordering we say xα > xβ if |α| > |β| or if |α| = |β| then

there exists an i such that αn = βn, αn−1 = βn−1, . . . , α1 < βi. Within a given degree,

any monomial not divisible by xn is greater than any monomial divisible by xn. If

a polynomial p is homogeneous (that is, every monomial term has the same degree)

and xn divides its leading monomial, in the reverse lexicographic ordering, then xn

divides p.

Example 2 (leading monomials for different orderings). Consider the polyno-

mial p = z2− xy3z + y + x3 + x3y + y5. We have the following table of orderings and

leading monomials:

Ordering Leading monomial

lexicographic x3y

total degree xy3z

inverse lex z2

reverse lex y5

WEIGHTED ORDERS

It is possible to attach a series of weights to the indeterminates in order to obtain more

general orders. We do this in the following way. Take an r×n matrix of non-negative

integers (At
i)r×n (where n is the number of indeterminates), and a multi-index α, and

form the vector (At
1αt, . . . , A

t
rαt). (Repeated indices are summed.) Then say xα > xβ

if there exists an i such that At
1αt = At

1βt, At
2αt = At

2βt, . . . , A
t
iαt > At

iβt.

With this notation, the lexicographic order corresponds to the n×n identity matrix.

The inverse lexicographic order corresponds to the matrix (non-specified entries are



5

zero): 


1

1

·
·

1




The total degree order corresponds to the (n + 1) × n matrix (non-specified entries

are zero): 


1 · · 1 1

1

1

·
·

1




The reverse lexicographic order corresponds to the n × n matrix (all entries left of

the off-diagonal are 1, entries to the right of the off-diagonal are zero):



1

1 1

·
·

1




To see this last matrix gives the reverse-lexicographic order, call the matrix for the

reverse lexicographic order A and consider A(α), A(β) for some multi-indices α and

β. Then the first components A(α)1, A(β)1 are the degrees of α and β, as desired. If

A(α)1 = A(β)1 and A(α)2 > A(β)2 so that α1 + α2 + · · · + αn = β1 + β2 + · · · + βn

and α1 + α2 + · · · + αn−1 > β1 + β2 + · · · + βn−1, then adding αn to both sides

of the inequality and subtracting |β| from both sides we obtain αn < βn, and so

forth. (Note that it is not possible for two distinct multi-indices α and β to satisfy

|α| = |β|, αn = βn, . . . , α2 = β2 and α1 6= β1.)
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Other references for admissible orderings are [44], [48] and [56].

1.3 Reduction

In Buchberger, Collins and Kutzler ([11]) one reads (where f , g and u are polynomials,

and a is a field element):

“The basic notion of Gröbner bases theory is polynomial reduction. Roughly

f reduces to g modulo F iff g results from f by subtracting a suitable mul-

tiple a.u.h of a polynomial h ∈ F such that g is lower in an “admissible

ordering” than f .”

We give an example and then a precise definition.

Example 3 ( reduction of a polynomial by another polynomial). Consider

two polynomials p1 = xy2− 2.zx + y3 and p2 = z − y2 + y. We reduce p1 with respect

to p2. In the inverse lexicographic order (so that z > y > x) the leading monomial

in p2 is z. The reduction is given by the formula p1 + 2.x.p2 = 2xy + y3 − xy2. It is

necessary for the leading monomial of p2 to divide a term in p1 for a reduction to be

possible. Since z is eliminated, we cannot reduce p1 further with respect to p2 in the

inverse lexicographic ordering.

Suppose instead we are using the lexicographic ordering. Then the leading monomial

in p2 is y2. The polynomial p1 can be reduced at two terms, namely at xy2 or y3. The

reductions at each term are given respectively by p1 + x.p2 and p1 + y.p2. Reducing at

both these terms yields xy + yz− zx+ y2. Continuing, we reduce the y2 term yielding

−zx + xy + yz + y + z. There are no further reductions possible in the lexicographic

ordering. Clearly different orderings determine different reductions.
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The coefficient of a monomial term t in a polynomial p is the sum of the field coeffi-

cients of that monomial term, and we denote it by coeff(t, p). We have to make this

definition because it is possible to write each polynomial in many different ways. For

example, we can write x2 + y2 as (3/7)x2 + y2 + z + (4/7)x2 − z.

A monomial term is said to occur in a polynomial if its coefficient is not zero.

The coefficient of the leading monomial term in a polynomial p is called the highest

coefficient and is denoted Hcoeff(p). The leading monomial term is denoted Hmon(p).

The H stands for highest. This is because L could stand for both leading and lowest!

In addition H works in German (haupt) and French (haut).

Let two polynomials p1 and p2 be given. Let the leading monomial of p2, Hmon(p2)

divide some monomial t in p1, so that xγ.Hmon(p2) = t. Then the reduction of p1 by

p2 at the term t is given by

p1 − (coeff(t, p1)/Hcoeff(p2)).x
γ.p2

We say p1 is reduced with respect to p2 when no further reductions of p1 by p2 are

possible. The reduced polynomial is denoted by

p1 remainder p2.

By following the calculations in completely reducing a polynomial p with respect to

a set of polynomials F = {f1, f2, . . . , fr}, we obtain an expression of the form

p = g1f1 + g2f2 + · · ·+ grfr + (p remainder F ).

We define p quotient fi to be gi. The remainder is denoted normalForm(p, F ).

We say a polynomial p is in normal form if it is reduced with respect to a set F of

generators of an ideal, i.e., if p is reduced with respect to each member of F .

A normal form is not unique. Consider the example in F[x, y] with p = x2y and

F = {x2 + y2, xy}. Reducing p with respect to the second member of F yields zero,
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while reducing p with respect to the first member of F yields −y3.

Recall now the definition of an ideal I ⊂ F[x1, x2, . . . , xn], generated by a basis B =

{f1, f2, . . . , fr}. Every element of the ideal can be written in the form Σpi.fi where pi is

an arbitrary polynomial in F[x1, x2, . . . , xn]. This suggests that every element of I will

reduce to zero with respect to the elements of B. However, this is false. Consider the

ideal I ⊂ F[x, y] generated by {x2+y2, xy}; the leading monomials in the lexicographic

or total degree orders are x2 and xy respectively. Then p = y(x2+y2)−x(xy) = y3 ∈ I

but no element of B reduces p. The problem is clearly that the leading terms have

been cancelled by the choice of polynomial coefficients of the basis elements in p.

1.4 “S” polynomials

Let two polynomials f1 and f2 be given with leading terms Hmon(f1), Hmon(f2) and

leading coefficients Hcoeff(f1), Hcoeff(f2), respectively. Let the monomial LCM be the

least common multiple of Hmon(f1) and Hmon(f2). Then the “S” polynomial of f1

and f2 is given by

f1Sf2 = Hcoeff(f2)(LCM/Hmon(f1)).f1 − Hcoeff(f1).(LCM/Hmon(f2)).f2

The “S” polynomials of the basis elements B are precisely those ideal elements for

which reduction with respect to B might fail to yield zero.

Buchberger’s aim was to find a basis with respect to which every element of I reduces

to zero. Such a basis is called a Gröbner basis.

1.5 Algorithm (Buchberger)

INPUT: A set of generators B = {f1, f2, . . . , fr} for an ideal I ⊂ F[x1, x2, . . . , xn]
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OUTPUT: A Gröbner basis for I

Set P = {{fi, fk} | fi, fk ∈ B, i 6= k}

while P 6= ∅, do

{fi, fk} a pair in P

P := P\{{fi, fk}}
h := fiSfk

h′ := normalForm(h, P )

if h′ 6= 0 then

P := P ∪ {{f, h′} | f ∈ B}
B := B ∪ {h′}

Theorem 1 (Buchberger)([2]).

(1) the algorithm terminates

(2) if fiSfk remainder B = 0 for each pair fi, fk ∈ B, then B is a Gröbner basis.

Buchberger’s proof that the algorithm terminates uses the fact that F[x1, x2, . . . , xn]

is noetherian. That is, for every chain of ideals I1 ⊆ I2 ⊆ · · · ⊆ Im ⊆ · · · ⊆
F[x1, x2, . . . xn] there exists an M such that Im = IM for all m ≥ M . This implies

Dickson’s Lemma, that for every infinite sequence of monomials {mk} there exists

an index K such that all monomials appearing in the sequence after that index are

multiples of monomials appearing before that index.

Buchberger’s proof of correctness of the algorithm, Theorem 1 (2), involves a compari-

son of different one-step reductions of a polynomial and a careful use of the notion of

“successor” in a reduction calculation.

A Gröbner basis allows ideal membership to be decided in an algorithmic way. The

Gröbner basis generated by Buchberger’s algorithm depends on the term ordering
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used.

Since the basic algorithm above was first published, there have been improvements to

its efficiency, mainly by reducing the number of pairs that have to be considered, and

by the choice of term orderings. Packages to compute Gröbner bases are available in

commercial symbolic algebra programmes, such as Maple, MACSYMA and so on.

Gröbner bases have applications to many problems. Some of the applications that

are of interest in differential ideal theory are discussed below. Some references for

applications are [10, 9] and [34]. Other survey papers co-authored by Buchberger are

listed in the Bibliography. See also [57] and [3].

1.6 Simplest Element

A Gröbner basis for an ideal I for a given ordering must contain the least element of

the ideal with respect to that ordering. For if it did not, no element of the Gröbner

basis would reduce the least element, contradicting the definition of Gröbner basis.

1.7 Elimination

The aim of elimination is to find from the ideal generated by polynomials {f1, f2, . . . , fr}
in the variables {x1, x2, . . . , xn} a subset of polynomials involving only xi, xi+1, . . . , xn.

In other words we wish to find a basis for 〈f1, f2, . . . , fr〉F ∩ F[xi, x2, . . . , xn].

In the lexicographic ordering, each monomial involving x1, x2, . . . , xi−1 is greater than

any free of x1, x2, . . . , xi−1. Alternatively, if the leading monomial of a polynomial p is
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free of x1, x2, . . . , xi−1, then so is p. The process of forming “S” polynomials in Buch-

berger’s algorithm eliminates the highest terms, or those involving x1, x2, . . . , xi−1.

The defining property of a Gröbner basis then implies the following theorem due to

Trinks (1978):

Theorem 2 (TRINKS) ([54]). If B = {f1, f2, . . . , fr} is a Gröbner basis for I in

the lexicographic order, then 〈f1, f2, . . . , fr〉F ∩ F[xi, xi+1, . . . , xn] is a Gröbner basis

for I ∩ F[xi, xi+1, . . . , xn].

The process of computing a Gröbner basis from B using the lexicographic order is to

see a diagonalization of the basis.

Example 4 (elimination ideals). We show the output of an algebraic Gröbner

basis algorithm implemented by the author as part of the package DIFFGROB. Full

details of this package are contained in the Appendices. We take a system of partial

differential equations, and prolong them to degree (of differentiation) three. We then

treat all derivative terms as separate indeterminates, and find a Gröbner basis for

the algebraic ideal generated by the prolonged equations. The output of the algorithm

will be used in Chapter 5, Example 8. The system has one unknown function u that

depends on two variables {x, t}. There is also an arbitrary function of u, f(u). The

system is {
(ux)

2 − (ut)
2 − 1 = 0

uxx − utt − f(u) = 0

We call the left hand side of the first equation f1 and the left hand side of the second,

f2. We input the equations

F =

[
f1, f2,

∂f1

∂x
,
∂f1

∂t
,
∂2f1

∂x2
,
∂2f1

∂x∂t
,
∂2f1

∂t2
,
∂f2

∂x
,
∂f2

∂t

]

and choose a lexicographic ordering on the indeterminates determined first by any

derivative of u being greater than any derivative of f(u), then by the number of deriva-

tives with respect to the variable t, and then by the number of derivatives with respect
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to x. The output is, in descending order,




uxxt − uttt + utf
2

uxxx − uxtt + uxf
2

uxx − utt − f(u)

uxuxxt − utuxxt + f 2 − u2
xf

2

uxxt − u2
xuxxt + utuxuxxx + utf

2 − u2
xutf

2

uxt + uxutf

u2
x − u2

t − 1

uxx + u2
x − f

fu + f 2

We can now read off some elimination ideals: the sub-ideal depending only on the x-

derivatives of u and on derivatives of f is 〈uxx + u2
x − f, fu + f 2〉, while the sub-ideal

depending only on the derivatives of f is 〈fu + f 2〉.

A feature of the output of the Gröbner basis calculation with the lexicographic order is

that polynomial equations can be solved by successive substitution, in much the same

way as one would solve a system of linear equations by converting to the echelon form

of the matrix. In fact, the process of converting to the echelon form is an example of

elimination ideals, where the polynomials have degree one. Other examples can be

found in [10]. In contrast with the method of resultants, no spurious roots are found

([3]). Furthermore, the method guarantees that all roots are found.

The lexicographic ordering is claimed by several authors to be quite inefficient ([16],

[5].) Bayer and Stillman find the elimination ideals using refinements of non-strict

orders. Their preferred refining order is the reverse-lexicographic one. Faugère et.

al. describe an efficient (polynomial complexity) algorithm for computing a Gröbner

basis for a particular ordering given a Gröbner basis for a different ordering. (The

complexity of the Buchberger algorithm for the lexicographic ordering is doubly ex-

ponential.) They give examples where the problem of finding a Gröbner basis for
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the lexicographic ordering is intractable, but which can be done by first finding the

Gröbner basis for the reverse-lexicographic ordering and then using their algorithm

to convert it to a Gröbner basis in a lexicographic order.

1.8 Philosophy of Gröbner Bases

The philosophy of using different orderings to compute Gröbner bases is expressed

well by Dave Bayer in his lecture notes “Computational Algebraic Geometry: Part

One”:

“We can’t scrounge through every element of an ideal looking for elements

with some property (since I is infinite.)

“It doesn’t work to just scan the set of generators of I for elements with

some property.

“If we choose an order on the monomials whose structure reflects the

property we seek, then it works just to scan a standard or Gröbner basis

for I, for elements with the property.”

1.9 Test for Inconsistency

The algorithm provides a test for the consistency of a set of polynomial equations. A

set of polynomial equations is inconsistent if they imply 1=0.

A set F of polynomials is inconsistent if and only if every Gröbner basis for the ideal

generated by F contains the unit element 1.
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To see this, first note that if they imply 1=0, then 1 is in the ideal. But 1 is the least

element relative to any ordering, so it must be in every Gröbner basis for the ideal.

Conversely, if 1 is in the Gröbner basis, then the equations imply 1=0.

1.10 Ideal Quotients

Another example of this philosophy given by Dave Bayer is using the reverse-lexicographic

order to compute ideal quotients. If I is an ideal and f ∈ F[x1, x2, . . . , xn], then

(I : f) = {g ∈ F[x1, x2, . . . , xn] | gf ∈ I} is called the ideal quotient of I by f .

For a homogeneous polynomial p and with the reverse-lexicographic order, xn divides

the leading monomial if and only if xn divides p.

Theorem 3 ([3]). If {f1, f2, . . . , fr, xnfr+1, . . . , xnfs} is a Gröbner basis of homo-

geneous polynomials for I using the reverse-lexicographic ordering, and f1, f2, . . . , fr

are not divisible by xn, then {fr+1, . . . , fs} is a Gröbner basis for (I : xn).

The ideal quotient for an arbitrary f ∈ I can be calculated by including the variable

z (with the appropriate weighting) in the set of indeterminates and the relation f − z

in the set of generators, and then calculating (I : z).

1.11 Syzygies

The r-tuple of polynomials (h1, h2, . . . , hr) is a syzygy of the list of polynomials

f1, f2, . . . , fr if

h1f1 + h2f2 + · · ·+ hrfr = 0.

The set of all syzygies of f1, f2, . . . , fr form a submodule S(I) of the ring M consisting

of a direct sum of r copies of F[x1, x2, , xn].
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To find syzygies, recall that our criterion for determining whether a basis is a Gröbner

basis is that all the “S” polynomials reduce to zero. Keeping track of the coefficients

in the reductions yields syzygies.

Example 5 ([3]) (the syzygy module of a polynomial ideal). Let

I = 〈x2 − wy, xy − wz, y2 − xz〉R. Assume the reverse-lexicographic order, so that

the leading monomials are x2, xy and y2, respectively. Set

f1 = x2 − wy,

f2 = xy − wz,

f3 = y2 − xz,

and F = {f1, f2, f3}.

f1Sf2 = yf1 − xf2

= y(x2 − wy)− x(xy − wz)

= −wy2 + wxz

= −w(y2 − xz)

= −wf3

so that f1Sf2 remainder F = 0.

f1Sf3 = y2f1 − x2f3

= y2(x2 − wy)− x2(y2 − xz)

= −wy3 + x3z

Now wy3 = wyy2 = wy(f3 + xz) and x2z = zxx2 = zx(f1 + wy) so that

f1Sf3 = −wy(f3 + xz) + xz(f1 + wy)

= xzf1 − wyf3.

Hence f1Sf3 remainder F = 0.
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f2Sf3 = yf2 − xf3

= y(xy − wz)− x(y2 − xz)

= −wzy + x2z

= z(x2 − wy)

= zf1

Hence f2Sf3 remainder F = 0.

So F is a Gröbner basis for I in the reverse-lexicographic order. Examining the

calculations we obtain three syzygies,

yf1 − xf2 + wf3 = 0

(y2 − xz)f1 − (x2 − wy)f3 = 0

−zf1 + yf2 − xf3 = 0.

The syzygies are written in vector notation as:

(y,−x, w),

(y2 − xz, 0,−x2 + wy),

(−z, y,−x).

By this notation is meant that the dot product of each vector with the column matrix




f1

f2

f3




is zero.

The second syzygy can be generated from the first and the third:

(y2 − xz, 0,−x2 + wy) = y(y,−x,w) + x(−z, y,−x).

By Theorem 4 below, the two syzygies (y,−x,w) and (−z, y,−x) generate the module

of syzygies for f1, f2, f3.
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To be more precise, we need some notation. The module M consisting of a direct sum

of r copies of F[x1, x2, . . . , xn] has elements that can be written as g1e1 + · · · + grer

where gi ∈ F[x1, x2, . . . , xn] and the ei act as place-holders for the components of M .

In other words, ei = (0, . . . , 0, 1, 0, . . . , 0) where the 1 is in the ith place. In this

notation, the syzygies of the above example would be written

ye1 − xe2 + we3

−ze1 + ye2 − xe3.

Recall fiSfj = ajx
Γfi − aix

∆fj where

xΓ =
lcm(Hmon(fi, fj))

Hmon(fj)
, ai = Hcoeff(fi)

and

x∆ =
lcm(Hmon(fi, fj))

Hmon(fi)
, aj = Hcoeff(fj)

Theorem 4 (Spear, Schreyer). If f1, . . . , fr is a Gröbner basis for I, then for all

pairs fi, fj, the expressions

ajx
Γei − aix

∆ej −
(∑

k

fiSfj quotient fk

)
ek

generate the module S(I) of all syzygies of f1, . . . , fr.

(The definition of p quotient F is on page 7.)

The expressions are a record of how the Spolynomials reduce to zero.

Consider the map φ : M → F[x1, x2, . . . , xn] defined by φ(ei) = fi, and extended

linearly. Then a syzygy h1e1 + · · ·+ hrer maps to h1f1 + · · ·+ hrfr = 0. The syzygies

are precisely the kernel of this map. The expression ajx
Γei−aix

∆ej maps to ajx
Γfi−

aix
∆fj which is fiSfj. The criterion for a Gröbner basis is that (

∑

k

fiSfj quotient fk)ek
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is zero so that fiSfj quotient {f1, . . . , fr} maps to fiSfj. Hence the expression

ajx
Γei − aix

∆ej − fiSfj quotient {f1, . . . , fr} maps to zero, i.e. it is a syzygy.

APPLICATION OF SYZYGIES: INTERSECTION OF IDEALS

Let I = 〈f1, . . . , fr〉R and J = 〈g1, . . . , gs〉R. If we find all the (r + s)-tuples

(h1, . . . , hr, j1, . . . , js)

of elements of F[x1, x2, . . . , xn], with the property

h1f1 + . . . + hrfr + j1g1 + . . . + jsgs = 0,

then

h1f1 + . . . + hrfr ∈ I

= −j1g1 − . . .− jsgs ∈ J.

In this way, each syzygy of f1, . . . , fr, g1, . . . , gs gives an element of I ∩ J .

THE PROJECTIVE RESOLUTION OF SYZYGY MODULES

Recall the syzygy module of an ideal I is contained in a ring M that consists of r1

copies of F[x1, x2, . . . , xn]. The integer r1 is the number of generators in the ideal

I. Given a basis with r2 elements for the module of syzygies S(I) for an ideal I,

it is possible to then form the module of syzygies S(S(I)) for the ideal S(I). The

ideal S(S(I)) is contained in a ring M2 that consists of r2 copies of M . Iterating this

process forms the syzygy resolution of the ideal I. Denote the nth syzygy module by

S(n)(I).

We write the resolution as

. . . //Mn
φn //Mn−1

// . . . //M
φ //I //0
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The kernel of each map φi is the module S(i)(I), and the image of each map φi

is S(i−1)(I). This sequence is called the injective resolution of syzygy modules. (A

sequence . . . //A(n) //A(n−1) // . . . //A(2) //A //0 is called an projective

resolution of A if the kernel of one map is the image of the previous map.) It was

proved by Hilbert late last century that the syzygy resolution terminates. In fact, if

the original ideal contains n indeterminates, then S(n+1)(I) = 0.

1.12 Primary Decomposition

It is clear that in seeking a locus to a set of polynomials, one seeks the simplest

equations implied by the given set, and then factors them. Indeed, one seeks all factors

implied by the given equations. Irreducible components of the locus correspond in

some way to irreducible components of the equations.

