# Digital Atlases and Difference Forms 

## Elizabeth Mansfield

Kent

Based on joint work with
Peter Hydon, Surrey, UK

An atlas is a covering of your space by maps.

- overlap

- adjacency


Let the space be

$$
M=\cup_{\alpha \in \mathcal{A}} U_{\alpha}
$$

Given functions $f_{\alpha}: U_{\alpha} \rightarrow \mathbb{R}$, when do they piece together to form a function on $M$ ? Answer:

$$
\left.\left(f_{\alpha}-f_{\beta}\right)\right|_{U_{\alpha} \cap U_{\beta}}=0
$$

- Explore this compatibility condition.

Notation: $U_{\alpha \beta}=U_{\alpha} \cap U_{\beta}, U_{\alpha \beta \gamma}=U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$, etc. Consider the simplest functions

$$
\check{C}^{i}(M)=\text { locally constant functions on the } U_{\alpha_{0} \ldots \alpha_{i}}
$$

called Čech co-chains.

Write the compatibility condition as

$$
\delta: \check{C}^{0}(M) \rightarrow \check{C}^{1}(M)
$$

Given $\omega \in \breve{C}^{0}$ with value $\omega_{\alpha}$ on $U_{\alpha}$, then $(\delta \omega)_{\alpha \beta}=\omega_{\alpha}-\omega_{\beta}$. That is, the value of $\delta \omega$ on $U_{\alpha \beta}$ is $\omega_{\alpha}-\omega_{\beta}$. Note ordered index now.


Want $\delta: \breve{C}^{1} \rightarrow \breve{C}^{2}$
to be the compatibility condition of the compatibility condition. Given $\zeta \in \breve{C}^{1}$ with value $\zeta_{\alpha \beta}$ on $U_{\alpha \beta}$, define $(\delta \zeta)_{\alpha \beta \gamma}=\zeta_{\beta \gamma}-\zeta_{\alpha \gamma}+\zeta_{\alpha \beta}$.
Then $0 \equiv\left(\omega_{\beta}-\omega_{\gamma}\right)-\left(\omega_{\alpha}-\omega_{\gamma}\right)+\left(\omega_{\alpha}-\omega_{\beta}\right)$
for any $\omega \in \check{C}^{0}$. Thus $\delta \circ \delta=0$.

Keep going! Define

$$
\delta: \breve{C}^{i} \rightarrow \breve{C}^{i+1}
$$

by

$$
(\delta \omega)_{\alpha_{0} \ldots \alpha_{i+1}}=\sum_{j=0}^{i+1}(-1)^{j} \omega_{\alpha_{0} \ldots \widehat{\alpha_{j}} \ldots \alpha_{i+1}}
$$

Since $\delta^{2}=0$, each $\left.\delta\right|_{C^{i}}$ is the compatibility condition of $\left.\delta\right|_{C^{i-1}}$.

- Given $\omega \in \breve{C}^{i}, i>0$, such that $\delta \omega=0$, we can solve the equation $\omega=\delta \eta$ for $\eta$ locally.

This generalises the idea of extending the domain of $\omega \in \breve{C}^{0}$ if $\delta \omega=0$.
$\check{C l}^{1}$ :


## local means

## restrict to

$U_{\alpha} \cup U_{\beta} \cup U_{\gamma}$
Given $\omega \in \breve{C}^{1}$, so that the value of $\omega$ on $U_{\alpha \beta}$ is $\omega_{\alpha \beta}$, such that $\delta \omega=0$, that is $\omega_{\beta \gamma}-\omega_{\gamma \alpha}+\omega_{\alpha \beta}=0$. find $\eta \in \breve{C}^{0}$, locally, with value $\eta_{\alpha}$ on $U_{\alpha}$, such that $\eta_{\alpha}-\eta_{\beta}=\omega_{\alpha \beta}$ and so forth, i.e.
$\omega=\delta \eta$ locally.

So, let $\eta_{\alpha}=c$ for some constant $c$. Then we must have

$$
\left\{\begin{array}{l}
\eta_{\beta}=c-\omega_{\alpha \beta} \\
\eta_{\gamma}=c-\omega_{\alpha \gamma}
\end{array}\right.
$$

We need only verify the third condition, that $\eta_{\beta}-\eta_{\gamma}=\omega_{\beta \gamma}$ but we have that $-\omega_{\alpha \beta}+\omega_{\alpha \gamma}=\omega_{\beta \gamma}$ from $\delta \omega=0$ on $U_{\alpha \beta \gamma}$.

So far we have


- $\delta^{2}=0$
- "locally exact", that is, there exist local pre-images for $\omega$ such that $\delta \omega=0$.

