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Supplementary Material for Parameter Redundancy in
Capture-Recapture-Recovery Models

B. A. Hubbard, D. J. Cole*, B. J. T. Morgan

The School of Mathematics, Statistics and Actuarial Science, The University of Kent,
Canterbury, Kent, CT2 TNF, England.

1. Web Appendix A: Theorem proofs

In this appendix we provide proofs of Theorems 1 and 2. We first provide a
variation of the extension theorem of [1, 2], which is required to prove Theorem

1.

1.1. The two-stage extension theorem

In order to derive the simpler exhaustive summary we need to use a modified
version of the standard extension theorem [1, 2]. This version of the extension
theorem has been used in [4-6], but has not been formally written down.

In the standard extension theorem, [1, 2], we begin with exhaustive summary
k7(01), which has parameters 6;. Then we extend this model to give the
exhaustive summary k%(01,05) = [k5(0,), k5 (01, 65)]T with parameters 85 =
[01,05])T. If 0k7(0,)/00, is full rank and Ok5 (81, 602)/005 is full rank, then
K5 (01,05)/00° is also full rank.

In the two-stage extension theorem, we begin with exhaustive summary
k9 (01), which can be partitioned as kK{(01) = [kF(01.1), kY (011,61 2)] with
parameters 61 = [0 1, 0172]T. This exhaustive summary is then extended to

K20(01,1,01727 0272) = [KlE(OLl), n§(01,1,0172, 0272)], Wlth parameters
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0y = [011,012,025]7. Let 02E = [012,022]7. Then we have the following
result:

Theorem 3. The Two-Stage Extension Theorem If 0k (6,)/00,,
6&{3(0171)/80171, and 8&‘5(9171,9172,9272)/895 are all full rank then
keQO(OM, 01727 0272) 1s also full rank.

The proof follows the same form as the standard extension theorem or can
be derived via Theorem 4.2 of [7]. Using induction, Theorem 3 can be used to

create general rules in the same way as the standard extension theorem.

1.2. Proof of Theorem Ia.

In this section we provide a proof for Theorem la. The theorem states that
a simpler exhaustive summary for the capture-recapture model consists of the
terms s; ; = ¢; ;Pi+1,5+1 (fori=1,...,ngand j =14,...,min(n;+i—1,ny)), and
tij=¢i;j(1=piy1,+1) fori=1,...,ng—land j =14,...,min(n;+i—1,ns—1)).
The proof of Theorem 1la. is split into three parts:

e In part one, we show that the original exhaustive summary consisting of

the capture-histories can be reparameterised in terms of [s”, t7].

e In part two, we create a new exhaustive summary, denoted as Ky, util-
ising Theorem 8 of [2]. This is created so that the extension theorem of

[1, 2] can be applied in order for results to be extended to any dimension.

e In part three, we show that the reparameterisation [s”,t”] is an exhaustive

summary, again utilising Theorem 8 of [2].

We assume that none of the parameters are on boundary values, so that our
parameter space is restricted to 0 < ¢; ; <1 and 0 < p; ; < 1 for all values of i

and j for this theorem to apply.

Theorem 8 of [2] states that if the derivative matrix Ok (Kknew)/OKnew is

full rank then kpew is a new exhaustive summary.
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Part one:

We show that any capture-history can be expressed as parameters s; ; and
t; ;. The probability of a particular capture-history, h, is

b

Pr(h) = H Gr—ak—1 (OkPr—a+1,k + OkDPh—a+1,k) Xb—a+1,b,
k=a-+1

where an animal is first recaptured at time a and last recaptured at time b, with
individual history entry J; at time k, and £ = 1 — z. These probabilities can be
reparameterised in terms of s; ; = ¢; jpit1,;+1 and ¢, ; = @i (1 — pPiy14+41) tO
give

b

Pr(h) = H (OkSk—at1,k + Oklk—at1,k) Xb—at1,b-
k=a-+1

The probability of an animal never being seen again, x; ; = (1 —¢; ;) + ¢; ;(1 —
Dit1,j41)Xi+1,j+1, With X; n,41 = 1, can be shown to be a function of s; ; and

t; j, by first expanding x; ;. This gives:

Xijg = (1=0¢ij)+¢ij(1—piy1jr1)-[(1— bip1 1) +
Giv1j+1(1 = pirajr2) - [(1 — it jr2) + ditajy2 -