Example 6 (primary decomposition of a polynomial ideal (Bayer)). Consider

the zero set of {
f1 = xy + x− x3

f2 = y2 + y − x2y.

The S polynomial f1Sf2 is zero. Factoring f1 and f2 yields x(y + 1− x2) and y(y +

1− x2) respectively. There are four possibilities, namely

{x, y | x = 0, y = 0},
{x, y | x = 0, y + 1− x2 = 0},
{x, y | y + 1− x2 = 0, y = 0} and

{x, y | y + 1− x2 = 0}.

These possibilities are contained in the sets {x = 0, y = 0} and {x, y | y+1−x2 = 0}.
The ideal I generated by f1 and f2 can be written as the intersection of the ideals

q1 = 〈x, y〉 and q2 = 〈y + 1− x2〉. (Note that q1 is not the whole of F[x, y] since the



20

latter includes polynomials with a constant term whereas q1 does not.) The zero set

of I is the union of the zero sets of q1 and q2.

The primary decomposition of an ideal is the algebraic foundation for decomposing

an algebraic variety into its irreducible components. It is the generalization of the

factorization of an integer as a product of prime-powers.

An ideal I of a ring R is said to be prime if I 6= R and a.b ∈ I implies either a ∈ I

or b ∈ I.

An ideal I of a ring R is said to be primary if I 6= R and a.b ∈ I implies either a ∈ I

or bn ∈ I for some n > 0.

The radical of an ideal I is denoted rad(I) or
√

I, and is defined by

√
I = {a ∈ R | an ∈ I some n > 0}.

The radical of a primary ideal is a prime ideal. For suppose ab ∈ rad(I), so that

anbn ∈ I (note we are only concerned with commutative ideals). If a /∈ rad(I) so that

no power of a is in I, then since I is primary some power of bn is in I. But then

b ∈ rad(I).

LASKER-NOETHER THEOREM

Every polynomial ideal can be expressed as an intersection of finitely many primary

ideals. We write

I = ∩i=1,...,n qi

While the primary ideals qi used in the intersection may not be unique, the radicals

of the primary ideals form a set that is independent of the particular decomposition

of I.

In their paper “Gröbner Bases and Primary Decomposition of Polynomial Ideals”,
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P. Gianni, B. Trager and G. Zacharias [20] present an algorithm to compute the

primary decomposition of any ideal in a polynomial ring. Their algorithm relies on

those properties of Gröbner bases already discussed here, namely, elimination ideals,

ideal membership and ideal intersection.

A simpler algorithm, to decompose the algebraic variety into its irreducuble compo-

nents, is given in [35]. [33] contains a discussion of the Buchberger algorithm where

polynomials are factored after every iteration. This provides an approximation to the

primary decomposition.

A discussion of primary decompositions, and further references are given in [10].

In his book “Differential Algebra”, Ritt proves that every perfect differential ideal

has a prime decomposition. ( An ideal I of a ring R is said to be perfect or radical

if bn ∈ I for some n > 0 implies b ∈ I.) Ritt gives an extensive discussion of prime

differential ideals, which have many applications in the formal theory of PDE ([39,

41].) Pommaret ([39] p. 246) gives a criterion for a differential ideal to be prime.

Note that a perfect primary ideal is prime. Ritt’s discussion is for the most part

non-constructive; it is clearly desirable to extend the work of Gianni et al to the

differential case.

1.13 Implicitization of Parametrically described

Varieties

The general implicitization problem is to remove all parametric variables in the de-

scription of an algebraic variety. More precisely, given polynomials p1, . . . , pm ∈
F[x1, . . . , xn], find f1, . . . fk ∈ F[y1, . . . , yn] such that for all a1, . . . , am ∈ F,

f1(a1, . . . , am) = · · · = fk(a1, . . . , am) = 0
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if and only if for some b1, . . . , bn ∈ F,

a1 = p1(b1, . . . , bn),

. . . ,

am = pm(b1, . . . , bn).

The bi are the parametric variables, and the pi are the parametric equations, while

the ai are the non-parametric variables and the fi the non-parametric equations.

The polynomials fi are computed by finding the Gröbner basis of the ideal generated

by {y1−p1, . . . , ym−pm} using the lexicographical ordering based on y1 < . . . < ym <

x1 < . . . < xn, and taking the intersection with F[y1, . . . , yn]. ([9])

It will be seen in Chapter 4 that this is analogous to the algorithm used to calculate

the resolution of a system of partial differential equations. It is the dual of the syzygy

calculation.

The inversion problem, namely that of finding the co-ordinates of a particular point

on a variety given parametrically, can be solved using the same algorithm as used for

the implicitization problem.

1.14 Detection of Singularities

The method of Gröbner bases yields an immediate approach to detect all singular

points of implicitly given planar curves. The singular points of a planar curve given

by f(x, y) = 0 are exactly the points that are common zeros of f , fx and fy. One

calculates the Gröbner basis of the ideal generated by {f, fx, fy} with respect to a

lexicographical ordering and then finds the set of zeros by the successive substitution

method (see the Elimination Ideals section.) ([9])
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1.15 Radicals

It is possible to use the Gröbner basis algorithm to ascertain whether an element x

of a ring R is in the radical of an ideal I. Let I be generated by the set F , and let y

be a new indeterminate. Then x ∈ rad(I) if the Gröbner basis generated by the set

F ∪ {1− xy} contains the unit element 1. ([9])

1.16 Generalization to polynomials of operators

Polynomials of operators are not to be confused with polynomials in which the inde-

terminates are operators each acting on its own argument.

The set of operators D is assumed to satisfy the following: for D1, D2 ∈ D,

[D1, D2] = D1D2 −D2D1 ∈ D,

[D1, D1] = 0,

[D1, D2] = −[D2, D1],

and the Jacobi Identity

[D1, [D2, D3]] + [D2, [D3, D1]] + [D3, [D1, D2]] = 0,

in which case polynomial rings of operators are precisely enveloping algebras of Lie

algebras.

Apel and Lassner in their paper “An Extension of Buchberger’s Algorithm and Calcu-

lations in Enveloping Fields of Lie Algebras” present an extension to non-commutative

finite-dimensional Lie algebras. Examples are algebras of angular momentum oper-

ators, Weyl algebras, symmetry algebras and so on. Equations in the Weyl alge-

bra are linear systems with variable coefficients. These equations have the form
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( ∑

α,β∈Nn

cα,βxβDα

)
u = 0, where cα,β are elements of the relevant field. The operators

can be regarded as elements of the algebra F
[
xi,

∂

∂xi

| i = 1, . . . n

]
which is the en-

veloping algebra for the Lie algebra 〈xi,
∂

∂xi

| i = 1, . . . n〉F. These systems have been

studied by Galligo ([19]). An example of the differential Gröbner basis of such an

ideal is given in Example 2 of Chapter 3.



Chapter 2

DIFFERENTIAL GRÖBNER

BASES

The place of monomials in the polynomial ideal theory is given in differential ideal

theory to derivative terms. A derivative term is the (partial) derivative of an unknown

function ui with respect to n variables {x1, ..., xn}. In differential algebra, there is an

additional complication which is that derivative terms can themselves be multiplied

or taken to powers. A product of two monomials or a power of a monomial is again

a monomial, while a product of two derivative terms or a power of a derivative term

is not again a derivative term.

This chapter contains a theorem that characterizes an analogue of Gröbner bases in

differential ideals. Differential ideals are not noetherian (they have an infinite number

of generators, algebraically speaking), and replacing the S polynomial and reduction

calculations with their differential analogues yields infinite Gröbner bases ([37], [12]).

To achieve a finite theory, we replace reduction with pseudo-reduction. This leads to

several subtleties when formulating an algorithm to calculate a differential Gröbner

25
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basis. Pseudo-reduction involves multiplying equations by certain differential coeffi-

cients before reducing them. These differential coefficients must not lie in the ideal

generated by the given equations. The equations output by the algorithm satisfy all

conditions sufficient for them to be a differential Gröbner basis, except the condition

concerning these differential coefficients, which must be checked on a case-by-case

basis. The details of the output, and the termination of the algorithm, are discussed

and proved. Examples are studied in Chapter 3.

Notations

N is the set of natural numbers

F a field of characteristic zero, usually R or C.

α, β, γ ∈ Nn are multi-indices

If α = (α1, α2, . . . , αn) then |α| = α1 + α2 + · · · , αn.

Note: components of a multi-index α are denoted by α1, α2 . . ., to prevent confusion

between the components of a multi-index α, and distinct multi-indices α1, α2.

A monomial is labelled by a multi-index α thus: xα = xα1
1 xα2

2 . . . xαn
n . A derivative

term is labelled both by a multi-index α and an index i to specify which unknown

function is being differentiated:

pi
α = Dαui =

∂|α|ui

∂xα
=

∂|α|ui

∂xα1
1 ∂xα2

2 . . . ∂xαn
n

pj
0 = uj

µj = (0, . . . , 0, 1, 0, . . . , 0) ∈ Nn with the 1 in the jth place. Where the notation µ is

already in use, we use 1j = (0, ..., 0, 1, 0, ..., 0) with the 1 in the jth place.

For indices of small degree, derivatives are also denoted by the usual notation, e.g.

uxx = p(2,0,...,0).

We will use the following abbreviations:

d.p differential polynomial

DGB differential Gröbner basis
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2.1 Differential rings and ideals

A differential ring is a commutative ring R together with a finite set of derivations

{Di : R → R | i = 1, ..., n} which are linear, which commute with each other and

which satisfy the product rule

Di(r1r2) = Di(r1)r2 + r1Di(r2).

A differential ideal I of a differential ring is an ideal which also satisfies

r ∈ I =⇒ Di(r) ∈ I for all i = 1, . . . , n.

We define Rn,m to be the ring of polynomials in the variables {xi | i = 1, ..., n},
the C∞ unknown functions of the variables {uj|j = 1, ..., m} and their derivatives

{pj
α = Dαuj} over the field F, with Di =

∂

∂xi

:

Rn,m = F[xi, u
j, pj

α | i = 1, . . . , n; j = 1, . . . , m; α ∈ Nn]

The field F is usually R or C, but can be any field of characteristic zero on which

differentiation is defined. (Notations as above.) Elements of Rn,m are called diffe-

rential polynomials (d.p.’s).

As a differential ring, Rn,m is finitely generated by {x1, ..., xn, u
1, ..., um}. We restrict

ourselves to ideals whose elements contain derivative terms.

2.2 Orderings on the differential polynomials

The ordering on the differential polynomials (d.p.’s) depends upon an ordering on

the variables {xi | i = 1, ..., n}, and the functions {uj | j = 1, ..., m}. A compatible

ordering is desired, that is,

f1 > f2 =⇒ Di(f1) > Di(f2) and f.f1 > f.f2
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for all i and all d.p.’s f. We assume the ordering um > um−1 > ... > u1 and x1 > x2 >

... > xn. The {pi
α} are called derivative terms. We first define orderings on the set of

derivative terms.

The lexicographic ordering on the derivative terms is given by

pi
α > pj

β if i > j

else i = j and the first non-zero difference

α1 − β1, α2 − β2, . . . , αn − βn

is positive.

The total degree ordering on the derivative terms is given by

pi
α > pj

β if i > j

else i = j and |α| > |β|
else i = j, |α| = |β| and the first non-zero difference

αn − βn, αn−1 − βn−1, . . . , α1 − β1

is positive.

The total-degree ordering given by other authors is determined first by total degree,

then the unknown, and then inverse-lexicographic ordering ([53]).

The reverse-lexicographic ordering on the derivative terms is given by

pi
α > pj

β if i > j

else i = j and |α| > |β|
else i = j, |α| = |β| and the first non-zero difference

αn − βn, αn−1 − βn−1, . . . , α1 − β1
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is negative.

It is clear that any ordering on the variables {xi} determines a lexicographic, total-

degree or reverse-lexicographic ordering on {pi
α}. For these three orders, since uj = pj

0,

we have pj
α > uj for all α 6= 0.

While the lexicographic ordering is what we need to use for the elimination ideals

results, nevertheless, in the formal theory of partial derivative equations it has been

orderings graded by total degree that have been used to determine the symbol of

the system, motivated by the proof of the Cauchy-Kovalevska Theorem on analytic

equations. ([53], [38].) For a discussion of the symbol of a system of PDE’s and its

relationship to differential Gröbner bases, see Chapter 6.

As in Chapter 1, it is possible to attach “weights” to obtain more general ordering

schemes ([53, Section 2.2], [54]). Our matrices are the transpose of Trinks’.)

For h = 1, ..., s, k = 1, ...,m and i = 1, ..., n, define the weights wh(u
k), wh(xi) and

set

wh(p
k
α) = wh(u

k) + α1wh(x1) + · · ·+ αnwh(xn).

Then pk
α > pj

β if the first non-zero difference

wh(p
k
α)− wh(p

j
β), h = 1, ..., s

is positive. We can define a matrix A such that

wh(p
k
α) =

(
A

(
αT

(µk)T

))

h

.

(See Notations for definition of µk). For example, the total degree ordering above has
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the matrix
x u

0 0 . . . 0 1 0 . . . 0

0 0 . . . 0 0 1 . . . 0

·
·
·

0 0 . . . 0 0 0 . . . 1

1 1 . . . 1 0 0 . . . 0

0 0 . . . 1 0 0 . . . 0

·
·
·

0 1 . . . 0 0 0 . . . 0

1 0 . . . 0 0 0 . . . 0

By contrast, the total degree ordering used by Stormark has the matrix

x u

1 1 . . . 1 0 0 . . . 0

0 0 . . . 0 1 2 . . . m

0 0 . . . 1 0 0 . . . 0

·
·
·

0 1 . . . 0 0 0 . . . 0

1 0 . . . 0 0 0 . . . 0

Definitions

Let DTp be a derivative term raised to a power p. The coefficient of DTp in a d.p.,
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f , is the sum of all coefficients DTp in f (note the coefficient contains no powers of

DT), and is denoted coeff(f, DTp). If DTp has a non-zero coefficient in f , we say DTp

occurs in f .

The highest derivative term occurring in a d.p. f is denoted HDT(f).

The highest power of the HDT(f) occurring in f is denoted Hp(f).

The highest coefficient, denoted Hcoeff(f), is the d.p.,

coeff(f, HDT(f)Hp(f)).

The head of f is Head(f) = Hcoeff(f).HDT(f)Hp(f).

The highest unknown function occurring in f , the unknown function involved in

the highest derivative term, is denoted Hu(f).

The separant of f is the highest coefficient of Dαf , for any non-zero multi-index α,

and is denoted Sep(f).

The highest monomial, Hmon(f), is defined recursively as follows: if f is a mono-

mial, Hmon(f) = f , else Hmon(f) = Hmon(Head(f)).

Example 1. In the differential polynomial

f = (u2
x − 1)uxxy + u3

zz − (vyy − vz)uxyy

we have
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lex total degree reverse lex lex

u > v, u > v, u > v, v > u,

z > y > x x > y > z x > y > z x > y > z

HDT(f) uzz uxyy uxxy vyy

HP(f) 3 1 1 1

Hcoeff(f) 1 −(vyy − vz) u2
x − 1 −uxyy

Sep(f) 3(uzz)
2 −(vyy − vz) u2

x − 1 −uxyy

Hmon(f) u3
zz −vyyuxyy u2

xuxxy −vyyuxyy

Hu(f) u u u v

We now define the ordering on the differential polynomials, given an ordering on the

derivative terms.

If HDT(f1) > HDT(f2) we say f1 > f2. If two polynomials have equal HDT’s but the

HDT occurs to a higher power in f1 than in f2, then f1 > f2. If two polynomials have

the same HDT’s and the same Hp’s then the ordering is determined by the ordering on

the Hcoeff’s. If Head(f1) and Head(f2) differ by a field coefficient, then the ordering

is determined by that on f1 − Head(f1), f2 − Head(f2).

If the summands of f1 and f2 differ only in their field coefficients, we say f1 and f2

are of equal rank.

2.3 Sequences of differential polynomials

Recall from Chapter 1 that a ring is said to be noetherian if it satisfies the “ascending

chain condition”, namely, that for any nested sequence of ideals I0 ⊆ I1 ⊆ . . . ⊆ In ⊆
. . . there is an N such that In = IN for all n ≥ N . This property was used by Buch-

berger to prove termination of his algorithm. A differential ideal, regarded as an alge-

braic ideal, is not noetherian, because there are infinitely many indeterminates. Ritt

([43]) proves that ascending chains of perfect or radical differential ideals terminate.
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(An ideal I is said to be perfect, or radical, if aq ∈ I =⇒ a ∈ I. Generalisations

to this theorem appear in [30, Ch III] and [39, pp235-257].) Therefore, we need to

prove termination for general ideals “by hand”, that is, by examining sequences of

differential polynomials. The following two lemmas prove that any strictly decreasing

sequence of d.p.’s terminates. The strictly decreasing sequences are bounded below

by a least element in the ring, namely the zero polynomial.

Lemma 1. Any strictly decreasing sequence of the form

{tν = (piναν)kν | iν ∈ {1, . . . , m}, kν ∈ N, αν ∈ Nn}

terminates after a finite number of terms. Hence for any infinite decreasing sequence

there must exist an N such that n > N =⇒ tn = tN .

Proof. For m > 1, the sequence {tν} can only be infinite if it is infinite for one of the

indices that label the unknowns. Thus we prove the result for m = 1 (i.e. iν = 1 all

ν.). Consider the associated sequence

S = {sν = xαν}∞ν=1 ⊂ F[x1, . . . , xn].

The monomials have the ordering xα > xβ if and only if pα > pβ with respect to some

compatible order. (See notations above). The sequence S is decreasing. For any

decreasing sequence {si} in F[x1, ..., xn] there exists an integer M such that i > M

implies si = sM . Considering our original sequence {(pαν )kν}, we now have αi = αM

for i > M , so the only way the sequence can be strictly decreasing is for {kν | ν > M}
to be a strictly decreasing sequence of positive integers, which must terminate.

Lemma 2. Let {fn} be a decreasing sequence of differential polynomials in Rn,m.

Then there exists an N such that for n > N , fn and fN are of equal rank.

Proof. We first show that a strictly decreasing sequence of monomials {mk} termi-

nates. A monomial has the form xαDTp1

1 .DTp2

2 . . . DTpn
n . Firstly, by Lemma 1, the
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sequence {HDT(mk)
Hp(mk)} terminates. Let M1 be the terminal value, occurring for

k > K1. Repeat the argument on the sequence of monomials {mk/M1 | k > K1}, to

produce a terminal value M2 occurring for k > K2. Iterating, we obtain a sequence

{Mr}. This sequence is strictly decreasing and so is finite, finishing at r = R. Then

the terminal value of the sequence {mk} is M1.M2...MR, which is reached in a finite

number of steps.

Let us now consider the given sequence {fn}.

Let fn
1 = fn. Considering the sequence {HDT(fn)Hp(fn)} we have by Lemma 1 that

there exists an N1 such that the sequence is stationary for n > N1. Consider next

the sequence

{fm
2 = Hcoeff(fn) | m = n−N1 + 1, n ≥ N1}.

Applying the above argument to fm
2 we again find an N2 for which HDT(fn

2 ) =

HDT(fN2
2 ), and Hp(fn

2 ) = Hp(fN2
2 ) for n > N2. We can iterate this procedure indefi-

nitely creating an infinite sequence of sequences. Consider now the sequence {f 1
n}∞n=1.

Since by definition Hcoeff(f) < HDT(f)Hp(f) for any f , this is a strictly decreasing

sequence, which terminates by Lemma 1.

This shows that there is an index K1 for which k > K1 implies Hmon(fk) and

Hmon(fK1) differ by a field coefficient. Let m1 denote Hmon(fK1) divided by its

field coefficient.

We now iterate the whole argument on {fn − Hmon(fn) | n > K1}, to produce a

strictly decreasing sequence of monomials {mr}. This sequence terminates, implying

the required result.
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2.4 Reduction

There are two methods of reduction. The first is a strictly algebraic reduction.

Definition 1 ( reduction). If f and g are two d.p.s, we say that g reduces f at the

monomial M , where M is a summand of f , if Hmon(g) | M .

We write f →g f ′ where f ′ = f − M

Hmon(g)
g.

This type of reduction is that used when calculating Gröbner bases of algebraic ideals.

The second type of reduction we denote differential reduction. The d.p. g (differen-

tially) reduces f if for some derivative term DT occurring in f to the power p, we

have

(1) DαHDT(g) = DT some multi-index α,

(2) Hp(g) ≤ p if α = 0

and

(3) coeff(f, DT p) = h1Hcoeff(Dαg) + h2 h1, h2 d.p.’s and h1 6= 0.

Then we write f →g f ′ where

f ′ =

{
f − h1DTp−1Dαg α 6= 0

f − h1DTp−Hp(g)g α = 0

The reduction depends on the choice of term ordering.

We speak of the reduction of a d.p. f with respect to a finite set F of d.p.’s as yielding

a normal form of f with respect to F . A normal form is achieved when no further

reduction of f with respect to any member of F is possible. A normal form is not

unique; it depends upon the ordering used and the order in which the different terms
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are reduced. We write

f →F normal(f, F ).

Example 2 (reduction).

Set f = (uxuy − ux)uyy − 1

and g = uxuy − u.

Assume the lexicographic order with y > x. Then HDT(g) = uy, and the algebraic

reduction of f with respect to g is f ′ = (u−ux)uyy−1. We can reduce f ′ (differentially)

with respect to g to obtain

f ′′ = uuyy − 1 + uxyuy − uy.

2.5 Pseudo-Reduction

Pseudo-reduction of f by a set of d.p.’s G effects an elimination from f of all derivative

terms that can be obtained by differentiation of the highest derivative terms of the

elements of G.