Thus, those $\omega$ such that $\delta \omega=0$ and having no global pre-images, that is, there does not exist $\eta$ s.t. $\delta \eta=\omega, \eta$ globally defined, encode global information of some sort.
-Čech cohomology
-Depends purely on the "combinatorics of the atlas".

- Can be defined for a wide range of spaces, not just smooth.

What is cohomology?
Given a complex $\mathcal{C}$ such that

$$
\ldots \xrightarrow{\delta_{i-1}} A^{i} \quad \xrightarrow{\delta_{i}} \quad A^{i+1} \quad \xrightarrow{\delta_{i+1}} \quad A^{i+2} \quad \xrightarrow{\delta_{i+2}} \ldots
$$

where

- the $A^{i}$ are linear spaces
- the $\delta_{i}$ are linear maps
- $\delta_{i+1} \circ \delta_{i}=0$ for all $i$

$$
\begin{aligned}
H^{i}(\mathcal{C}) & =\frac{\operatorname{ker} \delta_{i}}{\mathrm{im} \delta_{i-1}} \\
& =\frac{\langle\text { closed forms }: \delta \omega=0\rangle}{\langle\text { exact forms }: \omega=\delta \eta\rangle}
\end{aligned}
$$

Global structure of a manifold is often described by either a


- triangulation: simplicial (co)homology

Do there exist circles that are not boundaries?

- exterior calculus: de Rham cohomology
 Is there a zero curl vector field that is not a gradient?

Easy to see that covers and triangulations are related: the global information is the same.

Famous proof by Weil that shows exterior calculus and "good covers" give the same global information: the cohomologies are isomorphic.

A good cover is one where all the $U_{\alpha}, U_{\alpha \beta}, U_{\alpha \beta \gamma}$ are contractible to a point.


- The proof is constructive and 99\% algebraic.

WHY is there a chance that de Rham and Čech cohomologies might be isomorphic?


- $\delta^{2}=0$ and $\mathrm{d}^{2}=0$ : each is the compatibility condition of its previous.
- Each sequence is locally exact.

WANT an analogous theory adapted to solving difference equations on globally non-trivial spaces.

- Not just equations with continuum limits
- Not just spaces approximating manifolds
- Conserved quantities relate to global structures, e.g. periodic boundary conditions imply space is a torus.
- Monodromy.
- Topological invariants and obstructions impact solution space: 1) the weather sits on a sphere, and 2) mathematical physics, kinks, monopoles, skyrmions etc...

Is there a difference analogue of de Rham?

Recall the exterior derivative

$$
\begin{aligned}
\mathrm{d} f(x, y) & =f_{x} \mathrm{~d} x+f_{y} \mathrm{~d} y \\
\mathrm{~d}(f(x, y) \mathrm{d} x+g(x, y) \mathrm{d} y) & =\left(g_{x}-f_{y}\right) \mathrm{d} x \mathrm{~d} y
\end{aligned}
$$

Forward difference analogue:

$$
\begin{aligned}
\Delta f(m, n) & =\left(S_{m}-\mathrm{id}\right) f \Delta_{m}+\left(S_{n}-\mathrm{id}\right) f \Delta_{n} \\
\Delta\left(f(m, n) \Delta_{m}+g(m, n) \Delta_{n}\right) & =\left(\left(S_{m}-\mathrm{id}\right) g-\left(S_{n}-\mathrm{id}\right) f\right) \Delta_{m} \Delta_{n}
\end{aligned}
$$

- $\Delta^{2}=0 \quad$ - $\Delta($ constant $f n)=0$
but nothing else: $\Delta$ is not a derivation nor is there a tangent space of any kind.

Fundamental cubes are unit cubes in $\mathbb{Z}^{p}$ together with what kinds of forms are defined where.

$$
\left.\begin{array}{l}
p=0 \\
p=1
\end{array} \quad \begin{array}{l}
\text { only 0-forms i.e. functions. } \\
\text { arrow indicates orientation. } \\
0 \text { and 1-forms defined at } m .
\end{array}\right\}
$$

Can think of lattice varieties as either sums or unions of cubes.
For example,
(1)

$$
(m, n)=(m+1, n)-\quad \oint_{(m, n)}^{(m, n+1)}=\begin{gathered}
(m, n+1) \\
(m, n)(m+1, n)
\end{gathered}
$$

where minus means reverse the orientation.
(2) Lattice with two points removed


## Key:

- two form defined
- one form defined in direction indicated
- zero form defined
$\times$ point removed
(3) A corner of a cube: a sum of three 2 -cubes. If a form is defined at a point, it stays defined after adding.

