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Abstract At Euring 2007 Hunter and Caswell pre-
sented a paper ‘Rank and redundancy of multi-state
mark-recapture models for seabird populations with un-
observable states’, where they were interested in whether
their multi-state mark-recapture models were parame-
ter redundant. The models were said to be too com-
plex to use symbolic methods developed by Catchpole
and Morgan (1997) to detect parameter redundancy,
so instead Hunter and Caswell developed a numerical
method (automatic differentiation) to determine whether
their multi-state mark-recapture models were parame-
ter redundant or not.

Since Euring 2007 we have extended and developed
the symbolic methods of Catchpole and Morgan (1997),
so that it is now possible to determine the parameter re-
dundancy of more complex models, such as multi-state
mark-recapture models (Cole and Morgan, 2009a). The
new method uses exhaustive summaries, which are pa-
rameter combinations that uniquely define the model.
A derivative matrix can be formed from the exhaus-
tive summary with respect to the parameters, and the
rank of this derivative matrix contains information on
the number of estimable parameters. Complex models,
where the symbolic rank is difficult to calculate, may
be simplified structurally using reparameterisation and
by finding an alternative exhaustive summary.

The advantage of this approach is that you can
determine exactly how many parameters can be esti-
mated in a model for any number of years of mark-
ing and recovery, as well as which combinations of pa-
rameters can be estimated. Here we illustrate how the
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new methodology works for the multi-state models of
Hunter and Caswell. We further develop rules for de-
termining the parameter redundancy status of a whole
family of multi-state mark-recapture models.
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1 Introduction

An important question to answer before trying to ac-
tually fit a model is whether all the model parame-
ters can be estimated. If parameters cannot be esti-
mated, regardless of the data used, a model is known
as parameter redundant. A parameter redundant model
will be non-identifiable, and can be written in terms of
a smaller set of parameters. For example in the Cor-
mack Jolly Seber (CJS) model for single state mark-
recapture data (Cormack, 1964, Jolly, 1965 and Seber,
1965), where both the probability of recapture and the
survival probability are dependent on time, the last re-
capture and survival probabilities are confounded. These
two parameters only ever appear as a product, there-
fore the model is parameter redundant (a more in depth
analysis of the parameter redundancy of the time vary-
ing CJS is given in Cole and Morgan, 2009a).
Parameter redundancy is not as obvious as in the
time varying CJS model. Catchpole and Morgan (1997)
developed a symbolic method for detecting parameter
redundancy, which involves finding a derivative matrix
and calculating its rank. The symbolic rank can be cal-
culated using a symbolic algebra package such as Maple.
The rank identifies the number of estimable parameters
in the model, so that a parameter redundant model
will have a rank less than the number of parameters in
the model. A parameter redundant model will have a



smaller set of estimable parameters; these can be found
by solving a set of partial differential equations that are
formed by making use of further information contained
within the derivative matrix (Catchpole et al, 1998).
Parameter redundancy in multi-state models has been
examined in Gimenez et al (2003).

However as models become more complex, so does
the structure of the appropriate derivative matrix. Cal-
culating the rank of the derivative matrix using Maple
may then become impossible, because the resulting ma-
trix is structurally too complex. Instead, numerical meth-
ods are used; for example Jiang et la (2007) and Hunter
and Caswell (2009). Cole and Morgan (2009a) extend
this symbolic derivative matrix approach to determine
symbolically whether a complex model is parameter re-
dundant or is fully estimable.

Ecological models in particular are becoming more
complex. As mentioned above a particular an example
of this is shown in Hunter and Caswell (2009), who ex-
amine multi-state mark-recapture models for sea-bird
populations with the added complexity of unobserv-
able states. Their multi-state capture-recapture model
allows for S different states, which are not all necessar-
ily observable, and N different sampling occasions, i.e.
marking in years 1 to (N — 1) and recapture in years
2 to N. The basis of the model is a transition matrix,
®,, and a recapture matrix P;. &; is an S x S ma-
trix with elements ¢; ;(¢), the probability of transition
from state j at time ¢ to state ¢ at time ¢t + 1. P; is a
diagonal matrix of size S, with diagonal elements p; ;,
the probability of recapturing an animal in state ¢ at
time t. The probability of a particular release-recapture
combination is then a combination of the appropriate
transition and recapture matrices, represented by a p-
array matrix (™) for release occasion r and recapture
occasion ¢, with ¥; ;(r, ¢) denoting the probability that
an individual released in stage ¢ at time r is next re-
captured in stage j at time c. In an unobservable state
1, Wi(;’c) = 0 for all j. The p-array can be found from
the transition and recapture matrices via

(Pr+145r)T c=r+1
o) — {P®e1(I-Poy)Pes...
1P, 1)P,}" c>r+1

(Hunter and Caswell, 2009). This matrix notation al-
lows for ease of calculation, but the structure of the
model is still complex.

An alternative to the numerical methods used in
Hunter and Caswell (2009) is to use the extended sym-
bolic methods of Cole and Morgan (2009a). The basis
of the Cole and Morgan method is to consider forming
a simpler derivative matrix, by considering the inherent
structure of the model. Cole and Morgan (2009a) show

that a derivative matrix can be formed by differenti-
ating an exhaustive summary of a model with respect
to the model’s parameters. An exhaustive summary is
a vector of parameter combinations that uniquely de-
fine the model. For example, in capture-recapture mod-
els, the exhaustive summary could be formed from the
expected number of animals for a particular release-
recapture combination, which includes the expected num-
ber of animals that are never seen again. Alternatively
the exhaustive summary could be formed from the sim-
pler probabilities of a particular release-recapture com-
bination, which excluded the more complicated proba-
bilities that animals are never seen again. In Hunter and
Caswell (2009)’s multi-state capture-recapture models,
an exhaustive summary consists of the non-zero terms
of the p-array, W) The rank of the derivative matrix
is the same regardless of which exhaustive summary is
used. This rank still gives the estimable number of pa-
rameters and in a parameter redundant model a set of
partial differential equations can be solved to find the
estimable parameter combinations (Cole and Morgan,
2009a).