Let a derivative term DT occur in f to some power p. Suppose there exists an α such

that DαHDT(g) = DT. If α = 0 assume further that p ≥ Hp(g). A pseudo-reduction,

f ′, of f by g is given by the formulae

f ′ =





(Hcoeff(Dαg).f − coeff(f, DTp).DTp−1.Dαg)

Z
α 6= 0

(Hcoeff(g).f − coeff(f, DTp).HDT(g)(p−Hp(g)).g)

Z
α = 0

where Z = gcd(Hcoeff(Dαg), coeff(f, DTp)).(The notation gcd stands for greatest com-

mon divisor.)

Denote pseudo-reduction with respect to G by f →G,p f ′.
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Thus if Hcoeff(Dαg) divides coeff(f, DTp) pseudo-reduction equals differential reduc-

tion. Note: the coefficient of a term DTp contains no powers of DT: a reduction or

pseudo-reduction of a term DTp is not a reduction or pseudo-reduction of DTq where

q > p.

The reduction used by Ritt ([43, Chapters I, IX].) is actually pseudo-reduction, except

that Ritt does not divide out by Z. Although doing so makes the proofs that follow

a little more cumbersome, it is clearly advantageous to not introduce spurious factors

into the equations. When no further pseudo-reduction operations can be performed

on f with respect to the members of a set G, we say f is in normalp form with respect

to G; the normal form is denoted normalp(f,G).

Example 3 (pseudo-reduction).

Let f = uxyy + xuyuxy,

g = u.uxy − uy.

Then in either lexicographic or total degree ordering HDT(g) = uxy.

We can pseudo-reduce f at both the uxy and the uxyy terms. Doing so yields

f ′ = u.f − ∂

∂y
g − xuy.g = −uyuxy + uyy + xu2

y.

The difference between reduction and pseudo-reduction is that in pseudo-reduction we

are allowed to multiply the polynomial we are reducing by non-constant terms. We

can pseudo-reduce the result again at uxy, yielding

normalp(f, {g}) = −u2
y + uyyu + xu2

y.

All three types of reduction defined here are noetherian relations, i.e. a normal form

is achieved in a finite number of steps. In Lemma 3, we prove that pseudo-reduction

is noetherian.
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Lemma 3. The pseudo-reduction relation −→F,p is noetherian. That is, a normalp

form of a d.p. f with respect to a finite set F of d.p.’s is achieved after a finite number

of steps.

Proof. Let H(F ) be the set

H(F ) = {HDT(g)q, (DαHDT(g))p | g ∈ F, q ≥ Hp(g), p ∈ N, α ∈ Nn}.
Suppose the pseudo-reduction process yields an infinite sequence of d.p.’s {fi}, where

f0 = f . Let Sn = {DTp | DTp occurs in fn}. The set Sn ∩H(F ) is the list of terms

where pseudo-reduction is possible. Let dtn be the highest element in Sn ∩ H(F ).

After each reduction step, an element in Sn is replaced in Sn+1 by a list of derivative

terms (with powers), all of which are lower than the element replaced. Therefore

i > j implies dti ≤ dtj. By Lemma 1 we have, for N large enough, that dtm = dtN

for m ≥ N . Let t1 = dtN . We now repeat the argument for fN but removing dtN

from the S sets. Continuing in this way, we derive a strictly decreasing sequence {tk}.
If the number of reductions is infinite, this sequence is infinite, since we never run

out of possibilities. But again by Lemma 1, any strictly decreasing sequence must be

finite.

Spurious zeroes: It is possible that pseudo-reduction of f with respect to F may

lead to a spurious zero. This occurs when for some fi ∈ F, Sep(fi) pseudo-reduces to

zero with respect to other members of F . The algorithm Reduceall outputs a set in

which no element pseudo-reduces any other element at all, (such a set is then called

auto-reduced, following Kolchin [30].) It ensures the auto-reduced set generates, as

far as possible, the same ideal as the original set F ; the output set generates an ideal

slightly smaller than the input set. Reduceall is easily adapted to output a set in

which no element pseudo-reduces any other element’s separant.

Definition 2 ( M(X)). If X is a finite set of d.p.s, define M(X) to be the multi-

plicative set generated by factors of the elements of X. (A set M is multiplicative if

a, b ∈ M implies ab ∈ M .)
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In forming normalp(fk, {f1, ..., fk−1}) we collect in a set denoted X(fk, {f1, ..., fk−1})
all the factors with which fk is multiplied in sucessive pseudo-reductions.

ALGORITHM: REDUCEALL

INPUT: a set F of differential polynomials

a term ordering

OUTPUT: sets F ′ = reduceall(F ), X = X(reduceall(F ))

the set F ′ is auto-reduced and the generators of F appear in I(F ′)

multiplied by factors of the elements of X.

F ′ := F

z := 0

X := {}
while z = 0 do

sort F ′ into increasing order (f ′1 < f ′2 < ... < f ′r)

for k from 2 to |F ′|
f ′′k = normalp(f ′k, {f ′1, . . . , f ′k−1})
if f ′′k = f ′k then z := 1 else F ′ := F ′ minus {f ′k} union {f ′′k }

X := X union X(f ′k, {f ′1, ..., f ′k−1})
k := 1

break

end

The set X is minimized if no member of F reduces (algebraically or differentially)

any other member.

Lemma 4. The algorithm “REDUCEALL” terminates.

Proof. Suppose not. Then at least one of the original equations would be the first

in an infinite strictly decreasing sequence in Rn,m . But any such sequence must

terminate.
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We now show some properties of pseudo-reduction (cf [8] for equivalent properties of

reduction.)

Definition 3 (S(G)). For G in Rn,m let S(G) be the multiplicative set in Rn,m

generated by the set of factors of all the highest coefficients and separants of the g

in G. (A set S is a multiplicative set if a, b ∈ S implies ab ∈ S.) We assume that

1,−1 ∈ S.

Definition 4 (∼G). Let ∼G denote the equivalence relation generated by pseudo-

reduction. That is, f ∼G g if there exists a sequence h1, h2, ..., hk such that f = h1,

g = hk, and either hi →G,p hi+1 or hi+1 →G,p hi.

f

ÂÂ>
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>>
>>

>
g

¢¢¥¥
¥¥

¥¥
¥¥

¥¥
¥¥

¥¥
¥¥

¥¥
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ÃÃ@
@@
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~~~~
~~

~~
~

h3 h5

Figure 2.1:
Each arrow represents pseudo-reduction. In the diagram f ∼ g.

Definition 5 (f ↓G g). Let f ↓G g denote the fact that there exists an h such that

f →G,p h and g →G,p h, i.e. f and g have a common successor.

If f ↓G g then f ∼G g.

We note the following properties for an arbitrary set G:

PR1 if f →G,p g then h.f →G,p h.g for all h ∈ Rn,m

PR2 if f − g pseudo-reduces in one step to h, then there exist s, s′, s′′ ∈ S(G) and

d.p.’s f ′ and g′ such that f →G,p f ′, g →G,p g′ and sh = s′f ′ − s′′g′.
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PR3 if f − g →G,p 0 then s′f ↓G s′′g for some s, s′′ ∈ S(G).

PR4 if f →G,p h then there exists an s ∈ S(G) such that s.f − h ∈ I.

PR5 if f →G,p 0 then h.f →G,p 0 for all h ∈ Rn,m.

We prove property PR3, the others following directly from the formulae. The proof

follows induction on the number of steps used to pseudo-reduce f−g to zero. If f = g

then clearly f ↓G g. Suppose the result is true if the pseudo-reduction uses k steps,

and consider the case where the pseudo-reduction takes k +1 steps. Let the first step

be h1. By property PR2, there exist s, s′, s′′ ∈ S(G) and d.p.’s f ′ and g′ such that

f →G,p f ′, g →G,p g′ and sh1 = s′f ′ − s′′g′. By property PR5, sh1 →G,p 0 in k steps,

so by the inductive step s′f ′ ↓G s′′g′. Hence s′f ↓G s′′g, using property PR1.2

Definition 6 (f ≡G g). If f − g ∈ I(G) then we write f ≡G g.

Lemma 5. If f ≡G g then f ∼G g. Conversely, if f ∼G g then there exist s1, s2 ∈ S

such that s1f ≡G s2g.

The proof of Lemma 5 follows that of Lemma 1 in [2].

2.6 The differential S polynomials

In direct analogy to the algebraic case, we wish to find a basis with respect to which

every member of the ideal pseudo-reduces to zero. We showed in Chapter 1 that it was

easy to find an example of a basis which does not satisfy this criterion merely by choos-

ing two polynomials whose S polynomial was non-zero, and taking the ideal generated

by them. Converting the example to a differential one by converting multiplication

by xi to
∂

∂xi

, one can see that the following formulae are a direct generalization of

the formula for the algebraic S polynomial (cf the first example following.)

Let f1 and f2 be two d.p.’s with the same highest unknown. Take the two multi-indices
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of least degree, α1 and α2 such that

Dα1
HDT(f1) = Dα2

HDT(f2).

Let Z = gcd(Hcoeff(Dα1
f1), Hcoeff(Dα2

f2)).

If both α1, α2 6= 0, then define

diffSpoly(f1, f2) =
(Hcoeff(Dα1

f1).D
α2

f2 − Hcoeff(Dα2
f2).D

α1
f1)

Z
.

If α1 = 0 and α2 6= 0, then

diffSpoly(f1, f2) =
(Hcoeff(f1)HDT(f1)

(Hp(f1)−1)Dα2
f2 − Hcoeff(Dα2

f2)f1)

Z

and similarly if α1 6= 0 and α2 = 0.

If α1 = α2 = 0 so that HDT(f1) = HDT(f2), or if f1 and f2 have different highest

unknowns, then the differential S polynomial is defined to be

diffSpoly(f1, f2) =
Head(f2)f1 − Head(f1)f2

gcd(Head(f1), Head(f2))

Calculations equivalent to differential S polynomials appear in [30, p. 136 and p.

167].

Example 4 (differential S polynomials).

(1) In the case where the differential polynomials are linear, in one unknown and with

constant coefficients, the diffSpoly calculation mimics the algebraic one, since in this

case differentiation mimics multiplication by
∂

∂xi

.

Take f1 = uxxy + uy

f2 = uxyy + u.
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Then diffSpoly(f1, f2) =
∂

∂x1

f2 − ∂

∂x2

f1

= ux − uyy

(2) The next level of generality is that of linear equations with variable coefficients.

Take f1 = uxxy + yuy

f2 = yuxyy + u

Then diffSpoly(f1, f2) =
∂

∂x
f2 − y

∂

∂y
f1

= ux − yuy − y2uyy

More general examples will be given later.

A trick due to Drach ([53]) exists which converts a pde system in m unknowns

{uj | j = 1, ..., m} and n variables {xi | i = 1, ..., n} to an isomorphic system in

one unknown and n + m variables. We take extra variables xn+1, xn+2, ..., xn+m and

define the new unknown u to be

u = xn+1.u
1 + xn+2.u

2 + ... + xn+m.um

so that ui ∂u

∂xi

, i = n + 1, . . . , n + m. We then add to the system the equations

∂2u

∂xi∂xj

= 0 for i, j ∈ {n + 1, n + 2, . . . , n + m} (∗)

For this system to have an ordering equivalent to the original system, it is necessary

to adopt a weighted ordering. It is desirable that the given differential S polynomial

formulae be compatible in the following sense: in the case of two d.p.’s in the first

system having different highest unknowns, the definition of the differential S polyno-

mial utilizes an algebraic formula whereas the isomorphic polynomials in the second

system have only one unknown and hence the formula used is the differential one.

The definitions above yield compatible results.
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2.7 Differential Gröbner Bases

Many of the properties of Gröbner bases for polynomial ideals listed in Chapter 1

either apply directly to differential ideals or have differential analogues.

Systems that are linear, with constant coefficients and in one unknown, can be re-

garded as polynomials in the operators

{
∂

∂xi

}
. Examining such systems leads us to

conjecture that replacing Spolynomials with differential Spolynomials, and algebraic

reduction with differential reduction in Buchberger’s algorithm will yield a “differen-

tial Gröbner basis”. In fact, this is only true for linear systems, or systems where the

highest coefficient of every polynomial given or generated is a constant.

In systems where a highest coefficient contains a derivative term, the analogous pro-

cedure may not terminate in general. The reason is that the product rule dictates

that the coefficients become differentiated while the HDT does not, and thus these

terms will not reduce away in general. Thus the result of performing differential

Spolynomials and reducing them will lead in general to a polynomial that is higher

in rank than the ones given. This problem compounds upon iteration.

The proof of termination of Buchberger’s algorithm relies on the fact that finitely

generated polynomial ideals are noetherian. This means that any ascending sequence

of ideals

I0 ⊆ I1 ⊆ · · · ⊆ In ⊆ · · · ⊆ R

in the polynomial ring R is essentially finite i.e. ∃N such that n > N implies In = IN .

Differential polynomial rings are not noetherian, since they are generated algebraically

by infinitely many indeterminates. However, Ritt has proved ([43]) that ascending

sequences of perfect or radical ideals terminate. Hence we do not expect termina-

tion of an algorithm using reduction for systems that generate non-perfect ideals.

Forsman [18] has conjectured that the algorithm will terminate, using reduction, in
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radical (or perfect) ideals.

To overcome the difficulties associated with reduction, we resort to pseudo-reduction.

We shall see that this compromise involves a loss of information. Nevertheless, for

a large number of examples, the algorithm using pseudo-reduction yields sufficient

information to answer the kinds of questions Gröbner bases answer. Moreover, for

linear systems, pseudo-reduction is the same as reduction so that the same code will

suffice.

The loss of information entailed in pseudo-reduction is contained, for a system G, in

the set S(G), which we defined earlier in this chapter. We repeat the definition here

for convenience:

Definition 7 (S(G)). For G ⊂ Rn,m let S(G) be the multiplicative set in Rn,m

generated by the set of factors of all the highest coefficients and separants of the

elements of G. (A set S is a multiplicative set if a, b ∈ S implies ab ∈ S.) We assume

that 1,−1 ∈ S.

Property One below shows an example of this “loss of information”.

The use of pseudo-reduction is not new. In his book “Differential Algebra” J.F. Ritt

defined a chain to be an increasing sequence {An}N
n=1 of elements of the differential

ideal such that each An is pseudo-reduced with respect to {A1, ..., An−1}. (What Ritt

called reduction is today called pseudo-reduction.)

Given two chains A = {An}N
n=1 and B = {Bn}M

n=1, he declared A > B if either there

existed a k < min(N,M) such that rank(Ai) = rank(Bi) for i < k and rank(Ak) >

rank(Bk), or N > M and rank (Ai) = rank(Bi) for i ≤ M . If neither A > B nor

A < B then he defined the two chains to be of equal rank.

A characteristic set is a chain that is least in the set of chains.

Definition 8 (auto-reduced). A set G is called an auto-reduced basis if no element
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of G pseudo-reduces any other element of G.

A characteristic set is auto-reduced.

Lemma ([43, p.5]). A chain is a characteristic set if and only if every member of the

ideal pseudo-reduces to zero with respect to it.

This property of a characteristic set, when compared to Buchberger’s original defini-

tion of a Gröbner basis, is strikingly similar. Removing the cumbersome definition of

a chain, we define:

Definition 9 (differential Gröbner basis). A differential Gröbner basis of

the differential ideal I is a basis of I with respect to which every element f of I

has a unique normalp form, zero. Note that a differential Gröbner basis need not be

auto-reduced while a characteristic set need not be a basis. Examples of differential

Gröbner bases for given ideals are discussed in Chapter 3.

We now state and prove two important properties of differential Gröbner bases. Other

important properties are discussed in this and subsequent chapters.

PROPERTY ONE

Let f0 be the least element of the differential ideal I(G) with respect to some term

ordering. A differential Gröbner basis with respect to that term ordering contains an

element of the form sf0 for some s ∈ S(G).

Proof: If not, then no other element of the differential Gröbner basis would be able to

pseudo-reduce f0 to zero, contradicting the definition of a differential Gröbner basis.

PROPERTY TWO

The system Σ is inconsistent if and only if 1 is an element of any differential Gröbner
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basis for I(Σ).

Proof: If 1 is in a differential Gröbner basis for I(Σ), then the equations in Σ imply

1=0, which is a contradiction. Conversely, suppose the system Σ is inconsistent.

Then some combination of the equations in Σ implies 1=0. But then 1 ∈ I(Σ), which

must pseudo-reduce with respect to some element of any differential Gröbner basis

for I(Σ). But only 1 can pseudo-reduce 1. Therefore a differential Gröbner basis for

any order must contain 1.

These properties show that not every basis is a differential Gröbner basis.

2.8 The main results

Buchberger proved that a basis of an algebraic ideal is a Gröbner basis if and only if

every S polynomial of the basis elements reduces to zero (cf Chapter 1.). His algorithm

for generating a Gröbner basis consists of computing all the Spolynomials, reducing

them to normal form, adding the non-zero normal forms to the list, and ite-rating.

Those Spolynomials that do not reduce to zero are precisely the obstructions to the

list of polynomials being a Gröbner basis.

We now proceed to ask the question, what differential polynomials generated by

members of a basis do not pseudo-reduce to zero with respect to that basis? We begin

by examining the pseudo-reductions of differential Spolynomials; we shall see that

the condition that all differential Spolynomials pseudo-reduce to zero is insufficient

to ensure a differential Gröbner basis.

Example 5 (pseudo-reduction of a diffSpolynomial). Let f1 and f2 be defined

by

f1 = uyuxxy + uxy

f2 = uxuxyy + uxy
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In the lexicographic ordering with y > x, HDT(f1) = uxxy and HDT(f2) = uxyy.

Then diffSpoly(f1, f2) = ux
∂

∂y
f1 − uy

∂

∂x
f2

= {uxuyy − uy}uxxy + {ux − uyuxx}uxyy.

Reduction with respect to {f1, f2} yields uxuyyuxxy − uyuxxuxyy, which is greater than

both f1 and f2. Pseudo-reducing the result with respect to {f1, f2} results in

normalp(diffSpoly(f1, f2), {f1, f2}) = uxy{u2
yuxx − u2

xuyy}

which is less than either f1 or f2. Thus, the equation generated cannot be pseudo-

reduced to zero with respect to {f1, f2}.

The following lemma gives an upper bound for a differential analogue for Buchberger’s

algorithm, replacing Spolynomial calculations with diffSpolynomial calculations and

reduction with pseudo-reduction. Its proof shows how the algorithm produces a series

of differential polynomials all less than the elements of the original set.

Definition 10 (the map δ). We define the map δ : {{fi, fj} | fi, fj ∈ Rn,m} →
Nn. If HDT(f1) = pj

α1 , HDT(f2) = pj
α2 , and γ1 and γ2 are the smallest multi-

indices possible such that Dγ1
(HDT(f1)) = Dγ2

(HDT(f2)) then define the map δ to

be δ({f1, f2}) = α1 + γ1 = α2 + γ2.

If Hu(f1) 6= Hu(f2) then δ({f1, f2}) = 0.

The multi-indices γ1 and γ2 are the multi-indices used to calculate the differential S

polynomial of f1 and f2.

Lemma 6. For f1, f2 ∈ Rn,m, and the lexicographic order, or if Hu(f1) 6= Hu(f2) or

if HDT(f1) = HDT(f2), we have

normalp(diffSpoly(f1, f2), {f1, f2}) < max{f1, f2}.
With the total degree ordering and Hu(f1) = Hu(f2) = uj (say),
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normalp(diffSpoly(f1, f2)), {f1, f2}) < pj
δ where δ = δ({f1, f2}).

Furthermore, for g = normalp(diffSpoly(f1, f2), {f1, f2}), we have diffSpoly(f1, g), when

pseudo-reduced with respect to {f1, f2, g} has the same upper bounds for its derivative

terms.

Proof. If Hu(f1) 6= Hu(f2) or if HDT(f1) = HDT(f2), the result follows directly from

the definition of the diffSpolynomial for these cases. So assume Hu(f1) = Hu(f2)

and HDT(f1) 6= HDT(f2). Let a derivative term A occur to some power r in g =

normalp(diffSpoly(f1, f2), {f1, f2}). If the power r is greater than 1, then A occurs to

some power in either f1 or f2, so that Ar < max{HDT(f1)
Hp(f1), HDT(f2)

Hp(f2)}. So,

let A (to the power 1) occur in g. Then there exists a derivative term B occurring to

some power in say f1, and an index β ∈ Nn such that Dβ(B) = A.

Indices can be regarded as vectors in Nn and can be summed as vectors, component-

wise. For a given multi-index α, the set α + Nn = {ε | α is a summand of ε}. If αi

is the multi-index for HDT(fi), the sets α1 + Nn, α2 + Nn in Nn are the sets of those

multi-indices that can be pseudo-reduced by f1 and f2 respectively (see Figure 2.8.)

The smallest point of intersection is the index δ = δ({f1, f2}). From the formulae for

differential S polynomials and pseudo-reduction it must be that β is a summand of

γ1 or γ2. If B = pj
σ, then Q = {β + σ | β is a summand of γ1} contains the index

associated with the term A. Note that σ < max{α1, α2}. If A cannot be reduced

by f1 or f2, then it must be less than one of the HDT(fi) in the lexicographic order,

since the set Q cannot lie in that part of Nn that is greater than max{α1, α2}.
In the total degree ordering, it is possible for |β + σ| to have greater magnitude than

|α1| or |α2|, and not be reducible. Nevertheless we obtain that the set Q for some A

occurring in g must lie in that part of Nn with magnitude less than |δ|.
The final statement of the lemma follows from the same considerations.
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Figure 2.2:
The multi-index δ = δ(f1, f1), where HDT(fi) = αi

Changing the example before Lemma 6, we obtain an example which shows why we

need different bounds for the different orderings. Set

f1 = uyuxxy + uxy

f2 = uxuxyy + uxx

In total degree ordering the HDT’s are the same as before, but we now observe that

diffSpoly(f1, f2) = uyyuxuxxy + uxyy{ux − uyuxx} − uyuxxx

The highest derivative term of the normalp-form with respect to {f1, f2} is uxxx < uxxyy

where (2, 2) = δ({f1, f2}). (Recall uxxyy = p(2,2).)