(1 =pitaj+3) [ [(1 = Bngna) + Pngna (1 = Pyt 1,ma+1)] -]

By noting that (1 — ¢; ;) = (1 — s;; — t; j), We can write x; ; as

Xig = (L=sij—tig) +ti;[(1 = siv1j01 — tigae1) + g -
[(1 = sit2,it2 — titoj42) +tivs sl (1= Snano)] - ]I]-

Therefore all capture-histories can be parameterised in terms of s and t only.
Part two:

We derive a new exhaustive summary which consists of the following terms:

na—j+1
o uj= [ Okmtio1Preriris
k=1
forall j =1,...,n9;



(1 = piv14+1)

° Vi =
Pi+1,5+1
foralli=1,...,no —1land j=14,...,min(: + ny — 1,n2);
i+1,5+1
e and Wi, = - Xitlj+ y
? nz—j
< H ¢k+i,k+jpk+i+1,k+j+1>
k=1
foralli=1,...,ng—1land j=4,...,min(i + ny — 1 < ny).

We can reparameterise the original exhaustive summary consisting of the capture-

histories, when there are n; = no = 2 years of marking and recapture, as

Pr(111) @1,1P2,2P2,2P3,3 Uy
Pr(101) ©1,1P2,202,2P3,3 UV,

. Pr(011) _ ®1,2P2,3 U2
Pr(110) $1,1P2,2X2,2 U1wi,1
Pr(100) X1,1 a1 —ur(v11 +win)
Pr(010) X1,2 Ug

The reparameterisation is Ky = [U1, U2, V1.1, w171]T. The derivative matrix,

1 vi1 0 wig —1—-vi1—wip O

o 1 [0 0 1 0 0 -1
[a”uvw] - 0 wg 0 O —uy 0 7

0 0 0 —u 0

has full rank 4. A modified PLUR decomposition of 0k/0Kyyy shows that this
is valid for all values of w1, u2,v1,1 and wy 1 as long as uy = ¢1,102,202,2P3,3 is
non-zero. This only occurs at a boundary and the parameter space has already
been restricted to exclude boundary values. Therefore by Theorem 8 of [2],
when n1; = no = 2, Ky 18 an alternative exhaustive summary for the model.

Now consider extending the model firstly by adding another year of recapture



so that no = 3, while keeping ny; = 2. The original exhaustive summary is then

$1,1D2,202,2P3 393,3P4,4 uy
®1,1DP2,292,2P3,303,3P4,4 U1v1,1

®1,202,302,3P3,4 Ug
¢1,1P2,2X2,2 Ujwi, 1

X1,1 ky

¢1,1P2,2¢2,2p3,3X2,2) Uiw2 2
®1,1P2,202,2P3,3X2,2 ULV1,1W2,2

$1,2X2,3 U2W1 2

$1,1P2,292,2D3,303,3P4,4 U1V2,2

$1,1D2,292,2P3,303,3P4,4 UV1,1V2,2

(1111)
(1011)
(0111)
(1100)
(1000)
Pr(0101) ©1,2D2,3¢2,3P3,4 Ug1,2
(1110)
(1010)
(0110)
(1101)
(1001)
(0100)

51,2 + ¢1,2P2,3X2,3 Up — uz(vi2 + w1 2)

where k‘4 =1 —U]—UIV1,1 —UIW1,1 —UIW2,2 —UIV1,1 W2 2 —UIV2 2 —UIV],1V2,2- This

ses th faati — T W
uses the reparameterisation Kyyw = U1, U2,v1,1, V1,2, V2,2, W1,1, W12, W2 2| . e
now use the two-stage extension theorem of Section 1.1. The first stage involves

the exhaustive summary terms

Ui
U1v1,1

K1 = ’
U2

U1wi,1

with parameters 61 = [u1, u2,v1,1,w1,1]. The derivative matrix

1 v 0 wig
ok1] 0O 0 1 0
[3&} B 0 u O 0

0 0 0 wm



has full rank 4. The second stage examines the remaining exhaustive summary

terms

ky
U201 ,2
U1w2,2
U1V1,1W2,2
U2W1 2
U1V2,2

U1V1,102,2

1 —up — ugv120 — ugwi 2

with parameters 82 = [v1 2, V2,2, W12, w272]T. The derivative matrix

0 ug 0 0 0 0 0 —Ug
OKs | uw—wvng 0 O 0 0 w wwvia 0
[392] N 0 00 0 w 0 0 —u
—u; —uvrn 0w wvyr 000 0 0