From atlases to the global object, glue pieces together.
for lattice varieties
must maintain adjacency

for manifolds
must maintain smoothness

(4)

d- two-form undefined, as not defined in either $L_{1}$ nor $L_{2}$

open set, continuity

ordering on $\mathbb{Z}$, adjacency
-Continuity is an illusion.
\(\left.\begin{array}{l}\begin{array}{l}Poincaré Lemma <br>
Local exactness of <br>
de Rham proved on <br>

starshaped domains\end{array}\end{array}\right\}\)| both |
| :--- |
| proofs |
| constructive |


all paths first horizontal, then vertical via adjacent points

Write the difference complex on the lattice variety $L$ as

$$
0 \quad \rightarrow \quad \mathbb{R} \quad \xrightarrow{\text { inc }} \quad \mathrm{Ex}^{0} \quad \xrightarrow{\Delta} \quad \mathrm{Ex}^{1} \quad \stackrel{\Delta}{\rightrightarrows} \quad \mathrm{Ex}^{2} \quad \stackrel{\Delta}{\longrightarrow} \ldots
$$

where Ex is for Exterior Algebra. Again, this is locally but not globally exact.

Major result 2 (ELM and Hydon): Given $L$, the Čech and $\Delta$ cohomologies are isomorphic, provided that the Čech cohomology is calculated with respect to a cover $L=\cup L_{\alpha}$ that satisfies

- $L_{\alpha}, L_{\alpha \beta}=L_{\alpha} \cap L_{\beta}$ etc are all projectible
- any form at $P \in L$ is defined in at least one of the $L_{\alpha}$ such that $P \in L_{\alpha}$.


## Why is this important?

- If you take a cover of your manifold and match it one-to-one with a cover of your lattice approximation, you guarantee matching global forms.
- The proofs are indpendent of any continuum limit, so get results for inherently discrete spaces; can calculate globally closed ( $\Delta \omega=0$ ) but not exact $(\omega \neq \Delta \eta)$ forms simply by knowing the pattern of intersections.

Glimpse of the proof

$$
\begin{aligned}
& \begin{array}{cccc}
\vdots & \vdots & \vdots & \vdots \\
& \uparrow \Delta & \uparrow \Delta & \uparrow \Delta
\end{array} \\
& 0 \rightarrow \operatorname{Ex}^{2}(L) \xrightarrow{r} \underset{\sim}{~} \oplus \operatorname{Ex}^{2}\left(L_{\alpha}\right) \xrightarrow{\delta} \oplus \operatorname{Ex}^{2}\left(L_{\alpha \beta}\right) \xrightarrow{\delta} \oplus \operatorname{Ex}^{2}\left(L_{\alpha \beta \gamma}\right) \xrightarrow{\delta} \\
& 0 \rightarrow \operatorname{Ex}^{1}(L) \xrightarrow{r} \oplus \operatorname{Ex}^{1}\left(L_{\alpha}\right) \xrightarrow{\delta} \oplus \operatorname{Ex}^{1}\left(L_{\alpha \beta}\right) \xrightarrow{\delta} \oplus \operatorname{Ex}^{1}\left(L_{\alpha \beta \gamma}\right) \xrightarrow{\delta}
\end{aligned}
$$

Applications to studying global solution spaces Want to solve, globally, a 4-point scheme on a lattice sphere $0=a u_{m, n}+b u_{m+1, n}+c u_{m, n+1}+d u_{m+1, n+1}=0, a b c d \neq 0$. Start with initial data as shown on the left, solve for $u$ on front, left and lower surfaces...

$\sharp$ initial conditions $-\sharp$ compatibility conditions $\equiv 2$.

The number 2 is famously associated with the sphere.

$$
\begin{aligned}
2 & =\text { Betti number of the sphere } \\
& =\sum_{i}(-1)^{i} \operatorname{dim} \check{C}^{i}\left(S^{2}\right) \\
& =\sum_{i}(-1)^{i} \operatorname{dim} \wedge^{i}\left(S^{2}\right)
\end{aligned}
$$

Conjecture
for linear systems on boundary free lattice varieties $L$, $\sharp$ initial conditions- $\#$ compatibility conditions $\equiv \sum_{i}(-1)^{i} \operatorname{dim} \operatorname{Ex}^{i}(L)$.

Reminiscent of Morse Index Theorem: there is a discrete Morse theory by Forman which has no connection.

Not just Forward Difference On the left is shown a fundamental 2-cube for a backward difference, while on the right an example is shown of a fundamental 2 -cell for a collocation scheme.


Hydon: fundamental cubes exist for Gauss-Legendre, Marker and Cell and Preissman schemes.

## Open Problems

The main open problem is to include localised refinements.
These violate the adjacency condition stipulated in the lattice variety construction.


Another is to consider non-orientable lattice varieties, such as a lattice Möbius band.