We now come to examining the result analogous to Buchberger’s (Theorem 1, Chap-

ter 1.) The replacement of Spolynomial calculations with diffSpolynomial calcula-

tions, and reductions with pseudo-reductions, “almost” yields a set that pseudo-

reduces every element of the ideal to zero. In fact, in the general case, we obtain that
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for every element f of the ideal I(G), there is an element s of S(G) such that the

product s.f pseudo-reduces to zero, provided S(G) ∩ I = φ. For a linear system, the

set S(G) lies in F[x1, ..., xn], so that a differential Gröbner basis is achieved.

The second and third parts of Lemma 7 below introduce two extra conditions on the

set of generators G. If the first condition is satisfied (in addition to all diffSpolynomials

pseudo-reducing to zero and S(G) ∩ I = φ), then G is a DGB. We will use this part

of Lemma 7 in example 5, Chapter 3, an example which is both non-linear and

non-prime. The second condition is trivially satisfied if G is auto-reduced. It gives a

decomposition result for any element of the ideal that does not pseudo-reduce to zero,

(again assuming that all diffSpolynomials pseudo-reduce to zero.) This decomposition

result shows that if G is also a Gröbner basis for the algebraic ideal generated by G,

then G is a DGB for I(G).

Definition 11 (indets(G)). For a finite set of d.p.s G, let indets(G) be the set of

derivative terms and variables that occur to some power in the elements of G.

Definition 12 (Ialg(G)). For a finite set G ⊂ Rn,m, let Ialg(G) be the algebraic ideal

generated by G considered as polynomials in the polynomial ring F[indets(G)].

Definition 13 (coherent). If for all fi, fk ∈ G, diffSpoly(fi, fk) →G,p 0, we say the

set G is coherent ([30]).

Lemma 7. For a set G of d.p.s, suppose

(CNI)

{
diffSpoly(fi, fk) →G,p 0 ∀ f1, fk ∈ G

S(G) ∩ I(G) = φ.

Then (1) ∀f ∈ I(G), ∃s ∈ S(G) such that s.f →G,p 0.

(2) if in addition to (CNI) the condition

(SPR) for all s ∈ S(G), s = normalp(s,G)

is satisfied, then f →G,p 0 for all f ∈ I(G).
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(3) if in addition to (CNI) the condition

(GAC) for f, g ∈ G, if g pseudo-reduces f at the derivative term DT = DαHDT(g),

and DT 6= HDT(f) if Hp(f) = 1, then Dαg ∈ Ialg(G)

is satisfied, then for all f ∈ I(G), f 6→G,p 0 ⇒ normalp(f) = f0 +
∑

difi, where

f0, fi ∈ Ialg(G), the di are in normalp-form and indets(di) ∩ indets(G) = φ.

If the set G is auto-reduced, the property (GAC) is satisfied trivially.

The notation:

CNI stands for Coherent with Null Intersection,

SPR stands for S set is Pseudo- Reduced

GAC stands for G set is Almost “ Complete”. (if we do not require DT 6= HDT(f)

if Hp(f) = 1, we say G is complete, or GC holds.)

The difference between GC and GAC is the following: firstly, we only need GAC,

while secondly, in the DIFFGBASIS algorithm, if we complete G to satisfy GC instead

of GAC, then DIFFGBASIS will not terminate in general (cf Example 5, Chapter 3.)

Proof. (1) We model the proof of this result on the proof of G3 ⇒ G1 in [2]. Consider

the condition (*):

Let f ∈ I(G). Then any two pseudo-reductions of f , to h1 and h2

(*) (say), have a common successor. That is, there exist s1, s2 ∈ S(G)

and k ∈ I such that s1h1 →G,p k, and s2h2 →G,p k.

We show that for all f ∈ I(G), there exists an s ∈ S(G) such that s.f →G,p 0.

Since f ∈ I(G), we have f ∼ 0. That is, there exist h1, h2, ..., hn such that h1 =

f, hn = 0 and either hi →G,p hi+1 or hi+1 →G,p hi. We give an example in the
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following figure:

h3

~~~~
~~

~~
~

ÃÃ@
@@

@@
@@

h5

~~~~
~~

~~
~

ÃÃ@
@@

@@
@@

h2

ÄÄ¡¡
¡¡

¡¡
¡¡

h4 h6

ÁÁ>
>>

>>
>>

>

f 0

We show the argument for the example in the diagram.

The element h5 has two pseudo-reductions to h4 and h6. We apply the condition (*)

and obtain s1, s2 and k1 such that s1h4 →G,p k1 and s2h6 →G,p k1. Now we also have

s2h6 →G,p 0, so applying condition (*) again we see that s′k1 and 0 have a common

successor, which must be 0. Reassign to s1 the value s1s
′. This is shown schematically

in the following diagram:

s1h4

!!CC
CC

CC
CC

s2h6

}}{{
{{

{{
{{

ÃÃB
BB

BB
BB

B

k1
//________ 0

We now have the following situation:

s1h3

{{xxxxxxxx

##FFFFFFFF

s1h2

||yy
yy

yy
yy

s1h4

!!CC
CC

CC
CC

s1f k1

ÂÂ>
>>

>>
>>

0
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The element s1h3 has two successors s1h2 and s1h4, so we apply (*) to obtain:

s3s1h2

##FF
FF

FF
FF

F s4s1h4

{{xx
xx

xx
xx

x

$$HH
HH

HH
HH

H

k2 s4k1

!!B
BB

BB
BB

B

0

Now s4s1h4 has two successors, leading to the diagram

s5s3s1h2

xxqqqqqqqqqq

%%JJJJJJJJJ

s5s3s1f s5k2

!!CC
CC

CC
CC

s6s4k1

||xx
xx

xx
xx

x

""DD
DD

DD
DD

D

k3
//_________ 0

where as before s′′k3 pseudo-reduces to zero. Continuing in this fashion, we obtain

the following sequence of diagrams:

s6s5s3s1f

$$IIIIIIIIII s7s5k

##GG
GG

GG
GG

G

||yyyyyyyy

k4 s7k3

!!B
BB

BB
BB

B

0

s8s6s5s3s1f

&&LLLLLLLLLL

s8k4

!!CC
CC

CC
CC

s9s7k3

||xx
xx

xx
xx

x

""EE
EE

EE
EE

E

k5
//_________ 0

But this last diagram provides s = s8s6s5s3s1 such that s.f pseudo-reduces to zero.

We now show that the condition (*) holds; that is, for two pseudo-reductions of f ∈ I

to h1 and h2, we shall show that sh1 ↓G s′h2, for some s, s′ ∈ S(G).
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Case 1: h1 and h2 are pseudo-reductions via different terms of f in different sum-

mands of f . For f1, f2 ∈ G suppose f1 reduces the term DTp1

1 , and f2 reduces the

term DTp2

2 . We have

s1h1 = Hcoeff(Dγ1
f1)f − coeff(f, DTp1

1 )DTj1
1 Dγ1

f1, and

s2h2 = Hcoeff(Dγ2
f2)f − coeff(f, DTp2

2 )DTj2
2 Dγ2

f2, where the index j1 is either p1− 1

if γ1 6= 0 or p1 − Hp(f1) if γ1 = 0, and similarly for j2, while the si’s are the relevant

gcd’s.

Reducing s1h1 via the term DTp2

2 using Dγ2
f2 yields

s3s1h1 = Hcoeff(Dγ2
f2)Hcoeff(Dγ1

f1)f−

Hcoeff(Dγ2
f2)coeff(f, DTp1

1 )DTj1
1 Dγ1

f1−

Hcoeff(Dγ1
f1)coeff(f, DTp2

2 )DTj2
2 Dγ2

f2+

coeff(coeff(f, DTp1

1 )DTj1
1 Dγ1

f1, DTp2

2 )DTj2
2 Dγ2

f2

where s3 is the relevant gcd. The formula for the pseudo-reduction of s2h2 via DTp1

1

using Dγ1
f1 inverts the indices 1 and 2. It can be seen that the first three summands

are symmetric in the indices 1 and 2. The last term can be reduced away using Dγ2
f2

or Dγ1
f1, respectively.

Hence we have that sh1 ↓G s′h2, for some s, s′ ∈ S(G).

Case 2: h1 and h2 are reductions of f via different terms in the same summand of

f , which we write as

A.DTp1

1 .DTp2

2 .

As before we have HDT(Dγ1
f1) = DT1, HDT(Dγ2

f2) = DT2. We assume without

loss of generality that DT1 > DT2, and that A contains no powers of DT1 or DT2.

If neither DT1 divides Hcoeff(Dγ2
f2) nor DT2 divides Hcoeff(Dγ1

f1), then the proof
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that sh1 ↓G s′h2, for some s, s′ ∈ S(G) mirrors that of Case 1. So suppose (letting

red stand for reductum) that

Dγ1

f1 = B1.DTk1
2 .DTq

1 + red(Dγ1

f1)

Dγ2

f2 = B2.DTq′
1 .DTk2

2 + red(Dγ2

f2)

Since HDT(Dγ2
f2) = DT2, q

′ = 0. We show the calculation for k1 < k2, the case

k1 ≥ k2 being similar. Furthermore, since DT2 ∈ S(G) and S(G) ∩ G = φ, then

red(Dγ2
f2) 6= 0. Since k2 > k1 ≥ 1, we have γ2 = 0.

Finally let

f = A.DTp1

1 .DTp2

2 + rest(f)

s1 = gcd(B1, A)

and s2 = gcd(B2, A)

Then
s1h1 = B1f − A.DT

(p2−k1)
2 DT

(p1−q)
1 Dγ1f1

and s2h2 = B2f − A.DT
(p2−k2)
2 DTp1

1 .f2

so that

B2s1h1 −B1s2h2 = −A.DT
(p1−q)
1 DT

(p2−k2)
2 .

[B2DT
(k2−k1)
2 Dγ1

f1 −B1.DTq
1f2].

Set g = [B2DT
(k2−k1)
2 Dγ1

f1 −B1.DTq
1f2].

(If the Bi are monomials, then g is proportional to the algebraic Spolynomial of Dγ1
f1

and f2.)

We have

g = B2DT
(k2−k1)
2 red(Dγ1

f1)−B1.DTq
1red(f2).

Recall that red(f2) 6= 0. Furthermore, DT1 does not occur in f2, since HDT(f2) = DT2

and DT1 > DT2. Pseudo-reducing g with respect to f1 at the term DTq
1 yields

(B2DTk2
2 + red(f2))red(Dγ1f1).
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Regardless of whether red(Dγ1
f1) contains any powers of DT2 or not, this last poly-

nomial pseudo-reduces to 0 with respect to f2. Hence we have that

B2s1h1 −B1s2h2 →G,p 0.

Since the Bi ∈ S(G), we have by property PR3 that sh1 ↓G s′h2, for some s, s′ ∈ S(G),

as required.

Case 3: h1 and h2 are reductions of f via the same term DTp. In this case we have

HDT(Dγ1
f1) = HDT(Dγ2

f2) = DT. From the formulae above for s1h1, s2h2 we have

that

Hcoeff(Dγ2

f2)s1h1 − Hcoeff(Dγ1

f1)s2h2

= s coeff(f, DTp)DTkdiffSpoly(Dαf1, D
αf2)

where s = gcd(Hcoeff(Dγ1
f1), Hcoeff(Dγ2

f2)), and

k =





p− 1 γ1, γ2 6= 0

p− Hp(f1) γ1 = 0, γ2 6= 0

p− (Hp(f1)− Hp(f2)) γ1, γ2 = 0, Hp(f1) ≥ Hp(f2)

while α ∈ Nn . The multi-index α is non-zero in the case γ1, γ2 6= 0 only. We now

show that condition (CNI) implies that diffSpoly(Dαf1, D
αf2) must pseudo-reduce to

zero for all α ∈ Nn; then we can use property PR3 to show that sh1 ↓G s′h2, for

some s, s′ ∈ S(G).

We recall the following definition:

Definition. We define the map δ : {{fi, fj} | fi, fj ∈ Rn,m} → Nn. If HDT(f1) = pj
α1 ,

HDT(f2) = pj
α2 , and γ1 and γ2 are the indices of least degree possible such that

Dγ1
(HDT(f1)) = Dγ2

(HDT(f2)) then δ({f1, f2}) = α1 + γ1 = α2 + γ2.

If Hu(f1) 6= Hu(f2) then δ({f1, f2}) = 0.

Since HDT(Dγ1
f1) = HDT(Dγ1

f1), we have Hu(Dγ1
f1) = Hu(Dγ2

f2). Let δij =

δ({fi, fj}). Repeating the calculations above for f = diffSpoly(Dα1
fi1 , D

α1
fj1), with
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fi1 , fj1 ∈ G, with the DT we are reducing with respect to fi2 , fj2 ∈ G having

associated multi-index ε ∈ Nn, the ‘difference’ of the pseudo-reductions contains

diffSpoly(Dα2
fi2 , D

α2
fj2) for some index α2. Since f is a diffSpolynomial, the term

with index α1 + δi1j1 has cancelled, so that ε is strictly less than α1 + δi1j1 . But

ε = α2 + δi2j2 . Now using induction on α and the {δij | fi, fj ∈ G}.

Proof of Lemma 7 (2): For f ∈ I(G), such that f 6→G,p 0, there exists s ∈ S(G)

such that s.f →G,p 0. We can assume that f is in normalp-form. Look at a pseudo-

reduction of sf at the term DTp, using g0 ∈ G. There are two possibilities:

(i) DTp occurs in s

(ii) DT occurs to some power in both s and f .

Suppose condition (SPR) is satisfied. Then the case (1) cannot occur. But neither

can case (2), since then a suitable power of s, which is also an element of S(G), would

pseudo-reduce. Thus we arrive at a contradiction.

Proof of Lemma 7 (3): For f ∈ I(G), such that f 6→G,p 0, there exists an s ∈ S(G)

such that s.f →G,p 0. It cannot be that s →G,p 0, for then ∃s′ ∈ S(G) such that

s′.s ∈ I(G) (by PR4), which contradicts S(G) ∩ I(G) = φ. We can assume that f is

in normalp-form.

Look at a pseudo-reduction of s.f at the term DTp in some summand of s.f , using

g0 ∈ G. We have that DT = DαHDT(g0). There are two possibilities:

(i) DTp occurs in s

(ii) DT occurs to some power in both f and s.

Suppose the condition (GAC) holds, and consider the possibility (i). If DTp occurs in

some Hcoeff(g) or Sep(g) for some g ∈ G, then g0 pseudo-reduces that g, so that by

(GAC), Dαg0 ∈ Ialg(G). Otherwise DT occurs in some Hcoeff(g) or Sep(g), but only

to powers less than in g0. Thus HDT(g0) = DT. Either way, the pseudo-reduction of

sf has the form h1 = s′sf − coeff(sf, DTp)DTkg′ for some g′ ∈ Ialg(G), k ∈ N. Now

consider the second possibility (ii). In this case, DT occurs in f but too small a power

to be pseudo-reduced by g0. In this possibility, the pseudo-reduction of sf has the
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form

h1 = s′sf − coeff(sf, DTp)DTkg0, k ∈ N.

Now consider the second step in the pseudo-reduction of sf to zero. This time there

is a third possibility, namely our new DT satisfies

(iii) DTp occurs in g0 or g′ (both elements of Ialg(G), so that DT ∈ indets(G)).

Note we do not need DT to be HDT(g0) or HDT(g′) if the highest power is one. By

the condition (GAC), and using similar reasoning as above, a pseudo-reduction of such

a term leads to the second pseudo-reduction of sf having the form

h2 = s′′ h1 − coeff(h1, DTp) g′′ g′′ ∈ Ialg(G).

Continuing until sf is pseudo-reduced to zero, we obtain an “expansion” of sf ,

namely, s′sf = f0 +
∑

difi, where f0, fi ∈ Ialg(G), the di are in normalp-form and

indets(di) ∩ indets(G) = φ. (Recall that ∀s ∈ S(G), indets(s) ⊆ indets(G), so that

g′ ∈ Ialg(G) implies sg′ ∈ Ialg(G).)

We now show that the expansion of s′sf and the fact f ∈ I(G) implies that f has

a similar expansion. So suppose not, i.e. suppose that to obtain f we need to dif-

ferentiate elements of G (derivatives not contained in Ialg(G)). Consider the highest

derivative term of one of the differentiated elements of G. This derivative term can-

not appear in f since it does not appear in s′sf and indets(f) ⊆ indets(s′sf). Thus

it must cancel with another derivative term, i.e. the expansion of f involves differ-

ential S polynomials and their pseudo-reductions. But all differential S polynomials

pseudo-reduce to zero. Since f is in normalp-form, we have a contradiction.

Example 6 (a coherent system that is not a DGB). Consider the system Σ

generated by

f1 = u2
x − 1

f2 = u2
y − 1

f3 = (ux + uy)uz − 1

in the lexicographic ordering with z > y > x. Then S(G) = M{ux, uy, ux + uy}.
The three generators of Σ form an auto-reduced set, and all diffSpolynomials pseudo-

reduce to zero. Now uyf3−uzf2−uxf3 +uzf1 = ux−uy ∈ I(F ), but ux−uy does not
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pseudo-reduce to zero. However, there exists an element s of S(G) such that s(ux−uy)

does pseudo-reduce to zero, namely s = ux + uy.

Theorem 1. Let G be a finite set of differential polynomials. Suppose that

(i) diffSpoly(fi, fk) →G,p 0 ∀fi, fk ∈ G

(ii) G is a Gröbner basis for Ialg(G) (i.e. every element of Ialg(G) reduces (alge-

braically) to zero with respect to G.) and either:

(SPR) for all s ∈ S(G), s = normalp(s, G)

or

(GAC) for f, g ∈ G, if g pseudo-reduces f at the derivative term DT = DαHDT(g),

(DT 6= HDT(f) if Hp(f) = 1), then Dαg ∈ Ialg(G), and S(G) ∩ I(G) = φ.

Then G is a differential Gröbner basis for I(G).

Notes:

(1) If G is auto-reduced, condition (GAC) holds trivially.

(2) The condition S(G)∩ I(G) = φ is necessary. An example appears in Chapter 5

which violates this condition and for which the set is not a DGB.

(3) A close examination of the proof of Lemma 7 shows that one can replace the

condition S(G) ∩ I(G) = φ with the condition normalp(s,G) 6= 0 ∀s ∈ S(G).

(4) Schwarz [48] considers orthomonic systems (following Janet and Riquier.)

Such systems can be written HDT(f) + ... = 0, where the remainders of all the

equations in the system do not contain any highest derivative term or any derivative

of them. For such systems, coherence will guarantee the system is a DGB, since

they are automatically Gröbner bases for the algebraic ideal they generate, and the

condition SPR holds.

Proof. We first show that the conditions of being coherent, a Gröbner basis for the

algebraic ideal, and SPR are sufficient to guarantee S(G) ∩ I(G) = φ. Suppose not.

Let s ∈ S(G) ∩ I(G). Now SPR implies that

indets(S(G)) ∩ {Dα(HDT(g)) | α ∈ Nn, g ∈ G} = φ.
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Hence the expansion of s involves cancelling of the highest terms of the elements of G,

either algebraically or differentially. But that implies that there is either an algebraic

or differential S polynomial that does not pseudo-reduce to zero, a contradiction.

Applying Lemma 5, ∀f ∈ I(G), either f →G,p 0, or normalp(f) = f0 + Σdifi, where

f0, fi ∈ Ialg(G), the di are in normalp-form and indets(di) ∩ indets(G) = φ. But G is

a Gröbner basis for Ialg(G), so f →G 0. But if f reduces to zero, it pseudo-reduces

to zero. Thus, G pseudo-reduces every element of I(G) to zero, and hence it is a

differential Gröbner basis for I(G).

2.9 The Algorithms

We now present three algorithms. The first is analogous to Buchberger’s, and was

first written down by Carrà-Ferro [12] , who called it the Kolchin-Ritt algorithm. As

noted above, this algorithm generates a DGB where the input equations are linear.

ALGORITHM KOLCHIN-RITT

INPUT: a finite basis F = {f1, f2, ..., fN} for a differential ideal I

a term ordering

OUTPUT: sets F ′ = reduceall(F ), X = X(reduceall(F ))

a set G =Kolchin-Ritt(F ) such that

S(G) ∩ I(G) = φ =⇒ ∀g ∈ I(G), ∃s ∈ S(G) such that sg →G,p 0
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G := F

pairset:= {{fi, fk} | fi, fk ∈ G}
while pairset 6= {}
for {fi, fk} in pairset do

pairset:=pairset minus {{fi, fk}}
m := normalp(diffSpoly({fi, fk}), G)

if m 6= 0 do

pairset:=pairset union {{fi,m} | fi ∈ G}
G := G union {m}

end

We need the condition S(G) ∩ I(G) = φ not only in order to use Lemma 7, but also

because spurious zeroes can result when pseudoreducing with a polynomial whose

highest coefficient or separant pseudo-reduces to zero (so that S(G) ∩ I(G) = φ is

violated).

Proof of termination of Kolchin-Ritt :

Let the basis after the nth iteration be Gn, and let gn be the least element of Gn.

