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Abstract

We show how to determine the parameter redundancy status of a model with covari-

ates from that of the same model without covariates, thereby simplifying calculation

considerably. A matrix decomposition is necessary to ensure that symbolic computation

computer programs return correct results. The paper is illustrated by mark-recovery and

latent-class models, with associated Maple code.

Keywords: Computer algebra; identifiability; latent class models; Maple; mark-recovery

models; symbolic computation.

1. Introduction

A model is parameter redundant if it can be reparameterised in terms of a smaller number

of parameters than the size of its defining parameter set, so that using classical inference it

would not be possible to estimate all the original parameters. One approach to removing

parameter redundancy is to include covariates in a model, by setting parameters to
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2

be appropriate functions of covariates, as explained below. However this has not been

formally evaluated. In this paper we show how to determine whether a model with

covariates is parameter redundant using information from the equivalent model without

covariates. We also show how to establish what combinations of parameters may be

estimated and whether the result applies to the whole of the parameter space or just a

region.

A method for detecting parameter redundancy was developed by Catchpole & Morgan

(1997) for members of the exponential family, where the observations have expecta-

tion µ and the unknown parameters are θ. This involves forming the derivative matrix

D = ∂µ/∂θ and calculating its symbolic rank, which determines how many parameters

are estimable. The symbolic rank is the rank of a matrix that has symbolic rather than

numeric entries. It is also possible to replace µ by the natural parameters (Bekker et al.,

1994), due the one-to-one transformation between µ and the natural parameters. Early

work was by Rothenberg (1971) and see for example Evans & Chappell (2000) and Little

et al. (2009) for further developments. For a parameter redundant model it is further pos-

sible to find which parameter combinations and/or individual parameters are estimable

by solving a set of Lagrange partial differential equations (Catchpole et al., 1998). Ex-

tension theorems allow conclusions to be drawn for models of arbitrary dimension; see

Catchpole & Morgan (1997) and Catchpole & Morgan (2001). The symbolic computa-

tion involved can be performed by a symbolic computation computer program (Catchpole

et al., 2002), and Maple code for the examples in this paper can be downloaded from

www.kent.ac.uk/ims/personal/djc24/covariates.htm.

A model that is not parameter redundant is termed full rank. We define an essentially full

rank model as one that is full rank for all θ and all permitted values of any covariates that
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3

are present in the model, whereas a conditionally full rank model is full rank for some but

not all θ and permitted values of the covariates. A modified PLUR decomposition of D

(Corless & Jeffrey, 1997) can be used to distinguish between essentially and conditionally

full rank models. We set D = PLUR, where P is a permutation matrix, L is a lower

triangular matrix with ones on the diagonal, U is an upper triangular matrix and R is

a matrix in reduced echelon form. A model is conditionally full rank if det(U) 6= 0 for

any θ. Otherwise the model is essentially full rank. This result follows from Theorem 2

of Corless & Jeffrey (1997).

Adding covariates increases the structural complexity of D, so that symbolic computation

programs may lack the memory to calculate the matrix symbolic rank. In addition,

the work of Catchpole & Morgan (1997) was for models expressed in terms of rational

functions only, and inclusion of covariates requires a check to be made of the symbolic

rank of U if a symbolic computation computer package is used.

2. Parameter redundancy of models with covariates

Consider first a model without covariates, which has p parameters. Suppose the sym-

bolic rank of D is q. A q-dimensional set of estimable parameters, β, may be found

as the solution to the partial differential equations
∑p

r=1 αr,j∂f/∂θr = 0, where αi,j is

the ith element of the vector solution of αT
j D = 0 and where j = 1, ..., p− q, with q < p

(Catchpole et al., 1998). The derivative matrix Dβ = ∂µ/∂β has full row rank; if q = p

then β = θ.

We add covariates to a model by setting elements of θ to be differentiable functions

of combinations of covariates, resulting in pc parameters θc. For instance we might set
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4

θi = Ψi(αT xi) where xi are covariates, for certain i. We assume that ∂θ/∂θc is full rank,

which will normally be the case; in the above illustration this follows if dΨi(z)/dz 6= 0

for all i and (xji) is full rank. This is true in the examples below, when logistic functions

are used.

