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We provide a definitive guide to parameter redundancy in mark-recovery models, indicating, for a wide
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parameter-redundant models we identify the parameter combinations that can be estimated. Simple, general
results are obtain, which hold irrespective of the duration of the studies. We also examine the effect real data
have on whether or not models are parameter redundant, and show that results can be robust even with very
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1 Introduction

1.1 Parameter redundancy

Models are said to be parameter redundant when they contain too many parameters to be estimated, how-
ever much data are collected. The terminology was introduced by Catchpole and Morgan (1997), though
the idea has a long history, described in Cole et al (2010), who also provide the latest developments for
identifying parameter redundancy and dealing with its consequences. Parameter redundancy can be con-
sidered to be an extreme form of over-parameterisation. It arises in many different areas of stochastic
modelling, and can be a consequence of complex mechanistic models being devised without regard to
what may or may not be estimated when the models are fitted to data.

In this paper we assume that the method of model-fitting that will be used is maximum-likelihood.
It is shown in Catchpole and Morgan (1997) that parameter-redundant models possess a flat likelihood.
Unfortunately, even in cases of simple parameter-redundant models, sophisticated methods of non-linear
function optimisation can stop and return optima corresponding to flat regions of the function being consid-
ered, without warning. It is therefore important that tools are developed to check for parameter redundancy.
Such tools are now available, making use of methods of computerised symbolic algebra, and they are de-
scribed in Cole et al (2010). An alternative to using symbolic algebra is to use numerical methods, but
these can result in incorrect conclusions, as demonstrated by Cole and Morgan (2010a). Choquet and Cole
(2010) have developed a hybrid method which is more reliable than standard numerical methods, and is
easier to use than pure symbolic methods.

Quite often stochastic models are devised for data structures of particular dimensions, for a particular
experimental study. A natural question is then whether the conclusions regarding parameter redundancy
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hold for data of different dimensions, but for which the model is the same. Once again, tools are available
which allow this question to be answered. Ideally one would like models of a particular structure to have
a simple description of their parameter redundancy, the best situation being when there is no change in
conclusions, and dimensionality can be disregarded.

Using the fully symbolic tools that are now available is not entirely straightforward: they are not auto-
matic, as they may involve finding a reparameterisation that is particular to the problem being considered;
in some cases symbolic algebra packages might run out of memory, for especially complex models, and
some of the procedures and checks require care in how they are applied. Furthermore, parameter redun-
dancy may change in the presence of real data. Ideally, therefore, statisticians working in particular areas
of modelling require tables of parameter redundancy results, for the families of models considered, aug-
mented with explanations of how those results may be modified if data are missing. However there is no
guarantee that simple forms of such tables can be constructed.

The parameter redundancy of any exponential-family model can be examined by considering a deriva-
tive matrix formed by differentiating the means with respect to the parameters. The rank of the derivative
matrix is the number of estimable parameters in the model. A model is termed parameter redundant, with
deficiency d, and will be non-identifiable, if the rank of the derivative matrix is d less than the number
of parameters in the model, where d > 0. If d = 0 the model is termed full rank, and in theory every
parameter within the model can be estimated (Catchpole and Morgan, 1997). For a parameter-redundant
model the estimable parameter combinations can be found by solving a set of partial differential equations
(Catchpole et al, 1998). The derivative matrix can be evaluated by a computer algebra package such as
Maple (see for example Catchpole et al, 2002), and the same is true in principle of its rank. More recently
this approach has been generalised and extended by Cole et al (2010). They relax the exponential family
assumption and develop a reparameterisation approach, which allows the derivative matrix to be simplified.
The reparameterisation approach allows the evaluation of the rank of the derivative matrix in Maple even
for complex models (see for example Cole and Morgan, 2010a; Cole, 2010).

1.2 Mark-recovery data and models

Models for mark-recovery provide a striking illustration of the issues raised above. Such data arise when
wild animals are given unique identifiers, so that when they are recovered dead it is possible to use the
recovery data to estimate mortality, and how it may vary with factors such as age, time and cohort. Models
for mark-recovery data include survival probabilities and the probabilities of dead marked animals being
found and reported dead. These parameters could depend on time or the age of the animal. It is obviously
not possible to estimate all the parameters if both survival and recovery parameters are dependent on both
age and time, as there would be more parameters than there are multinomial cell values. However if the
survival and recovery parameters are constant then these two parameters can be estimated. For models
between these two extremes it is often not clear what can and cannot be estimated.

Data sets of different dimension are a consequence of studies of differing lengths, and probability mod-
els for survival can be complex, depending on how the models incorporate features such as time- and
age-dependence in the survival and recovery probabilities. We therefore use the mark-recovery paradigm
to show that, for a very wide class of models, it is possible to construct relatively simple tables of parameter
redundancy. We also show how results are modified for particular types of missing data. For these models,
our results are all that is required to answer questions relating to parameter redundancy.