Consider the sequence {gn}. Since Gn ⊃ Gn−1, this sequence is decreasing and hence

terminates, at N1, say. Denote the terminal value by h1. Now iterate the argument

for n > N1, on Gn\{h1}. Continuing in this way, we produce an increasing sequence

H = {hm}. Now every element of GN\GN−1 is pseudo-reduced with respect to every

element of GN−1, and hence in the sequence H, hm is pseudo-reduced with respect to

{h1, ..., hm−1}. If the sequence H is infinite, the sequence {Hu(hm)}, will be infinite

for at least one unknown uj, and we consider the subsequence of H consisting of those

elements with highest unknown uj. Examining the sequence HI = {xαm|HDT(hm) =

pj
αm}, we obtain by Dickson’s Lemma for polynomial ideals that ∃M such that for

m > M, xαm
has a divisor in one of the {xα1

, ..., xαM−1}. This contradicts the fact

that the sequence is pseudo-reduced. Thus for some M1,m > M1 ⇒ HDT(hm) =
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HDT(hm1). But in a pseudo-reduced sequence, if the HDT’s terminate, so does the

sequence. 2

We now show an algorithm that “Almost Completes” a set of d.p.’s to a new set that

does satisfy GAC.

ALGORITHM GAC

INPUT: a set F of d.p.’s

OUTPUT: a set G ⊃ F such that G satisfies GAC

G := F

H := F ;

while H 6= {}
H := {}
for g in G

for f in F

for DTp occurring in g

if DT = HDT(g) and Hp(g) = 1 then next

if DT = DαHDT(f) for some α and Dαf 6∈ Ialg(G)

then H := H union {Dαf}
G := G union H

Termination of GAC:

Denote by Fn the set H at the end of the nth iteration, F0 = F . We show ∃N such

that Fn = {} for n > N .

The set Fn consists of those polynomials of the form Dαfi, which do not reduce to

zero with respect to Fn−1, for some fi ∈ F such that DαHDT(fi) occurs in an element

of Fn−1. Note Fn∩Fn−1 = φ. Suppose the sequence {Fn} is infinite. Pick the highest
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element of Fn, tn = Dσfj, where σ = σ(n), j = j(n), with DσHDT(fj) occurring in

some element sn of Fn−1, and DσHDT(fj) 6= HDT(sn) if Hp(sn) = 1. Let S = {sn}.
Now by construction, tn−1 ≥ sn−1 > tn, so that tn−1 > tn. (Note: if Hp(sn) > 1, then

any derivative of fj such that DαHDT(fj) = HDT(sn) will be less than sn. If we do

not need to differentiate fj to obtain HDT(fj) = HDT(sn), then since fj is in F it is

not added to H.) Thus {tn} is a strictly decreasing sequence, which terminates by

Lemma 2. 2

Proof of correctness of GAC:

Suppose that a derivative term DT occurs in some element tn of Fn, and an element

tn−1 of Fn−1 pseudo-reduces tn at DT. Now tn−1 = DαHDT(fi) for some element fi

of F , so that fi pseudo-reduces tn at DT. 2

Finally, a simple check will determine if a set G of D.P.’s satisfies SPR. We first

check that no element of G pseudo-reduces any other element’s highest coefficient or

separant. We then check that no HDT occurs in any other element’s highest coefficient

or separant. Finally, we check that no HDT occurs to any power other than one. (Any

system containing a polynomial whose HDT occurs to a power higher than 1 will never

satisfy SPR.) If the check holds, we write SPR(G) = true, otherwise we write SPR(G)

= false.

Definition 14. (GBalg(G,termorder)).

For a set of d.p.s G, denote by GBalg(G,termorder) the Gröbner basis for Ialg(G)

generated by Buchberger’s algorithm (using algebraic reduction with respect to the

given termorder.)

ALGORITHM DIFFGBASIS

INPUT: a set F of d.p.s

a term ordering
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OUTPUT: sets G such that I(G) = I(F ),

(1) G is coherent

(2) G satisfies SPR or GAC

Thus if S(G) ∩ I(G) = φ, then G is a differential Gröbner basis for I(F ).

G := {}
H := F

while G 6= H

G := H

H :=Kolchin-Ritt(G)

if SPR(H) then G := H, end

H := GBalg(H)

H := GAC(H)

Notes (1): the set of differential coefficients S(G) will be minimized if G is converted

to an algebraically reduced set (i.e. the output of the Gröbner basis algorithm is

reduced.)

(2): The proof of Lemma 7 (1) Case 3 shows that if a set F is coherent, then

diffSpoly(Dαfi, D
βfk) →F,p 0 for all α, β ∈ Nn. Hence we can reduce the number

of pairs considered in Kolchin-Ritt after the first iteration. Such a reduction may

not improve the efficiency of the algorithm, as experimental evidence shows. It ap-

pears that for the Maple symbolic algebra programme in which these algorithms have

been implemented, keeping the outputs of previous iterations in memory causes a

significant increase in running time.

Proof of termination of DIFFGBASIS:

Let Fn be the output of the algorithm after the nth iteration. We have Fm ⊃ Fm−1.

Let hm be the maximum element of Fm\Fm−1. As in the proof of termination of

the Kolchin-Ritt algorithm we consider for the sequence H = {hm}, the sequence
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HI = {xαm | HDT(hm) = pj
αm}, (if necessary for a suitable sub-sequence of H, all

with the same highest unknown uj). We obtain by Dickson’s Lemma for polynomial

ideals that ∃M such that for m > M, xαm
has a divisor in one of the {xα1

, ..., xαM−1}.
Let m > M . Now the output of Kolchin-Ritt is pseudo-reduced with respect to FM ,

while the Gröbner basis algorithm does not alter the list of derivative terms occurring

in H, so there is an d.p. tm, of the output of GAC in Fm or Fm−1, containing the

highest derivative term of hm. The d.p. tm has its highest derivative term occurring in

a d.p. in Fm−1\Fm−2 or in Fm−2\Fm−3. Hence for m > M, HDT(hm) ≤ HDT (tm) ≤
HDT(hm−1) or HDT(hm−2). Hence the sequence {HDT(hm)} terminates. Consider

next the sequenceHP = {Hp(hm)}. No calculations performed in either Kolchin-Ritt,

GB or GAC lead to higher Highest powers, so HP also terminates at m = M .

Thus for m > M , the hm all have the same highest derivative term raised to the same

power. The algorithm GAC will not output a d.p. with the same HDTHp as hM , as

it outputs only d.p.’s whose HDT’s occur to some power in the separants and tails of

existing d.p.’s, while the output of Kolchin-Ritt is pseudo-reduced (Kolchin-Ritt will

not output another dp with the same HDT as hm−1), so we obtain that hm is output

by GB. Thus hm is the normal form of an Spolynomial. It is indeed possible to obtain

increasing higher coefficients, as the following calculation shows:

f1 = HC1HDT(hm) + tail1

f2 = HC2HDT2 + tail2

where HDT2 = HDT(f2) 6= HDT(hm).

Then

Spoly(f1, f2) =
HC1HDT(hm)tail2 − HC2HDT2tail1

gcd(HC1, HC2)
.

So all we require is that tail2 > HC1 and gcd(HC1, HC2) 6= 1, so that the Spoly does

not reduce to zero.

Consider the sequence HC = {Hcoeff(hm), m > M}. We show the sequence HC
must terminate. Suppose the sequence HC increases indefinitely. We follow the same
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argument as for H above on the sequence {HDT(Hcoeff(hm)) : m > M}, to obtain a

d.p. tm output by GAC that contains the DT, HDT(Hcoeff(hm)) for m > M0 (say).

We have tm = Dαm
(gm) for some αm ∈ Nn, where the gi are output by GB or Kolchin-

Ritt. The DT, HDT(Hcoeff(hm)) will be in the tail of Dαm
(gm) (by the calculation of

the Spoly above). Comparing gM0+1 with gM0+2 we have that if HC increases, the tail

of gM0+2 is higher than that of gM0+1 . By considering the sequence {HDT(tail(gi))}
and applying the Dickson’s Lemma argument, we have that for large enough i, the

gi are output by GB. Since the GB algorithm does not alter the list of DT’s in its

input, we obtain a d.p. output by GAC in the previous iteration of DIFFGBASIS

containing the DT, HDT(tail(gi)). In this way, we see that indefinite increasing in

the sequence HC is caused by successive differentiation of existing d.p.s in the GAC

algorithm and forming Spolynomials of the hi with this output of GAC. But the

output of GAC is always lower than its input d.p.’s, so that any such succession must

lead to a decreasing Hcoeff(hm), a contradiction. The same argument shows that

the sequence {Hcoeff(Hcoeff(hm))} must terminate. Finally for sufficiently high m,

Hmon(hm) = Hmon(hm+1). Now none of GB, Kolchin-Ritt or GAC will output a

d.p. with the same highest monomial as an existing d.p., so that the sequence {hm}
terminates. 2

There is another way to achieve GAC, namely by converting bases to be auto-reduced.

This method causes the output ideal to be smaller than the input ideal, with a smaller

solution set. In some examples, the output ideal has only the trivial solution, as shown

in Example 5, Chapter 3.

2.10 Chapter 2, Conclusion

We have defined a differential Gröbner basis to be a basis with respect to which every

element of the ideal pseudo-reduces to zero, and we have proved a characterisation
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theorem for such a basis.

The algorithm to generate a differential Gröbner basis is seen to require both the

algebraic version of Buchberger’s algorithm, and the differential analogue of Buch-

berger’s algorithm, the Kolchin-Ritt algorithm. In addition, a completion algorithm

is required. All conditions necessary to ensure the output is a differential Gröbner

basis are guaranteed to hold, bar one: if the output is G (say), then we do not check

whether S(G) ∩ I(G) = φ holds in general.



Chapter 3

PRACTICE IS EASIER THAN

THEORY

This chapter demonstrates the algorithm on several types of systems, and the effects of

using different orderings is discussed. Further examples are to be found in Chapter 4,

where resolvent systems and elimination ideals are calculated, and in Chapter 5,

where several extensions to the algorithm are given.

The first example is that of a linear system in one unknown function with constant

coefficients. This class of examples can be viewed as polynomials in the operators{
∂

∂xi

}
, so the algebraic theory can be used for these examples. We show that the

differential theory yields exactly equivalent results to the algebraic algorithm for this

class of system.

We then discuss a linear example with variable coefficients. Thirdly, the well-known

calculations for the Korteweg-de Vries equations are shown to be an example of the

algorithm.

69
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The last two systems are non-linear systems. It is in these systems that the conditions

for Theorem 1 need to be checked carefully.

It is not hard to see from these examples that the algorithm is used to generate from

the given equations more equations that are in some sense simpler. That is, they

involve fewer unknowns and variables. One then solves, if possible, from the simplest

equations up. This phenomenon is the content of the ”elimination ideals” which are

discussed in the next chapter. Obviously, finding the “right” coordinates and the

right ordering is vital both to efficiency and to the utility of the output.

A major problem with both the algebraic theory and the differential theory is that

seemingly simple input equations can generate expressions involving hundreds of

terms. An interesting paper by D. Lazard [31] indicates another method, albeit

less intuitive, which contains the possibility that control of the S-sets can be made

part of the theory.

3.1 Example 1: Linear, constant coefficients

The system has one unknown u, and five variables {x, y, z, w, t}, and is generated by

{
f1 = uwt − uxx

f2 = uzt − uxw

Assume the lexicographic ordering based on t > w > z > y > x, so that HDT(f1) =

uwt, and HDT(f2) = uzt. Then

diffSpoly(f1, f2) =
∂

∂w
f2 − ∂

∂z
f1 = uxxz − uxww.

This equation does not reduce with respect to either f1 or f2, so it must be added to

our basis:

f3 = uxxz − uxww.
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We now iterate the algorithm on the system F = {f1, f2, f3}. Clearly diffSpoly(f1, f2)

now reduces to zero with respect to F . We calculate

f1Sf3 =
∂

∂y
f3 − ∂2

∂x∂w
f1

= uxxzt − uxxxw

=
∂2

∂x2
f2

so this diffSpoly reduces to zero. Similarly, f2Sf3 reduces to zero, so that the output

of the Kolchin-Ritt algorithm is

newbasis = {f1, f2, f3}.
We now note that the conditions for Theorem 1 apply, so that newbasis is a differential

Gröbner basis for the ideal I = 〈f1, f2〉F . Where the equations are linear, the output

of the Kolchin-Ritt algorithm is always a differential Gröbner basis.

Linear systems in one unknown and with constant coefficients can be written(∑
α

cα,iD
α

)
u = 0 i = 1, . . . , r and cα,i ∈ F.

Such systems are equivalent to algebraic polynomials in the operators

{
∂

∂xi

}
and

the differential Gröbner basis can be calculated with either the algebraic algorithm

on the operator polynomials or with the Kolchin-Ritt algorithm. The results will be

the same.

Let us now calculate the Gröbner basis for the equivalent algebraic system, which is

obtained by translating Dαu into xα:
{

f1 = wt− x2

f2 = zt− xw
(∗)

Then Spoly(f1, f2) = xw2 − x2z, which is the translation of the differential S polyno-

mial obtained above. The iteration and termination of the algebraic algorithm is a

translation of the calculations above, yielding a Gröbner basis for (∗), namely

{f1, f2, x
2z − xw2}.
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3.2 Example 2: Linear systems, variable

coefficients

The second example is a system of linear equations with variable coefficients ([38,

Ex.13, p.135]) in one unknown function depending on three variables, {x, y, z}.

Let {
f1 = uzz − yuxx

f2 = uyy

Assume the inverse-lexicographic ordering. This is the lexicographic ordering based

on z > y > x. Then

HDT(f1) = uzz,

HDT(f2) = uyy,

and

diffSpoly(f1, f2) =
∂2

∂y2
f1 − ∂2

∂z2
f2

= −yuxxyy − 2uxxy.

This does not pseudo-reduce with respect to f1, but pseudo-reducing with respect to

f2 yields a new equation which we add to our basis, namely

f3 = uxxy.

(We do not need to keep the constant coefficient.)

After one iteration of the algorithm, our basis is

L =





f1 = uzz − yuxx

f2 = uyy

f3 = uxxy

Now diffSpoly(f2, f3) = 0, (since they both consist of one term), but

diffSpoly(f1, f3) =
∂3

∂x2y
f1 − ∂2

∂z2
f3
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= −uxxxx − yuxxxxy.

The only equation among {f1, f2, f3} to (pseudo-)reduce diffSpoly(f1, f3) is f3, yielding

a new equation to add to our basis, namely

f4 = uxxxx.

Trivially,

diffSpoly(f2, f4) = diffSpoly(f3, f4) = 0,

while

diffSpoly(f1, f4) =
∂4

∂x4
f1 − ∂2

∂z2
f4

= −yu(6,0,0).

This (pseudo-)reduces to zero with respect to {f4}. Now the diffSpoly(fi, fj), for

i, j ∈ {1, 2, 3, 4} are either identically zero or reduce to zero or an element of the basis

{f1, f2, f3, f4}, which means that they all reduce to zero with respect to that basis.

Thus after two iterations the algorithm terminates yielding the output

newbasis =





f1 = uzz − yuxx

f2 = uyy

f3 = uxxy

f4 = uxxxx

Once again all the conditions for Theorem 1 hold, and we conclude that newbasis is

a differential Gröbner basis.

After the first iteration, the highest variable, z, was eliminated, and after two iter-

ations we have an equation involving only x, the lowest variable. In a lexicographic

ordering, the algorithm produces successive eliminations; this feature is discussed

fully in Chapter 4. With respect to the inverse-lexicographic ordering, the equation

f4 is the least member of the ideal generated by {f1, f2}, since the least member of

the differential Gröbner basis is the least member of the ideal generated by that basis.
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Other orderings yield different bases. The output of the algorithm using the reverse-

lexicographic ordering is

newbasis2 =





f1 = uzz − yuxx

f2 = uyy

f3 = yuyzz − uzz

f4 = uzzzz

It is easier to solve the original system using the output obtained with the inverse-

lexicographic ordering. Solving

uxxxx = 0

yields

u = a3x
3 + a2x

2 + a1x + a0,

where the ai are functions of y and z. Next use

uxxy = 0

to obtain

6

(
∂

∂y
a3

)
x + 2

∂

∂y
a2 = 0

or
∂

∂y
a3 = 0 and

∂

∂y
a2 = 0.

From

uyy = 0

is obtained

a1 = b1y + b0, a0 = c1y + c0,

so that

u = a3x
3 + a2x

2 + b1xy + b0x + c1y + c0

with b1, b0, c1 and c0 being functions of z only, as are a3 and a2.

From

uzz − yuxx = 0
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is obtained

∂2

∂z2
(a3x

3 + a2x
2 + b1xy + b0x + c1y + c0)− 6a3xy − 2a2y = 0.

Comparing coefficients of like monomials yields





∂2

∂z2
a3 = 0

∂2

∂z2
a2 = 0

∂2

∂z2
b2 = 6a3

∂2

∂z2
b0 = 0

∂2

∂z2
c1 = 2a2

∂2

∂z2
c0 = 0

Finally u is a polynomial in {x, y, z} depending on 12 arbitrary constants. As Pom-

maret remarks, such a solution is not apparent from the outset. The method used

to solve the system is not unlike the method used to solve linear systems, namely,

converting to echelon form first and then solving from the “bottom up”.

Linear systems with variable coefficients have the form
(∑

α,β,i

cα,β,ix
βDα

)
ui = 0 i = 1, . . . , r.

Such equations are also referred to as elements in the Weyl algebra. As well as the

methods outlined in this thesis, there are several other methods for calculating differ-

ential Gröbner bases for such systems. Galligo [19] discusses them from a geometric

viewpoint. In the case of one unknown, this case is also an example of the work of

Apel and Lassner [1] who generalized Buchberger’s algorithm to enveloping algebras

of finitely generated Lie algebras. For the linear case with variable coefficients, the

Lie algebra is

〈xi,
∂

∂xi

| i = 1, . . . , n〉F

with enveloping algebra, the so-called Weyl algebra, F
[
xi,

∂

∂xi

| i = 1, . . . , n

]
.
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There is an extensive literature on the Weyl algebra, whose ideals have been studied

from many points of view.

3.3 Example 3: A system with two unknowns

The third example shows elimination, not of differentiations with respect to certain

variables, but of certain unknowns. The equations are the Bäcklund equations for the

Korteweg-de Vries (KdV) equation and the modified KdV equation. There are two

unknowns {u, v} and two variables {x, y}. Take

F =

{
f1 = 2u + vx + v2

f2 = uxx + 2uv2 + 4u2 − uxv − 1
2
vy.

With the ordering being the lexicographical one based on v > u and y > x,

HDT(f1) = vx

and

HDT(f2) = vy.

Then

diffSpoly(f1, f2)

= −1

2

∂

∂y
f1 − ∂

∂x
f2

= −uy − vvy − uxxx − 2uxv
2 − 4uvvx − 8uux + 2uxxv + uxvx.

This can be pseudo-reduced at the terms containing vx and vy using f1 and f2 respec-

tively. The result is, after elimination of irrelevant constant factors,

f3 = uy + uxxx + 12uux,

that is, a form of the KdV equation. The unknown function v has been eliminated.

The set {f1, f2, f3} forms a differential Gröbner basis for I(F ).
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By using the ordering u > v, the output of the algorithm is, in addition to f1 and f2,

f3 = vy + vxxx − 6v2vy.

that is, the modified KdV equation. The unknown u has been eliminated.

It will be seen in Chapter 4 that differential Gröbner bases solve the Bäcklund problem

([39, p.644], [40]), which is to find all conditions on the separate unknowns in the

problem.

3.4 Example 4: A non-linear system

Let us now do an example where the coefficient of the highest derivative term is not

in F[x1, . . . , xn]. This system has one unknown function and three variables:

{
f1 = uz − uux

f2 = uyy.

Take the lexicographic ordering, with x > y > z. Then

diffSpoly(f1, f2) = uyyz − uyyux − 2uyuxy − uuxyy.

which pseudo-reduces to

f3 = uuyuyz − u2
yuz.

Now HDT(f3) = uyz. The diffSpoly(f2, f3) pseudo-reduces with respect to f2 to zero,

while

f4 = normalp(diffSpoly(f1, f3), {f1, f2, f3}) = u3
yu

2(−u2
z + 2uuzz).

Now HDT(f4) = uy, occuring to a power greater than one, as a factor of f4. So we

cannot conclude that any output G containing f4 is a differential Gröbner basis since

f4 ∈ S(G) ∩ I(G).
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Changing the order is clearly indicated. We show the output of the Kolchin-Ritt

algorithm for both orders that place y as the lowest variable:

In the lexicographic order with x > z > y, we obtain

G = Kolchin-Ritt(f1, f2) = {uyy,−uuyuzy + u2
yuz,−u2uyuzz + 2uu2

yuz, uz − uux}

Now S(G) = M({u, uy}), and in the lexicographic order based on x > z > y, no

element of S(G) pseudo-reduces. Thus condition (SPR) of Theorem 1 in Chapter 2

holds.

In the lexicographic ordering with z > x > y, the output of the Kolchin-Ritt algorithm

is

newbasis = {uz − uux, u
2
yuxx, uyuxy, uyy}

Now newbasis is a differential Gröbner basis for I(f1, f2); since S(newbasis) = M({uy})
and no element of this set pseudo-reduces i.e condition (SPR) holds and since newbasis

is a Gröbner basis for Ialg(G).

Using newbasis, we can find all solutions to f1 = 0, f2 = 0 that satisfy uy 6= 0. We

begin with the least element of newbasis, namely

uyy = 0.

This yields

u = F (x, z) + G(x, z)y.

The second lowest element of newbasis is

uyuxy = 0.