Let D̃ = ∂β/∂θc. Rather than finding the symbolic rank of the derivative matrix Dc =

∂µ/∂θc, we may use the result below.

Theorem 1. The ranks of the derivative matrices Dc and D̃ are both equal to min(pc, q).

For proof see the Appendix.

Remark : If the covariate model is parameter redundant, a set of partial differential equa-

tions can be derived from D̃ in the same way as Catchpole et al. (1998), to find the set

of estimable parameters. If the model is full rank, whether it is essential or conditionally

full rank may be determined from the modified PLUR decomposition of D̃.

3. Two examples

3·1. Example 1 Conditional analyses of ring recovery data

In ring recovery data the total number of birds ringed in each year may be unknown or

unreliable. In such a case a model can only be fitted by conditioning on the number of

birds recovered from each cohort. The most commonly used model for such a conditional

analysis assumes that there is a constant probability of recovery, λ. However there is

evidence that the reporting probability of wild birds in Britain in recent years has been

decreasing over time (Baillie & Green, 1987). If we try to account for time-variation in

the recovery probability directly, then the resulting model is parameter redundant, as



193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

5

shown below. However introducing a logistic regression of λ on time can result in a full

rank model.

It is assumed that the probability of surviving the first year of life is φ1, the probability

of surviving other years is φa and the recovery probability in year j, λj , is dependent

on time. Thus the probability of a bird being ringed in year i and recovered in year j

conditional on being found dead is

Qij =





(1− φ1)λj/F i = j

φ1φ
j−i−1
a (1− φa)λj/F i < j

(1)

with F = (1− φ1)λi +
∑J

k=i+1 φ1φ
k−i−1
a (1− φa)λk for i = 1, . . . , I, j = 1, . . . , J , and con-

stants I and J . Catchpole & Morgan (1997) show that we may consider the derivative

matrix of Q, rather than that of µ. We just analyse models for which I = J ≥ 3. If

I = J = 3, the derivative matrix has rank 3, and as there are 5 parameters this model is

parameter redundant. From solving the appropriate Lagrange equations we find that the

estimable parameter combinations are (φa − φ1)/{φa(1− φ1)}, φaλ2/λ1 and φ2
aλ3/λ1.

Using an extension theorem we can show that an estimable set of parameters for this

model in general is β =
[
(φa − φ1)/{φa(1− φ1)}, φaλ2/λ1, . . . , φ

J−1
a λJ/λ1

]
. If we add

covariates to the reporting probabilities, then from Theorem 1 as long as pc < J , the

number of terms in β, the resulting covariate model will be full rank. For example,

suppose λj = 1/{1 + exp(α + βj)}. This model has 4 parameters θc = (φ1, φa, α, β). If

I = J = 3 this model with covariates is parameter redundant, however if I = J ≥ 4 the

model with covariates is full rank. If J = 4, the PLUR decomposition of the derivative

matrix D̃, see Maple code, results in Det(Ũ) = 0 at φa = 1 or β = 0, where Ũ is the

upper triangular matrix formed from a PLUR decomposition of D̃. An annual survival

probability of unity is unrealistic, and the case β = 0 results in constant reporting prob-
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6

ability, when the model is parameter redundant. Therefore this model with covariates is

conditionally full rank for I = J ≥ 4.

Remark : This example can also be examined directly by Maple, without using Theorem

1. However, in the 3× 3 case Maple incorrectly gives the rank of Dc as 4, whereas in

fact the correct rank is 3. This is due to the failure of Maple to simplify exponential

algebraic terms completely in this case. A modified PLUR decomposition of Dc reveals

that Det(U) = 0 everywhere, which is incorrect from the definition of a PLUR decompo-

sition, as shown in Theorem 1 of Corless & Jeffrey (1997); such an error can arise when

a symbolic computation package is used with non-rational terms. The diagnostic check

of Det(U) should always be performed in such a case. If Det(U) = 0 everywhere then

simplification by hand is necessary.

