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This is the supplementary material for the paper
Determining Parameter Redundancy of Multi-state Mark-
recapture Models for Sea Birds.

Appendix 1: Proof of Simpler Exhaustive Sum-
mary

The Maple code form this proof can be found in Maple
worksheet simexsumproof.mw. To show that Table 1,
from the main paper, is an exhaustive summary, first
consider the case of no unobservable states. Starting
from N = 3, S = 2 we show that for transition and
recapture matrices

Φt =
[

a1,1(t) a1,2(t)
a2,1(t) a2,2(t)

]
Pt =

[
p1(t) 0

0 p2(t)

]

a possible reparameterisation with 10 elements is

s = [p1(2)a1,1(1), p2(2)a2,1(1), p1(2)a1,2(1), p2(2)a2,2(1),

p1(2), p2(2), p1(3)a1,1(2), ..., p2(3)a2,2(2)]T .

We rewrite the original exhaustive summary, consisting
of the non-zero p-array terms, in terms of si. This is
then differentiated with respect to the si to form the
derivative matrix Ds. The derivative matrix has full
rank 10, so the reparameterisation s is an exhaustive
summary. Now extend this to N = 4. The extra repa-
rameterisation terms are

s
′
= [p1(4)a1,1(3), ..., p2(4)a2,2(2), p1(3), p2(3)]T .
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Extra original exhaustive summary terms are also added,
which are differentiated with respect to s

′
to form the

derivative matrix Dex. The rank of Dex is of full rank
6, therefore by the extension theorem and by induction
(Cole et al, 20010)

s = [p1(2)a1,1(1), ..., p2(2)a2,2(1), p1(2), p2(2), ...., p1(N − 1),

p2(N − 1), p1(N)a1,1(N − 1), ..., pN (N)a2,2(N − 1), ]T

will always be an exhaustive summary for any N ≥ 3.
Next consider extending to S = 3 again starting

from N = 3. The transition and recapture matrices are

Φt =




a1,1(t) a1,2(t) a1,3(t)
a2,1(t) a2,2(t) a2,3(t)
a3,1(t) a3,2(t) a3,3(t)




Pt =




p1(t) 0 0
0 p2(t) 0
0 0 p3(t)


 . (1)

The reparameterisation has the extra terms

– p3(t + 1)a3,j(t) for j = 1, 2, 3 and t = 1, 2,
– pi(t + 1)ai,3(t) for i = 1, 2 and t = 1, 2,
– p3(2),

and in a similar way we use the extension theorem and
induction to deduce that when all states are observable
an exhaustive summary consists of the terms:

– pi(t + 1)ai,j(t) for t = 1, ..., N − 1, i = 1, .., S and
j = 1, .., S,

– pi(t) for t = 2, ..., N − 1 and i = 1, .., S ,

which are the only terms of the exhaustive summary
given by Table 1, that apply when U = 0.

Then we move on to consider unobservable states.
The first case we consider is S = 3, N = 4, with one
unobservable state, so that U = 1. The transition and
recapture matrices are the same as in equation 1, with
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p3(t) = 0. A possible reparameterisation of length 23
has elements of the form given in Table 1. We rewrite
the original exhaustive summary, consisting of the non-
zero p-array terms, in terms of si. This is then differ-
entiated with respect to the si to form the derivative
matrix Ds. The derivative matrix has full rank 23, so
the reparameterisation given by 1 is an exhaustive sum-
mary, for S = 3, N = 4 and U = 1. This can then be
extend to N = 4. There are 10 extra reparameteri-
sation terms. The extra original exhaustive summary
terms are analysed with respect to these 10 extra repa-
rameterisation terms and the exhaustive summary is
applied in three parts; the first two are shown to be full
rank in the Maple worksheet. The third part contains
no extra reparameterisation parameters. Therefore by
the extension theorem and by induction Table 1 is an
exhaustive summary, for S = 3, N ≥ 4 and U = 1.