Since uy 6= 0, we have

u = F (x, z) + G(z)y.

Next we use the equation

u2
yuxx = 0.
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This yields

u = K(z)x + H(z) + G(z)y.

Finally we use the equation

uz − uux = 0

to obtain

u =
−x + by + c

z + a
,

where a, b, c are arbitrary constants.

In this example, the ordering used clearly makes a difference to the ease of solving

the equations.

3.5 Example 5: A non-prime system

This example shows that by choosing the condition GC to hold, rather than GAC, the

algorithm will not terminate.

The example

F =

{
vx − 2vu = 0

vy + v(u2 + 2ux) = 0

yields after one iteration of the algorithm (using v > u)

G =





vx − 2vu

vy + v(u2 + 2ux)

v(uy + uux + uxx)

and S(G) = M({uy + uux + uxx}).

It is easily verified that G is a differential Gröbner basis, since the condition (SPR)

of Theorem 1, Chapter 2 holds, and since G is a Gröbner basis of Ialg(G).
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Attempting to complete the set G to make the condition (GC) hold and to simultane-

ously be a Gröbner basis for Ialg(G), leads to an infinite set, containing all elements

of the form vDα(uy + uux + uxx), α ∈ Nn.

If instead of completing we convert the set to be pseudo-reduced (thus ensuring GC,

GAC are trivially satisfied), we obtain only the equation {v(uy + uux + uxx)}. Since

we cannot within the theory allow S(G) ∩ I(G) = φ, we have uy + uux + uxx 6= 0.

Thus we obtain only the trivial condition v = 0. Here we see the difference between

completing and insisting on auto-reduced sets.

If one wants to consider the equation uy + uux + uxx = 0 in addition to the first two

(i.e. v 6= 0), one must run the algorithm again with the input

F ′ = {vx − 2vu, vy + v[(u)2 + 2ux], uy + uux + uxx}.

The set F ′ is a differential Gröbner basis for I(F ′) in the order v > u.

Examples such as Example 5 above lead one to suspect that an ideal may not contain

a differential Gröbner basis that is also auto-reduced, if the ideal is not prime. (The

ideal generated by G = {v(uy + uux + uxx)} is also not perfect, since (vx(uy + uux +

uxx))
2 ∈ I(G) but vx(uy + uux + uxx) 6∈ I(G).) This example can be converted to a

prime one by taking w = ln(v), and writing the equations in terms of w and u.



Chapter 4

RESOLVENT SYSTEMS AND

ELIMINATION IDEALS

This chapter contains an application of differential Gröbner bases to calculate re-

solvent systems and elimination ideals. Examples are discussed. A comparison of

the Janet resolution of a system of PDE’s and the projective syzygy resolution of a

polynomial ideal is given.

4.1 Resolvent Systems

A system Σ can be written using general notation as D(u) = 0, where D is a (non-

linear) operator, and u represents a vector of unknown functions (u1, . . . , um). Let

v = (v1, . . . , vk) be in the range of D, i.e. there exists a u so that D(u) = v. In

general, the range of an operator is not the whole of (C∞(R))k It is necessary for v to

satisfy various compatibility conditions, written D(1)(v) = 0, also denoted by
∑(1);

this system is called the resolvent system (for the meaning of the index, see the next

81
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section, the Janet Resolution.) While the compatibility conditions D(1)(v) = 0 are

necessary conditions for v to be in the range of D, they are by no means sufficient.

A famous example by H. Lewy gives a single equation D(u) = v where D is linear, v

is C∞ and there is no solution u. ([29, p.235-9], see also [53], [15, Vol II p. 54, §4b]

and references there.)

The first example is a well-known result.

Example 1 (Resolvent system of the curl operator). In this example, ui ∈
C∞(U,R), where U ⊂ R3,

D




u1

u2

u3


 =




u3
y − u2

z

u1
z − u3

x

u2
x − u1

y


 ∈ (C∞(U,R))3

We seek the compatibility conditions on




v1

v2

v3


 such that

D




u1

u2

u3


 =




v1

v2

v3




We input the following equations into the algorithm with any lexicographic ordering

such that ui > vj, all i, j. 



u3
y − u2

z − v1

u1
z − u3

x − v2

u2
x − u1

y − v3

The output contains the equation

v1
x + v2

y + v3
z = 0.

This is the only equation in the output where all the ui have been eliminated. Since

the equations are linear, the output is a differential Gröbner basis for the input ideal.

By Theorem 3 later in this chapter, the equation v1
x + v2

y + v3
z = 0 generates the ideal

of compatibility conditions.
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Example 2 (Resolvent system of a differential ideal). (cf Example 2, Chapter 3,

[39, p.636]) Consider the system Σ in R3,1 generated by

uzz − yuxx = 0

uyy = 0.

We seek to find the resolvent system, i.e. the equations that must be satisfied by

unknown functions v and w in the new system Σ∗

uzz − yuxx = v

uyy = w

if a solution u is to exist. Here v and w are functions of the variables {x, y, z}. Then

with the lexicographic ordering based on x < y < z, the output of the algorithm is

uzz − yuxx − v = 0

uyy − w = 0

2uxxy − wzz + vyy + ywxx = 0

2uxxxx − wzzzz + vyyzz + 2ywxxzz

+2vxxy − yvxxyy − y2wxxxx = 0

−wyzz + vyyy + 3wxx + ywxxy = 0

−w(0,0,6) + v(0,2,4) + 3yw(2,0,4) + 2v(2,1,2)

−2yv(2,2,2) − 3y2w(4,0,2) + 2v(4,0,0) − 2yv(4,1,0)

+y2v(4,2,0) + y3w(6,0,0) = 0.

The final two equations involve only v and w. Thus these equations are necessary

conditions on v and w in order for a solution u to exist. It is a result of Theorem 3

that the final two equations generate the resolvent system.

In his book “Differential Galois Theory”, Pommaret [39, p.636] writes “How could

we obtain D(1) from the knowledge of D ? . . . this problem is a difficult one . . .

[and] involves necessarily diagram chasing.” The method used here is conceptually

and practically simpler than that of Pommaret, and involves no diagram chasing.
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The resolvent systems in the examples above were calculated by selecting those equa-

tions in the output of the algorithm that involved only derivatives of the image func-

tions, the vi. For the calculation, the ordering on the unknowns must be ui > vj for

all i, j.

More generally, if one chooses a lexicographic ordering on the xi and the uj, say

xi1 < xi2 < · · · < xin and uj1 < uj2 < · · · < ujm , then those equations in a differential

Gröbner basis for the ideal containing only {uj1 , . . . , ujs} and derivatives with respect

to {xi1 , . . . , xir} generate the differential ideal

I ∩ Rdiff[xi1 , . . . , xir , u
j1 , . . . , ujs ].

This result is Theorem 4, which is the analogue of Trinks’ Corollary [54, p. 484,

Chapter 1].

The term resolvent system has been used by Pommaret in this elimination sense: in

a system with more than one unknown, the equations satisfied by certain subsets of

the unknowns are also called resolvent systems.

Theorem 3. Assume a lexicographic ordering. Let Σ = {fi | i = 1, . . . , N} be the

generators of a differential ideal I of Rn,m. Take N new unknowns {vi | i = 1, . . . , N}
with some ordering, and consider the associated system Σ∗ = {fi−vi | i = 1, . . . , N}.
Add to the ordering uj > vi all i and j . Those equations in the output of the algorithm

involving only the {vj} forms a set of generators for the resolvent system.

The proof follows from Theorem 4. It is interesting to note that this method of

generating the dual of the syzygy module has been used by Buchberger to give the

implicitization of a parametric system (Chapter 1 and [9]).
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4.2 The Janet Resolution

Iterating the process of forming the resolvent system leads to the Janet resolution of

the system. Let S be the solution space of the equation D(u) = 0 where u ∈ Ri0 (a

suitable function space) . Let the resolvent system be denoted D(1) : Ri1 →Ri2 , and

let the resolvent system of the resolvent system be denoted D(2), and so on. Then we

have the following sequence of maps:

0 // S inc // Ri0
D // Ri1

D(1)
// Ri2

D(2)
// Ri3

D(3)
// . . .

The map inc is the inclusion map. In this sequence, we have the composition of

consecutive maps is zero:

D(n)D(n+1) = 0

In standard algebraic theory, a resolution must also be exact. By this is meant, that

kerD(n+1) = imD(n). In the Janet resolution, we have only that kerD(n+1) ⊃ imD(n).

Example 3 ( Janet resolution of exterior differentiation operator.). A fa-

miliar example of a resolution is the Poincaré d-sequence. Let U be an open set in

Rn, Λk(U) the set of exterior k-forms on U , and let d be the usual exterior derivative.

Then the sequence

0 // Λ0(U)
d // Λ1(U)

d // . . . d // Λn(U) // 0

is a resolution for the operator d. In the case U is homeomorphic to the unit ball

B3 = {x ∈ R3 | |x| ≤ 1}, this particular Janet resolution is a resolution in the

algebraic sense: du = v has a solution if and only if dv = 0.

Let us look at this sequence in co-ordinates in the case n is 3. We have Λ0(U) = {f :

U → R3}, and

df =
∂f

∂x1

dx1 +
∂f

∂x2

dx2 +
∂f

∂x3

dx3.
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Now suppose df = v, so that

(∗)





∂f

∂x1

= v1

∂f

∂x2

= v2

∂f

∂x3

= v3

From the fact that partial derivatives commute, we have that

(∗∗)





∂v1

∂x2

− ∂v2

∂x1

= 0

∂v3

∂x2

− ∂v2

∂x3

= 0

∂v1

∂x3

− ∂v3

∂x1

= 0.

The equations (∗∗) are the equations v must satisfy in order for an f to exist such

that df = v, and this is the resolvent system for d|Λ0(U). In the notation of exterior

differentiation, they are written dv = 0.

If one takes as the input to the DIFFGBASIS algorithm the equations (∗), then the

output will be the equations (∗) and the equations (∗∗).

Continuing, we have for d|Λ1(U), that dv = w implies

(•)





∂v2

∂x1

− ∂v1

∂x2

= w3

∂v3

∂x2

− ∂v2

∂x3

= w2

∂v1

∂x3

− ∂v3

∂x1

= w1.

With the equations (•) as the input to the DIFFGBASIS algorithm, the output will

be the equations (•) and the equation

(••) ∂w1

∂x1

+
∂w2

∂x2

+
∂w3

∂x3

= 0

We now turn to another example where the result is not known in advance.
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Example 4 (The Janet resolution of Example §2, Chapter 3.). The system

Σ(0) is
f

(0)
1 = uzz − yuxx

f
(0)
2 = uyy.

The first resolvent system Σ(1) was calculated in Example 2 of the first section of this

chapter. This is

f
(1)
1 = − v2

yzz + v1
yyy + 3v2

xx + yv2
xxy

f
(1)
2 = − v2

(0,0,6) + v1
(0,2,4) + 3yv2

(2,0,4) + 2v1
(2,1,2)

−2yv1
(2,2,2) − 3(y)2v2

(4,0,2) + 2v1
(4,0,0)

−2yv1
(4,1,0) + (y)2v1

(4,2,0) + (y)3v2
(6,0,0)

The next step is to calculate the output of the algorithm for the system {f (1)
1 −w1, f

(1)
2 −

w2}. The output will be f
(1)
1 − w1, f

(1)
2 − w2, the resolvent system Σ(2), and possibly

some other equations if the ordering chosen is different from the one used here. Taking

the lexicographic ordering based on w2 < w1 < v2 < v1 and z > y > x we obtain one

equation in w1 and w2:

f
(2)
1 = w1

zzzz − 2yw1
xxzz + (y)2w1

xxxx − w2
y.

A system generated by only one equation has a null resolvent system, and so the Janet

resolution of Σ(0) terminates after three steps.

In the early part of this century (1920), Janet ([28]) proved that if the original system

Σ was composed of linear differential equations (that is to say, linear as differential

equations), then the resolution must terminate by at most n steps, where n is the

number of variables. The termination of the Janet resolution for a system consisting of

arbitrary differential polynomials is, I believe, not known in general. The case of linear
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equations with constant coefficients is equivalent to the termination of the syzygy

resolution of a polynomial ideal (see later this chapter), which was demonstrated by

Hilbert [24] in 1892.

4.3 Elimination Ideals

Theorem 4. Assume the lexicographic ordering. Let G be a differential Gröbner

basis for an ideal I contained in Rn,m, with the ordering on the unknowns being

um > um−1 > · · · > u1 and on the variables xn > xn−1 > · · · > x1. Let Rk,j be the

differential subring generated by {u1, u2, . . . , uk, x1, x2, . . . , xj}. Then G ∩ Rk,j is a

differential Gröbner basis for I ∩Rk,j.

Proof. Let G ∩ Rk,j = G′ and G\G′ = G′′. Let I ′ = I ∩ Rk,j. Suppose g ∈ I ′

but that g is not an element of the ideal I(G′), generated by G′. Note that G′ is

a differential Gröbner basis for I(G′). Let g be pseudo-reduced with respect to G′.

Since g 6= 0, g ∈ I(G′′). But all the elements of G′′ have highest terms involving

unknowns and variables that are not in I ′; such terms must have cancelled out so

that g must be expressible as diffSpolynomials of elements in I(G′′) and their pseudo-

reductions. Now g is not pseudo-reducible with respect to G′′ since no highest term

of any element of G′′ reduces any term of g, and g has already been pseudo-reduced

with respect to G′, so we have a contradiction.

Example 5 ( Kadomtsev-Petviashvili equations ([47])). These equations are

the 3 dimensional analogue of the Bäcklund equations for the Korteweg-de Vries equa-

tions. The system is similar to Example 3 of Chapter 3, in that the principal part

is linear for all orderings. This means that this example is also tractable by methods
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that first convert the system to a system of exterior differential forms [7].

F =

{
ux + 1

2
vxx + 1

4
v2

x + vy = 0

uy − 1
6
vz − 1

6
vxxx + 1

2
vxy + 1

12
v3

x + 1
2
vxvy = 0

We first take the lexicographic ordering based on u > v, z > y > x, and we obtain one

extra condition, from which u has been eliminated:

6vyy + 2vxz + 2vxxxx − 3v2
xvxx − 6vxxvy = 0.

Taking the ordering based on v > u, we obtain one extra condition, from which v has

been eliminated:

uxz + 3uyy + uxxxx + 6uxxux = 0.

The leading terms have coefficients in the field, and so the output is a differential

Gröbner basis. Hence

I(F ) ∩ Rdiff [x, y, z; u] = I(uxz + 3uyy + uxxxx + 6uxxux),

and

I(F ) ∩ Rdiff [x, y, z; v] = I(6vyy + 2vxz + 2vxxxx − 3v2
xvxx − 6vxxvy).

Example 6 (elimination ideals, a system with a non-linear principal part).

This system has a non-linear principal part, and thus cannot so easily be tackled by

algorithms that first convert to a system of exterior differential forms, or which use

Riquier’s method. Let

F =

{
uyvx − ux = 0

uxvy − uy = 0

Performing the algorithm in the lexicographic order with v > u, and y > x we obtain

one extra condition, denoted g (say):

−uxu
2
yuxy + uyu

2
xuxy + u3

yuxx − u3
xuyy = 0.

which has for its HDT, uyy. We have for the output G = F ∪ {g}, that S(G) =

M({ux, uy}) so that SPR holds. It is clear that S(G)∩I(G) = φ, so G is a differential

Gröbner basis, and I(F ) ∩ Rdiff [x, y; u] = I(g).
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Performing the algorithm with u > v, and y > x we obtain one new condition denoted

h (say):

ux(vxvy − 1) = 0

Thus we have not entirely eliminated u. The output G = F ∪ {h} has S(G) =

M({vxvy−1, vx}). Thus SPR holds. Insisting that S(G)∩I(G) = φ (i.e. vxvy−1 6= 0)

leads to the conclusion that ux = 0, a trivial solution. It is better to run the algorithm

again adding the equation vxvy − 1 = 0 to the input. We then would obtain for the

augmented system F ′ = F ∪ {vxvy − 1} that I(F ′) ∩ Rdiff [x, y; v] = I(vxvy − 1).

Example 7 ( elimination ideals). Our third example shows that one can obtain

more than one condition from which one of the unknowns has been eliminated. Set

F =

{
vyuy − vx = 0

vxyux − u = 0

Performing the algorithm in the lexicographic ordering, with v > u and y > x, we

obtain four new conditions, with two conditions in u only, denoted by g1 and g2, (say).

The equation g1 has 33 summands, while g2 has 39 summands. We have:

HDT(g1) = uxyyy, Hp(g1) = 1, and

Hcoeff(g1) =

u5
xuy{uuyuxx + uuxuyuyy − uu2

yuxy + uuxuxy − uyu
2
x + uxu

3
y}

while

HDT(g2) = uxxyy, Hp(g2) = 1, and Hcoeff(g2) = Hcoeff(g1).

Equations with so many terms are difficult to solve. Yet the fact that there exist such

equations implied by the given set may have implications for the choice of method

of numerical solution. Moreover, in combination with other methods such as use of

symmetries, the use of elimination ideals could be extremely effective.
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APPLICATIONS

The major applications of the elimination ideals are in non-linear control theory with

distributed parameters, where one wishes to establish a hierarchy of control, and to

separate out the conditions that must be satisfied by the input and output variables

respectively. ([42, 40] , [17])

Another application is where one wishes to discover if any of the unknowns in the

system satisfies what is effectively an ODE with respect to some variable, that is, all

differentiations are with respect to the same variable. If the ODE can be solved, that

variable can be eliminated, simplifying the system. The use of different orderings

on the variables to find all ODE’s in the ideal is discussed in the second example of

Chapter 3, where it is shown that the ideal generated by {uzz − yuxx, uyy} contains

the ODE’s {uyy, uxxxx, uzzzz}.

4.4 Formal Duality of Resolvent Systems and

Syzygies for Linear Systems

We compare the syzygy resolution for an algebraic set of polynomials, and the Janet

resolution for the corresponding differential ideal, obtained by identifying xi with
∂

∂xi

;

both the algebraic and differential resolutions ontained are well-known.

Let us consider the syzygy resolution of the ideal

A = 〈x, y, z〉R ⊂ R[x, y, z].

We write the generators of A as a vector U , viz (x, y, z), (assume all vectors are

row vectors) and seek the set of vectors V (whose components are polynomials in

R[x, y, z]) such that

V UT = 0.
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Then the syzygy module S(A) is generated by





V1 = (y,−x, 0)

V2 = (z, 0,−x)

V3 = (0, z,−y)

(cf Chapter 1.) Continuing, we write the generators of S(A) as a row vector V , and

seek those vectors W such that

WV T = 0.

Then the second syzygy module S(2)(A) is generated by

W = (x, y, z).

We have the exact sequence

0 // R[x, y, z] M(2)
// R[x, y, z]3

M(1)
// R[x, y, z]3

M(0)
// R[x, y, z] // R // 0

where

M (0)




p1

p2

p3


 = xp1 + yp2 + zp3

M (1)




p1

p2

p3


 =



−yp3 + zp2

+xp3 − zp1

−xp2 + yp1




and

M (2)(p) =




xp

yp

zp


 .

We have ker M (i) = S(i)(A). Note that S(0)(A) = A, and R = R[x, y, z]/A.
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Let us now consider the differential system

(∗)





∂u

∂x
= 0

∂u

∂y
= 0

∂u

∂z
= 0

This is the translation, under the identification xα ↔ ∂|α|

∂xα
u of the ideal A to a

differential ideal. (We insert the dummy argument u to the differential operators.)

We have already calculated the resolution of this ideal, (it is in fact the same as the

Poincaré sequence), in Example 3 of this chapter.

Let < be a suitable function space. Let R stand for the constant functions. We can

write the resolution in the following way:

0 // R // < D(0)
// <3 D(1)

// <3 D(2)
// < // 0

where

D(0)(u) =




ux

uy

uz




D(1)(u) =




v1

v2

v3


 =




v3
y − v2

z

v1
z − v3

x

v2
x − v1

y




D(2)(u) =




w1

w2

w3


 = w1

x + w2
y + w3

z .

It is not hard to see that replacing x with
∂

∂x
the maps D(i) are the transpose of the

maps M (i), and that replacing R[x, y, z] with <, the two exact sequences are formally

dual. In fact, we have an algorithm for obtaining the Janet resolution of a system
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of linear equations, with one unknown and constant coefficients, from the syzygy

resolution of the corresponding polynomial ideal, by considering the system as a set

of polynomials in the operators { ∂

∂x
}. That is, we replace R[xi] with <, replace x with

∂

∂x
, take the transpose of the maps and send the arrows in the opposite direction.

The final space in the syzygy resolution is R[xi]/A, while the first non-zero space in

the Janet resolution is the solution space to D(u) = 0.

In view of the Lewy example we cannot say that the Janet resolution is exact even for

linear systems; the two sequences are only “formally” dual. Restricting the function

spaces to be analytic spaces, we obtain exactness ([53], see also Goldschmidt [21] who

proves an existence theorem for analytic systems.)



Chapter 5

COMPARISONS AND

EXTENSIONS

5.1 Algebraic vs differential Gröbner bases

Given a set of d.p.’s Σ = {fi | i = 1, . . . , N} we can form the r-prolongation

Σ(r) = {Dαfi | i = 1, . . . , N, |α| ≤ r}.

Let M = max{|α| | pj
α occurs to some power in any of the fi}. One can form the

non-differential ring Am,n,t = F [xi, u
j, pj

α | |α| ≤ t]. Let Ialg(Σ
(r)) denote the non-

differential ideal generated by Σ(r) in Am,n,r+M . Take the ordering on the derivative

terms as determining the order on the indeterminants in Am,n,r+M , with ui > xj, and

then assume lexicographic ordering on monomials in Am,n,r+M .