An example of mark-recovery data arises from ring-recovery experiments, where animals are ringed
and some are recovered dead later (see for example Freeman and Morgan, 1990, 1992). Three examples of
ring-recovery data are given in Table 1. The first (a) is data collected on Lapwing, Vanellus vanellus, when
birds are ringed in their first year of life. The second and third data sets are collected on male mallards,
Anas platyrhynchos, ringed in their first year of life (b) and as adults (c). The results of this paper apply to
all mark-recovery data, not just ring-recovery experiments.
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Frequently animals are marked in their first year of life and data are accumulated on a yearly timescale.
The first assumption can be relaxed if animals are of known age at marking, or if there is no age structure
to any of the parameters — for example for the adult mallard data in Table 1c. The second assumption can
be changed to any time unit. We let &V;, j denote the number of animals marked in year i, i = 1,...,n; and
recovered in year j, j = 1,...,ny, where ny > ny, and let F; denote the number of animals marked in year
i. The probability of an animal being ringed in year i and recovered in year j is given by

i1
Pj= (H ¢k—i+1,k> (1= 0j—iv1,)Aj—it1,), (1)
k=i

where ¢; ; is the probability of an animal aged i surviving the jth year of the study and where ; ; is the
probability of recovering a dead animal aged i in the jth year of the study. These probabilities can be
summarized by an upper triangular matrix, P, consisting of all the F; ;, which we call the p-array. The
likelihood is given by the product multinomial distribution below

m ny N no E_Z?iiN"v-f
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For product-multinomial models Catchpole and Morgan (1997) showed that it is sufficient to form a
derivative matrix by differentiating the terms of the p-array (or their logarithm) with respect to the param-
eters, as long as there is perfect data. We define perfect data as data with ; ; # O for all i and j. Using the
p-array terms rather than the means is structurally simpler, because the probabilities of being ringed and
never being seen again are excluded.

1.3 Notation

Mark-recovery models contain both survival and recovery parameters, which could be constant (C), de-
pendent on time (T), dependent on the age of the animal (A) or dependent on both age and time (A,T). We
follow the notation of Catchpole and Morgan (1996a) and Catchpole et al (1996b) to represent different
models. Each model is denoted as y/z, with y denoting survival and z denoting reporting probability. For
example the model T/A has survival probabilities that are dependent on time and recovery probabilities
that are dependent on age. Frequently first year birds experience higher mortality than older animals, and
therefore it is sensible to consider models which separate first-year survival from that of subsequent years.
The notation x/y/z is used for this situation, with x denoting first year survival, y denoting adult survival
and z denoting reporting probability. The options are again constant (C) or dependent on age (A), time (T)
or age and time (A,T), but x can only be C or T. There are additional options for the reporting probability;
it could depend on whether the animal is in its first year of life or is older, indicated by Aj.,. The reporting
probability can have these two age classes and also be dependent on time, which we denote by A2, 7.

1.4 Aims and structure of the paper

The purpose of this paper is to provide a set of general results on the parameter redundancy of various
mark-recovery models, and in the case of parameter-redundant models, find exactly how many parameters
can be estimated and what combinations of the original parameters can be estimated. An important feature
of the results provided is that they are perfectly general, and explicitly take account of the dimensionality
of the data. For completeness we include some cases already considered by Catchpole and Morgan (1997),
Catchpole et al (1998) and Catchpole et al (2002). The three methods used are explained in Section 2. The
first method comes from Catchpole and Morgan (1997) and is also included here for completeness. The
second method demonstrates a new application of for the reparameterisation method of Cole et al (2010).
Here it is used to obtain general results in parameter-redundant models and for examining all models in
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the presence of imperfect data, where some N; ; = 0. The third method has not be presented before. The
results are given in Section 3.

The general results assume perfect data. Real data, such as the data in Table 1, often have some N; ;
which are zero. How this affects the parameter-redundancy of a model is discussed in Section 4. Many
of the models examined are parameter redundant, in which case adding time- or age-varying trends, or
adding time-varying covariates may result in a full rank model. This is discussed in Section 5, where it is
shown that, given knowledge of the number of estimable parameters in the model without covariates, the
number of estimable parameters in the model with covariates can be obtained without further calculation.
For completeness, in Section 6 we briefly consider parameter redundancy in conditional models, which
apply when cohort sizes are not available. Maple code for the examples is provided in the supplementary
material.

2 Methods

An exhaustive summary is a vector of parameters that uniquely define the model. The exponential family
means and the p-array and its logarithm are examples of exhaustive summaries for mark-recovery models.
The basic method involves forming a derivative matrix by differentiating the exhaustive summary with
respect to the parameters. The rank of the resulting derivative matrix is calculated and this is equal to the
number of estimable parameters (Cole et al, 2010). Generalising this result for all years of ringing (n; )
and recovery (n2 > nj ), makes the use of one of the following methods.

2.1 Method 1: the extension theorem for full-rank models

Firstly the lowest values of n; and ny for which the model is full rank is found. The extension theorem
of Catchpole and Morgan (1997) is then applied. It states that if a full-rank model is extended by adding
extra p-array terms k» and extra parameters 6, and the derivative matrix D, = [dk»/d 65] is also full rank,
then the extended model is full rank. The result can then be generalised further by induction (Theorem
6, Catchpole and Morgan, 1997), hence providing general results for any number of years of ringing and
recovery. If the extension involves no extra parameters or one extra parameter then the extension theorem
applies trivially (remark 5, Catchpole and Morgan, 1997). Note that this method only makes used of the
methods of Catchpole and Morgan (1997) and does not require the use of any more recently developed
methods.