Next we consider extending the case S = 3, N = 4,
U = 1 to the case S = 4, N = 4, U = 1. For convenience
of the proof, we continue to label the 3rd state as unob-
servable and introduce a fourth new observable state.
(This is contrast to the exhaustive summary presented
in Table 1, where the fourth state would be labeled as
unobservable.) The transition and recapture matrices
are

Φt =




a1,1(t) a1,2(t) a1,3(t) a1,4(t)
a2,1(t) a2,2(t) a2,3(t) a2,4(t)
a3,1(t) a3,2(t) a3,3(t) a3,4(t)
a4,1(t) a4,2(t) a4,3(t) a4,4(t)




Pt =




p1(t) 0 0 0
0 p2(t) 0 0
0 0 0 0
0 0 0 p4(t)


 .

By examining the extra original exhaustive summary
terms with respect to the extra reparameterisation terms
that are added:

– p4(t + 1)a4,j(t) for j = 1, 2, 4 and t = 1, ..., 4,
– pi(t + 1)ai,4(t) for i = 1, 2 and t = 1, ..., 4,
– p4(t) for t = 2, ..., 4,
– p4(t + 1)a4,3(t)a3,1(t− 1) for t = 2, ..., 4,

–
a3,4(t− 1)
a3,1(t− 1)

for t = 2, ..., 4,

we show in the Maple worksheet using the extension
theorem and by induction, that once the states are re-
labeled, that exhaustive summary presented in Table 1
is an exhaustive summary for S ≥ 3, N ≥ 4 and U = 1.

Finally we consider extending the case S = 3, N =
7, U = 1 to the case S = 4, N = 7, U = 2. From the
results above above we already know that Table 1 is an
exhaustive summary for S = 3, N = 7, U = 1. We then
use the extension theorem once more. Examining the

extra original exhaustive summary terms with respect
to the extra reparameterisation terms that are added:

– p4(t+1)ai,4(t)a4,1(t−1) for t = 2, ..., 6 and i = 1, 2,

–
a4,2(t− 1)
a4,1(t− 1)

for t = 2, ..., 6,

–
a4,3(t− 1)a3,1(t− 2)

a4,1(t− 1)
for t = 3, ..., 6,

–
a3,4(t− 1)a4,1(t− 2)

a3,1(t− 1)
for t = 3, ..., 6,

–
a4,4(t− 1)a4,1(t− 2)

a4,1(t− 1)
for t = 3, ..., 6,

we show in the Maple worksheet using the extension
theorem and by induction, that the exhaustive sum-
mary presented in Table 1 is an exhaustive summary
for S ≥ 4, N ≥ 7 and U = 2.

We have proved the case S ≥ 3, N ≥ 4 and U = 1.
Then consider any other S and U such that S−U > 1.
There will always be a S′ = S − 1 and a U ′ = U − 1
so that a similar move as from S = 3, U = 1 to S = 4,
U = 2 can be applied. All that is required is to start
at an N large enough so that there will be more origi-
nal exhaustive summary terms than reparameterisation
terms. There are (S2 +S−2U)(N −1)−S−2U(S−1)
terms in the reparameterisation and 1

2 (N2−N)(S−U)2

terms in the original exhaustive summary. So this re-
sults in a restriction on N of (S2 + S − 2U)(N − 1) −
S − 2U(S − 1) < 1

2 (N2 − N)(S − U)2. Therefore by
induction the exhaustive summary presented in Table
1 is an exhaustive summary for all cases as long as
U −S > 1 and (S2 +S−2U)(N −1)−S−2U(S−1) <
1
2 (N2 −N)(S − U)2.

Appendix 2: Proof of Recruitment Simpler Ex-
haustive Summary

This section provides the proof for the recruitment ex-
haustive summary given in Table 4, or the main paper.
The Maple code for this proof can be found in Maple
worksheet recruitmentproof.mw.