has full rank 4. Therefore by the two-stage extension theorem, the model can
be extended in terms of years of recapture. Adding a year of marking so n; = 3

while ny = 3 adds the following exhaustive summary terms

PT(OOll) (]51’3p2’4 us
K3 = = =

Pr(0010) 1~ ¢13p24 I —us
72 As there is only one additional parameter in k3, this is trivially full rank and
75 means that the original model can be extended for a greater number years of
7 marking. Therefore Ky, is an exhaustive summary for any dimension.
7
s Part three:
79
8 This part involves checking whether the derivative matrix 0Ky (s, t)/J[s, t]
g1 is full rank and then using the two-stage theorem to show it is always full rank

22 for larger dimensions. Starting with n; = ne = 2 we can reparameterise Ky



& in terms of s and t to get

U1 51,1522
v1,1 t11/511
K/uvw(sy t) = = P (1)
wi (1= s22)/522
U9 51,2
with parameter set kg = [$1,1, 51,2, 52,2, tlyl]T. The derivative matrix
S22 — zél 0 0
1,1
{6muvw(s,t)} B 0 0 0 1
oK o 1 (A—s2)
st s, 0 2, U
0o 0 0
51,1

has full rank 4. A modified PLUR decomposition of 0Kyyw(s,t)/0ks shows
this the model remains full rank for any value of s; 1, 51,2, 52,2 or t1,;. Therefore
Kgt 18 an exhaustive summary when ny = ny = 2. If we extend the model to

add another year of recapture, the exhaustive summary becomes

e 51,152,2583,3

2 51,2582,3

Y11 t11/51,1

k() = | 2| = tia/sia |

2,2 ta2/52,2

Wit (1—s33)/s33

W12 (1—523)/s23

| w22 | i {(1 —s2,2—t22) +1t22(1—s533)} /52,2533 ]

with parameters ks = [$1.1,51.2, 52,2, 523, 83,3, t1.1,%1,2,t22]7. Note that the
terms ug, v2 2 and wy o are identical to wq,v1,1 and wy ;1 respectively in (1), if
51,1 is re-labelled as s1,2, 52,2 as Sa.3, and t;1 as t1,2. This can then form the

first stage of the two-stage extension theorem with

U2 51,2523
Ki= | v | = t12/51,2 )
wi o (1—s2,3)/52,3



with parameters 61 = [s1,2, S2.3,%1,2]. The derivative matrix

O] _
00,

51,2

0

_tio 0
S%,z:
0 1 (I—s23)
S2.3 S%,3
1 0
S1,2

has full rank 3. The second stage involves the terms

Uy
V1,1

R = V22 =

w2 2

{(1 =522 —t22) +122(1 —s33)} /522533 |

81,152,283,3
t1,1/51,1
t2,9/52.2

(1 —s33)/s33

with the parameter set O3 = [s1,1, 2,2, 3373,t171,t272]T. The derivative matrix

t1,1

1,
S22833 —— 0
1,1
0 _ t2o
51,153,3 52,
0K ’
2o | = | s118 0 0
96, 1,152,2
1
0 S 0
0 0 1
L S22

0 0
0 1 _ {(—s22—t22)+t22(1—533)}
82,2533 53 553,3
_ (I—s33)  tan  {(1—s22—t22)+t22(1—53,3)}
535 $2,283,3 §2,283 3
0 0
0 _ 1
52,2

has full rank 5. Therefore by the two-stage extension theorem, the model can

be extended in terms of years of recapture. Adding a year of marking so n; = 3

while ng = 3 adds only the exhaustive summary term us = s1,3. As there is

only one additional parameter, this extension is trivially full rank and means

that the original model can be extended for a greater number years of marking.