Theorem 4. For sufficiently large r, a Gröbner basis B of Ialg(Σ
(r)) satisfies Ialg(B) ⊃

Ialg(DIFFGBASIS(Σ)).

Proof. For a sufficiently large r, all the Dαfi used in the calculation of the

95
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DIFFGBASIS algorithm will be in Ialg(Σ
(r)). It can be seen from the formulae that

the diffSpolynomial formulae reduce to algebraic formulae when the differentiations

are already performed. Where the separants or highest coefficients contain more than

one summand, repeated calculation of algebraic Spolynomials result in the diffSpoly-

nomial calculation.

Ritt proves an equivalent result in terms of characteristic sets in the case where the

ideals are prime ([43, Chapter V].) The iteration of prolongation and Gröbner basis

calculation has been discussed by Carrà-Ferro [12] and Ollivier [37, 36]. They have

both shown that in general such an iteration (using differential reduction) will not

terminate.

In general, the algebraic calculation in Ialg(Σ
(r)) will be far larger than that of the

differential Gröbner basis. Consider the case of Example 2, Chapter 3, which has three

variables, one unknown and starts with two equations. The highest derivative used in

the calculation is of order five. To use the algebraic algorithm, the two equations are

prolonged to be of order five, yielding 20 equations in 25 indeterminates (3 variables,

one unknown and 21 derivative terms.). The first iteration requires the calculation

of 190 Spolynomials. The complete algebraic calculation is beyond the capacity of

even top-range personal computers (as at 1990), while the differential Gröbner basis

calculation was completed in minutes on a Macintosh Plus, using an implementation

of the differential algorithm as a package in MAPLE.

5.2 A branching algorithm

In his book, Ritt ([43]) is concerned with the prime decomposition of a differential

ideal. He proves that every perfect differential ideal has a prime decomposition. (An

ideal I is prime if a.b ∈ I implies a ∈ I or b ∈ I. The ideal I is said to be perfect
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if an an ∈ I implies a ∈ I.) The calculation of the prime decomposition of an

algebraic ideal is now algorithmic, due to the work of Gianni, Trager and Zacharias

[20]. The prime decomposition is important because one then has a listing of the

solution varieties, and the equations involved will be in some sense simpler, having

all factors removed. There is a complication in the case of differential ideals, which

is that an irreducible d.p. may have a derivative that factors. We give an example

of this at the end of this section. In some cases it is sufficient to take account of the

factors as they appear in the algorithm, a process that concerns us in this section.

This process has also been discussed by Melenk [33].

In seeking a solution to a system of partial differential equations one can take the

algorithm a step further: after each iteration of the algorithm the new conditions

obtained can be factored. Suppose each new condition obtained has n(i) factors. Then

there are N =
∏

n(i) factors. Form N new lists, each consisting of the previous list

plus one factor from each new condition created, upon which to iterate the algorithm.

Instead of a sequence

{F0, F1, . . . , newbasis}

of lists, a tree of lists is generated. Such a tree is illustrated in Figure 5.1.
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·

·

·

Figure 5.1:
A tree of systems

It is straightforward to show that this branched algorithm will also terminate.

Lemma 1. The branching algorithm terminates.

Proof. Suppose not. Then there is a path P = [Σ0, Σ1.i1 , Σ1.i1.i2 , . . .] in the tree

that is infinite. Now repeat the argument for the termination of the non-branching

algorithm, but on the list of systems in the path rather than on the systems obtained

after successive iterations.

A solution to the original system will be a solution to one of the resulting systems.

The converse is false: a solution to one of the resulting systems will not in general

be a solution to the original system. For example, a solution to one of the resulting
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systems may only be a solution to the original system for certain values or subsets

of the constants of integration. Furthermore, the resulting lists will not in general be

bases for the ideal generated by the original list. Presumably the differential ideals

generated by the resultant lists form some kind of “decomposition” or “cover” of the

initial ideal. Ritt [43] proves that a perfect ideal has a prime decomposition, that is,

can be expressed as the intersection of finitely many prime ideals. That a differential

ideal be prime is a very strong condition: a differential ideal generated by a single

irreducible d.p. is not necessarily prime, primary or perfect. Consider the example

of an ideal I in R1,1 generated by

f =

(
du

dx

)2

+
du

dx
+ 2u + x.

Then
df

dx
∈ I. But

df

dx
=

(
2
du

dx
+ 1

)(
d2u

dx2
+ 1

)
and neither factor, nor any power

of either of them, is in I, so I is neither prime nor primary. Furthermore,

((
2
du

dx
+ 1

)
d3u

dx3

)2

∈ I, but

(
2
du

dx
+ 1

)
d3u

dx3
6∈ I,

so I is not perfect. Other examples, where one must differentiate to higher orders

and then substitute in order to obtain factors are in [43, Chapter II].

Example (Branching Algorithm). Consider the system in R1,3 generated by

f1 = uzz − uzux,

f2 = uyy.

With the lexicographic ordering based on z > y > x, the first iteration of the algorithm

yields

f3 = uyzuxy.
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Hence we iterate the algorithm on two sets of generators,

Σ1.1 Σ1.2

f1 = uzz − uzux, f1 = uzz − uzux,

f2 = uyy, f2 = uyy,

f3 = uyz. f3 = uxy.

Iterating the algorithm on Σ1.1 yields the new basis element f4 = uzuxy. Hence two

new systems Σ1.1.1 and Σ1.1.2 are formed, which are respectively

Σ1.1.1 Σ1.1.2

f1 = uz f1 = uzz − uzux,

f2 = uyy. f2 = uyy,

f3 = uyz,

f4 = uxy.

These two bases are now differential Gröbner bases, i.e. the algorithm terminates

at this step. Iterating the algorithm on the system Σ1.2 yields the new basis element

f4 = uyzuxx. Hence two new systems are formed, Σ1.2.1 and Σ1.2.2.

Σ1.2.1 Σ1.2.2

f1 = uzz − uzux, f1 = uzz − uzux,

f2 = uyy, f2 = uyy,

f3 = uxy, f3 = uxy,

f4 = uyz. f4 = uxx.

The algorithm terminates for both these systems with no new factors being discovered.

It can be seen that Σ1.2.1 and Σ1.1.2 are the same system and hence three distinct

systems are the output of the branching algorithm. Their solutions are as follows:
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Σ1.1.1 : u = f(x)y + g(x) where f and g are arbitrary functions,

Σ1.2.1 : u = ky + g(x, z) where k is a constant and

∂2

∂z2
g −

(
∂

∂z
g

)(
∂

∂x
g

)
= 0.

This equation has among its solutions the functions

g(x, z) = − b

a
ln

(
−a

b
k1(ax + bz) + k2

)

g(x, z) =
2s

k
(kx + r)tanh−1

(√
ks

2
z + t

)

g(x, z) =

√
2

r
tan−1

(
z

x
√

2r

)
+ t

where k1, k2, k, s, t, r, a, b are arbitrary constants. These solutions are found by the

usual means of converting a PDE into ODE’s. The first is found by looking for a

solution that is a function of a linear combination of the two variables, while the

third is found by looking for a solution that is a function of the quotient of the two

variables. The reason one looks for these particular solutions is that the equation

is invariant under translations and dilations. The second solution is found by the

method of separable variables. Of course, one can always declare g to be independent

of one of its variables, and obtain trivial solutions!

Σ1.2.2 : u = g(z)x + f(z)y + h(z) where

d2

dz2
g − g

(
d

dz
g

)
= 0,

d2

dz2
f − g

(
d

dz
f

)
= 0,

d2

dz2
h− g

(
d

dz
h

)
= 0.
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Note that both f and h satisfy the same equation. The equation in g has as its solution

g(z) =
√

2κ tan

(√
κ

2
z + ρ

)

where κ and ρ are arbitrary constants.

The equations for the functions f and h have as solution

f, h = γ1

√
2

κ
tan

(√
κ

2
z + ρ

)
+ γ2.

where γ1 and γ2 are arbitrary constants. Hence u depends on six arbitrary constants.

It is easily seen in this example that any solution of the resulting systems is a solution

to the original system.

5.3 Non-polynomial functions of the unknowns

A very desirable extension of the algorithm would be to systems whose equations

contain functions of the unknowns, for example, the Sine-Gordon equations, and

equations for metric components in general relativity which can have terms involving

eU , where U is some potential.

If the system contains powers of sin(u) or cos(u), we can add two unknowns to the

system, v1 and v2, substitute v1 for sin(u), v2 for cos(u), and add in the equations

∂v1

∂xi

− v2 ∂u

∂xi

= 0

∂v2

∂xi

− v1 ∂u

∂xi

= 0

for i = 1, . . . , n. The system will now be of the required type for the algorithm to be

correct and to terminate. A similar procedure can be employed for eu, 1/u, tan(u)

and sec(u), cot(u) and cosec(u).
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However suppose we have an arbitrary function of an unknown.

Example 8. (system with an arbitrary function of an unknown).

(ux)
2 − (ut)

2 = 1

uxx − utt = f(u)

where f is an arbitrary function of u, to be determined.

Using the ordering u > f(u), in this case the DIFFGBASIS algorithm terminates

yielding an equation in f in order for a solution u to exist, namely

df

du
+ f 2 = 0.

We input to Kolchin-Ritt

F =

{
(ux)

2 − (ut)
2 − 1

uxx − utt − f(u)

where f is an arbitrary function of u, to be determined.

Using the ordering u > f(u), in this case the Kolchin-Ritt algorithm terminates

yielding

G =





u2
x − u2

t − 1

uxx + fu2
x − f

uxx − utt − f

(u2
x − 1)

(
df

du
+ f 2

)(
d2f

du2
+ 2f

df

du

)

(u2
x − 1)2

(
df

du
+ f 2

)

The fifth equation is in S(G)∩ I(G), so the output is not a DGB. In fact the equation
df

du
+ f 2 = 0 is in I(F ). This can be shown in several ways, for example by changing
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to characteristic coordinates, s = x + t, r = x − t, and computing the algorithm. In

characteristic co-ordinates, the system is

Fc =

{
urus − 1

urs − f(u)

The Kolchin-Ritt algorithm then yields u4
s

(
df

du
+ f 2

)
= 0. Multiplying the second

equation by u4
r yields

df

du
+ f 2 = 0. Another way of finding this equation in the ideal

is to prolong and then do the algebraic Gröbner basis algorithm. This was done in

Chapter 1, Example 4. Inputting the set Fc, the DIFFGBASIS algorithm terminates

yielding

K(lex,r>s) =





usur − 1
df

du
+ f 2

usr − f

uss + u2
sf(u)

Now S(K) ∩ I(K) = M{ur} so the set K is a DGB.

(The time taken for this example ranges from 19 minutes on a MacPlus, to 1.3 minutes

on an Apollo Workstation.)

The solution of this system is now easy to derive, it is:

f =
1

u + k
k ∈ R

u = 2
√

rs + cs + c′r + cc′ − k c, c′ ∈ R

The algorithms presented in this paper will terminate on examples containing arbi-

trary functions of the unknowns as well. To see this, in the proof of termination of the

Kolchin-Ritt algorithm, split the output of the algorithm after each iteration into two

sets, one whose highest derivative terms involve the unknown functions {u1, . . . , um},
and one whose highest derivative terms involve the arbitrary functions {b1, . . . , br}
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of the unknowns. Since uj > bk for all j, k, the second set contains equations that

involve only the arbitrary functions. Then the argument can be applied to the two

sets separately.

5.4 Chapter 5, Conclusion

This concludes the second part of the thesis, comprising Chapters 3, 4 and 5, which is

concerned with the effects of computing the algorithm, and its variations, on different

types of systems, and with different orderings. A truly effective theory would also

take into account known symmetries of the system. Nevertheless, even in their present

state the algorithms outlined in this thesis can be a valuable tool for studying systems

of partial differential equations.



Chapter 6

INVOLUTIVITY AND

INTEGRABILITY

This chapter is published as

E.L.Mansfield, Simple Criterion for Involutivity, Journal of the London Math Society,

vol. 54, pp. 323–345, 1996.
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tion of Polynomial Ideals, J. Symbolic Alg. 6 (1988), 149–167.

[21] H. Goldschmidt, Integrability Criteria for Systems of non-linear partial differen-

tial equations, J. Differential Geometry 1 (1967), 269–307.

[22] Hartley and Tucker, A constructive implementation of the Cartan-Kähler Theory

of exterior differential systems, Preprint, Dept. Physics, University of Lancaster.

[23] R. Hartshorne, Algebraic Geometry, Springer Verlag, 1977.

[24] D. Hilbert, Ueber die Theorie der algebraischen Formen., Math. Ann. (1890),

473–534.

[25] Hilton and Stammbach, A Course in Homological Algebra, Springer Verlag, 1971.

[26] M. Hirsch, Differential Topology, Springer Verlag, 1976.

[27] A. Hudson, Symbolic Computation of Involutivity of PDEs., Masters Thesis,

University of Sydney, 1987.
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Research, T.J. Watson Research Center.

[36] F. Ollivier, Canonical Bases: Relations with Standard Bases, Finite-

ness Conditions and Application to Tame Automorphisms, Research Report
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Appendix 1–3 USER’S MANUAL

FOR DIFFGROB

In the original version of the thesis there were 3 appendices:

Appendix 1. User’s manual for DIFFGROB;

Appendix 2. Description of procedures;

Appendix 3. The Code.

These appendices are omitted because they are superseded by diffgrob2 manual.

Further information: http://www.kent.ac.uk/IMS/personal/elm2/

Online demo: http://centaur.maths.qmw.ac.uk/CATHODE/DiffGrob2 demo.html
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Appendix 4 RESEARCH

DIRECTIONS

This appendix contains various avenues for further research. Other unsolved problems

can be found in the Appendix of [43].

1) IMPROVE THE EFFICIENCY OF THE ALGORITHM

One of the costliest parts of the algorithm are the procedures involving pseudo-

reduction and reduction. To lessen the number of differential S polynomials to be

calculated and hence pseudo-reduced can possibly be achieved in a number of ways:

(i) are there any theoretical grounds on which one can guarantee a diffSpoly

pseudo-reduces to zero?

(ii) see also problems 2, 9

(iii) find the fastest path to a normal form for a given term ordering

2) EFFICACIOUS TERM ORDERINGS

Find the fastest term orderings for a particular system. Similar to this problem is

that of finding the term ordering from which it is easiest to solve the system.

3) PRIME DECOMPOSITION OF DIFFERENTIAL IDEALS

This problem has been solved in the algebraic case by Gianni et al, so it is natural

to try to solve the differential analogue. Ritt, Ollivier and Kolchin discuss at length

A.2



A.3

prime differential ideals. The complication in the differential case is that one must

know how many times to differentiate before one reduced the problem to the algebraic

one. See also [31].

4) NON-COMMUTATIVE DIFFERENTIAL OPERATORS

One can generalize the derivations used here to derivations in Lie Algebras other than

〈 ∂

∂xi

| i = 1, . . . , n〉. One should be able to use the work of Apel and Lassner in the

differential setting. Note that their work does not apply directly, since polynomials

of operators are not equivalent to polynomials of operated on functions.

5) INVERSE BÄCKLUND PROBLEM

This is the opposite of elimination. Suppose that we have a problem in two un-

knowns u and v, and we know the elimination ideals I ∩ Rdiff[x1, . . . , xn; u] and

I ∩ Rdiff[x1, . . . , xn; v]. Find a basis for I.

6) PERTURBATION OF SYSTEMS

If a system is perturbed in a certain way, for example, to make the equations trans-

verse, or if the equations depend on a certain parameter, how does a differential

Gröbner basis perturb?

7) GLOBALIZE TO SYSTEMS ON MANIFOLDS

Extend the theory to systems on spaces other than Rn.

8) THE BRANCHING ALGORITHM

Implement the branching algorithm and describe more precisely the relationship of

its output to the output of the non-branching algorithm.

9) SYMMETRIES AND DGB’S

One should be able to take advantage of a known symmetry structure to make the

algorithm more efficient, i. e. terminate within the available memory. This problem

would rely on problem 4 begin solved, i. e. having a generalization of the algorithm
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to non-commutative operators. Is there any connection between such a generalization

and differential Galois theory ([39])?

10) GENERAL COEFFICIANTS

The theory should generalize to coefficients other than R or C. Perhaps spurious

factor could be “divided out” as part of the coefficient ring.

11) USE OF REDUCTION IN RADICAL IDEALS

The algorithm using reduction, not pseudo-reduction may terminate for systems that

generate perfect or radical ideals, since Ritt proved that ascending chains of perfect

ideals terminate (i.e. differential ideals are noetherian with respect to radical ideals.)

12) TERMINATION OF THE JANET RESOLUTION

The theorems in Chapter 6 should go a long way to proving that the Janet resolution

of non-linear systems terminates, since all systems are eventually (with sufficient pro-

longation) involutive, meaning that all syzygies of the symbol equations are eventually

of degree 1.

13) EFFICACIOUS CO-ORDINATES

The final example of Chapter 5 shows that a change of co-ordinates can lead to

massive variations in time to terminate, and utility of the output. Are there any

algorithmic methods which lead to “better” co-ordinates.

14) USE OF THE JANET RESOLUTION TO CONSTRUCT SOLUTIONS

If the Janet resolution is exact, it may be possible to construct a homotopy operator

on the resolution, allowing a solution to be constructed.

15) DO SYSTEMS THAT GENERATE PRIME IDEALS HAVE LOCI THAT ARE

MANIFOLDS IN THE JET BUNDLE, AND VICE VERSA?

Pommaret [39, p.246] has a criterion for an ideal to be prime. Systems that generate

a prime ideal do not yield new factors upon differentiation.



Appendix 5 SOME

DEFINITIONS AND RESULTS

This appendix contains some basic definitions and results for fibre bundles and for

homological algebra, as they needed in Chapter 6. This thesis does not require any

global theory. Further references are [52], [6], [13], [26], [25].

The third part of this Appendix contains the proof of a criterion for involutivity used

to corroborate certain examples in Chapter 6

A5.1 Fibre Bundles

These notes are compiled from [13], [38], lecture notes in Differential Topology given at

the University of Sydney, 1979 by Dr. M. J. Field and at the University of Wisconsin,

1982-3 by Dr. D. Stowe.

A bundle is a triple (E, B, π) consisting of two topological spaces E and B and a

continuous onto mapping π : E → B. The space B is called the base. The simplest

example is the cartesian bundle (M × B, B, π) where the projection π is given by

π(m, b) = b.

A.5
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A fibre bundle (E, B, π,G) is a bundle (E, B, π) together with a fibre F such that

π−1(x) (denoted Fx) is homeomorphic to F for all x ∈ B, a topological group of

homeomorphisms, G, of F onto itself, and a covering of B by a family of open sets

{Uα : α ∈ A} such that:

(1) locally the bundle is a trivial bundle, i. e. for each α, π−1(Uα) is homeo-

morphic to Uα × F . The homeomorphism has the form

ϕα : π−1(Uα) → Uα × F, ϕα(p) = (π(p), φα(p))

Let x ∈ B. Then φα,x = φα|π−1(x) is a homeomorphism of Fx onto F .

(2) Let x ∈ Uα ∩ Uβ. Then φα,xφ
−1
β,x : F → F is an element of the group G.

(3) The induced mappings gαβ : Uα ∩ Uβ → G given by gαβ(x) = φα,xφ
−1
β,x

are continuous. They are called the transition functions, and satisfy the relation

gαβ(x)gβγ(x) = gαγ(x).

A vector bundle is a fibre bundle where the fibre is a vector space of dimension n

(say), and the group G is a subgroup of the general linear group GL(n). Similarly,

if the fibre is an affine space and G is the group of linear transformations and trans-

lations, the bundle is an affine bundle. More precisely, if {Uα} are the trivialising

patches on the affine bundle F , for (x, y) ∈ π−1(Uα ∪ Uβ),

pr2ϕαϕ−1
β : Uα ∩ Uβ × F → F is given by

(x, y) → Aαβ(x) + Bαβ(x)

where pr2 is projection onto the second factor, and Aαβ(x) is an element of GL(F )

and Bαβ(x) ∈ F . Note F is an affine space so linear transformations and translations

are defined. It is possible to consider a related vector bundle whose translation func-

tions are given by the {Aαβ(x)}; the fibre may be smaller than F depending on the

{Aαβ(x)}. In this case, we say the affine bundle is modelled on the related vector

bundle.

The tangent vector to a manifold M at a point x is defined to be an equivalence

class of differential curves; curves are maps γ : I ⊂ R→ M such that γ(0) = x. Two
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curves γ1, γ2 are equivalent if, under every mapping f taking a neighbourhood of x

to R, which is differentiable at x, then

d

dt

∣∣
t=0

f ◦ γ1 =
d

dt

∣∣
t=0

f ◦ γ2.

(Recall a map f : Uα → R is differentiable at a point x if, when composed with

the inverse of a co-ordinate chart map, φ−1
α : Rn → Uα, it is differentiable as a map

Rn → R (where n = dimM) at φ−1
α (x).)

If the maps f are co-ordinate charts composed with a projection to a coordinate

hyperplane in Rn, we obtain that all components of the tangent vector are well-

defined.

Since locally M has co-ordinates that look like Rn, it makes sense that locally we

can add curves, and multiply them by constants. Such operations take equivalence

classes to equivalence classes in a well-defined way. Hence the union of all equivalence

classes of curves γ such that γ(0) = x is a vector space; it is denoted Tx(M). The

tangent bundle is the union ∪x∈MTx(M).

This definition has an advantage in proving theorems, since to produce a tangent

vector at x we take a curve γ on the manifold such that γ(0) = x, compose with a

local co-ordinate chart, and consider its derivative at t = 0.