Example 1. Consider a model for animals that have constant first-year survival, ¢, time-dependent
adult survival, ¢, and time-dependent recovery, A, (model C/T/T). We consider an 3 x 3 p-array, resulting
from n| = 3 years of ringing and ny = 3 years of recovery. An exhaustive summary is
K1 = [01A1, 0100222, 0100200323, 9122, 01033, §1A3]7, where V = 1 — v, and the parameters are
01 = [01, 942,90 3,A1,A2,A3]. The derivative matrix D; = [d«k;/d6;] has rank 6, and there are 6 param-
eters in the model, therefore this model is full rank. Adding an extra year of recovery adds the extra
p-array terms K» = (010204300424, 01003044, 910,424]" and extra parameters 6 = [@4,44]. The
derivative matrix Dy = [dk2/d6>] only has rank 1, so is not full rank. In fact the extended model can
be shown to be parameter redundant with deficiency 1. As an alternative consider adding an extra year
of recovery and an extra year of ringing simultaneously. The extra exhaustive summary terms are now
K2 = [01042003%a4A4, 0100300404, 0190 sha, P1 A4 T with the extra parameters remaining the same as for
the previous extension. The derivative matrix D, = [dk»/d 6] has rank 2, and is therefore full rank. The
generalisation from an n x n array to (n+ 1) x (n+ 1) follows in a similar manner. Therefore by the
extension theorem this model has full rank 2n, for the case n; = np. This is unusual as most full-rank
mark-recovery models do not require n; = n;; see Tables 2 and 3. O
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2.2 Method 2: reparameterisation method

The reparameterisation method is used for parameter-redundant models to generalise results to any n; and
ny; it is also used for full-rank models to find general results in the presence of imperfect data, described in
Section 4. First the model is reparameterised. The new parameterisation is chosen so that it is full rank and
extends if n; and ny are increased. The extension theorem is then applied to the full-rank reparameterised
model. By the reparameterisation theorem of Cole et al (2010) the number of parameters in the full-rank
reparameterised model will be the number of estimable parameters in the original model.

Example 2. Consider the model where survival is fully age dependent and recovery is dependent on
time (model A/T). In the case with n; = 2 and n, = 3 the exhaustive summary, which consists of all of the
non-zero terms of the p-array, is k] = [§141, 9102242, 0192033, §1 42, ¢19243]7 . This is differentiated with
respect to the 6 parameters, 0 = [, ¢, #3, A1, A2, A3] to form a derivative matrix that has rank 5. Therefore
this model is parameter redundant with deficiency 1. To apply the extension theorem using reparameterisa-
tion we first choose the reparameterisation s = [s,52,53,54,55] = [@1 41, 9102/ 01, A2 /A1, 010203 /91, A3/ A1)
We rewrite & in terms of the elements s, giving ki (s) = [Sl,S1S2S3,S154S5,S1S3,S1S2S5]T. The exhaustive
summary rewritten in terms of the reparameterisation, ki (s), is then differentiated with respect to s, to form
a derivative matrix with full rank 5. We then apply the extension theorem to the full-rank reparameterised
model. Adding an extra year of ringing adds the extra exhaustive summary term Kk (s) = [s;ss], but adds
no extra s;, and therefore is trivially full rank by the extension theorem. Alternatively, adding an extra year
of recovery gives the extra exhaustive summary term K (s) = [s156S7,s154S7,s152S7]T, where the extra s;
are s = 01020304 /91 and 57 = Ay/A; with s, = [s6,s7] . The derivative matrix D, = [ k»(s)/ds,] has full
rank 2. The general induction step follows in a similar manner. By the extension theorem, the reparam-
eterised model will always have full rank 2n; — 1. By the reparameterisation theorem the original model
will also have rank 2n, — 1. As the original model has 2n, parameters it is always parameter redundant
with deficiency 1 for ny > 2 and np > 3. O

2.3 Method 3: limited by the number of unique exhaustive summary terms

It is obvious that the model with age- and time-dependence in both survival and recovery parameters
is parameter redundant because there are many more parameters than there are multinomial cell values.
Rather than the multinomial cell values themselves, it is the number of individual exhaustive summary
terms, (which in this case are the p-array terms), that is limiting the number of estimable parameters. As
there are E = nyny — %n? + %nl non-zero terms in the p-array, the maximum possible rank is E. There are
several models where it is obvious that the rank is equal to E, because each P; ; contains a unique parameter
not occurring in any other P, ;.

It is also possible to use this method if any of the P; ; are identical with each distinct P ; containing a
parameter not in any other distinct P ;. Then the rank is equal to the number of distinct F; ;.

Example 3. The model with age-dependent survival, ¢;, and age-dependent recovery, A;, (model A/A),
with n; = 3 and ny = 3 has p-array

hd idade G123 As
P= oA dihdr
$1 A

The distinct terms of P are {¢1 A1, 912242, ¢1 ¢ 9343 }. Each of these terms contains a different parameter,
Ai. As there are three distinct terms the rank of this model is 3. If there are n; years of ring and n
years of recovery, there will now be n; unique terms. The rank of this model is therefore n;, but there
are 2n, parameters therefore the model is always parameter redundant with deficiency n for n; > 2 and
ny > 2. O
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2.4 How the method is chosen

Above we presented three different methods for determining the rank of a model. We choose the method
as follows:

Step 1 Firstly a model is checked to see if it is limited by the number of exhaustive summary terms, in which
case the rank is deduced using method 3. This normally occurs if one or more of the parameters are
dependent on both age and time.