Therefore s and t form an exhaustive summary for any dimension. O

1.8. Proof of Theorem 1b.

In this section we provide a proof for Theorem 1b. The proof is similar to the

proof for Theorem 1b. Theorem 1b states that a simpler exhaustive summary for

the capture-recapture-recovery model consists of the terms s; ; = ¢; jPit+1,j+1

(fOI‘ = 17 N andj = i, ‘e ,min(nl +1— 17712)), t,’J' = (]51‘7]'(1 _pi-l-l,j-‘rl) (fOI‘
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i=1,...,ng—land j=14,..., min(ny +i—1,n2— 1)), and r; ; = (1 — ¢; ;) \i ;
(foralli=1,...,n9 and j =4,...,min(ny +¢ — 1,n3)). The proof of Theorem

1b. is also split into three parts:

e In part one, we show that the original exhaustive summary consisting
of the capture-histories can be reparameterised in terms of [sT,tT,rT],

utilising Theorem 8 of [2].

e In part two, we create a new exhaustive summary, denoted as Kqyyye- This
is created so that the extension theorem of [1, 2] can be applied in order

for results to be extended to any dimension.

e In part three, we show that the reparametrisation Kyuwz(S,t,r) is an ex-

haustive summary, utilising Theorem 8 of [2].

We assume that none of the parameters are on boundary values, so that our
parameter space is restricted to 0 < ¢;; <1,0<p;; <1land 0 < A;; <1 for

all values of 7 and j for this theorem to apply.

Part one:

We show that any capture/recovery-history can be expressed as parameters

Sij, ti,j and r; ;. The probability of a particular capture/recovery-history, h, is

b
H Pr—ak—1 (OkPk—at1,k + OkDhk—at1,k) Xo—a+1,b if o, =1

Pr(h) = ¢ *7oft
H Dr—ai—1 (OkPk—at1,k + OkDh—at1,k) Po—ap—1No—ap—1 if 6p = 2,

k=a-+1

where an animal is first recaptured at time a and last recaptured or recov-
ered at time b, with individual history entry J, at time k, and T = 1 — x.

These probabilities can be reparameterised in terms of s;; = @ Pit1,5+1,
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tij = ¢i;j(1 = piy141) and 755 = (1 — ¢; ;)\ j to give

b
H (6kSk—a+t1,k + Oklh—at1,k) Xo—at1,p if 6 =1

Pr(h) = kfﬁ‘fl
H (OkSk—a+t1k + Okth—at1,k) To—at1p if 6 =2

k=a+1

The probability of never being seen again, x; ; = (1 — ¢; ;) (1 — Ai ;) + ¢ ;(1 —
Dit1,j41)Xi+1,j+1, With Xi n,41 = 1, can be shown to be a function of s; ;, t; ;
and 7; ;, by first expanding x; ;. This gives:
Xij = (1=0¢i;)(1—=Aij)+dii(1—pit141)-
(1= ditr1,j+1) (1 = Aigrj41) + i1 1 (1 — it jta) -
(1= Giv2j+2)(1 = Niv2jr2) + Girajra(l — Pitsj+3)
[+ (1 = Pnaina) (1= Angyng) + Proging (1= Prg+1nat1)] -+ I]-

By noting that (1 — gbi’j)(l — )\i,j) = (1 — Si’j — ti,j — ’I“i’j)

Xig = (L=sij—tig—rij)+ti;-
[(1 = Sit141 — tit1,j41 — Tit1,41) +F tit1 41 -
(1= Sit2j42 = tivajr2 = Tid2ge2) T liva 42

[' o [(1 — Sna,na T Tnz,”z)] o H]

Therefore all capture/recovery-histories can be parameterised in terms of s, t

and r only.

Part two:

We derive a new exhaustive summary consisting of following terms:

na—j+1
° u; = H Ol ko j—1Pk+1,k+5 5
k=1
forall j =1,...,n9;
1 — Doy s
. v, = (1 = pis1,54+1)
Dit1,5+1
foralli=1,...,ns—1land j=4,...,min(i + ny — 1,ny — 1);

10



132

134

[ ] ’le'J‘ =

Xi+1,5+1

na—j ’
H Phoeti kot i Ph+it 1, k+j+1
k=1
foralli=1,...,ns —1land j=4,...,min(i + ny — 1,ny — 1);
e
e and Ti,j = g L y
< H ¢k+i,k+jpk+i+1,k+g‘+1>
k=0
foralli=1,...,n9 and j =4,...,min(i + n; — 1,ns).

