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Abstract
Jiang et al (2007, JABES p177-194) present models for tag return data on

fish. They examine whether the models are parameter redundant, but need to
resort to numerical methods as symbolic methods were sometimes found to be
intractable. Also, their results are only applicable for a specified number of
years of tagging data. Here we show how symbolic methods can in fact be used
and also how conclusions apply to any number of years of tagging data.
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1 Introduction

Jiang et al (2007) present new models for tag return data on fish. The important
advance in the paper is the incorporation of age-dependence in the models. They
are based on the probability that a fish tagged at age k, released in year i, are
harvested and returned in year j has the form,

Pijk =





(1− Φijk)
FjSelkλ

FjSelk + M
when j = i

(
j−1∏

v=i

Φivk

)
(1− Φijk)

FjSelk+j−iλ

FjSelk+j−i + M
when j > i,

where Φijk is the conditional probability of surviving year j, given that it is
alive at the start of the year, for a fish tagged at age k in year i, given by
Φijk = exp(−FjSelk+j−i − M). The parameters are: Fj the instantaneous
fishing mortality rate for fully recruited fish, Sela the selectivity coefficient for
fish aged a (with fish being fully recruited at age ac, so that Sela = 1 for a > ac),
M the instantaneous natural mortality rate and λ the reporting probability for
dead fish. The parameters M and λ can depend on year and age, in which
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case My,a = MY
y MA

a with MY
1 = 1, with a similar parameterisation for λ.

Henceforth we shall refer to their paper by“JPBH3”.
The motivating data for the work of the paper arise from a study of Chesa-

peake Bay striped bass, Morone saxatilis, tagged between 1991 and 2002. The
release and tag-return data, stratified by age, are presented in JPSH3, and are
available from http://www.amstat.org/publications/jabes/data.shtml/.

In their paper JPBH3 examine whether their models are parameter redun-
dant; it is not possible to estimate all of the parameters by classical inference in
parameter redundant models. In order to examine the parameter redundancy
status of the model they use the symbolic algebra method of Catchpole and

Morgan (1997). This involves calculating the derivative matrix D =
[
∂P`

∂θi

]
,

where P` refers to each of the non-zero Pijk taken in turn. The symbolic rank
of D is equal to the number of estimable parameters in the model (Catchpole
and Morgan, 1997). This symbolic rank may in principle be calculated using
a symbolic algebra package such as Maple. However it is not possible to cal-
culate the rank of the derivative matrix for several of their models; they are
structurally too complex and Maple runs out of memory trying to calculate the
symbolic rank. In these cases, numerical methods are used, for particular values
of parameters.

Recently, Cole and Morgan (2009) present a more general approach to de-
termining parameter redundancy, in which the derivative matrix arises from
differentiating what is called an exhaustive summary. An exhaustive summary
is simply a parameter vector that uniquely defines the model, so that the vector
P consisting of the non-zero Pijk taken in turn is an example of an exhaustive
summary for JPBH3’s model. However we know that this exhaustive summary
results in a derivative matrix that is too structurally complex for Maple to be
able to calculate the rank. A simpler exhaustive summary can be found by
first reparameterising the model and then finding a new derivative matrix with
respect to this new reparameterisation rather than the original parameters. If
the rank of the new derivative matrix is the same as the number of terms in the
reparameterisation, then the reparameterisation forms what is called a reduced-
form exhaustive summary. Otherwise a new reduced-form exhaustive summary
can be found by solving an appropriate set of partial differential equations.

In this paper we show how symbolic algebra can be used to determine
whether all of the models of JPBH3 are parameter redundant, by using this
reparameterisation method.

2 Determining the parameter redundancy sta-
tus of the model

We start by considering the case when there are 2 age classes with ac = 2, 4
years of tagging and 4 years of recovery. The full model in this instance has 16
parameters:

θ = [F1, F2, F3, F4,Sel1, Sel2,MY
2 ,MY

3 ,MY
4 ,MA

1 ,MA
2 , λY

2 , λY
3 , λY

4 , λA
1 , λA

2 ].