The key to using this method is finding a simple
exhaustive summary for the model in question. How-
ever in complex models, such as Hunter and Caswell
(2009)’s multi-state capture-recapture models, the p-
array exhaustive summary is still not structurally sim-
ple enough for Maple to be able to calculate the sym-
bolic rank. If this is the case, reparameterisation can
be used to find a structurally simpler exhaustive sum-
mary. This involves choosing a reparameterisation that
simplifies the model structure. A derivative matrix, D
can then be formed from by differentiating the original
exhaustive summary, rewritten in terms of the reparam-
eterisation, with respect to the new parameters of the
reparameterisation. If the reparameterisation is unique
(that is, the derivative matrix of the reparameterisa-
tion with respect to the original parameters has a rank
equal to the number elements in the reparameterisa-
tion), then the rank of Dy is equal to the number of
estimable parameters. A new exhaustive summary can
also be found, regardless of whether the reparameter-
isation is unique or not, from the reparameterisation.
If the rank of Dy is equal to the number of terms in
the reparameterisation then the reparameterisation it-
self is an exhaustive summary. Otherwise, in the same
way that a set of partial differential equations can be
solved to find the estimable parameter combination, a
set of partial differential equations, formed using ex-
tra information available in Dy, can be used to find a
new exhaustive summary (Cole and Morgan, 2009a).
This symbolic algebra can be executed in a symbolic
algebra computer package such as Maple. Maple pro-



ceddures and Maple code for this paper is available at
www.kent.ac.uk/ims/personal/djc24 /multistate.htm .

The number of estimable parameters in the model
of Jiang et la (2007) is found symbolically in Cole and
Morgan (2009b) using reparameterisation to find a sim-
pler exhaustive summary. In Cole and Morgan (2009a),
the Hunter and Caswell (2009) time-invariant four state
breeding success model is used as a illustration of the
reparameterisation method. Below Hunter and Caswell
(2009)’s time-invariant 3 state model illustrates how
reparameterisation can be used to find a simpler ex-
haustive summary.

Hunter and Caswell (2009)’s time-invariant 3 state
model has two observable states to represent two differ-
ent breeding locations and a third unobservable state
representing non-breeding or an unobservable location.
The model’s transition matrix is

168171 028272 038373
015171 02272 038373 |
o181 0282 0303

where 41 = 1 — 77 etc... and which depends on the
parameters o;, survival at location i, (;, breeding at
an observable site given survival at location ¢, and ~;,
probability of breeding at site 1, given survival at site
¢ and breeding. Its recapture matrix is

p1 00
Op207
000

P =

P =

where p; is the probability of being recaptured at site 1.
The starting exhaustive summary consists of the non-
zero elements of the p-array:

)

k= [p1o1fim, p2o1Bi(l — 1), pro2fare, ]T
(with later terms being structurally more complicated).

Unlike the other models from Hunter and Caswell
(2009), in this case Maple can find the rank of derivative
matrix. In the Maple code it is shown that the rank of
the derivative matrix is 10. This means there are 10 out
of a possible 11 estimable parameters. The deficiency
of a model is the number of parameters that cannot be
estimated. For this example the deficiency is 1. Whilst
in this example the standard derivative method works,
this 3-state model is used to illustrate how the repa-
rameterisation method works.

First a reparameterisation is chosen. As the param-
eters come into the model through the transition and
recapture matrices, the non-zero elements of these ma-
trices form a sensible choice for a reparameterisation.
This gives the reparameterisation

T
5105 S11 ]
5 03(1 - 53)7 p1, P2, ]T

SZ[ S1, S92, ey S9,
=[ 016171, 028272, - -

Next the starting exhaustive summary is rewritten in
terms of this reparameterisation giving

T
K,(S) = [81310, S4811, S2S510, ] (1)
A derivative matrix, Dy is formed by differentiating (1)
with respect to the s;. This derivative matrix has rank
10 (and the reparameterisation is shown to be unique
in the Maple worksheet by forming a derivative matrix
of the reparameterisation with respect to the original
parameters, and showing this has rank 11). Therefore
we have shown again that there are 10 estimable pa-
rameters within this model. By solving an appropriate
set of partial differential equations (see the Maple work-
sheet for details) we can show that a simpler exhaustive
summary is

015171
02ﬁ2’¥2
o111 —m)
o232(1 = 72)
1—13

5 = 3
o3f301(1 — B1)
o30302(1 — B2)
o3(1 = Bs)
P1
b2

Further it is shown that this is an exhaustive summary
for all N > 4 and for most of the constraint models
considered in Hunter and Caswell (2009), except when
{o1 = 03,61 = B3,m1 = 73} and/or {09 = 03,02 =
0O3,72 = 73} It is then relatively easy to go through
each of the constraint models in Table 2 of Hunter and
Caswell (2009) and determine the deficiency of that
model. More detail is given in the Maple worksheet.

However the 3-state breeding model illustrated above
and the four state breeding success model illustrated in
Cole and Morgan (2009a) are both time-invariant. If
there is any time dependence within the model, find-
ing the appropriate reparameterisation is much more
complex, so instead in Section 2 a general simpler ex-
haustive summary is presented. The seabird examples
of Hunter and Caswell (2009) are examined in detail in
Section 3.

2 An Exhaustive Summary for Multi-State
Capture-Recapture Models

Consider a multi-state model with S states, of which
are U unobservable. Re-number the states so that the



last U states are unobservable (states (S—U+1), ...,.5).
Let the transition matrix be of the form

-a1,1(t) a172(t) e a17s(t)
0,2,1(0 a272(t) e a275(t)

Spt == . .
| asa(t) asa(t) ... as.s(t)

and the recapture matrix be of the form

Py ) |

i 0 0 ...ps‘(t)

with ps_y41, ..., Ps equal to zero, as the states are un-
observable (and no p; are equal to zero if all states are
observable). If there are more than one observable state,
(S—U > 1) and N is large enough for there to have been
enough release-recapture occasions to get to the maxi-
mum possible number of estimable parameters, that is
N needs to satisfy:

(824+S—2U)(N—1)-S—2U(5-1) < %(z\ﬂ

then a simpler exhaustive summary consists of the terms
given in Table 1. The proof involves using reparameter-
isation and is given in Appendix A.

There are a total of (S + S —2U)(N —1) — S —
2U (S — 1) exhaustive summary terms as long as there
are no zero a; j. This number of (5% +S—2U)(N —1)—
S —2U(S — 1) gives an upper bound for the number of
estimable parameters. So if you have more than (S? +
S—2U)(N —1)— 8 —2U(S — 1) parameters the model
will be parameter redundant. (Having less than (S? +
S —2U)(N —1)— S5 —2U(S — 1) parameters does not
guarantee the model will be fully estimable, as there
could be confounding of parameters). If there are any
zero a; ; some exhaustive summary terms will be zero,
so there will be correspondingly less actual exhaustive
summary terms and the maximum number of estimable
parameters will be correspondingly less. If any of the
a1 (j =S —U+1,..,S) are zero then a;; can be
replaced by a;2 in the last three types of exhaustive
summary terms and the range changed appropriately
(any terms equalling 1 can be excluded). If a; 2 should
be zero then use a; 3 and so on. This is the case for the
4-state breeding success model of Hunter and Caswell
(2009) examined in Section 3.2.