Step 2 Secondly the rank of a small case (for example n; = 4, np = 4) is checked.

Step 3 If the model is full-rank method 1 is applied, otherwise method 2 is applied.

2.5 Estimable parameter combinations

The derivative matrix contains more information than just the number of estimable parameters. In parameter-
redundant models it is possible to find the estimable parameter combinations by solving a set of partial
differential equations. This involves solving a’ D = 0, where D is a derivative matrix with rank less than
the number of parameters. There will be d = p — r solutions to o’ D = 0, labelled o jfor j=1...d, with
individual entries ¢;;. Any @;; which are zero for all d solutions correspond to a parameter, 6;, which is
estimable. The solutions of the system of linear first-order partial differential equations,

Loof
al-»—:O, ':1...,
,»=Zl 96~ Y "

form the set of estimable parameters. This method was developed by Catchpole et al (1998) for exponential
family models including compartment models and separately developed for continuous state-space models,
such as compartment models, by Chappell and Gunn (1998) and Evans and Chappell (2000).

This partial differential equation approach can be applied to a model with a particular number of years
of ringing and recovery. To generalise the result to any number of years of ringing and recovery we use the
reparameterisation method (Cole et al, 2010). This involves using the particular reparameterisation used to
apply the extension theorem.

Example 4. Consider a model with time-dependent survival and recovery (model T/T). It can be shown
using method 2 that this model has rank n; +ny — 1 and deficiency n, —n; + 1. For this case we used the
reparameterisation

Swi = (1—(]5[)11', fori=1,...,n

j—1
s = (1=9p)4 [T forj=2,....n.
k=1

Then sy2 /542 = @1 so ¢ is estimable and s, 3 /swy3 = ¢1¢> which means ¢, is estimable. This continues

until sy, /Sy, = [T;L, $ resulting in ¢,_; being estimable. From the s,,; for i = 1,...,n; — 1 it then
follows immediately that A;,...,A,,_ are also estimable. However ¢; and A; are confounded for i > n;.
For example if ny = n; the last estimable parameters is s,,,, = (1 — @, )A;. O

Note that if a model is limited by the number of exhaustive summary terms, E = njny — %n% + %nl,
it is not possible to find a simpler set of estimable parameter combinations other than the terms of the

exhaustive summary. In such cases the set of estimable parameters is {P, ;} Izbmy where P, ; is given by
equation 1.

Example 3 revisited. The estimable parameter combinations in example 3 are the distinct P; ; terms,
namely {Pi;},_, 5 ={0141,010222, 01920323} O
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3 General results

For n; years of marking and n; years of recovery with n; < ny, the rank, r, and the deficiency, d for all y/z
and x/y/z models are given in Tables 2 and 3. It is assumed that animals are ringed in their first year of life,
however any model that does not include any age dependence could also be used for animals ringed at any
age. The model A/C was presented by Seber (1971), and explicit maximum-likelihood parameter estimates
are given by Catchpole and Morgan (1991). General results for age-dependent ring-recovery models are
presented in Catchpole et al (1996b). Models C/T, T/C and T/A were considered in Freeman and Morgan
(1992). Model T/A/C was considered by Morgan and Freeman (1989), while models T/A/T, C/A/T and
C/C/T were considered by Freeman and Morgan (1990, 1992). Note the model combinations C/A/z and
T/(A,T)/z are excluded from Table 3 as they are identical to models A/z and (A, T)/z respectively in Table
2.

Table 3 presents x/y/z models for animals that have a separately modelled first-year survival probability.
This format can be extended further to consider any animal that has a separate survival probability for the
first J > 1 years of their life; parameter redundancy results for this extension are given in Web Appendix
A.

It is commonly believed that to estimate age-dependent survival two data sets are required, one for
animals marked as young and one for animals marked as adults (see for example Robinson, 2010). This is
not true. Although it is not possible to estimate all parameters in a model with a survival probability that is
fully age dependent (models A/* are parameter redundant), it is possible if first year survival is separated
from adult survival, as long as the recovery probability is not dependent on age, (models C/C/C, C/C/T and
C/T/C are all full rank). Or, if first-year survival is time dependent, adult survival can be age dependent as
long as recovery is not age dependent (models T/A/C and T/A/T are full rank). This ties in with results of
Catchpole et al (1996b). It is also possible to have up to J + 1 age classes and still have full rank models
(see Web Appendix A).

The mallard data in Tables 1b and 1c are an example of a pair of data-sets. It is possible to combine
these two data sets in one analysis and such combined analysis can result in an increased rank compared to
models for the two component models considered separately. In this model framework for the adult data
set it is only possible to fit models in Table 2 which do not involve age-dependence, therefore a fully age
dependent model is still not possible for the combined data set. The following x/y/z models are no longer
parameter redundant when combined with appropriate x/y models:

e C/C/Aq.;+1 combined with C/C;
e C/C/(A1.j+1,T) combined with C/T;
e C/T/Aj.;1+1 combined with T/C.

The full results are given in Web Appendix B.