If {Uα, φα : Uα → Rn} is an atlas for M , the transition functions of the tangent bundle

at x are the jacobians of the maps {φαφ−1
β : Rn → Rn} at x, since the trivialising

maps for T (M) are the tangent maps of the {φα : Uα → Rn}. (This is one way of

defining the tangent bundle.)

The dual T ∗
x (M) to the tangent vector space Tx(M) is the space of linear maps

Tx(M) → R; it is a vector space whose elements are called co-tangent vectors. Form-

ing the union over all x ∈ M yields the cotangent bundle T ∗(M). If {Uα, φα : Uα →
Rn} is an atlas for M , the transition functions of the cotangent bundle at x are the

adjoints of the jacobians of the maps {φαφ−1
β : Rn → Rn} at x.
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Given a map g : N → M and a bundle (E,M, π), we define the pullback bundle

(g−1(E), N, p) : g−1(E) = {y ∈ N×E | gpr1(y) = πpr2(y)} where pri is the projection

onto the ith factor.

g−1(E)
pr2 //

pr1

²²

E

π

²²
N

g // M

Given two bundles over the same base (F , B, π) and (L, B, τ), whose fibres have

a linear structure over the same coefficient ring, we can form the tensor product

bundle F⊗L. The total space of the tensor bundle is the union ∪x∈Mπ−1(x)⊗τ−1(x).

We take a cover of B that is sub-ordinate to the corves that trivialize the bundles F
and L, and take appropriate restrictions to the trivialising maps for F and L. Then

the trivialising maps for F ⊗ L is the tensor product of the trivialising maps for F
and L.

To form the bundles SkT ∗(M) and ΛkT ∗(M), we take the tensor product of the

cotangent bundle T ∗(M) with itself k times (the fibres have a linear structure over

R), and then take the symmetric and anti-symmetric subsets respectively.

Given the bundle (M,B, π), it is not necessary that all the fibres be homeomorphic.

Let M be a manifold of dimension k + n, with base space of dimension k. Suppose

M has an open covering by open sets {Uα : α ∈ A}, with co-ordinate maps ϕα :

Uα → Rn+k and {π(Uα) = Vα : α ∈ A} is a covering of B, with ψα : π(Uα) → Rk

the co-ordinate charts for B. We say M is a fibred manifold with base B if the

diagram:

Uα
ϕα //

π

²²

Rn × Rk

pr2
²²

Vα
ψα // Rk

commutes, where pr2 is the projection onto the second factor.
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A5.2 Homological Algebra

These notes are from lectures in Algebraic Topology given at the University of Sydney

in 1979 by Dr. R. Eyland.

A graded group is a family {Gα : α ∈ Z} of commutative groups indexed by the

integers. Without loss of generality, the group operation is assumed to be addition.

A chain complex is a pair (C, ∂) consisting of a graded group and an endomorphism

∂ : C → C such that ∂∂ = 0 and ∂ has degree −1. This means the map ∂ con-

sists of maps {∂n : Cn → Cn−1} such that ∂n−1∂n = 0, ∂(c + d) = ∂(c) + ∂(d), and

∂(−c) = −∂(c).

A chain map τ : (C, ∂) → (C ′, ∂′) is a set of maps τn : Cn → C ′
n which satisfy

τ(c+d) = τ(c)+τ(d), τ(−c) = −τ(c) (i.e. τ is a homomorphism), and τn∂′n = ∂nτn−1

(τ commutes with ∂).

A subcomplex of a chain complex C is a chain complex C ′ = {C ′
n} such that for

each n, C ′
n is a subgroup of Cn and ∂′n = ∂n|C′n . For each subcomplex, there is a

quotient complex C/C ′ where (C/C ′)n = (Cn)/C ′
n and the differential is the induced

map c + C ′
n → ∂(c) + C ′

n−1.

For a chain complex C, we defined the graded group of cycles Z(C) = ker ∂, i.e.

Zn = ker ∂n, and the graded group of boundaries B(C) = im ∂, i.e. Bn = im ∂n. We

define the homology graded group H(C) = Z(C)/B(C); Hn = Zn/Bn. The equiva-

lence class of z ∈ Zn is denoted {z}.
If the deferential is of degree +1, so that ∂n : Cn → Cn+1, the corresponding ho-

mology groups are called cohomology groups, the cycles cocycles and the boundaries,

coboundaries. Theorems proved for homology have corresponding theorems in coho-

mology.

A short exact sequence of chain complexes is a sequence of chain maps

C : 0 // C ′ α // C
β // C ′′ // 0
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such that for all n, ker βn = im αn, the maps αn are 1-1 and the maps βn are onto.

So C corresponds to a commutative diagram of abelian groups:

²² ²² ²²
0 // C ′

n+1

αn+1 //

∂′n+1

²²

Cn+1
βn+1 //

∂n+1

²²

C ′′
n+1

//

∂′′n+1

²²

0

0 // C ′
n

αn //

∂′n
²²

Cn
βn //

∂n

²²

C ′′
n

//

∂′′n
²²

0

0 // C ′
n−1

αn−1 //

²²

Cn−1
βn−1 //

²²

C ′′
n−1

//

²²

0

in which all rows are exact and the composite of any two vertical maps is trivial.

Short exact sequences arise naturally when one considers a subcomplex C ′ of a chain

complex C:

0 // C ′ α // C
β // C/C ′ // 0

where α is the inclusion and β the natural projection.

Let H ′ denote the homology graded group of C ′ and H ′′ the homology graded group

of C ′′.

Chain maps naturally induce maps on the homology classes. If a homology class

x = {z} (say) i.e. the class x is represented by z, then the homology map α∗ :

H(C ′) → H(C) induced by α : C ′ → C, is given by α∗x = {αz}. Since α∂ = ∂′α, the

map α∗ is well-defined.

Lemma A5.1 (The snake or connecting homomorphism ∆∗). Let a short exact

sequence C be given, and let α∗ and β∗ be the maps induced by α, β on homology

groups. There is homomorphism ∆∗ : H ′′ → H of degree −1 i.e. ∆n : H ′′
n → Hn−1,

so that the sequence

L : // Hn+1(C
′′)

∆∗ // Hn(C ′)
α∗ // Hn(C)

β∗ // Hn(C ′′)
∆∗ // Hn−1(C

′) //

is exact.
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Proof. Definition of ∆∗ : Let x ∈ Hn+1(C
′′), so that x is an equivalence class of

elements in C ′′
n+1, x = {z} or z + B′′

n+1, and ∂′′(z) = 0. By exactness β is onto

and so z = β(w) for some w ∈ Cn. Now β∂w = ∂′′βw = ∂′′z = 0. By exactness,

ker β = im α, and α is 1-1, so there is a unique u ∈ C ′
n−1 such that αu = ∂w. The

element u = ∆∗(z): we need to show that ∆ is well-defined on the equivalence class

of x, that is, if we take any other representative of the class x, we obtain an element

in the same equivalence class as u. Suppose w1 ∈ Cn is another element such that

βw1 ∈ x (i.e. x = w1 + B′′
n+1) Then β(w − w1) ∈ Bn(C ′) i.e. β(w − w1) = ∂′′v for

some v ∈ C ′′
n+1. Since β is onto, v = βy, some y ∈ Cn+1. So β(w−w1) = ∂′′βy = β∂y

or β(w − w1 − ∂y) = 0. Again by exactness , w − w1 − ∂y = αt, some t ∈ C ′
n. Then

∂w1 = ∂w − ∂∂y − ∂αt = αu − α∂′t = α(u − ∂′t), i.e. ∆∗(βw1) = u − ∂′t. But

u−∂′t+Bn−1(C
′) = u+Bn−1(C

′). In other words, ∆∗n assigns to the homology class

x the homology class of α−1∂β−1x.

We now show the sequence L is exact.

We have 



∆∗β∗x = {α−1∂β−1βx} = {α−1∂x} = {α−10} = 0

β∗α∗x = (βα)∗x = 0

α∗∆∗x = {αα−1∂β−1x} = {∂β−1x} = 0

so 



im β∗ ⊂ ker ∆∗

im α∗ ⊂ ker β∗

im ∆∗ ⊂ ker α∗

Let x ∈ ker ∆∗ and let z ∈ x, z ∈ C ′
n. Then, as above, z = βy and α−1∂y ∈ Bn−1(C

′)

(α is 1-1 by exactness.) So α−1∂y = ∂′u for some u ∈ C ′
n. Then y − αu ∈ Cn and

∂(y − αu) = ∂y − ∂αu = ∂y − α∂′u = 0. So y − αu ∈ Zn(C). Then β∗{y − αu} =

{βy − βαu} = {z} = x.

So ker ∆∗ ⊂ im β∗.
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Let x ∈ ker β∗, z ∈ x. Then z ∈ Cn and βz ∈ Bn(C ′′). So βz = ∂′y for some y ∈ C ′′
n+1.

Since β is onto, y = βu some u ∈ Cn+1. Thus βz = ∂′βu = β∂u. So β(z − ∂u) = 0.

So z − ∂u = αv for some v ∈ C ′
n. Now α∂′v = ∂z − ∂∂u = 0. So v ∈ Zn(C ′). Then

α∗{v} = {αv} = {z − ∂u} = {z} = x.

So ker β∗ ⊂ im α∗.

Let x ∈ ker α∗, z ∈ x. Then z ∈ C ′
n and αz = ∂y for some y ∈ Cn+1. Then

z ∈ {α−1∂β−1βy}. So x = ∆∗{βy}, while βy ∈ Zn(C ′′) since ∂′′βy = β∂y = βαz = 0.

So ker α∗ ⊂ im ∆∗.

Using the long exact sequence, we show what happens if Hn(C) ≡ 0, that is, the

middle column of the large commutative diagram above, corresponding to the short

exact sequence, is exact. From the long exact sequence derived from the short exact

sequence using the snake homomorphism, we have

L′ : 0 // Hn+1(C
′′)

∆∗ // Hn(C ′)
α∗ // 0

β∗ // Hn(C ′′)
∆∗ // Hn−1(C

′) // 0 . . .

Thus the maps α∗ and β∗ are the zero maps. By exactness, the maps ∆∗ are both

onto and 1-1, that is, they are isomorphisms.

Hence Hn(C ′′) ≈ Hn−1(C
′) for all n.

A5.3 A criterion for involutivity

The results in this section appear in [38, pp.10–4]. Proofs given here are those of the

author.

They concern a criterion for involutivity obtained by grading the Spencer δ-operator

lexicographically; the δ-operator is already graded by the degree on Λn, so we have

a double grading of δ. The result is used to corroborate the involutivity of certain

systems discussed in Chapter 6.
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For the definitions of gr, τr, SkT ∗, V (E), dx(ν) and δ, refer to Chapter 6.

Define the operators δi as follows:

δi(dx(ν)) =





dx(ν−1i) νi > 0

0 otherwise

and set (SkT ∗)i = {w ∈ SkT ∗ | δ1(w) = 0, δ2(w) = 0, . . . , δi(w) = 0}. The elements

of (SkT ∗)i are those symmetric forms that involve no components in the x1, x2, . . . , xi

directions and

0 = (SkT ∗)n ⊂ (SkT ∗)n−1 ⊂ . . . ⊂ (SkT ∗)2 ⊂ (SkT ∗)0 = SkT ∗

It is trivial to check that δ =
∑
i

dxi ∧ δi (up to a constant!)

The vector space gq+r are graded the same way as the (SkT ∗)i:

(gq+r)
i = gq+r ∩

(
Sq+rT ∗ ⊗ V (E)

)i
.

Lemma A5.2. The symbol maps τr commute with the δi, and thus respect the grading

on SkT ∗.

Proof. Spencer [51] proves that the following diagram commutes (Pommaret uses σr

for the symbol map; we have used this notation for the symbol of an equation, and

hence use τr to represent the actual linear map between the symmetric bundles)

Sq+r+1T ∗ ⊗ V (E)

δ
²²

τr+1 // Sr+1T ∗ ⊗ V (E ′)
δ

²²
T ∗ ⊗ Sq+rT ∗ ⊗ V (E)

idT∗⊗τr // T ∗ ⊗ SrT ∗ ⊗ V (E ′)
which is equivalent to the statement, dxi⊗δiτr+1 = dxi⊗τrδi. Therefore δiτr+1 = τrδi.

It then follows that

τr+1 :
(
Sq+r+1T ∗ ⊗ V (E)

)i → (
Sr+1T ∗ ⊗ V (E ′))i

.
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By definition, the two sequences

0 // (gq+r+1)
i−1 //

(
Sq+r+1T ∗ ⊗ V (E)

)i−1 τr+1 //

τr+1

((
Sq+r+1T ∗ ⊗ V (E)

)i−1) // 0

and

0 //
(
Sq+r+1T ∗ ⊗ V (E)

)i //
(
Sq+r+1T ∗ ⊗ V (E)

)i−1 δi //

(
Sq+rT ∗ ⊗ V (E)

)i−1 // 0

are exact. Define

(
τr

(
Sq+rT ∗ ⊗ V (E)

))i
= τr

(
Sq+rT ∗ ⊗ V (E)

) ∩ (
SrT ∗ ⊗ V (E ′))i

.

Notation: write T k for SkT ∗ ⊗ V (E).

Lemma A5.2 implies that τr+1((T
q+r+1)i) ⊂ (τr+1((T

q+r+1)i−1))i. The two exact

sequences for δi and τr can be “enmeshed” in the following commutative and exact

diagram (arrows in outline are inclusions):

0

²²

0

²²

0

²²

0 // (gq+r+1)
i

²²

// (T q+r+1)i

²²

//
(
τr+1((T

q+r+1)i−1)
)i

²²
0 // (gq+r+1)

i−1

δi

²²

// (T q+r+1)i−1

δi

²²

// τr+1((T
q+r+1)i−1)

δi

²²

// 0

0 // (gq+r)
i−1 // (T q+r)i−1

²²

// τr((T
q+r)i−1)

²²

// 0

0 0

Lemma A5.3. The maps

τr+1 :
(
Sq+r+1T ∗ ⊗ V (E)

)i → (
τr+1(S

q+r+1T ∗ ⊗ V (E))
)i
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(all r ≥ 0, i ≥ 0) are surjective if and only if the maps δi(gq+r+1)
i−1 → (gq+r)

i−1 (all

r ≥ 0, i ≥ 1) are surjective. ([38, p. 104])

Lemma A5.4. H(ΛpT ∗ ⊗ (gq+r)
n−1) = 0 for all p ≥ 0, r ≥ 0.

Proof. The vector space (gq+r)
n−1 ⊂ (

Sq+rT ∗⊗V (E)
)n−1

= 〈dx
(q+r)
n ⊗ ek | k = 1, . . . , m〉.

If (gq+r)
n−1 = 0, there is nothing to prove. Now

0 = δ(α⊗ dx
(q+r)
n ) = α ∧ dxn ⊗ dx

(q+r−1)
n

⇒ α ∧ dxn = 0

⇒ α = α′ ∧ dxn

⇒ α⊗dx
(q+r)
n = δ(α′⊗dx

(q+r+1)
n ). The space (gq+r)

n−1 is several copies of 〈dx
(q+r)
n 〉;

the preceding argument applies to each copy, since dx
(q+r)
n ⊗ ek ∈ (gq+r)

n−1 ⇒
dx

(q+r+1)
n ⊗ ek ∈ (gq+r+1)

n−1.

Theorem A5.5 (CRITERION FOR INVOLUTIVITY). If the maps δi :

(gq+r+1)
i−1 → (gq+r)

i−1 for all r ≥ 0 and i ≥ 1 are surjective, then gq is an in-

volutive symbol.

Proof. Let w ∈ ΛpT ∗ ⊗ gq+r be such that δ(w) = 0. Separate w into two terms,

one consisting of the summands of w with dx1 in their anti-symmetric part, and one,

denoted w1, consisting of the summands of w without dx1 in their anti-symmetric

part, so that

w = w1 +
∑

k

αk ∧ dx1 ⊗ sk

where sk ∈ gq+r, αk ∈ Λp−1T ∗ and αk has no term containing dx1 in its anti-symmetric

part. Now δ1 : gq+r+1 → gq+r is surjective, so for all k, there is a tk ∈ gq+r+1 such that

δ1(tk) = sk. Let w2 =
∑

αk⊗ tk, and let w(1) = w− δ(w2) = w1−
∑

k,j>1

αk∧dxj⊗ δjtk.

Now δw(1) = δ(w − δ(w2)) = δw = 0 and no summand of w(1) has dx1 in its anti-

symmetric part. There two facts together imply that w ∈ ΛpT ∗ ⊗ (gq+r)
1. Now use

the fact that δ2 : (gq+r+1)
1 → (gq+r)

1 is surjective. Repeating the argument yields an
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element

w(2) = w(1) − δw
(1)
2 = w − δ(w2)− δw

(1)
2 ∈ ΛpT ∗ ⊗ (gq+r)

2,

with δw(2) = 0. Continuing in this way, we obtain an element w(n−1) in ΛpT ∗ ⊗
(gq+r)

n−1, with δw(n−1) = 0, and w(n−1) = w − δ(φ) for some φ ∈ Λp−1T ∗ ⊗ gq+r+1.

However H(ΛpT ∗ ⊗ (gq+r)
n−1) = 0 by Lemma 6.8, implying that w(n−1) = δ(k) for

some k ∈ Λp−1T ∗ ⊗ (gq+r+1)
n−1. This implies that w itself is in the image of δ,

implying that H(ΛpT ∗ ⊗ gq+r) = 0 for all r ≥ 0 and p, which is to say, gq is an

involutive symbol.

It is clear from the proof that grading the spaces according to the ordering xn <

xn−1 < . . . < x2 < x1 is irrelevant. One can restate the result as follows:

Theorem A5.5 (BIS). Let xin < xin−1 < . . . < xi1 be an ordering on the variables

and define (gq+r+1)
ij to be the space {w ∈ gq+r+1 | δi1w = 0, . . . , δijw = 0}. If the

maps δij : (gq+r+1)
ij−1 → (gq+r)

ij−1 (all r ≥ 0, i ≥ 1) are surjective, then gq is an

involutive symbol. The ordering may depend on the level of prolongation r.

Example A5.6 (an involutive system). Let X = R2, E = X × R and

R2 =





uxy − uxx = 0

uyy − uxy = 0

so that g2 = 〈vxx + vxy + vyy〉. Hence

R3 =





uxxy − uxxx = 0

uxyy − uxxy = 0

uyyy − uxyy = 0

and g3 = 〈vxxx + vxxy + vxyy + vyyy〉.

Then δ1(g3) = g2 so δ1 is surjective, while (g3)
1 = 0, (g2)

1 = 0.
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Prolonging,

Rn =





u(n−1,1) − u(n,0) = 0

u(n−2,2) − u(n−1,1) = 0

...

u(0,n) − u(1,n−1) = 0

and

gn = 〈
∑

i,j: i+j=n

v(i,j)〉.

Then δ1 : gn+1 → gn is surjective while (gn)1 = 0, so that the conditions of Theo-

rem A5.5 are satisfied implying g2 is an involutive symbol. Let

uxy − uxx = f 1

uyy − uxy = f 2

Then using the basis 〈vxxx, vxxy, vxyy, vyyy〉 for S3T ∗⊗V (E) and the basis 〈f 1
x , f 1

y , f 2
x , f 2

y 〉
for S1T ∗ ⊗ V (E ′), the map τ1 has the matrix form

∣∣∣∣∣∣∣∣∣∣∣

−1 1 0 0

0 −1 1 0

0 −1 1 0

0 0 −1 1

∣∣∣∣∣∣∣∣∣∣∣

Then τ1((T
3)1) = 〈f 2

y 〉
τ1(T

3) = 〈f 1
x , f 1

y + f 2
x , f 2

y 〉
and (τ1(T

3))1 = 〈f 2
y 〉.

Thus τ1 : (T 3)1 → (τ1(T
3))1 is surjective.

This example shows how syzygies (in this case, f 1
y = f 2

x), lowers the dimensions of

the spaces (τr+1(T
q+r+1))i. Since

dim(T q+r+1)n−1 = #unknown functions,

and dim(Sr+1T ∗ ⊗ V (E ′))n−1 = #equations in the system, if the system is overdeter-

mined the map τr+1 can never be surjective without the presence of degree 1 syzygies.
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In this example, a syzygy of the system will be a syzygy of the symbol, but this will

not be true in general where an equation has terms of more the one degree.

Example A5.7 (Ex 6.6, Ch 6 revisited). Recall

g2 = 〈vyz + vxx, vxy, vyy, vzz + vxz〉,

g3 = 〈vyyz + vxxy, vxyy, vyyy, sum of other basis elements〉.

In fact, for 2 + r ≥ 3,

g2+r = 〈v(0,2+r−1,1) + v(2+r−1,1,0), v(1,2+r−1,0), v(0,2+r,0), sum of the rest〉

Now δ1(g2+r+1) misses v(0,2+r−1,1) + v(2+r−1,1,0), because differentiating the equation

u(0,2+r−1,1) − u(2+r−1,1,0) = 0 (i.e.

(
∂

∂y

)2+r−2

(uyz − uxx)) with respect to x, yields an

equation which has a term in common with a derivative of the other original equation

uzz−uxz = 0. This causes the basis element of g2+r+1 containing the terms v(1,2+r−1,1)

and v(2+r,1,0), to not be of the form v(1,2+r−1,1)+v(2+r,1,0)+an element of {w | δ1w = 0}.
For no prolongation is δ1(g2+r+1) = g2+r. However, for 2 + r ≥ 3, δ2(g2+r+1) = g2+r

while {w | δ2w = 0} = ∅. Hence the conditions for Theorem A5.5 bis are satisfied,

and g3 is an involutive symbol.