A Maple procedure, simexsum, has been written to
find this simpler exhaustive summary. Given values the
transition matrix, recapture matrix and N the pro-
cedure loops through appropriate code, given in Ap-
pendix D, to return the exhaustive summary of Table

_N)(S_U)Qa

1. (Note that if either of the constraints S —U > 1 and
(52+4+8—2U)(N—-1)-S—2U(S-1) < L (N?2-N)(S-U)?
are violated then the procedure returns 0). There are
also procedures for finding the derivative matrix and
the estimable set of parameters, should the model be
parameter redundant.

To illustrate the use of this simpler exhaustive sum-
mary we revisit the 3-state time-invariant model dis-
cussed in the introduction. Although it is not necessary
to use this simpler exhaustive summary, it is relatively
simple to reproduce the result that there are 10 out
of a possible 11 estimable parameters using the Maple
code below (with @ replaced by A and « replaced by g
and where the maple procedure Dmat finds the deriva-
tive matrix). The estirnable parameters are to found be
Ug(ﬁ?,—l) 03(53 .o15 703(53
using the Maple procedure Estpars given below:

> A:=Matrix(1..3,1..3):
Al1,1] :=sigmal1]*betal1]*g[1]:
Al1,2] :=sigma[2]*beta[2]*xg[2]:
A[1,3]:=sigmal[3]*beta[3]*g[3]:
A[2,1] :=sigma[1]*betal1]*(1-g[1]):
A[2,2] :=sigma[2]*beta[2]*(1-g[2]):
A[2,3] :=sigma[3]*beta[3]*(1-g[3]):
A[3,1] :=sigma[1]*(1-betal[1]):
A[3,2] :=sigma[2]*(1-betal[2]):
A[3,3] :=sigma[3]*(1-betal3]):
> P := <<p[111010)>,<0|p[2]10>,<0]0]10>>:
> pars:=<sigma[l],sigmal[2],sigma[3],betall],
betal[2],betal3],gl1],g[2],g[3],p[1],p[2]>:
> kappa:=simexsum(A,P,4):
> DD:=Dmat (kappa,pars) :
> r:=Rank(DD); d := Dimension(pars)-r;

pp := Dimension(pars);
r:=10
d:=1
p:=11

> simplify(Estpars(DD,pars));
f(sigmal[1],sigma[2],sigma[3],betall],

betal2] ,betal3],gl1],g[2],g[3],p[1],p[2])

= _F1( sigmal[3]betal[3]-sigmal3] ,
sigma[3] (betal[1]-beta[3])/betall],
sigma[1]lbeta[1],

sigma[3] (-beta[2]+beta[3]) /betal2],
sigma[2] betal2],
(11,gl21,gl3],p[1]1,p[2])

Note that the exhaustive summary of Table 1 re-
quires that S —U > 1 and that (S?+ S —2U)(N —1) —
S—2U(S—1) > 3(N?—N)(5 —U)?. These rules tend
to be violated when there is little information avail-
able, such as if there is only one observable state (rule
S —U > 1 does not apply). If there are a small number

U2ﬁ2771)727,737p17p2



Exhaustive Summary Terms Range No. of Terms
t=1,.,N 1
pi(t+1)aiyj(t) i=1,.,5-U (N*l)(S*U)Q
j=1,.,8-U
t=2,.,N—-1
pi(t) i=1.5-U (N-2)(§-U)
t=2,.,N 1
pi(t+1)ai,j(t)aj71(t) i=1,..,5-U U(N-2)(S-U)
j=S-U+1,.,S
t=2,.,.N—1
i t_l I I
it = 1) i=2.,8-U UN-2)(S—U—1)
aji(t—1) j=S-U+1,.,8
t=3,.,N—-1
ii(t—Da;1(t—2 R >y
9.4t = Das1(t = 2) i=S—-U+1,..,8 UZ(N — 3)
aja(t—1) j=S-U+1,.,8

Table 1 Table of a simpler exhaustive summary for a multi-state mark-recapture model with N — 1 years of marking and N — 1 years
of recapture, with S states, U of which are unobservable. This is only an exhaustive summary if S — U > 1 and (S%2 4+ S — 2U)(N —
1H)—-S-2U(S—-1)< %(N2 — N)(S —U)? (see the text and Appendix A for details).

of observable states compared with the number of unob-
servable states the later condition requires a very large
N. If these conditions are not satisfied another simpler
exhaustive summary would need to be found. An ex-
ample is given below in Section 3.3 below, which is a
9-state example with only two observable states. Whilst
the condition S — U > 1 is satisfied, the condition
(§2+85—2U)(N—-1)-S—2U(5-1) > £(N?-N)(S-U)?
requires N > 40. Other work includes the development
of a simple exhaustive summary for the case S = 2
and U = 1, in particular to examine a two-state model
for breeding and non-breeding of Great Crested Newts
(McCrea and Cole, work in progress).

3 Seabird Examples

In this Section the simpler exhaustive summary, given
in Table 1, is used to examine the parameter redun-
dancy of 2 out of the 3 examples presented in Hunter
and Caswell (2009). Section 3.1 examines a 3-state mul-
tiple site breeding model. Section 3.2 considers a 4-state
breeding success and failure model. In the case of the
third example of Hunter and Caswell (2009) a different
simpler exhaustive summary is found for recruitment
models in Section 3.3.

3.1 3-state Multiple Site Breeding Model

The 3-state time-invariant model discussed in the in-
troduction can be extended to include time variation.
In this case the transition matrix becomes

Ul,tﬁl,t%,t Uz,tﬂz,ﬂz,t 03,t53,t73,t
Ul,tﬁlLt’Vl,t Uz,tﬂzj%,t US,t/BSLt'S/S,t )
oLtbre 02.4P2 03403,

Spt:

which depends on the parameters o;, survival at lo-
cation ¢ at time t, 3; ., breeding at an observable site
given survival at location ¢ at time ¢, and ~; ¢, proba-
bility of breeding at site 1, given survival at site 7 and
breeding at time t. Its recapture matrix becomes

pie 0 O
P, = 0 D2t 01,
0 00

where p; ; is the probability of being recaptured at site
¢ at time ¢.

