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Abstract6

In principle it is possible to use recently-derived procedures to determine

whether or not all the parameters of particular complex ecological models can

be estimated using classical methods of statistical inference. If it is not possible

to estimate all the parameters a model is parameter redundant. Furthermore,

one can investigate whether derived results hold for such models for all lengths of

study, and also how the results might change for specific data sets. In this paper

we show how to apply these approaches to entire families of capture-recapture

and capture-recapture-recovery models. This results in comprehensive tables,

providing the definitive parameter redundancy status for such models. Parame-

ter redundancy can also be caused by the data rather than the model, and how

to investigate this is demonstrated through two applications, one to recapture

data on dippers, and one to recapture-recovery data on great cormorants.
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1. Introduction9

The general topic of this paper is the estimation of parameters in stochas-10

tic models in ecology, using maximum likelihood. The models in question are11

mechanistic and are populated by key demographic rates and probabilities. The12

increasing sophistication of data collection technology, and the availability of13

long historical data sets both allow complex models to be devised for the data.14
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However in some cases, it is not possible to estimate all the model parameters,15

as some are confounded, and we say that the model is parameter redundant.16

The area of parameter redundancy has a long history, which is described in17

[20]. Using procedures of computerised symbolic algebra it is now, in princi-18

ple, possible to determine whether or not any model is parameter redundant,19

and if it is to determine which parameters and parameter combinations may be20

estimated. It is also possible to examine the moderating effect of data on the21

conclusions. As we shall demonstrate, this approach involves finding a suitable22

exhaustive summary, which is a sufficient set of parameter combinations that23

determines the model. That summary is then differentiated with respect to the24

set of parameters to form a derivative matrix, the properties of which provide25

the parameter redundancy information that is needed. Models are naturally26

fitted to data sets resulting from studies of particular lengths, and extension27

theorems exist that allow the conclusions from any particular study to be gen-28

eralised to studies of any length for any model structure. Furthermore, this29

approach can be carried out for entire families of models. This procedure has30

only recently been developed, and so far only two examples are published, for31

ring-recovery data, in [19], and for mixture models for recovery data, in [40]. In32

this paper we apply the approach to very wide families of models for capture-33

recapture and capture-recapture-recovery studies resulting in capture-history34

and capture/recovery-history data.35

Capture-recapture and capture-recapture-recovery models are of central im-36

portance in ecology for estimating the survival probabilities of wild animals.37

Data collection involves marking animals, if they are not already uniquely dis-38

tinguishable from one and other, and then subsequently recapturing live animals39

and in some cases also recovering dead animals. The parameter set contains40

survival probabilities, as well as probabilities of recapture of live animals and41

possibly also the recovery of dead animals. These survival, recapture, and re-42

covery probabilities can be constant, dependent on time, or age, or both time43

and age. Cohort-dependence may also be included, but we do not consider that44

possibility in this paper. If all the parameters are constant then in theory it45
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is possible to estimate all the parameters. However in the capture-recapture46

model if the survival and recapture probabilities are both dependent on time,47

the well-known Cormack-Jolly-Seber (CJS) model, the last time-point survival48

and recapture probabilities only ever appear as a product. It is only possible49

to estimate the product of these two parameters; see for example [20]. Such a50

model is known as parameter redundant, and it is also non-identifiable.51

2. Capture-recapture and capture-recapture-recovery models52

2.1. No recovery of dead animals53

The CJS model, with fully time-dependent parameters and no age depen-54

dence, was presented by Cormack [21], Jolly [31] and Seber [45] and has been55

widely applied to a variety of contexts; see for example [33].56

In capture-recapture studies animals, are marked at n1 occasions and re-57

captured at n2 subsequent occassions; typically there will be T capture and58

recapture occasions with n1 = n2 = T − 1. These occasions are usually annual,59

but many other possibilities also arise. Each individual will have a capture his-60

tory consisting of 1 to represent an occasion when an animal was captured and61

a 0 to represent an occasion where the animal was not recaptured. For example62

h1 = 0010010

is a history for an individual first caught at occasion 3, then not recaptured at63

occasions 4 and 5, then recaptured at occasion 6 and not recaptured at occasion64

7. At this last time point the animal could either have died or have not been65

recaptured, whereas at occasions 4 and 5 we know that animal was alive but66

not recaptured. Capture histories on European dippers, Cinclus cinclus, are67

illustrated in Table 1, and we reconsider this data set later in the paper. The68

data set was first published in [36] and then examined in many publications69

since, see for example [4, 33, 44].70

Let φi,j denote the probability that an animal of age i−1 at time j survives71

until j+1 and pi,j denote the probability that an animal of age i−1 is recaptured72

at occasion j. Suppose an animal was first recaptured at time a and was last73
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Table 1: Dipper capture-recapture histories, taken from [36]