We can reparameterise the original exhaustive summary consisting of the capture-

histories, when there are n; = ny = 2 years of marking and recapture/recovery,

as

where kg = 1 —u1 —u1v1,1 —wwW1,1 —U1T2,2 —U1T1,1 —U1V1,122,2. The reparam-

eterisation is Kyywy = [U1, U2, V1,1, W11, 21,1, 21,2, xg,g]T. The derivative matrix,

|

oK

8’<:'uvwx

|

$1,102,202,2P3,3

$1,1D2,202,2P3,3
$1,2D2,3

$1,1P2,2X2,2

¢1,1p2,2<52,2/\2,2
$1,101,1

$1,1P2,202,2M2.2
$1,2M1,2

X1,1

i 51,25\1,2 + ¢1,2P2,3 |

Uy

U2

kg

1v11 0wy x22 21,1 01,1722 0 D1y
0010 0 O 0 12 0

Our 0 0 0 0 wzae 0 —ui(l+4+ax22)
000w 0 O 0 0 —up
0000 0 u 0 0 —uq
0000 O O 0 U2 0
0000 w 0 wviy 0 —u(l+wviy)

11

U1v1,1

U1wi,1

U12,2

U11,1
U1V1,122,2

U212

1-— Uz — U2T1,2

0
—1—x
0
0
0
—uy

0




has full rank 7 where D19 = —1 —v11 + v1,1222 — T22 — 1,1 — Wi,1. A
modified PLUR decomposition of 0k/0Kypws: shows this is valid for all values
of uy, ug,v1,1 and w1 as long as u1 = ¢1,1p2,2¢2,2p3,3 and us = @1 2p2 3 are non-
zero. This only occurs at boundary values, which have been excluded from the
parameter space. Therefore by the Theorem 8 of [2], when ny = ny = 2, Kyywa
is an alternative exhaustive summary for the model. Now consider extending
the model firstly by adding another year of recapture so that ne = 3, while

keeping n; = 2. The original exhaustive summary is then

Pr(1111) Uy
Pr(1011) w11
Pr(0111) us
Pr(1100) UIW1,1
Pr(1120) U2,
Pr(1200) U1T1,1
Pr(1020) U101,122,2
Pr(0120) UT1,2
Pr(1000) ko
Pr(0101) UV1,2
- Pr(1110) B UIW2 2
T pro10) || wonawss |
Pr(0110) gy 2
Pr(1101) U1V2,2
Pr(1001) ULV1,1V2,2
Pr(0100) k16
Pr(1112) w33
Pr(1102) U1V2,273,3
Pr(1012) U1V1,123,3
Pr(1002) UIV1 102,203 3
Pr(0112) U723
_Pr(OlOZ)_ | U2012723 |

12



where kg = 1 — w1 —u1v11 —u1wi1 — U122 — UIT11 — ULV 1T22 — UL W22 —
U1V1,1W2,2 — U1V2,2 — UIV1,10V2,2 — U1T3,3 — U1V2,2T3,3 — U1V1,1T3,3 — U1V1,1V2,273 3
and klﬁ = 17’&27’[1,21’172711,2’01727U2w172711,21‘2737U2’U172£E273. ‘We write Kuyvwr =
[ ]¥. The two-st

ui, u2,v1,1, 01,2, 02,2, W1,1,W1,2, W22, 1,1, 21,2, 222,223, L3 3] - € two-stage
extension theorem of Section 1.1 is applied next. The first stage involves the

exhaustive summary terms

uy

U111

Uz

U1W1,1
U1T2,2
U111
UIV1,122,2

U271,2

with parameters 61 = [u1, u2,v1,1,W1,1,%1,1, 21,2, ¥2,2]. The derivative matrix

1 vin 0 wig x22 w11 vi1722 O

0 O 1 0 0 0 0 1,2

0 (751 0 0 0 0 U1T2,2 0
% =10 0 0 0 0 0 0
00, | “ ’

0O 0 O 0 0 o 0 0

0O 0 O 0 0 0 0 Uo

0 0 0 0 U1 0 U111 0

13



has full rank 7. The second stage examines the remaining exhaustive summary
terms
kg
U201,2
U1w2,2
U101,1W2,2
U2W1,2
U1V2,2
U1V1,102,2
k16
U173,3
U1V2,223,3
U1V1,123,3
U1V1,1V2,273,3