The parameter redundancy status of this 3-state
model is examined (see Maple code) and the results
are displayed in Table 2. The first models examined are
general models with all parameters and no constraints.
In the CJS model the last survival and capture prob-
abilities are confounded and cannot be estimated. In
Hunter and Caswell (2009) they also point out that for
unobservable states the parameters can not be identi-
fied at t = 1. For this example, parameters 031, 33,1
and 3,1, from the unobservable state 3, never appear
in the model, and are therefore are called completely
redundant. They therefore suggest that all freely time-
varying parameters should be set equal at ¢ = 1 and
t=2,andatt=N—-2andt=N—-1(t=2andt =3,
and t = N — 1 and t = N for recapture probability) to
ensure identifiability. This is of course sensible if there
is biological evidence to suggest this is true. However
this is not necessary for all parameters. The next mod-
els examined allow for the constraints of Hunter and
Caswell (2009). It can be noted that whilst the defi-
ciency is reduced it is not completely eliminated, and
unlike the general model, this constraint is not making
use of the maximum possible number of estimable pa-
rameters. In this 3-state model there are a maximum



General Model Hunter and Caswell Alternative
Constraints Constraints
N r d P r d P r d P
4 23 7 30 10 1 11 23 0 23
5 33 8 41 21 1 22 33 0 33
6 43 9 52 31 2 33 43 0 43
7 53 10 63 41 3 44 53 0 53
N 10N —17 N +3 11N — 14 10N —29 N —4 11N — 33 10N —17 0 10N — 17

Table 2 Parameter redundancy of the 3-state model. N denotes the number of years of marking and recapture. r denotes the rank
of the model, p denotes the number of parameters in the model and d = p — r denotes the deficiency of the model. Note completely
redundant parameters, 03,1, 83,1 and 73,1 are ignored and not counted in parameter numbers as they never appear in the model.
The general model consists of all possible parameters. The Hunter and Caswell (2009) constraints model applies the constraints
0j1=042,0;N-1=05N-2,051=B42,8i,N-1=BjN-2,%,1 =74,2,7,N-1 = Vj,N—2,Pi,2 = Pi;3,Pi, N = Pi, N—1 - Lhe alternative
constraints model applies the constraints o2+ = 01,¢,05 N—1 = 0j N—2,Pi{,N = Pi,N—1-

of 10N — 17 estimable parameters; this is determined
by the length of the exhaustive summary in the case
S = 3,U = 1. The general model without constraints
has rank 10V —17 and hence has 10N —17 estimable pa-
rameters. However Hunter and Caswell (2009) only has
10N —29 because some of the constraints result in iden-
tical terms in the simple exhaustive summary. Both the
general model and the Hunter and Caswell constraint
model have deficiency that increases with .

Instead, as we can never estimate the completely
redundant parameters, o3 1, (3,1 and 73,1, we exclude
them from the parameter set. By considering estimable
parameter combinations of the general model we sug-
gest an alternative model that is not parameter redun-

dant. This model has the constraints o2 s = 014,05 nv—1 =

O0j N-2,Di,N = Pi,N—1 fort = 1, ceey N—-landi= 1, ,3
for o and i = 1, ..., 2 for p. This model has the advantage
that it has the maximum number of estimable param-
eters, and therefore makes use of all possible available
information. Other such models that are fully estimable
can be built in a similar way, and could be based on bi-
ological theory. It is also possible to iterate through any
sets of other constraints of interest, such as those pre-
sented in Hunter and Caswell (2009) Table 3, but rather
than produce results for a specific value of N (Hunter
and Caswell, 2009 use N = 6), general results about
parameter redundancy can be produced for any N.

3.2 4-state Breeding Success and Failure Model

The 4-state model has the following states:

— State 1 for successful breeding. This is an observable
state.

— State 2 for unsuccessful breeding. This is an observ-
able state.

— State 3 for the year post-successful breeding. This
is an unobservable state.

— State 4 for the year post-unsuccessful breeding. This
is an unobservable state.

The transition matrix for this model is

o1,t81,071,t 02,602,672,t 03,633,473,t Ta,eB4,t74,t
Ul,tﬁlLt’Vl,t 09,182,t72,1 0'3,t63,7t'73,t 04, B4,t74,t
01,101t 0 03,103,1 0 ’
0 09,102,1 0 04,14

where 41+ = 1 — v1+ etc... and which depends on the
parameters o, ;, the probability of survival at location
i at time ¢, B3; +, the probability of breeding given sur-
vival at location 7 at time ¢, and ;, the probability
of successful breeding given breeding and survival at
location 7 at time t. Its recapture matrix is

t =

pie 0 00

0 p2:00
P 0 000]|"

0 000

where p; ; is the probability of being recaptured at state
¢ at time ¢.

In a similar way to the 3-state model the parame-
ter redundancy of this 4-state model is examined (see
Maple code); the results are given in Table 3 for the gen-
eral model and using Hunter and Caswell (2009)’s con-
straints. These results illustrate similar findings as for
the 3-state model. The constraints imposed by Hunter
and Caswell (2009) result in fewer estimable parame-
ters than the maximum number of estimable parame-
ters, 12N — 36 compared with 12V — 22. One possible
alternative set of constraints is also shown in Table 3.
This also illustrates that the symbolic method allows
general rules on deficiency to be found for any N.

3.3 Recruitment Model

The pre-breeding survival and recruitment model of
Hunter and Caswell (2009) models delayed maturity.