The proof starts by considering the case of N = 3
years of ringing and recovery, k = 3 years of recruit-
ment and y = 2 recruiting classes. It is shown in the
recruitmentproof.mw that

s =




s1

s2

s3


 =




p2σ5,1

p2

p3σ5,2


 ,

is an exhaustive summary. This is shown by rewriting
the original exhaustive summary, consisting of the en-
tries of the p-array, in terms of s and then finding the
derivative matrix of this with respect to the si. This
derivative matrix has full rank 3, so s is an exhaustive
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summary. As well as N = 3 we then consider each of
N = 4,N = 5 and N = 6 to show that

s =




s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

s13

s14




=




p2σ5,1

p2

p3σ5,2



 N ≥ 3

p3

p4σ5,3

p4σ3,3α3,3σ2,2σ1,1



N ≥ 4

p4

p5σ5,4

p5σ3,4α3,4σ2,3σ1,2

p5σ4,4α4,4(1− α3,3)/α3,3





N ≥ 5

p5

p6σ5,5

p6σ3,5α3,5σ2,4σ1,3

p6σ4,5α4,5(1− α3,4)/α3,4





N ≥ 6




,

is an exhaustive summary by considering ranks of deriva-
tive matrices. The extension theorem (Catchpole and
Morgan, 1997 and Cole et al, 2010) is also applied to
show that each additional year of ringing and recovery
would add the exhaustive summary terms:



pN−1

pNσ5,N−1

pNσ3,N−1α3,N−1σ2,N−2σ1,N−3

pNσ4,N−1α4,N−1(1− α3,N−2)/α3,N−2


 .

Next consider increasing k by 1. It is shown in the
Maple worksheet that apart from changing numbering,
the only difference is that the exhaustive summary term

pNσ3,N−1α3,N−1σ2,N−2σ1,N−3

is replaced by

pNσ4,N−1α4,N−1σ3,N−2σ2,N−3σ1,N−4

and it and the subsequent term each appear when N

is one greater. This pattern continues as k is increased
further.

Now consider again the case where k = 3 and in-
stead increase y by 1 so y = 3. In each case of N =
3, . . . , 6 the extension theorem can be used to show that
adding an extra y adds an extra exhaustive summary
term s14 = pNσ5,N−1α5,N−1(1−α4,N−2)/α4,N−2 when
N ≥ 6, but that s is still an exhaustive summary. Hence
by induction we can prove that an exhaustive summary
for the recruitment model is given by Table 4.

Appendix 3: 9-state recruitment example

The 9-state recruitment model of Hunter and Caswell
(2009) has k = 4 and y = 5. The Maple procedure
recruitment finds the exhaustive summary given in

Table 4. Using Maple code of the form:

> N := 5:
> kappa := recruitment(N, 4, 5):
> pars := <seq(op(i,indets(kappa)),

i=1..nops(indets(kappa)))>:
> DD := Dmat(kappa, pars):
> r := Rank(DD); d := Dimension(pars)-r;

pp := Dimension(pars);
> Estpars(DD, pars);

it is possible to find the rank and deficiency and es-
timable parameter combinations for each of N ≥ 3.
These results are displayed in Table 7. It is possible to
find the general case for any N ≥ 8, as the exhaustive
summary is in reduced-form, and therefore the exhaus-
tive summary is a vector of the minimum length. The
minimum length of an exhaustive summary is equal to
the rank of the derivative matrix, therefore the rank is
7N − 33 for any N ≥ 8. There are 15 new parameters
each time (apart from first few) so the number of pa-
rameters is 15N − 74. The deficiency is then calculated
from d = p− r.

Appendix 4: Maple Procedures

This appendix consists of Maple procedures for using
the derivative matrix method to investigate parameter
redundancy in multi-state mark-recapture models.

The procedure Dmat finds the derivative matrix given
a vector of exhaustive summary term (kappa) and a
vector of parameters (pars).