An exhaustive summary (assuming no missing data) consists of the non-zero
entries of P. However Maple cannot calculate the rank of the derivative matrix
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D =
[
∂P`

∂θi

]
. Instead we find a reduced-form exhaustive summary using the

reparameterisation method. The new exhaustive summary is given by

r =




F1Sel1 + MA
1

F1Sel2 + MA
2

F2Sel1 + MY
2 MA

1

F2Sel2 + MY
2 MA

2

F2 + MY
2 MA

2

F3Sel1 + MY
3 MA

1

F3Sel2 + MY
3 MA

2

F3 + MY
3 MA

2

F1Sel1λA
1

F1Sel2λA
2

F1λ
A
2

F2Sel1λY
2 λA

1

F3Sel1λY
3 λA

1

F4Sel1λY
4 λA

1 {1− exp(−F4Sel1 −MY
4 MA

1 )}/(F4Sel1 + MY
4 MA

1 )
F4Sel2λY

4 λA
2 {1− exp(−F4Sel2 −MY

4 MA
2 )}/(F4Sel2 + MY

4 MA
2 )

F4λ
Y
4 λA

2 {1− exp(−F4 −MY
4 MA

2 )}/(F4 + MY
4 MA

2 )




(1)

which can then be used in place of the original exhaustive summary. Taking
parameters in the order presented in θ above, we obtain the derivative matrix

D =
[
∂r`

∂θi

]
=




Sel1 Sel2 0 0 . . .
0 0 Sel1 Sel2
0 0 0 0
0 0 0 0
F1 0 F2 0
...




.

As the derivative matrix is structurally much simpler than previously, using the
original parameter set, we can now calculate the symbolic rank using Maple. The
value obtained is 16, and therefore this model is full rank and not parameter
redundant.

This result can be extended using the extension theorem of Cole and Morgan
(2009) to show that for 4 or more years of tagging and recovery and for 2 or
more age classes, all of the parameters in this model are estimable (details are
given in the Appendix).

To consider whether any submodels of the full model are parameter redun-
dant, we can use Theorems 4 and 5 of Cole and Morgan (2009). This involves
a modified PLUR decomposition of D, writing D = PLUR, where P is a per-
mutation matrix, L is a lower diagonal matrix with 1s on the diagonal, U is
an upper triangular matrix and R is a matrix in reduced echelon form. Any
parameter redundant submodels appear as solutions to Det(U) = 0. In this
instance

Det(U) = Sel41F
2
1 F2M2Sel2(F2Sel2MY

3 − F2M
Y
3 + F3M

Y
2 − F3M

Y
2 Sel2) . . . ,

where the omitted terms do not naturally factorise, as shown in the Maple code.
Therefore the model is parameter redundant if Fi = F and MY

i = 1, except
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Model Number of parameters Deficiency of Model
Fy,My×a, Sela, λy×a 3N + 3K − 2 0

Fy,My, Sela, λy 3N + K 0
Fy,M, Sela, λy 2N + K + 1 0
F, My, Sela, λy N + K + 2 0
F, M, Sela, λy N + K + 2 0

Fy,Ma, Sela, λa N + 3K 0
Fy,M, Sela, λa N + 2K + 1 0
Fy,M, Sela, λ N + K + 2 0
F, Ma, Sela, λa 2K + 2 1
F,M, Sela, λa 2K + 2 1
F,M, Sela, λ K + 3 0

F, M, λ 3 1

Table 1: The deficiency of a number of submodels. In each of the models the
subscript y refers to year dependence of a parameter, the subscript a refers to
age dependence of a parameter and the subscript y × a refers to age and year
dependence of a parameter. These results apply for N ≥ 4 years of tagging
and return and K ≥ 2 age classes.

in the case when MA
i = M , λY

i = 1 and λA
i = λ which is again full rank, and

excluding the model with just single values for F, M and λ, which has deficiency
unity. When MA

i = M , λY
i = 1 and λA

i = λ equation (1) is no longer an
exhaustive summary and this case needs to be considered separatley, as shown
in the Maple code.

3 Discussion

JPBH3 only considered 3 years of tagging and recovery and 3 age classes. They
found their most general model to be parameter redundant with deficiency 1.
However this was evidently not the complete result for this model. In fact, the
general model is not parameter redundant for 4 or more years of tagging and
recovery. For the submodels that they consider, we agree with the results of
JPBH3; all the parameter redundancy results for the submodels considered by
them are given in general in Table 1.

Numerical methods are good at providing an initial idea of whether a model
is parameter redundant or not. However numerical methods will only apply to
the specific set of parameter values and for the specified number of years of
tagging and recovery and age classes adopted. However, for a more detailed un-
derstanding of the parameter redundancy status of a model in general, symbolic
methods are necessary. We have shown in this paper how it is now possible to
use symbolic methods rather than having to use numerical methods to detect
parameter redundancy for members of the important class of models in JPBH3.

The Maple code used in the paper can be found at http://www.kent.ac.uk/
ims/personal/djc24/maplecode.htm.
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5 Appendix

This appendix gives more detail on how the parameter redundancy status of
JPBH3’s models was determined.