General Model Hunter and Caswell Alternative
Constraints Constraints
N r d P r d P r d P
7 62 16 78 48 8 56 62 0 62
8 74 18 92 60 10 70 74 0 74
9 86 20 106 72 12 84 86 0 86
N 12N —22 2N +2 14N — 20 12N —36 2N —6 14N — 42 12N —-22 0 12N — 22

Table 3 Parameter redundancy of the 4-state model. N denotes the number of years of marking and recapture. » denotes the rank
of the model, p denotes the number of parameters in the model and d = p — r denotes the deficiency of the model. Note completely

redundant parameters, 03,1, 83,1, 73,1, 04,1, B4,1 and 74,1 are ignored and not counted in parameter numbers as they never appear in
the model. The general model consists of all possible parameters. The Hunter and Caswell constraints model applies the constraints

0j1=042,0;N-1=0;N-2,0j,1 = B4,2,0j,N-1 = BjN-2,7,1 = V4,2, Vj,N—1 = Vj,N—2,Pi,2 = Pi,3,Pi,N = Pi,N—1 -

The alternative

constraints model applies the constraints 84 y—1 = 84, N — 2,02+ = 01,¢,04,t = 03,40 N—1 = 0§ N—2,Pi,N = Pi,N—1-

The first state represents first year animals, the last
state represents breeding animals and the states in be-
tween represent non-breeders of different ages. Recruit-
ment is possible from the kth year onwards, with prob-
ability o+ for animals aged 7 at time ¢. There are up
to y possible recruitment years. The probability of sur-
vival, dependent on age i and time ¢, is denoted by o; ¢,
with oy41 ¢ denoting survival in the last breeding state.
The animal is observed in the first year and when it
is breeding in the last state. The transition matrix for
this recruitment model is

0 O 0 0 0 0 0 7
5,0 0 0 0 0 0
0o . 0 0 0 0 0
b, = 0 0 op—14 0 0 0 0 1,
0 0 0 opedpe 0 0 0
0 O 0 0 0 0
L 0 0 0 optQrt ... Op—1,4Q—1,t Oby |

where &;; = 1 — oy +. The recapture matrix is

10...00
00 00
Pe=1: -~
00 00

where p; is the probability of being recaptured in the
breeding state at time ¢. (The first year recapture prob-
ability is set to 1 for convenience, but would never ac-
tually appear in the model.)

As there are only two observable states, to use the
simpler exhaustive summary given in Table 1 would re-
quire a large number years of ringing and recovery. For
example in the 9-state illustrative example of Hunter
and Caswell (2009), N > 40 would be required. Instead
of using this simpler exhaustive summary, the reparam-
eterisation method is used to find a simpler exhaustive
summary that is specific for just this recruitment model

with only two observable states. This exhaustive sum-
mary is given in Table 4 below and its proof is given in
Appendix B.

To illustrate the general use of the exhaustive sum-
mary given in Table 4, the 9-state example used to il-
lustrate the recruitment model in Hunter and Caswell
(2009) is used in Appendix C. It is also possible to use
the exhaustive summary’s form to determine some gen-
eral results. From the first two types of exhaustive sum-
mary terms in Table 4 it is obvious that the parame-
ters op4y+ and pyiq are estimable for ¢ =1,..., N — 2
and that o4, nv—1 and py are confounded with only

the product estimable. The third exhaustive summary
k—1

term, Pi410k, 10kt H 0jt+j—k, indicates the parame-
j=1

ters o1+ to op Wizch oy are always going to be con-
founded as they only ever appear in that product, and
therefore not individually estimable. Similarly o;; is
always going to be confounded with oy and a;_1¢—1
for £k < @ < k 4+ y. This exhaustive summary also
shows that, even without time dependence, full age-
dependence would not be estimable (as observed by
Clobert et al, 1994). For N > y + k — 1 there are
(24Y)N-— % (y? —vy) —yk—3 exhaustive summary terms,
which will also be the maximum number of estimable
parameters. A model with more than this number of
parameters will be parameter redundant. To over come
this confounding of parameter Hunter and Caswell (2009)
examine the following constraints:

— a common survival for the non-recruiting years: 04,1 =
. =092 =01

— when there is no time dependence in the model:
logit(o;) =a+bifori=k,..k+y

— when there is time dependence in the model: logit(o; ;) =

a; +bitfort=1,..,.N —1

— when there is time dependence in the model and a
time-dependent covariate: logit(o; ;) = a; + b;x; for
t=1,.,N—1.



Exhaustive Summary Terms Range No. Terms
Pt+10k+y,t t=1,...,N—-1 N -1
P t=2,...,N—1 N -2
k—1
Dt+10k 1O ¢ H Ojttj—k t=k,...,N—-1 N -k
j=1
pt—o—lo'itait(l_a’ifl t,1) t=14,...,N—1 1, 9
— : . Ny—-1)—5 —y)—yk+k
P i k1, ytk—1 (-1 —-350°-y)—yk+

Table 4 Exhaustive summary for the recruitment model, when k£ > 3, N > 3 and y > 2.

Cole and Morgan (2007) show how to find the parame-
ter redundancy of models with time varying covariates,
such as the examples illustrated above. The number of
estimable parameters is equal to the minimum of num-
ber of estimable parameters in the equivalent model
without covariates and the number of parameters in
the covariate model. As the number of terms in the ex-
haustive summary of Table 4 will also be equal to the
rank of the derivative matrix (because the exhaustive
summary is in reduced-form), and because we can de-
duce the number of estimable parameters in a covariate
model from a model without covariates, it is possible to
deduce general rules about various constraint models.
These rules are presented in Table 5, and demonstrate
how useful exhaustive summaries can be in producing
general rules.

4 Discussion

Hunter and Caswell (2009) presented an improved nu-
merical method for detecting parameter redundancy
in multi-state mark-recapture models, because it was
thought impossible to use symbolic methods. In this
paper we have shown that it is now possible to use
symbolic methods to detect parameter redundancy for
these models. We have developed general exhaustive
summaries for multi-site capture recapture models and
shown how they can be applied. We have also demon-
strated some of the general rules that it is possible to
create using this symbolic method, whereas it is not
possible to obtain such general rules using numerical
methods.

Table 6 compares the numerical method with the
symbolic methods. Based on these advantages and dis-
advantages, if interest lies in whether a particular model
for a specific data set is parameter redundant then a
numerical method would be sufficient. However if in-
terest lies in the redundancy of a model in general or
a particular class of models, general rules can be found
using the symbolic method. Further if a model is fully
estimable it is further possible to detect nested param-
eter redundant models and near redundancy (see Cole

and Morgan, 2009a which extends work on decomposi-
tions of Gimenez at al, 2003).

The methodology discussed in this paper is per-
fectly general and could in theory be applied to any
parametric model. The creation of simpler exhaustive
summaries, such as those created here for multi-state
models, could be developed for other families of ecolog-
ical models. We have looked at parameter redundancy
in Pledger et al (2009)’s stopover models (Matechou
and Cole unpublished work). Future plans include de-
veloping these methods other ecological models such as
Rouan et al (2009)’s memory models and MacKenzie
et al (2009)’s multi-site occupancy models.

Acknowledgements: Thanks to Byron Morgan for
he’s comments on this paper and to Christine Hunter
for her description of multi-state mark-recapture mod-
els for seabird populations.