3·2. Example 2 Adding Individual Covariates to Latent Class Models

Forcina (2008) considers three latent class models with individual covariates, and con-

cludes that the models are almost certainly full rank, using 20, 000 numerical evalu-

ations of derivative matrices. Here we use symbolic computation for the first exam-

ple of Forcina (2008); treatment of the further two examples of that paper can be

found in the Maple code. The first example consists of two binary response variables

Y1 and Y2, which are conditionally independent given a binary latent variable Z. Let

θj,k = pr(Yj = 1 | Z = k) and p = pr(Z = 1). It may be verified using the Maple code that

the rank of the appropriate derivative matrix is 3 and that the set of estimable parameters

is β = {p(θ1,0 − θ1,1)− θ1,0, p(1− p)(θ2,1 − θ2,0)(θ1,1 − θ1,0), p(θ2,1 − θ2,0) + θ2,0} .

The model is generalised for n individuals, so that for individual i, pr(Yj,i = 1 | Zi =

k) = θj,k,i and pr(Zi = 1) = pi. In this case the elements of µ are proportional to
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the joint probability functions of Y1,i and Y2,i. Using an extension theorem it can be

shown that in this case the derivative matrix will have rank 3n and estimable parameters

{pi(θ1,0,i − θ1,1,i)− θ1,0,i, pi(1− pi)(θ2,1,i − θ2,0,i)(θ1,1,i − θ1,0,i), pi(θ2,1,i − θ2,0,i) + θ2,0,i} ,

for i = 1, . . . , n. Then by Theorem 1, if individual covariates are added, as long as there

are fewer than 3n parameters in the model with covariates it is full rank. This is true

for the example in Forcina (2008), where n = 5 and pc = 8; no numerical investigation

is necessary.

4. Discussion

We have shown that the parameter-redundancy status of a model with covariates may

be determined from the equivalent model without covariates. This is valuable, because

adding covariates to a model can make derivative matrix calculations much more complex.

Symbolic algebra programs such as Maple can fail to simplify terms involving exponen-

tials correctly, such as when a logistic link function is used, as in both examples. If such a

program is used when a model contains non-rational terms then a PLUR decomposition

is necessary to check that the correct results are obtained. An advantage of Theorem 1

is that it may avoid the need for symbolic computation of indeterminate functions.

In this paper we have considered the parameter redundancy status of models irrespective

of the extent of data, and in the two examples missing data could change conclusions.

Missing data are easily dealt with, effectively by appropriately redefining µ, as explained

in Catchpole & Morgan (2001).
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Choquet for discussion of the limitations of symbolic computation packages, and Ted
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5. Appendix: Proof of Theorem 1

The model without covariates has rank q and estimable parameter combinations β. Hence Dβ =

∂µ/∂β has full row rank q. By the chain rule the derivative matrix of the model with covariates

is Dc = ∂µ/∂θc = ∂β/∂θc × ∂µ/∂β, giving

rank(Dc) = rank
(

∂β

∂θc

∂µ

∂β

)
= rank

(
∂β

∂θc

)
≡ rank(D̃),

which is due to the result of Horn & Johnson (1985) that rank(AB) = rank(A), if B has full row

rank. Also by the chain rule,

D̃ =
∂β

∂θc
=

∂θ

∂θc

∂β

∂θ
.

Now ∂θ/∂θc has full rank pc, and by the chain rule ∂µ/∂θ = ∂β/∂θ × ∂µ/∂β. Thus using the

above result from Horn & Johnson (1985)

rank
(

∂β

∂θ

)
= rank

(
∂β

∂θ

∂µ

∂β

)
= rank

(
∂µ

∂θ

)
= q,

so that ∂β/∂θ has full column rank. The rank of a matrix can be calculated using Gaussian

elimination, which continues until the matrix is in reduced echelon form. The rank of D̃ is then

equal to the number of ones on the main diagonal of the matrix in reduced echelon form. This

is equivalent to writing D̃ = PLUR, as in Section 1. We show in the Maple code that as ∂θ/∂θc

and ∂β/∂θ are full rank we have det(U) 6= 0. Then, by Corless & Jeffrey (1997), as det(U) 6= 0,

rank(D̃) = rank(R). The matrix R has a complete unit diagonal, so that its rank depends on its

dimensions, and rank(D̃) = min(pc, q).
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