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An atlas is a covering of your space by maps.

• overlap
• holes

• ∩ need not be connected

• adjacency



Let the space be

M = ∪α∈AUα

Given functions fα : Uα → R, when do they piece together to

form a function on M? Answer:

(fα − fβ)|Uα∩Uβ
= 0.

• Explore this compatibility condition.

Notation: Uαβ = Uα ∩ Uβ, Uαβγ = Uα ∩ Uβ ∩ Uγ, etc. Consider

the simplest functions

Či(M) = locally constant functions on the Uα0...αi

called Čech co-chains.



Write the compatibility condition as

δ : Č0(M) → Č1(M)

Given ω ∈ Č0 with value ωα on Uα, then (δω)αβ = ωα − ωβ. That

is, the value of δω on Uαβ is ωα − ωβ. Note ordered index now.

Uα

Uβ

Uγ

ωα

ωβ

ωγ

Want δ : Č1 → Č2

to be the compatibility condition of the

compatibility condition. Given ζ ∈ Č1 with value

ζαβ on Uαβ, define (δζ)αβγ = ζβγ − ζαγ + ζαβ.

Then 0 ≡ (ωβ − ωγ) − (ωα − ωγ) + (ωα − ωβ)

for any ω ∈ Č0. Thus δ ◦ δ = 0.



Keep going! Define

δ : Či → Či+1

by

(δω)α0...αi+1 =
i+1∑

j=0

(−1)jωα0...α̂j...αi+1
.

Since δ2 = 0, each δ|Či is the compatibility condition of δ|Či−1.

•Given ω ∈ Či, i > 0, such that δω = 0, we can solve the

equation ω = δη for η locally.

This generalises the idea of extending the domain of ω ∈ Č0 if

δω = 0.



Č1:
ωαβ

ωαγ

ωβγ

ηα
ηβ

ηγ

local means

restrict to

Uα ∪ Uβ ∪ Uγ

Given ω ∈ Č1, so that the value of ω on Uαβ is ωαβ, such that

δω = 0, that is ωβγ − ωγα + ωαβ = 0. find η ∈ Č0, locally, with

value ηα on Uα, such that ηα − ηβ = ωαβ and so forth, i.e.

ω = δη locally.

So, let ηα = c for some constant c. Then we must have




ηβ = c − ωαβ

ηγ = c − ωαγ

We need only verify the third condition, that ηβ − ηγ = ωβγ but

we have that −ωαβ + ωαγ = ωβγ from δω = 0 on Uαβγ.



So far we have

0 → R
inc
→ Č0 δ

→ Č1 δ
→ Č2 δ

→ · · ·
︷ ︸︸ ︷
global constant fns

• δ2 = 0

• “locally exact”, that is, there exist local pre-images for ω

such that δω = 0.

Thus, those ω such that δω = 0 and having no global

pre-images, that is, there does not exist η s.t. δη = ω, η globally

defined, encode global information of some sort.

•Čech cohomology

•Depends purely on the “combinatorics of the atlas”.

•Can be defined for a wide range of spaces, not just smooth.



What is cohomology?

Given a complex C such that

· · ·
δi−1
→ Ai δi→ Ai+1 δi+1

→ Ai+2 δi+2
→ · · ·

where

• the Ai are linear spaces

• the δi are linear maps

• δi+1 ◦ δi = 0 for all i

Hi(C) =
ker δi
imδi−1

=
〈 closed forms : δω=0〉
〈 exact forms : ω=δη〉



Global structure of a manifold is often described by either a

• triangulation: simplicial (co)homology

Do there exist circles that are not boundaries?

• exterior calculus: de Rham cohomology

Is there a zero curl vector field that is

not a gradient?

Easy to see that covers and triangulations

are related: the global information

is the same.



Famous proof by Weil that shows exterior calculus and “good

covers” give the same global information: the cohomologies are

isomorphic.

A good cover is one where all the Uα, Uαβ, Uαβγ are

contractible to a point.

Yes No

• The proof is constructive and 99% algebraic.



WHY is there a chance that de Rham and Čech cohomologies

might be isomorphic?

0 → R
inc
→ Č0 δ

→ Č1 δ
→ Č2 δ

→ · · ·
︷ ︸︸ ︷
same initial space:

global constant fns︸ ︷︷ ︸
0 → R

inc
→ Λ0 d (grad)

→ Λ1 d (curl)
→ Λ2 d (div)

→ · · ·

• δ2 = 0 and d2 = 0: each is the compatibility condition of its

previous.

• Each sequence is locally exact.



WANT an analogous theory adapted to solving difference

equations on globally non-trivial spaces.

• Not just equations with continuum limits

• Not just spaces approximating manifolds

• Conserved quantities relate to global structures, e.g. periodic

boundary conditions imply space is a torus.

• Monodromy.

• Topological invariants and obstructions impact solution

space: 1) the weather sits on a sphere, and 2) mathematical

physics, kinks, monopoles, skyrmions etc . . . .



Is there a difference analogue of de Rham?