5 References

Catchpole, E. A. and Morgan, B. J. T. (1997) Detecting
parameter redundancy. Biometrika, 84, 187-196.
Catchpole, E. A., Morgan, B. J. T. and Freeman, S.
N. (1998) Estimation in parameter redundant models.
Biometrika, 85, 462-468.

Clobert, J., Lebreton, J.D., Allaine, D., Gaillard, J.M.
(1994) The estimation of age-specific breeding probabil-
ities from recaptures or resightings in vertebrate popu-
lations: II. longitudinal models. Biometrics 50, 375-387
Cole, D.J. and Morgan, B.J.T. (2007) Detecting param-
eter redundancy in Covariate Models. Technical Report
UKC/IMS/07/007 submitted to Biometrika.

Cole, D.J. and Morgan, B.J.T. (2009a) Determining the
parametric structure of non-linear models. University of
Kent Technical Report UKC/IMS/09/005

Cole, D.J. and Morgan, B.J.T. (2009b) A note on de-
termining parameter redundancy in age-dependent tag
return models for estimating fishing mortality, natural
mortality and selectivity. To appear in JABES.
Cormack, R.M (1964) Estimates of survival from the
sightings of marked animals. Biometrika, 51, 429-438.



time ex. sum. no. ex. no.
dep. constraint terms sum. terms pars. deficiency
POk+y
no Ofg—1=..=02 =01 PUkaka_l y+2 2y +3 y+1
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Method: Numerical

Symbolic

Requires some algebra to find a

Ease of use Fairly easy

simple exhaustive summary.

Then relatively easy to use.

Computation

Can be added to any

Needs a symbolic algebra

computer program package such as Maple

Estimable parameter

Trial and error

combinations

needed to find.

Can be found using
a Maple procedure

Accuracy Not always, although Hunter and

Caswell’s work improves this.

Finds the actual redundancy
for all parameter values
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actual redundancy
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decomposition

General rules Not possible to deduce

Can be found using
extension theorems
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A Proof of Simpler Exhaustive Summary

The Maple code form this proof can be found in Maple worksheet
simexsumproof .mw. To show that Table 1 is an exhaustive sum-
mary, first consider the case of no unobservable states. Starting
from N = 3, S = 2 we show that for transition and recapture
matrices

_ [a1,1(t) a1,2(t) _[p@® o0
@‘{az,l(t) m(t)} P*‘{ 0 pz(t)}

a possible reparameterisation with 10 elements is

s = [p1(2)a1,1(1),p2(2)az,1(1),p1(2)a1,2(1), p2(2)az,2(1),
P1(2),p2(2),p1(3)a1,1(2), ..., p2(3)az 2(2)]" .

We rewrite the original exhaustive summary, consisting of the
non-zero p-array terms, in terms of s;. This is then differentiated
with respect to the s; to form the derivative matrix Ds. The
derivative matrix has full rank 10, so the reparameterisation s is
an exhaustive summary. Now extend this to N = 4. The extra
reparameterisation terms are

’

s = [p1(4)a1,1(3), ..., p2(4)az,2(2),p1(3),p2(3)]" .

Extra original exhaustive summary terms are also added, which
are differentiated with respect to s to form the derivative matrix
D¢,. The rank of D¢y is of full rank 6, therefore by the extension
theorem and by induction (Cole and Morgan, 2009a)

s = [p1(2)a1,1(1), ..., p2(2)az,2(1), p1(2), p2(2), ..., p1 (N — 1),
p2(N = 1),p1(N)a1,1(N = 1), ...,pn (N)ag,2 (N — 1),]"
will always be an exhaustive summary for any N > 3.

Next consider extending to S = 3 again starting from N = 3.
The transition and recapture matrices are

a1,1(t) a1,2(t) a1,3(t) pi(t) 0 0
Pr = | az1(t) az2(t) a23(t) | Pe=| 0 p2(t) O (2)
as,1(t) az,2(t) a3,3(t) 0 0 p3(t)

The reparameterisation has the extra terms

— p3(t+1)as ;(t) for j=1,2,3 and t = 1,2,

— pi(t+1)a;3(t) fori=1,2 and t = 1,2,

- p3(2),
and in a similar way we use the extension theorem and induc-
tion to deduce that when all states are observable an exhaustive
summary consists of the terms:

- pi(t+1)a; ;(t) fort=1,...,.N—-1,i=1,..,Sand j=1,..,8S,
— pi(t) fort=2,...,N—landi=1,.,S5,

which are the only terms of the exhaustive summary given by
Table 1 that apply when U = 0.

Then we move on to consider unobservable states. The first
case we consider is S = 3, N = 4, with one unobservable state, so
that U = 1. The transition and recapture matrices are the same
as in equation 2, with p3(¢) = 0. A possible reparameterisation of
length 23 has elements of the form given in Table 1. We rewrite
the original exhaustive summary, consisting of the non-zero p-
array terms, in terms of s;. This is then differentiated with respect
to the s; to form the derivative matrix Dg. The derivative matrix
has full rank 23, so the reparameterisation given by Table 1 is an
exhaustive summary, for S = 3, N = 4 and U = 1. This can
then be extend to N = 4. There are 10 extra reparameterisation
terms. The extra original exhaustive summary terms are analysed
with respect to these 10 extra reparameterisation terms and the
exhaustive summary is applied in three parts; the first two are
shown to be full rank in the Maple worksheet. The third part
contains no extra reparameterisation parameters. Therefore by

the extension theorem and by induction Table 1 is an exhaustive
summary, for S =3, N >4 and U = 1.

Next we consider extending the case S =3, N =4,U =1 to
the case S =4, N = 4, U = 1. For convenience of the proof, we
continue to label the 3rd state as unobservable and introduce a
fourth new observable state. (This is contrast to the exhaustive
summary presented in Table 1, where the fourth state would be
labeled as unobservable.) The transition and recapture matrices
are

a1,1(t) a1,2(t) a1,3(t) a1,4(t) pi(t) 0 0 0

B, — a2,1(t) az,2(t) a2,3(t) az,4(t) . 0 p2(t) O O
t= a3’1(t) a3’2(t) a373(t) a374(t) t= 0 0 0 O
a4,1(t) as,2(t) as,3(t) as,a(t) 0 0 pa(t) 0

By examining the extra original exhaustive summary terms with
respect to the extra reparameterisation terms that are added:

— pa(t+1)ag,;(t) for j=1,2,4and t =1,...,4,

— pi(t+1)a;4(t) fori=1,2and t =1,...,4,

— pa(t) fort =2,...,4,

— pa(t+ 1)a473(t)a371(t —1)fort=2,..,4,

- M fort=2,...,4,

as,1 (t — 1)
we show in the Maple worksheet using the extension theorem and
by induction, that once the states are relabeled, that exhaustive
summary presented in Table 1 is an exhaustive summary for S >
3, N>4and U = 1.