U2X2 3

U2V1 2723

with parameters 6, = [’01)2,U272,U}1)2,U)2)2,$2,3,JJ373]T. The derivative matrix
Ok2/005 has full rank 6. Therefore by the two-stage extension theorem, the
model can be extended in terms of years of recapture. Adding a year of marking

so n1 = 3 while ny = 3 adds the following exhaustive summary terms

Pr(0011) 1,324 ug
K3 = P?"(OOlO) - 1-— (15173])274 = 1—wus— uU3T1,3 3
Pr(0012) 9?7173)\173 U121,3

with parameters 6; = [ug, 1 3]. The derivative matrix

|:af<.;3:| B 1 —1—@‘173 T1,3
803 O —us us

s has full rank 2. Therefore Kqywe 18 an exhaustive summary for any dimension.
136

137 Part three:

138

14
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140

141

142

This part involves checking whether the derivative matrix 0Ky (s, t,1)/J[s, t, 1]

is full rank and then using the two-stage theorem to show it is always full rank

for larger dimensions. Starting with ny = ny = 2 we can reparameterise Kyywz

in terms of s, t and r to get

K'uvww(s7 t7 I') =

. . T
with parameter set Ko = [51,1,51,2,52,2,t1,1,71,1,71,2,72,2]

matrix

522

0
S1,1

aK/u’uwx (S, ta I‘) _

6nst7' B 0

0

0

i 0

Uy
V1,1
wi,1

U2
x1,1

1,2

€22

1,1

-1
$2,2

1
1,1

w

0
0
0

51,1522
t11/s11
(1 — 89,20 —722)/82,2
51,2 ’
7”1,1/81,182,2

T1,2/51,2

7’2,2/52,2

The derivative

0 0—= 0 0 |
1,1°2,2
0 1 0 —T1,2 0
S1,2
_ 1—532—T2,2 71,1 _Tr22
859 81,15372 0 5%,2
0 0 0 0 0 )
0 0 —L 0 0
2,251,1
0 0 0 L9
51,2
_ 1 0 0 0 _1
S22 S2,2

has full rank 7. A modified PLUR decomposition of OKqyyws (S, t,T)/OK st shows

this the model remains full rank for any value of sy 1, s1,2,522,%1,1,71,1,71,2 OF

r9,2. Therefore Kyyuwe (s, t,r) is an exhaustive summary when ny = ng = 2. If

15



we extend the model to add another year of recapture, the parameter set is

U1 51,152,253,3
U2 51,2523
V1,1 ti11/s11
V1,2 t1,2/51,2
V2,2 to2/S2.2
w11 (1 —533—533)/533
Kuvws (8, 6,T) = | wyo | = (1 —523—"123)/523
W2 2 {(1 =892 —taa—ro2)+t22(l—s533)} /522533
Z1,1 7"1,1/51,152,253,3
x1,2 7”1,2/81,282,3
T22 T2,2/82,283,3
€23 7’2,3/52,3
i x3,3 ] i T3,3/83,3 ]

. T
Wlth parameters Kstr = [51’1, SLQ7 82’2, 82,3, 83,3, t171, t1’2, t272, ’1“1’1, Tl’g, 7"2,2, 7“2’37 7"3’3]
Note that the terms ug, va 2w1 2, 21,2 and 2 3 are identical to uy,v1,1,w1,1,%1,1

and xg o respectively in (2), if s11 is re-labelled as s1.2, S22 as sa3, 1,1 as t12,

r1,1 as 71,2, and 722 as rg 3. This can then form stage one of the two-stage

extension theorem with

with parameters 61 = [s1,2, S2.3,t1,2,71,2,72,3). The derivative matrix

U2 51,2523
V1,2 t12/51,2
Ke= | wio | = | (1—s23—723)/s23 |>
Z1,2 7“1,2/81,252,3
x2.2 7“2,3/32,3

t1.2 71,2
s — = 0 - 0
23 5%,2 57,252,3
1 1—s23—7Ta3 71,2 T2,3
s 0 _ _ . . . .
6%1 b2 . 52,3 35,3 51=25§,3 5;,3
96, 0 513 0 0 0
0 0 0 —L 0
51,282,3
—1 1
L 0 0 52,3 0 $2,3
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143