Dmat:=proc(kappa,pars)
local DD1, i, j;
description "Form the derivative matrix";
with(LinearAlgebra);
DD1:=Matrix(1..Dimension(pars),1..Dimension

(kappa));
for i to Dimension(pars) do

for j to Dimension(kappa) do
DD1[i,j]:=diff(kappa[j],pars[i])

end do
end do;
DD1
end proc

The procedure Estpars finds the estimable set of
parameters given a derivative matrix (DD1) and a vec-
tor of parameters (pars).
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N r d p Estimable Parameters

3 3 1 4 σ9,1, p2, p3σ9,2

4 5 1 6 σ9,1, σ9,2, p2, p3, p4σ9,3

5 8 5 13 σ9,1, . . . , σ9,3, p2 . . . , p4, p5σ9,4, p5σ4,4α4,4

3∏

j=1

σj,j

6 12 10 22

σ9,1, . . . , σ9,4, p2 . . . , p5, p6σ9,5, σ4,4α4,4

3∏

j=1

σj,j ,

p6σ4,5α4,5

3∏

j=1

σj,j+1,
p6α5,5σ5,5(1− α4,4)

α4,4

7 17 16 33

σ9,1, . . . , σ9,5, p2 . . . , p6, p7σ9,6, σ4,4α4,4

3∏

j=1

σj,j ,

σ4,5α4,5

3∏

j=1

σj,j+1,
α5,5σ5,5(1− α4,4)

α4,4
, p7σ4,6α4,6

3∏

j=1

σj,j+2,

p7α5,6σ5,6(1− α4,5)

α4,5
,
p7α6,6σ6,6(1− α5,5)

α5,5

N 7N − 33 8N − 41 15N − 74 N ≥ 8

Table 7 Parameter Redundancy in the 9-state Recruitment Model.

Estpars:=proc(DD1,pars)
local r, d, alphapre, alpha, PDE, FF, i, ans;
description "Finds the estimable set of

parameters";
with(LinearAlgebra);
r := Rank(DD1);
d := Dimension(pars)-r;
alphapre:=NullSpace(Transpose(DD1));
alpha:=Matrix(d, Dimension(pars));
PDE:=Vector(d);
FF:=f(seq(pars[i],i=1..Dimension(pars)));
for i to d do

alpha[i,1..Dimension(pars)]:=alphapre[i];
PDE[i]:=add((diff(FF,pars[j]))*

alpha[i, j],j=1..Dimension(pars)):
end do;
ans := pdsolve({seq(PDE[i] = 0, i = 1 .. d)})
end proc

The procedure simexsum finds the simple exhaus-
tive summary for a multi-state model. The inputs are
a transition matrix A, a recapture matrix P and the

number of years of ringing and recovery N . See the de-
scription for details and restrictions.

The procedure recruitment finds the simple ex-
haustive summary for the recruitment model. The in-
puts are N , the number of years of ringing and recovery,
k, the age at recruitment, y the number of recruiting
classes. Note that k ≥ 3, and y ≥ 2.
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simexsum:=proc (A, P, N)

local S, U, i, j, kappa, kappaindex, tt, k, test;

description "Finds a simpler exhaustive summary. A is the transition matrix and must be square. If A is time

dependent the letter t must be used in a subscript to represent time. P is a diagonal recovery matrix and must

be a square matrix with entries only on the diagonal. Unobservable states must be numbered as the last states, and

must have a zero in the appropriate diagonal entry. N is the number of years of the study, with N-1 years of marking

and N-1 years of recovery. If kappa is returned as zero, this means the general exhaustive summary is not valid for

that N, try a greater N";

with(LinearAlgebra);