Finally we consider extending the case S=3, N =7, U =1
to the case S =4, N =7, U = 2. From the results above above we
already know that Table 1 is an exhaustive summary for S = 3,
N =7, U = 1. We then use the extension theorem once more.
Examining the extra original exhaustive summary terms with
respect to the extra reparameterisation terms that are added:

— pa(t+1)a;a(t)as,1(t —1) for t =2,...,6 and i = 1,2,

t—1
_ M fort=2,...,6,
ag1(t—1)
t—1 t—2
_ as,3( )as,1( ) fort=3,...,6,
ag1(t—1)
t—1 t—2
_owalt=laanlt=2) 5
az;1(t—1)
t—1 t—2
_ aa.4( Jas,1( ) for t =3,...,6,
ag1(t—1)

we show in the Maple worksheet using the extension theorem and
by induction, that the exhaustive summary presented in Table 1
is an exhaustive summary for S >4, N > 7 and U = 2.

‘We have proved the case S > 3, N > 4 and U = 1. Then
consider any other S and U such that S — U > 1. There will
always be a S’ =S —1 U’ = U — 1 so that a similar move as
from S =3, U =1toS =4, U = 2 can be applied. All that is
required is to start at an N large enough so that there will be
more original exhaustive summary terms than reparameterisation
terms. There are (S2+S—2U)(N —1)—S—2U(S—1) terms in the
reparameterisation and %(N2 — N)(S—U)? terms in the original
exhaustive summary. So this results in a restriction on N of (S2+4
S—2U)(N—1)—S—2U(S—1) < +(N? - N)(S—U)2. Therefore
by induction the exhaustive summary presented in Table 1 is
an exhaustive summary for all cases as long as U — S > 1 and
(S2+S—2U)(N—-1)—S—2U(S—1) < (N2 = N)(S - U)2.

B Proof of Recruitment Simpler Exhaustive
Summary

This section provides the proof for the recruitment exhaustive
summary given in Table 4. The Maple code for this proof can be
found in Maple worksheet recruitmentproof .mw.
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The proof starts by considering the case of N = 3 years
of ringing and recovery, k = 3 years of recruitment and y = 2
recruiting classes. It is shown in the recruitmentproof .mw that

s1 P205,1
§= |82 = p2 )
53 P305,2

is an exhaustive summary. This is shown by rewriting the original
exhaustive summary, consisting of the entries of the p-array, in
terms of s and then finding the derivative matrix of this with
respect to the s;. This derivative matrix has full rank 3, so s is
an exhaustive summary. As well as N = 3 we then consider each
of N=4,N =5 and N = 6 to show that

[ s1] [ p2os,1 i
s2 D2 N >3
53 P305,2
S4 P3
S5 P405,3 N >4
56 P403,3003,302,201,1

c= | 57| = | Pa 7

58 P505,4 N>5
S9 P503,4003,.402,301,2 -
s10 p504404.4(1 — a3.3)/a3,3
511 ps
512 P605,5 N>6
S13 P603,5(63,502,401,3 -

| 514 | | Peoasass(l —asa)/az ]

is an exhaustive summary by considering ranks of derivative ma-
trices. The extension theorem (Catchpole and Morgan, 1997 and
Cole and Morgan, 2009a) is also applied to show that each ad-
ditional year of ringing and recovery would add the exhaustive
summary terms:

PN_1
PNO5 N—1
PNO3 N—103 N—102 N—201, N—3
PNO4,N—104 N—1(1 —ag N—2)/ag N—2

Next consider increasing k by 1. It is shown in the Maple
worksheet that apart from changing numbering, the only differ-
ence is that the exhaustive summary term

PNO3,N-103,N—-102,N-201,N—3
is replaced by
PNO4,N—-104,N—-103 N-202 N-301,N—4

and it and the subsequent term each appear when N is one
greater. This pattern continues as k is increased further.

Now consider again the case where k = 3 and instead in-
crease y by 1 so y = 3. In each case of N = 3,...,6 the exten-
sion theorem can be used to show that adding an extra y adds
an extra exhaustive summary term s14 = pyos nv—105 Nv—1(1 —
o4 N—2)/0s N—2 when N > 6, but that s is still an exhaustive
summary. Hence by induction we can prove that an exhaustive
summary for the recruitment model is given by Table 4.

C 9-state recruitment example

The 9-state recruitment model of Hunter and Caswell (2009) has
k = 4 and y = 5. The Maple procedure recruitment finds the
exhaustive summary given in Table 4. Using Maple code of the
form:

N := b:

kappa := recruitment(N, 4, 5):

pars := <seq(op(i,indets(kappa)),i=1..nops(indets(kappa)))>:
DD := Dmat(kappa, pars):

r := Rank(DD); d := Dimension(pars)-r; pp
Estpars(DD, pars)

V V. V V VvV

:= Dimension(pars);

it is possible to find the rank and deficiency and estimable param-
eter combinations for each of N > 3. These results are displayed
in Table 7. It is possible to find the general case for any N > 8§,
as the exhaustive summary is in reduced-form, and therefore the
exhaustive summary is a vector of the minimum length. The min-
imum length of an exhaustive summary is equal to the rank of the
derivative matrix, therefore the rank is 7N — 33 for any NV > 8.
There are 15 new parameters each time (apart from first few) so
the number of parameters is 15N — 74. The deficiency is then
calculated from d = p —r.

D Maple Procedures

The procedure Dmat finds the derivative matrix given a vector
of exhaustive summary term (kappa) and a vector of parameters

(pars).

Dmat : =proc (kappa,pars)
local DD1, i, j;
description "Form the derivative matrix";
with(LinearAlgebra) ;
DD1:=Matrix(1..Dimension(pars),1..Dimension(kappa));
for i to Dimension(pars) do
for j to Dimension(kappa) do
DD1[i,j]:=diff (kappaljl,pars([i]l)
end do
end do;
DD1
end proc

The procedure Estpars finds the estimable set of parameters
given a derivative matrix (DD1) and a vector of parameters (pars).