144

145

146

147

148

149

150

152

has full rank 5. The second stage involves the exhaustive summary terms

Uy $1,152,253,3
V11 t1,1/s11
V2,2 t2,9/52.2
Ky — wiy | (1—s33)/53,3 ’
wa,2 {(T =522 —ta2—7ra2) +t22(1—533)} /522533
Z1,1 7“1,1/81,152,283,3
x2.2 7"2,2/32,283,3
EZEN | 73,3/83,3 |

with the parameter set 0 = [s1,152,2,533,%1.1,t2.2,71,1,72,2,73,3)" . The deriva-
tive matrix Oks/00s has full rank 5. Therefore by the two-stage extension
theorem, the model can be extended in terms of years of recapture. Adding a
year of marking so ny = 3 while ny = 3 adds the following exhaustive summary

terms

us 51,3
K3 = = )

13 71,3/51,3
with parameters 61 = [s1 3, 21,3]. The derivative matrix
1 —71,3
|:(9FL3:| _ 3%73

8793 0o L

51,3

has full rank 2. Therefore s, t and r form an exhaustive summary for any di-

mension. 0

1.4. Proof of Theorem 2 (Full Rank Theorem)

In this section we provide a proof of Theorem 2, which states that if the
capture-recapture y/z; model is full rank, then the capture-recapture-recovery
y/(21; z2) model with the same y and 21, but any 25 is also full rank.

Consider the exhaustive summary for the capture-recapture-recovery y/(z1; 22)
model as consisting of two parts. The first part, x, consists of the terms

Sij = ¢i,jpi+1,j+1 for all i = 1,...,’/7,2 andj = i,...,?’Ll +i—1 < ng and

17
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164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

182

tij=¢ij(1—piy1j41) foralli=1,... . ngo—land j=1i,...,nm+i—1<ny—1.
The second part, ko, consists of the terms r; j = (1—¢; ;)\ j foralli =1,... no
and j =4,...,min(n; + 4 — 1,n2). Let the parameter vector 8; consist of the
parameters ¢; ; and p; ;, and the parameter vector 5 consist of the parameters
iy

As the capture-recapture y/z; model is full rank D; = 0k1/00; is full
rank. The derivative matrix Dy = Oko/005 consists of the terms —¢; ; on the
diagonal and 0 elsewhere. As long as all ¢; ; are non-zero this will always be

full rank. Then as Dy and Da, are full rank by the extension theorem of [1] the

capture-recapture-recovery y/(z1; z2) model is full rank. O

2. Web Appendix B: Models with juvenile survival probabilities

This section deals with models which have a different juvenile survival prob-
ability compared with adult survival probability. For example you may assume
that juvenile survival depends on the time of marking in its first year of life,
but then has only a constant yearly survival probability after its first year of
life. The notation of the main paper is extended. The capture-recapture model
has the notation x”7 /y/21, where 27 denotes juvenile survival probability for the
first J years of life (where 1 < J < ny — 1), y denotes adult survival probability
and z; denotes recapture probability. This is extended in the capture-recapture-
recovery model to being of the form 27 /y/(z1;22), where z5 denotes recovery
probability. y, z1 and zo can be either constant (C), time-dependent (T, age-
dependent (A), or age- and time-dependent (A,T), with  only being either
constant (C) or time dependent (T). This changes the juvenile survival prob-
ability as the C!/C/z; model has survival probabilities ¢; and ¢,, while the
T!'/C/z model has survival probabilities ¢1 ; for j = 1,...,ny and ¢,. We
show three tables here: Table 1 is for the capture-recapture model where J = 1,
as different first-year survival is a commonly used model in ecology (for exam-
ple [8]), Table 2 is for a general J value in the capture-recapture model, and
Table 3 is for J = 1 in the capture-recapture-recovery model. It is assumed that

there are at least two years of marking and two years of recapture/recovery with

18
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194

195

196

197

198

199

200

201

202
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204

205

206

ng > nq. The second column in the three tables refers to the rank of the model,
which is the number of estimable parameters in the model. The third column
in Table 1 refers to the parameter deficiency, d, of the model. The third column
in Table 2 refers to the parameter deficiency when (ny —n1) < J and the fourth
column refers to the parameter deficiency when (ny—ny) > J. There are models

that are excluded from the tables as they are identical to simpler models:
o O7/A/z is identical to A/z,
o T7/A,T/z is identical to A, T/z1,
o C7/A/(z1;20) is identical to A/(z1; 22),
o T7/A,T/(21; 22) is identical to A, T/(z1; 22).