In the case when there are 4 years of tagging and recovery and 2 age classes,
a possible reparameterisation of the general form of the models is

s =




s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

s13

s14

s15

s16

s17




=




F1Sel1 + MA
1

F1Sel2 + MA
2

F2Sel1 + MY
2 MA

1

F2Sel2 + MY
2 MA

2

F2 + MY
2 MA

2

F3Sel1 + MY
3 MA

1

F3Sel2 + MY
3 MA

2

F3 + MY
3 MA

2

F4Sel1 + MY
4 MA

1

F4Sel2 + MY
4 MA

2

F4 + MY
4 MA

2

F1Sel1λA
1

F1Sel2λA
2

F1λ
A
2

F2Sel1λY
2 λA

1

F3Sel1λY
3 λA

1

F4Sel1λY
4 λA

1




This reparameterisation is not unique (as it has 17 entries but there are only
16 parameters) The original exhaustive summary, formed from the non-zero
entries of P, is rewritten in terms of s to give:

κ(s) =




s12{1− exp(−s1)}/s1

s13s15{1− exp(−s4)} exp(−s1)/(s12s4)
...

s13s17{1− exp(−s10)}/(s12s10)


 .

The derivative matrix Ds =
∂κ(s)

∂s
has rank 16. We find a new reduced-form ex-

haustive summary by first solving αDs = 0. This reveals that s1, . . . , s8, s12, . . . ,
s16 are estimable, but s9, s10, s11, s17 are not estimable. The reparameterisation
theorem of Cole and Morgan (2009) then suggests that you solve a particular
set of linear partial differential equations in order to obtain expressions for the
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estimable parameters. Frequently Maple can provide the solution to this set of
partial differential equations, but interestingly in this instance it fails to do so.
Instead κ(s) can be examined visually, in order to see that a reparameterisation
of length 16 is that of equation (1). The derivative matrix formed with respect

to equation (1), Dr =
∂κ(r)

∂r
, also has rank 16, but this time the reparameteri-

sation is unique so we can apply all of the reparameterisation theorem. As Dr

is full rank r is a reduced form exhaustive summary and there are 16 estimable
parameters in the model. This can be further confirmed by finding the rank of

derivative matrix D =
[
∂r`

∂θi

]
, which also has rank 16.

By inspection, we can deduce that a general reduced form exhaustive sum-
mary for N years of tagging and recovery and K age classes is

rge =




F1Sel1 + MA
1

F1Sel2 + MA
2

...
F1SelK + MA

K

F2Sel1 + MY
2 MA

1

F2Sel2 + MY
2 MA

2
...

F2SelK + MY
2 MA

K

F2 + MY
2 MA

K
...

FN−1Sel1 + MY
N−1M

A
1

FN−1Sel2 + MY
N−1M

A
2

...
FN−1SelK + MY

N−1M
A
K

FN−1 + MY
N−1M

A
K

F1Sel1λA
1

F1Sel2λA
2

...
F1SelKλA

K

F1λ
A
2

F2Sel1λY
2 λA

1
...

FN−1Sel1λY
N1

λA
1

FNSel1λY
NλA

1 {1− exp(−FNSel1 −MY
N MA

1 )}/(FNSel1 + MY
N MA

1 )
FNSel2λY

NλA
2 {1− exp(−FNSel2 −MY

N MA
2 )}/(FNSel2 + MY

N MA
2 )

...
FNSelKλY

NλA
K{1− exp(−FNSelK −MY

N MA
K)}/(FNSelK + MY

N MA
K)

FNλY
NλA

K{1− exp(−FN −MY
N MA

K)}/(FN + MY
N MA

K)




.

In order to generalise the result that this model is full rank to N ≥ 4 years of
tagging and recovery we use the extension theorem of Cole and Morgan (2009),
which states if the derivative matrix formed from the extra exhaustive summary
terms is full rank as well as the original derivative matrix, then the extended
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model is also full rank. However when we go from 4 years to 5 years of tagging
and recovery the last three terms of the new exhaustive summary do not appear
in the exhaustive summary for 5 years of tagging and recovery. Instead we split
the exhaustive summary into two parts, as shown in the Maple worksheet. As
both derivative matrices are full rank, the extended model is full rank - this can
be generalised to N years of tagging and recovery using induction. To generalise
the result that this model is full rank for K ≥ 2 age classes we first need to
find a new reduced-form exhaustive summary (the details of which are given in
the Maple worksheet). We can therefore say by the extension theorem that for
N ≥ 4 years of tagging and recovery and K ≥ 2 age classes this model is always
full rank.
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