Estpars:=proc(DD1,pars)
local r, d, alphapre, alpha, PDE, FF, i, ans;
description "Finds the estimable set of parameters";

with(LinearAlgebra) ;
r := Rank(DD1);
d := Dimension(pars)-r;

alphapre:=NullSpace(Transpose(DD1)) ;

alpha:=Matrix(d, Dimension(pars));

PDE:=Vector(d);

FF:=f (seq(pars[i],i=1..Dimension(pars)));

for i to d do
alphali,1..Dimension(pars)]:=alphaprel[i];
PDE[i] :=add ((diff (FF,pars[j]))*alphali, jl,

j=1..Dimension(pars)):

end do;

ans := pdsolve({seq(PDE[i] =0, i =1 .. d})

end proc

The procedure simexsum finds the simple exhaustive sum-
mary for a multi-state model. The inputs are a transition matrix
A, a recapture matrix P and the number of years of ringing and
recovery N. See the description for details and restrictions.

The procedure recruitment finds the simple exhaustive sum-
mary for the recruitment model. The inputs are N, the number
of years of ringing and recovery, k, the age at recruitment, y the
number of recruiting classes. Note that k > 3, and y > 2.
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simexsum:=proc (A, P, N)

local S, U, i, j, kappa, kappaindex, tt, k, test;

description "Finds a simpler exhaustive summary. A is the transition matrix and must be square. If A is time dependent
the letter t must be used in a subscript to represent time. P is a diagonal recovery matrix and must be a square
matrix with entries only on the diagonal. Unobservable states must be numbered as the last states, and must have a
zero in the appropriate diagonal entry. N is the number of years of the study, with N-1 years of marking and N-1 years
of recovery. If kappa is returned as zero, this means the general exhaustive summary is not valid for that N, try a greater N";

with(LinearAlgebra) ;
S := Dimension(A) [1];
U := 0;

for i from S by -1 to 1 do
if P[i, i] = O then U:=U+1: end if
end do;
if (872+8-2+U)*(N-1)-S-2xU*(S-1) < ((1/2)*N"2-(1/2)*N)*(S-U)"2 and 1 < S-U then
kappa := Vector ((S~2+S-2*U)*(N-1)-S-2+Ux(S-1));
kappaindex := 1;
for tt to N-1 do
for i to S-U do
for j to S-U do
kappa[kappaindex] :=(eval (P[i,i],t=tt+1))*(eval(A[i,j]l,t=tt));
kappaindex:=kappaindex+1
end do
end do
end do;
for tt from 2 to N-1 do
for i to S-U do
kappa[kappaindex] := eval(P[i, i], t = tt);
kappaindex := kappaindex+1
end do
end do;
for tt from 2 to N-1 do
for i to S do
for j from S-U+1 to S do
if A[j, 1] <> O then
if i <= 8-U then
kappa[kappaindex] :=(eval (P[i, i],t=tt+1))*(eval(A[i,j],t=tt))*(eval(A[j,1],t=tt-1));
kappaindex:=kappaindex+1
end if;
if 2 <= i and i <= S-U then
kappa [kappaindex] :=(eval(A[j,i],t=tt-1))/(eval(A[j,1],t=tt-1));
kappaindex:=kappaindex+1
end if;
if S-U < i and 2 < tt then
kappa[kappaindex] :=(eval(A[j il,t=tt-1))*
(eval(A[j,1],t=tt-2))/(eval(A[j, 1],t = tt-1));
kappaindex:=kappaindex+1
end if
else
test := 0;
for k from 2 to S while test = 0 do
if A[j, k] <> O then
if i <= S-U then
kappa[kappaindex] :=(eval (P[i,1i],t=tt+1))*(eval(A[i,j],t
kappaindex := kappaindex+1
end if;
if 2 <= i and i <= S-U then
kappa[kappaindex] :=(eval (A[j,i],t=tt-1))/(eval(A[j,k],t
kappaindex:=kappaindex+1
end if;
if S-U < i and 2 < tt then
kappa [kappaindex] :=(eval (A[j,1],t=tt-1))*(eval(A[j,k],t=tt-2))/(eval (A[j,k],t=tt-1));
kappaindex:=kappaindex+1
end if;
test:=1
end if: end do: end if:

tt))*(eval (A[j,k],t=tt-1));

tt-1));

end do: end do: end do:
else
kappa := 0
end if;
kappa
end proc



N r d p Estimable Parameters

3 3 1 4 09,1,P2,P309,2
4 5 1 6 09,1,09,2,P2,P3,P409,3
3
5 8 5 13 09,1,---,09,3,P2...,P4,P509,4,P504,404 4 H 935.9
Jj=1
3
09,15---,09,4,P2 - -,P5,P609,5,04,404 .4 H e
=1
6 12 10 22 3 !
pecis,505,5(1 — aa4)
D604,504,5 H 0j,j+1>
j=1 4,4
3
09,15--+,09,5,P2--,P6,P709,6,04,4004 .4 H SRR
j=1
7 17 16 33 ! a5,505,5(1 — a4.4) 2
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N TN -33 8N —-41 156N-74 N2>38

Table 7 Parameter Redundancy in the 9-state Recruitment Model.
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recruitment := proc (N, k, y)
local i, t, sizekappa, kappa, indexkappa;
description "Gives an exhaustive summary for the recruitment model with N-1 years
of ringing N-1 years of recovery, recruitment age k, recruitment classes y";
with(LinearAlgebra) ;
sizekappa := 0;
for t to N-1 do
sizekappa:=sizekappa+l;
if 2 <= t then
sizekappa:=sizekappa+l
end if;
if k <= t then
sizekappa:=sizekappa+l
end if
end do;
for i from k+1 to y+k-1 do
for t from i to N-1 do
sizekappa:=sizekappa+l
end do
end do;
kappa := Vector(sizekappa) ;
indexkappa:=1;
for t to N-1 do
kappa[indexkappa] : =p [k+y,t+1] *sigma[k+y,t];
indexkappa := indexkappa+l;
if 2 <=t then
kappa[indexkappal :=p [k+y, t];
indexkappa:=indexkappa+1
end if;
if k <= t then
kappa[indexkappal :=p [k+y,t+1] *sigmalk,]*alphalk,t]*(product(sigmalj,t+j-k],j=1..k-1));
indexkappa:=indexkappa+1
end if
end do;
for i from k+1 to y+k-1 do
for t from i to N-1 do
kappa[indexkappa] :=p [k+y,t+1]*sigma[i,t]*alpha[i,t]*(1-alphal[i-1,t-1])/alphali-1,t-1];
indexkappa:=indexkappa+1
end do
end do;
kappa
end proc