Other reparameterisations of the ring-recovery models are also possible. For example the recovery
probability A; at time j can be reparameterised as f; = (1 — ¢;)A;. (This is a reparameterisation used in
models commonly known as tag-return models or Brownie models, see for example Hoenig et al, 2005).
By the reparameterisation theorem of Cole et al (2010) the number of estimable parameters will be the
same regardless of the parameterisation used.

4 The effect of missing cells in real data

Parameter redundancy can occur because of the model structure or it can also arise as a consequence of
a particular set of data. The former case is known as intrinsic parameter redundancy, while the later is
known as extrinsic parameter redundancy. So far we have only considered intrinsic parameter redundancy,
so that the parameter redundancy results of Section 3 apply when there are perfect data, such that N; ; # 0
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foralli < j <npand1 <i<n. Real data sets usually have some instances of N; ; = 0. In this Section we
explore the effect this has on parameter redundancy.

The appropriate exhaustive summary to use when considering extrinsic parameter redundancy is the
elements of the log-likelihood (Cole et al, 2010). This is an exhaustive summary that includes the data,
whereas the exhaustive summary used in Sections 2 and 3 only considers the probabilities corresponding
to the fundamental model structure. For the mark-recovery model this log-likelihood exhaustive summary
consists of the terms »; ; log(}’,-,j), fori < j<mpand 1 <i<npas well as the terms

nyp ny
<E_ZMJ> log (1 _Z'Pi,j> , for1 <i<nj.
Jj=i

j=i
Note that if N; ; = 0, one of the exhaustive summary terms will disappear. We can simplify the exhaustive

summary used to contain the terms P ; if N; ; # 0 and the terms (1 — ):;5211-13,-, j> , which come from the

probabilities of being ringed and never seen again. This is because multiplying by a constant and taking
exponentials are one-to-one transformations; see Cole et al (2010).

In the mallard data set of Table 1b there is one zero entry (N> 9 = 0). Similarly in the mallard data set of
Table 1c (N9 = 0). Here the parameter redundancy results for this data set will be the same as if the data
set was perfect. This is because P, 9 or P; g9 also appear in the probability of being ringed and never seen
again, so we can still use the exhaustive summary that consists of all the F; ;. This result is generalised in
Theorem 4.1 below.

Theorem 4.1 If at most one N; j = 0 for each row i then the model rank is identical to the model with
perfect data.

The proof of Theorem 4.1 stems from the fact that if N; ; = 0 the missing F; ; terms also occur in

(1-xp2Py)-

However the lapwing data set, in Table 1a, has more than one zero entry in some rows. Therefore
potentially the parameter-redundancy results of Tables 2 and 3 are no longer valid. This can be studied
individually for any data set with specific zero N; ;’s. Here we consider the effect of particular patterns of
zero N; ;’s.

It is not feasible to consider every combination of zero N; ;’s. Instead because the probability of a zero
N; j increases as j increases, we consider the effect of having only m > 1 diagonals so that N; ; = 0 if
J—i+1>mand N;; >0if j—i+1 < m. The maximum value of m we consider is m = n — 2. If
m = ny — 1, Theorem 4.1 applies. The effect on the parameter redundancy status of the models in Tables
2 and 3 is summarized in Table 4. We present the results in terms of when the rank differs from the ideal
situation of perfect data.

Example 5. Consider the model where the recovery probability, A, is constant and the survival prob-
ability for first year animals, ¢ is also constant, but the survival probability for older adult animals, ¢, ;,
is time dependent (model C/T/C). The model with perfect data is full rank, with rank n; 4+ 1. This can be
shown using method 1 (see Maple code). Consider a model with imperfect data. Suppose there is only
m = 1 diagonal of data. In the case with n; = 3 and n, = 3 the exhaustive summary is

K1 = [Ki1,K12,K13,K14,K15,Kl6)

= [0iA, 1 =P A — 1 Pa2d — 10020234, 014, 1 — Q1A — $19,34, 014, 1 — Py A]

This is differentiated with respect to the 4 parameters, 0 = [¢1, @2, 943, ] to form a derivative matrix that
has rank 3. Therefore with only m = 1 diagonal of data this model is no longer full rank and has deficiency
1. We can show that for any n; > 3 and ny > 3 with m = 1 this model always has deficiency 1 using the
reparameterisation

s=[s1,50,53) = [Ki1,—Kio+ 1 =K1, —Kia+ 1 —Ki1] = [@1A, 9102 + 010020034, 01903).
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Rewriting x; in terms of the elements s gives
Ki(s) = [s1,1 —s1 — 52,51, 1 —s1 — 53,51, 1 —s1].

The derivative matrix dk (s)/ds is of full rank 3. Adding an extra year of recovery changes the exhaustive
summary to

Ky = [Kz,l, K22,K23,K24,K25, K2,6]
= [¢iA, 1= gA — 019a2A — 91 0u2Pu3A — G190200 3002, P1 A,
1= 0 A — 019434 — 910a3Paal, 91,1 — Q1A — @1 Py

We change the reparameterisation to

s = [s1,5,83,8] =K1, —Ko+ -k, —Ks+1—K1,—Ke— K 1]

= [01A, 010022 + 010020034 + 0100200 3Pa s, 01003 + 100300 4A, 01044A].