Capture- Number of Number of Total number of
History males females animals
1111110 1 0 1
1111100 0 1 1
1111000 1 1 2
1101110 0 1 1
1100000 4 2 6
1010000 1 1 2
1000000 5 4 9
0111111 0 2 2
0111110 0 1 1
0111100 1 2 3
0111000 1 1 2
0110110 0 1 1
0110000 7 4 11
0100000 11 18 29
0011111 0 2 2
0011110 1 1 2
0011100 4 2 6
0011000 8 4 12
0010110 1 0 1
0010000 11 18 29
0001111 6 2 8
0001110 3 4 7
0001100 6 5 11
0001011 0 1 1
0001001 1 1 2
0001000 6 10 16
0000111 10 6 16
0000110 3 6 9
0000100 9 7 16
0000011 12 11 23
0000010 11 12 23

recaptured at time b, with individual capture history entry δk at time k, then74

the probability associated with a particular history, h, is75

Pr(h) =

{
b∏

k=a+1

φk−a,k−1

(
δkpk−a+1,k + δ̄kp̄k−a+1,k

)}
χb−a+1,b, (1)

where x̄ = 1 − x and χi,j = φ̄i,j + φi,j p̄i+1,j+1χi+1,j+1 is the probability that76

an animal of age i at time tj is not recaptured during the study again, with77
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χi,n2 = 1 for all i. For example in history h1 above, a = 3 and b = 6, which gives78

a probability of Pr(h1) = φ1,3p̄2,4φ2,4p̄3,5φ3,5p4,6(φ̄4,6 + φ4,6p̄5,7). A likelihood79

can be formed as L =
∏N

m=1 Pr(hm) for the N individual observed capture-80

histories. This model assumes that animals are in their first year of life when81

first captured and marked. Frequently animals are of unknown age when first82

captured, and then the dependence on age is typically excluded from the model;83

see [40] for an alternative. The capture-history data can then be summarised84

by a triangular table known as an m-array, the rows of which correspond to85

successive cohorts of released animals, including animals previously captured,86

and the columns give the first times of capture/recapture following the latest87

release. The m-array for the dipper data is given in [33].88

2.2. Recovery as well as recapture89

The parameter redundancy of mark-recovery models alone has been exam-90

ined in [19], which provides complete parameter redundancy information for91

most common models for recovery data. It is sometimes the case that capture-92

history information can include records of death, as well as of recaptures, and the93

capture-recapture-recovery model has been examined in [1, 2, 6, 8, 32, 34, 37].94

The individual capture/recovery-histories are extended to include a 2 to repre-95

sent the recovery of a dead animal, which will always be followed by zeros for96

the rest of the study. For example97

h2 = 0101200

is a history for an individual first caught at occasion 2, then not recaptured at98

occasion 3, recaptured at occasion 4 and then recovered dead at occasion 5.99

Let λi,j denote the probability that an animal of age i− 1 at time j died in100

the period j to j +1. Suppose an animal was first recaptured at time a and was101

last recaptured alive or recovered dead at time b, then the probability associated102
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with a particular capture/recovery-history is103

Pr(h) =



b∏
k=a+1

φk−a,k−1

(
δkpk−a+1,k + δ̄kp̄k−a+1,k

)
χb−a+1,b if δb = 1

b−1∏
k=a+1

φk−a,k−1

(
δkpk−a+1,k + δ̄kp̄k−a+1,k

)
φ̄b−a,b−1λb−a,b−1 if δb = 2,

(2)

where χi,j = φ̄i,j λ̄i,j + φi,j p̄i+1,j+1χi+1,j+1 is the probability that an animal104

of age i at time tj is not recaptured during the study again, with χi,n2 = 1105

for all i. For example in history h2 above, a = 1, b = 4 and δ4 = 2, giving106

a probability of Pr(h2) = φ1,2p̄2,3φ2,3p3,4φ̄3,4λ3,4. Again the likelihood can be107

formed as L =
∏N

m=1 Pr(hm) for the N individual observed capture/recovery-108

histories. Alternative forms for the likelihood are given in [8, 11, 32, 37].109

We follow the y/z notation of [7] to denote capture-recapture models, where110

y refers to the survival probability and z refers to the recapture probability.111

In this paper we consider y and z having four options for every year in the112

study: C for the probability being a constant regardless of age and time, T113

for the probability being only time-dependent, A for the probability being only114

age-dependent, and A,T for the probability being age- and time-dependent. We115

extend this model to the capture-recapture-recovery model by using the form116

y/(z1; z2), where y refers to the survival probability, z1 refers to the recapture117

probability, and z2 refers to the recovery probability, with the same four options118

as above being the possibilities.119

3. Parameter Redundancy120

Parameter redundancy can be investigated using computerised symbolic al-121

gebra, which involves forming a particular derivative matrix and calculating122

its rank. This method was first used for ecological models by [9], and has a123

long history in both ecology and other areas, see for example [3, 9, 10, 12–124

20, 22, 24, 26, 27, 41, 42, 46, 47].125

If we let M(θ) be a function that defines a model with unknown parame-126

ters θ ∈ Ω, then that model is parameter redundant if M(θ) can be written127
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as a function of just the parameters β, where β = f(θ) ∈ Ωβ , in which Ωβ128