Results for these models are given in the main paper. The Full Rank Theorem
also reduces the number of rows in Table 3, as if the 27 /y/2; model is full rank,
then the x7/y/(z1;22) model must also be full rank. The models where this

o C7/C/(21;22),

o C7/T/(C;z),

o CV/T/(A;2),

o C7JA,T/(C;2),

o C7/AT/(T;2) (for J =1),
e T7/C/(C;2),

o T7/C/(T; 23),

o T7/C/(A;z2),

o T7/T/(C;z),

o T7/T/(4;z2),

19



207 o TJ/A/(C;ZQ),

208 L] TJ/A/(T;ZQ).

Table 1: Table of parameter deficiencies for capture-recapture x!/y/z models

Model Rank Deficiency
CT/C/C 3 0
Cl/C/T no + 2 0
Cl/C/A no + 2 0
Cl/C/A,T E+2 0
C'/T/T 1 2y — 1 1
Cl/T/A 2y 0
Cl/T/A,T E+ny—1 1
Cl/A,T/C E—ny+2 0
CI/A7T/TT Efn1+n2 1
CI/A,T/A E—TL1+712 1
CI/A,T/A,T T 2F — 2TL1 +1 ny
Tl/C/C ny+2 0
Tl/C/T ny+ng+1 0
Tl/C/A n1+n2+1 0
TL/C/AT § E+4ni+1 0
T'/T/C ny + ny 0
T!/T/T ni+2ng — 2 1
TY/T/A ny+2ny — 1 0
TYT/ATE | E4ni+ns—2 1
TI/A/C ny + no 0
TI/A/T n1+2n2—1 0
TI/A/A n1 + 2ng — 2 1
Tl/A/A,Ti E+n1—|—n2—2 1

Key: E=nino — %n% + %nl;

t: when n; = no, then the rank increases by 1
and the parameter deficiency decreases by 1;
1: when n; = no, then the rank decreases by 1
and the parameter deficiency increases by 1.
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Table 2: Table of parameter deficiencies for capture-recapture x /y/z models

Model Rank Deficiency (1) | Deficiency (2)
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Table 3: Table of parameter deficiencies for capture-recapture-recovery ! /y/(z1; z2) models

Model Rank Deficiency
CY/T/(T;C) 2ng +1 0
CY/T/(T;T) 1 3ng —1 1
CY/T/(T;A) 3ng 0
CY/T/(T;A,T) t E+2ny—1 1
C!'/T/(A,T;C) E+4ny+1 0
CY/T/(AT;T) 1 E+2ny—1 1
CY/T/(A,T;A) E +2n, 0
CY/T/(A,T;AT) 2E +ng—1 1
Cl/A,T/(A C) E—ny+no+2 0
CY/AT/(A;T) E—ni+2ny+1 0
Cl/A,T/( ) E—n1+2n2 1
Cl/A,T/(AAT) 2E —ny +ng 1
Cl/A,T/(ATC) 2E —n; +1 0
Cl/A,T/(A T; A) 2FE —nq1 4+ no9 1
CY/AT/(AT;A,T) 1 3E —2n1+1 ny
T!/C/(A,T;C) E+n; +2 0
T!/C/(A,T;T) E+ni+ny+1 0
T!/C/(A,T;A) E+4+ni+ns+1 0
T!/C/(A,T;A,T) t 2E +ny+1 0
TI/T/(T C) n1 + 2no 0
TY/T/(T;T) 1 ny + 3ng — 2 1
TY/T/(T;A) ny+3ng — 1 0
Tl/T/(TAT) E+ny+2ny, —2 1
Tl/T/(ATT) E+ny+2ny—2 1
TY/T/(A,T;A) E+n +2ny—1 0
Tl/T/(ATAT) 2E4+n1+mn2—2 1
Tl/A/(A T) ni+3ng —1 0
Tl/A/(A A) ny + 3ng — 2 1
TY/A/(A;AT) E+4+n+2ny—2 1
Tl/A/(ATC) E+ni+no 0
Tl/A/(ATT) E+n1+2n271 0
Tl/A/(ATA) E+n1+2n2—2 1
TY/A/(AT;AT) ¢ 2E +nq+ng —2 1

Key: E=nine — fnl + nl,
1: when ny = ng, then the rank increases by 1
and the parameter deficiency decreases by 1;

1: when n; = no,then the rank decreases by 1

and the parameter deficiency increases by 1
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