Rewriting x; in terms of the elements s gives
K2(s) = [s1,1 —s1 — 82,81, 1 =51 —53,81,1 — 51 —s4].

Using the two-part extension theorem of Cole and Morgan (2010a), which is an extension of the standard
extension theorem (Catchpole and Morgan, 1997), and following a similar argument for adding an extra
year of ringing we conclude that this reparameterised model is always full rank with rank n,. By the repa-
rameterisation theorem the rank of the original parameterisation is also n,, but there are n + 1 parameters
so the model with m = 1 diagonals of data always has deficiency 1. When m = 2 the model returns to
being full rank, which can again be shown using method 1. It follows that when m > 2 as there are more
exhaustive summary terms that the model will also be full rank. O

The general conclusion is that many N; ; can be zero and the rank of the model does not change from
when there is perfect data. The ideal situation is that the rank never changes. In this case if the data have
only the leading diagonal (m = 1) the rank is still the same as having perfect data. Obviously in this case
if n > 1 the rank is also unchanged. Twelve of the models listed in Table 4 have this ideal situation. There
are sixteen models for which the rank changes if m = 1. This means that if m = 1 then the rank is smaller
than the rank for perfect data. There are several models which are full rank in the presence of perfect data
(given in bold in Table 4), and which become parameter redundant if m = 1, but remain full rank if there
are at least the first two diagonals of data (m > 2). There are also six models whose rank changes if m < 2.

The ranks of the remaining models change whenever m < n, —2. However these are all parameter
redundant models which have rank E = njny — %n% + %nl when there is perfect data, so that the model
rank is limited by the number of unique exhaustive summary terms, and therefore it follows the new model
rank will be limited by the now smaller number of exhaustive summary terms when there are some zero
N; j values. The maximum number of unique exhaustive summary terms is denoted by Ej, with

_{ E—Y(ny—m)(ny—m+1) np—np <m-—1
E,= 2
mny n—ny >m—1

As we can see from the lapwing data set (Table 1a) real data typically will not have m diagonals of
non-zero data. It may be possible to calculate the number of estimable parameters for such models from
Table 4, by considering the highest value of diagonal m for which there are perfect data. The lapwing
data set (Table 1a) has non-zero entries the first three diagonals of data, therefore all the full-rank models
considered in Table 4 remain full rank. The rank also does not change for the parameter-redundant models
whose rank is not limited by the number of exhaustive summary terms. (This is not the case for all models
where animals have a separate survival probability for J > 1 years, see Web Appendix C for more details).
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5 Covariates and time/age varying trends

Adding time- or age-dependent covariates or time- or age-varying trends to parameter redundant models
can result in models which are no longer parameter redundant. For example in the models T/*, a time-
varying covariate for the survival parameter could be ¢; = 1/[1 +exp{—(ay + byx;)}], where x; is a time
dependent covariate, such as a measure of the weather. An example of a time-varying trend in the models
*/T for the recovery parameter is 4; = 1/[1 +exp{—(ay + b,,i)}]. Cole and Morgan (2010b) show that
if the covariate model has p. parameters and the same model without covariates has rank ¢, the model
with covariates has rank equal to min(p,,q). This result means that in order to determine the rank of a
ring-recovery model with covariates, we first look up the rank of the same model without covariates, g,
in Tables 2 or 3 (or Web Appendix Table 1), then determine the number of parameters in the model with
covariates, p.. Finally, we evaluate min(p,,¢) to determine the rank.

Example 2 revisited. Consider again the model A/T. The model without covariates has rank ¢ = 2ny — 1
and deficiency 1 for ny,ny > 2. Suppose that the recovery parameter is thought to vary on a logit scale with
the time-varying covariate x;, giving 4; = 1/[1 +exp{—(ay + b, x;)}]. The model now has p, = ny + 2
parameters. The rank of the model with covariates is min(p.,q) = min(ny +2,2n, — 1) =np +2 if n, > 3.
The rank is equal to the number of parameters, so this covariate model is full rank when there are 3 or more
years of recovery data. O

Example 3 revisited. Consider the model with age-dependent survival and recovery (model A/A). The
model without covariates has rank n; and deficiency n,. Now consider adding an age-varying trend to the
survival parameter, ¢; = 1/[1 +exp{—(ay + byi)}]. The covariate model has p. = ny 42 parameters. The
rank of the model with covariates is min(p.,q) = min(nz 4 2,n2) = ny. The rank of the model is less than
the number of parameters so the model is still parameter redundant but with a smaller deficiency of 2. [

6 Ringing data without cohort numbers

In historical ring-recovery data the total number of birds ringed in each year may be unknown or unreli-
able. Before 2000 the British Trust for Ornithology recorded ring-recovery data on paper forms, where full
details of the total numbers of birds ringed are not known (Robinson, 2010). In such a case a model can
be fitted by conditioning on the number of birds recovered from each cohort. The parameter redundancy
of such models is examined in detail in Web Appendix D. The only conditional models that are full rank
assume constant reporting probability, A. The constant reporting probability is not estimable as it disap-
pears from the model, but survival parameters are estimable. However there is evidence that the reporting
probability of wild birds in Britain in recent years has been decreasing over time (Baillie & Green, 1987).
In such cases it is possible to fit conditional covariate models or time varying trends (Cole and Morgan,
2010b).