Recall the exterior derivative

d f(x, y) = fxdx + fydy

d(f(x, y)dx + g(x, y)dy) = (gx − fy)dxdy

Forward difference analogue:

∆ f(m, n) = (Sm − id)f ∆m + (Sn − id)f ∆n

∆(f(m, n)∆m + g(m, n)∆n) = ((Sm − id)g − (Sn − id)f)∆m∆n

• ∆2 = 0 • ∆(constant fn) = 0

but nothing else: ∆ is not a derivation nor is there a tangent

space of any kind.



Fundamental cubes are unit cubes in Z
p together with what

kinds of forms are defined where.

p = 0 only 0-forms i.e. functions.

p = 1
m+1m





arrow indicates orientation.

0 and 1-forms defined at m.

p = 2
x

(m,n) (m+1,n)

(m,n+1)(m+1,n+1)



arrow gives the orientation.

0, 1 and 2 forms defined at (m, n).



Can think of lattice varieties as either sums or unions of cubes.

For example,

(1)
(m+1,n)(m,n)

− (m,n)

(m,n+1)

=
(m,n) (m+1,n)

(m,n+1)

where minus means reverse the orientation.

(2) Lattice with two points removed
b b b

b

b

b

b

b

b

b

b b

b

×

×

Key:

one form defined

two form defined

zero form defined

in direction indicated

× point removed



(3) A corner of a cube: a sum of three 2-cubes. If a form is

defined at a point, it stays defined after adding.

b b

b



From atlases to the global object, glue pieces together.

glue glue

for lattice varieties

must maintain adjacency

for manifolds

must maintain smoothness
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(4)

L1

glue

L2

L2

L1

two-form undefined, as not defined in

either L1 nor L2
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open set, continuity ordering on Z, adjacency

•Continuity is an illusion.



Poincaré Lemma

Local exactness of

de Rham proved on

starshaped domains






both

proofs

constructive






ELM and Hydon

Local exactness of

difference complex proved

on projectible domains
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all paths first horizontal, then vertical

via adjacent points



Write the difference complex on the lattice variety L as

0 → R
inc
→ Ex

0 ∆
→ Ex

1 ∆
→ Ex

2 ∆
→ · · ·

where Ex is for Exterior Algebra. Again, this is locally but not

globally exact.

Major result 2 (ELM and Hydon): Given L, the Čech and ∆

cohomologies are isomorphic, provided that the Čech

cohomology is calculated with respect to a cover L = ∪Lα that

satisfies

• Lα, Lαβ = Lα ∩ Lβ etc are all projectible

• any form at P ∈ L is defined in at least one of the Lα such

that P ∈ Lα.



Why is this important?

• If you take a cover of your manifold and match it one-to-one

with a cover of your lattice approximation, you guarantee

matching global forms.

• The proofs are indpendent of any continuum limit, so get

results for inherently discrete spaces; can calculate globally

closed (∆ω = 0) but not exact (ω 6= ∆η) forms simply by

knowing the pattern of intersections.



Glimpse of the proof

... ... ... ... ...

↑ ∆ ↑ ∆ ↑ ∆ ↑ ∆

0 → Ex2(L)
r

−→
⊕

Ex2(Lα)
δ

−→
⊕

Ex2(Lαβ)
δ

−→
⊕

Ex2(Lαβγ)
δ

−→

↑ ∆ ↑ ∆ ↑ ∆ ↑ ∆

0 → Ex1(L)
r

−→
⊕

Ex1(Lα)
δ

−→
⊕

Ex1(Lαβ)
δ

−→
⊕

Ex1(Lαβγ)
δ

−→

↑ ∆ ↑ ∆ ↑ ∆ ↑ ∆

0 → Ex0(L)
r

−→
⊕

Ex0(Lα)
δ

−→
⊕

Ex0(Lαβ)
δ

−→
⊕

Ex0(Lαβγ)
δ

−→

↑ ↑ s ↑ s ↑ s

0 → Č0 δ
−→ Č1 δ

−→ Č2 δ
−→

↑ ↑ ↑

0 0 0



Applications to studying global solution spaces

Want to solve, globally, a 4-point scheme on a lattice sphere

0 = aum,n + bum+1,n + cum,n+1 + dum+1,n+1 = 0, abcd 6= 0.

Start with initial data as shown on the left, solve for u on front,

left and lower surfaces...

♯initial conditions − ♯compatibility conditions ≡ 2.



The number 2 is famously associated with the sphere.

2 = Betti number of the sphere

=
∑

i(−1)i dim Či(S2)

=
∑

i(−1)i dimΛi(S2)

Conjecture

for linear systems on boundary free lattice varieties L,

♯initial conditions−♯compatibility conditions ≡
∑

i

(−1)i dimEx
i(L).

Reminiscent of Morse Index Theorem: there is a discrete Morse

theory by Forman which has no connection.



Not just Forward Difference On the left is shown a fundamental

2-cube for a backward difference, while on the right an example

is shown of a fundamental 2-cell for a collocation scheme.

Hydon: fundamental cubes exist for Gauss-Legendre, Marker

and Cell and Preissman schemes.



Open Problems

The main open problem is to include localised refinements.

These violate the adjacency condition stipulated in the lattice

variety construction.

Another is to consider non-orientable lattice varieties, such as a

lattice Möbius band.

THANK YOU!!!