S := Dimension(A)[1]; U := 0;

for i from S by -1 to 1 do

if P[i, i] = 0 then U:=U+1: end if

end do;

if (S^2+S-2*U)*(N-1)-S-2*U*(S-1) < ((1/2)*N^2-(1/2)*N)*(S-U)^2 and 1 < S-U then

kappa := Vector((S^2+S-2*U)*(N-1)-S-2*U*(S-1));

kappaindex := 1;

for tt to N-1 do

for i to S-U do

for j to S-U do

kappa[kappaindex]:=(eval(P[i,i],t=tt+1))*(eval(A[i,j],t=tt)); kappaindex:=kappaindex+1

end do

end do

end do;

for tt from 2 to N-1 do

for i to S-U do

kappa[kappaindex] := eval(P[i, i], t = tt);

kappaindex := kappaindex+1

end do

end do;

for tt from 2 to N-1 do

for i to S do

for j from S-U+1 to S do

if A[j, 1] <> 0 then

if i <= S-U then

kappa[kappaindex]:=(eval(P[i, i],t=tt+1))*(eval(A[i,j],t=tt))*(eval(A[j,1],t=tt-1));

kappaindex:=kappaindex+1

end if;

if 2 <= i and i <= S-U then

kappa[kappaindex]:=(eval(A[j,i],t=tt-1))/(eval(A[j,1],t=tt-1));

kappaindex:=kappaindex+1

end if;

if S-U < i and 2 < tt then

kappa[kappaindex]:=(eval(A[j i],t=tt-1))*

(eval(A[j,1],t=tt-2))/(eval(A[j, 1],t = tt-1));

kappaindex:=kappaindex+1

end if

else

test := 0;

for k from 2 to S while test = 0 do

if A[j, k] <> 0 then

if i <= S-U then

kappa[kappaindex]:=(eval(P[i,i],t=tt+1))*(eval(A[i,j],t = tt))*(eval(A[j,k],t=tt-1));

kappaindex := kappaindex+1

end if;

if 2 <= i and i <= S-U then

kappa[kappaindex]:=(eval(A[j,i],t=tt-1))/(eval(A[j,k],t = tt-1));

kappaindex:=kappaindex+1

end if;

if S-U < i and 2 < tt then

kappa[kappaindex]:=(eval(A[j,i],t=tt-1))*(eval(A[j,k],t=tt-2))/(eval(A[j,k],t=tt-1));

kappaindex:=kappaindex+1

end if;

test:=1

end if: end do: end if:

end do: end do: end do:

else

kappa := 0

end if;

kappa

end proc
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recruitment := proc (N, k, y)

local i, t, sizekappa, kappa, indexkappa;

description "Gives an exhaustive summary for the recruitment model with N-1 years

of ringing N-1 years of recovery, recruitment age k, recruitment classes y";

with(LinearAlgebra);

sizekappa := 0;

for t to N-1 do

sizekappa:=sizekappa+1;

if 2 <= t then

sizekappa:=sizekappa+1

end if;

if k <= t then

sizekappa:=sizekappa+1

end if

end do;

for i from k+1 to y+k-1 do

for t from i to N-1 do

sizekappa:=sizekappa+1

end do

end do;

kappa := Vector(sizekappa);

indexkappa:=1;

for t to N-1 do

kappa[indexkappa]:=p[k+y,t+1]*sigma[k+y,t];

indexkappa := indexkappa+1;

if 2 <= t then

kappa[indexkappa]:=p[k+y, t];

indexkappa:=indexkappa+1

end if;

if k <= t then

kappa[indexkappa]:=p[k+y,t+1]*sigma[k,]*alpha[k,t]*(product(sigma[j,t+j-k],j=1..k-1));

indexkappa:=indexkappa+1

end if

end do;

for i from k+1 to y+k-1 do

for t from i to N-1 do

kappa[indexkappa]:=p[k+y,t+1]*sigma[i,t]*alpha[i,t]*(1-alpha[i-1,t-1])/alpha[i-1,t-1];

indexkappa:=indexkappa+1

end do

end do;

kappa

end proc