Robinson (2010) shows that if the full age information is known for recoveries, but only the numbers of
birds ringed are known each year rather than the proportion of birds marked in each age class, then survival
rates for birds can still be estimated. Robinson (2010) used an adhoc method to estimate the proportion;
it is possible to estimate the proportion as an additional parameter (Cole and Freeman work in progress).
Alternatively if there is no age structure available at all, a mixture model can be used. This model including
a detailed analysis of the parameter redundancy is given in McCrea et al (2011).

7 Discussion

This paper has examined the parameter redundancy of a large number of ring-recovery models. We have
shown how general results for the rank deficiency of ring-recovery results can be derived. For some full-
rank models, this has simply involved applying the theorems of Catchpole and Morgan (1997). However for
other full-rank models and parameter-redundant models this has involved applying the reparameterisation
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theorem of Cole et al (2010). A priori, there was no reason to suppose that results of Table 2 and 3 would
be as simple as they are.

We have also shown the effect of empty cells on the results. It is interesting to note that full rank models
often remain full rank even if most of the cells are empty. Unless a ring-recovery data set is incredibly
sparse, parameter redundancy is most likely to be caused by the inherent structure of the model rather than
the data itself.

When fitting a model, it is of particular interest to determine whether or not a model is parameter
redundant. In parameter-redundant models it is not possible to estimate model parameters using classical
inference and a weakly-identifiable model may result if Bayesian analysis is used (Gimenez et al, 2009).
The exact rank or deficiency of a parameter-redundant model is of less interest. However knowing the
exact rank of a parameter-redundant model is then useful if covariates are added to the model, as no further
derivative calculations are required to find the rank of the model with covariates.
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Table 1 Example Ring-Recovery Data on: (a) Lapwings ringed as nestlings (Catchpole et al, 1999), (b)

male mallards ringed as nestlings, and (c) male mallards ringed as adults (Brownie et al, 1985).

(a)

Year of Number Year of recovery (-1962)

Ringing Ringed 1 2 3 4 5 6 7 8 9
1963 1147 13 4 1 2 1 0 0 1 0
1964 1285 16 4 3 0 1 1 0 o0
1965 1106 11 1 1 1 0 2 1
1966 1615 10 4 2 1 1 1
1967 1618 11 1 5 0 o0
1968 2120 9 5 4 0
1969 2003 11 9 4
1970 1963 8 4
1971 2463 4

(b)

Year of Number Year of recovery (-1962)

Ringing Ringed 1 2 3 4 5 6 7 8 9
1963 962 82 35 18 16 6 8 5 3 1
1964 702 103 21 13 11 8 6 6 0
1965 1132 82 36 26 24 15 18 4
1966 1201 153 39 22 21 16 8
1967 1199 109 38 31 15 1
1968 1155 113 64 29 22
1969 1131 124 45 22
1970 906 95 25
1971 353 28

()

Year of Number Year of recovery (-1962)

Ringing Ringed 1 2 3 4 5 6 7 8 9
1963 231 10 13 6 1 1 3 1 2 0
1964 649 58 21 16 15 13 6 1 1
1965 885 54 39 23 18 11 10 6
1966 590 4 21 22 9 9 3
1967 943 55 39 23 11 12
1968 1077 66 46 29 18
1969 1250 101 59 30
1970 938 97 22
1971 312 21
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Table 2 Table of parameter redundancy results for y/z models for mark-recovery studies with n; years of
marking and n, years of recoveries. The number of nonzero terms in the p-array is E = njnp — %n% + %nl.
r and d denote the rank and deficiency of a model. M denotes the method used. The results are valid for
ny,ny > 2 except for *, which is valid for ny,n,; > 3 (otherwise d = 1). The last column is empty if d =0
as all parameters are estimable.

Model r d M  Estimable Parameter Combinations
C/C 2 0 1
C/T np+1 0 1
C/A m 1 3 {Pjt, .,
CI(AT) E 1 3 {B'J}{'*’t::::i?
T/C m+1 0 1 B
T/T n+n—1 n—n+1 2 seefootnote T
T/A* 2n; 0 1
THA,T) E 2 3 {P"J}E{:L:::?ﬁ
A/C m 1 2 AP,
AT aml R T R €
AIA n n 3 {mgd :
AMA,T) E i 3 {Baf}{if'.:::'.?ﬁ
(A, D/C E 1 3 {B,j}{:],:_:.'._nz
(ATHT E " 3 ARy },’5’11:::7,2,
(A, TYA E ny 3 {P}i-i "
(AT)(AT) E E 3 7;
TFor the T/T model the estimable parameter combinationslare:
2,1,...71,,1,1,(]51,.. "¢”1*17¢”1 (1 — ¢"1)A'n1 ifnz =ny
{ Aoy Ay 1,015 Oy — 15 Oy (1= By ) Ay s {‘5[+1M+1H};1nl ¢k}_ . if ny > ny
i=m

© * WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



Biometrical Journal * (*) *

15

Table 3 Table of parameter redundancy results for x/y/z models. Notation is the same as Table 2.

Valid for
Model r d ny > np > M. Estimable Parameter Combinations
c/C/C 3 0 2 3 1
C/CIT ny+2 0 2 3 1
C/C/A ny 2 2 2 3 A{Pij}icvm
C/C/A 2 3 1 2 3 2 i, 01
C/C/(A1:2,T) ny+ny 1 2 3 2 O, {Piition... ;117{¢1 aiti-n... n
C/C/(A,T) E 2 2 2 3 {Pi,‘,-},-:{ ,,,,, n
B
C/T/C ny+1 0 2 3 1
C/T/T ny +nyp ny —nj 2 3 2 ny >nyt Qry...,Qn, A1 ln,,{P,J}, n|+l AAAA n
C/T/A 21y — 1 1 304 2 ¢ Pup o {diAitis nz,M
C/T/A1 n+1 1 203 2 f b0y, 012 i
. g Pl/
CIT/(A14.T) min(n; +2ny — 3, max(2, 2 2 2 {0i}i—2,.. mintny — 1.0) {¢l }/_:mi“(nz -
2n1+n2_2) nz_nl—‘rl) {(Pl)“al} =2,...,min(ny ln|)7{[)ll}i:l ..... n
C/T/(A,T) E ny 2 2 3 {B,j},f{ ..... n
C/(A,T)/C E—n+1 1 2 2 3 PaAPji=im
C/(A,T)/IT E nmp—ni+1 2 2 3 {Pi’j}/—:f ..... m
C/(A,T)/A E—n+1 ny 2 2 3 P 1,{P,j}, ey
C/(AT)/ Ay E—ni+1 2 2 2 3 P 1,{})7,}/ 2.
C/I(A,T)/(A15,T) E ny 2 2 3 APj}i-im
C/(A,T)/(A,T) E E—n+1 2 2 3 APj}i=im
T/C/C ny+2 0 2 3 1
T/C/T ny+ny+1 0 3 4 1
T/C/A i+ ! 2003 2 gt dn {00004}
“2m
T/C/A ny+3 0 2 3 1
min(2n +ny —2, max(2, o
T/C/(A1:2,T 2 2 2 Piitici s P '
(A12.1) n+2m-3) np—ny+3) Bidicrm (P o {@WI o min(ny — L)
T/C/(A,T) E n+1 2 2 3 AP }i-im
T/T/C ny+ny 0 2 2 1
min(n; + 2ny — 3, max(2, 1
T ny+2n;—2) np—np+1) 2 2 2 {E’J}f:“.iiiimm(/ﬁ ")
T/T/A ny+2n;—1 0 4 5 1
T/T/A. ny+ny+1 0 3 4 1
in(2ny +ny —3, max(n;+1, o
TITH A T) M m 2 2 2 P, P Bt
/T/( 1:2» ) n2+2n1_2) n2) { }: lo.., 1117{ 11}/ 2m | o T, $nt e mintry g 1)
T/T/(A,T) E n+n—1 2 2 3 APjli-im
T/A/C ny+ny 0 2 2 1
T/A/T ny+2n;—1 0 4 5 1
T/A/A ny+np ny—1 23 2 Adij}ion WI,M,{(I—(P,)Z H ¢k}, 2oy
T/A/A12 ny+ny 1 32 2 {f =AML {(1— Ot
. u+1 lmlaw
TAKAT) TR e mE TR g Cich o } ..... I
n ny — ,
! 2 {I)l,l}: I..., 11[7{P1_]}j 2, ny
T/A/(A,T) E ni+n—1 2 2 3 APj}i-im
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Table 4 The effect of missing values on parameter redundancy of y/z and x/y/z model with only m
diagonals of data, where 1 < m < ny — 2. Here we record if the rank of the models changes when there are
only m diagonals of data, compared to having perfect data. Models in bold are full rank models if there is
perfect data. The new rank is given for the situations when the rank changes, otherwise the rank remains
the same as Tables 2 and 3. E,, is the length of the exhaustive summary and the maximum possible rank
when there are only m diagonals of data (see text).

y/z models
Rank Changes if New Rank Models
never - C/C; CIT; C/A; T/C; T/T; A/IC; A/A
m=1 E,, T/A; A/T
m<mnp—2 Ep, C/(A,T); T/(A,T); A/(A,T); (A, T)/C; (A, T)/T;

(AT/A; (AT(AT)

x/y/z models

Rank Changes if New Rank Models
never - C/C/C; C/CIT; C/C/A; CIC/A12; TIC/AY,
m=1 no C/T/C
m=1 2np — 1 C/T/T
m=1 min(2ny,n +ny—1)  C/IC/(A12,T)
m=1 min(ng,n; + 1) C/T/A1; C/(AT)/A»
m=1 En T/C/C; T/C/T; T/C/A; T/T/C; T/T/T; T/T/A|.»
T/A/A];z; T/T/(A]:z,T); T/A/C
m<?2 E, T/A/T; T/T/A; T/A/T; T/A/(A1:2,T)
no m=1
m<?2 {2n2—2 M2 C/T/A
m<2 m‘“Z(Z: I;}f_”;) 2 CICALL
m<ny—2 Ey C/C/(A,T); C/T/(A,T); C/(A, T)/C; C/(A,T)/T,

C/AT)Y/A; C/(ATY(A12.T); CAAT(A,T);
T/C/(A,T); T/T/A.,T); T/A/A.T)

*forn; >3,n, >4
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