has dimension dim(β) < dim(θ) [9]. An exhaustive summary, κ, is a vector of129

parameters and parameter combinations that uniquely define a model [20]. The130

parameter redundancy status of a model can be determined by evaluating the131

symbolic rank of the derivative matrix D = [∂κ/∂θ]. In capture-recapture and132

capture-recapture-recovery models, the probabilities of each possible capture-133

recapture(-recovery) history form an obvious exhaustive summary, and there134

are many other options for exhaustive summaries. For example the probabil-135

ities associated with independent sufficient statistics given in [32, 37] can be136

used to form exhaustive summaries, or in models without age-dependence, the137

probabilities associated with m-array terms form an exhaustive summary. In138

this paper we start with the exhaustive summary consisting of the probabilities139

of histories as this is an easy exhaustive summary to use when considering the140

effect of parameter redundancy on the data, but the results of Section 4 can141

also be derived by starting with other exhaustive summaries.142

The rank, r, of the derivative matrix denotes how many parameters in a143

model can estimated. If there are q parameters in a model, then that model144

is parameter redundant if r < q, and the model deficiency is then d = q −145

r. If r = q, a model is termed full rank and it is theoretically possible to146

estimate all parameters in this case. If a model is parameter redundant, it can147

be determined whether any of the original parameters are estimable by solving148

the equation α(θ)T D(θ) = 0. This is equivalent to finding the null-space of149

DT . There will be d non-zero solutions, αj(θ), with individual entries αij(θ).150

Any parameter θi can still be estimated if αij(θ) = 0 for all j = 1, . . . , d. The151

combinations of other parameters that can be estimated, which contribute to β,152

can then be found by solving the system of linear first-order partial, Lagrange153

differential equations,
∑p

i=1 αij∂ψ/∂θi = 0 where ψ is an arbitrary function of154

the parameters [12, 14, 22].155

In capture-recapture and capture-recapture-recovery models, the numbers of156

years of marking and recapture/recovery vary from study to study. It is possible157

to generalise results to any number of years of marking and recapture/recovery158
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via an extension theorem. This states that if a full-rank model is extended159

by adding extra terms κ2 and extra parameters θ2 and the derivative matrix160

D2 = [∂κ2/∂θ2] is also full rank, then the extended model is full rank. The161

result can then be generalised further by induction [9, 20].162

However, this symbolic algebra approach may not be computationally fea-163

sible for more complex problems [23, 29, 30, 43]. This difficulty is overcome164

in [20], which extended the use of the symbolic approach by means of repa-165

rameterisation to simplify the structure of more complex models [15–18, 20].166

In this method a new parameterisation, s, is chosen so that ∂κ(s)/∂s is full167

rank. By the reparameterisation theorem of [20] the number of parameters in168

the full-rank reparameterised model will be the number of estimable parameters169

in the original model. This method is used in Section 4 to find relatively simple170

exhaustive summaries. The reparameterisation theorem in complex models can171

also be used to form general results in parameter-redundant models [19], by172

first reparameterising and then applying the extension theorem to the full-rank173

reparameterised model.174

A model can be parameter redundant due to either the structure of the175

model or the form of a particular set of data. The former case is known as176

intrinsic parameter redundancy, while the later is known as extrinsic parameter177

redundancy. We present a simple exhaustive summary that can be used to178

study intrinsic parameter redundancy in Section 4, with results given in Section179

5. We examine extrinsic parameter redundancy, and how data affect parameter180

redundancy, in Section 6.181

The symbolic algebra of the paper can be executed in a computer symbolic182

algebra package, such as Maple. Maple procedures for this paper can be found183

in the supplementary material for the paper and at184

http://www.kent.ac.uk/smsas/personal/djc24/parameterredundancy.htm.185

4. New parameter redundancy results186

An exhaustive summary to study intrinsic parameter redundancy for the187

capture-recapture or capture-recapture-recovery models consists of the proba-188

8



bilities of all possible histories. However there are 2n2+1 − 2n2−n1+1 possible189

histories for the capture-recapture model, and 3(2n2 −2n2−n1) possible histories190

for the capture-recapture-recovery model. In general, Maple will be unable to191

calculate the rank of the derivative matrix if the exhaustive summary consist-192

ing of all possible histories is used. To solve this problem a simpler exhaustive193

summary can be found with fewer terms, but which still captures the inherent194

structure of the model. The simpler exhaustive summary is given by Theorem195

1 below.196

Theorem 1. a. A simpler exhaustive summary for the capture-recapture model197

consists of the terms:198

• si,j = φi,jpi+1,j+1 for all i = 1, . . . , n2 and j = i, . . . , min(n1 + i − 1, n2),199

• ti,j = φi,j(1 − pi+1,j+1) for all i = 1, . . . , n2 − 1 and j = i, . . . , min(n1 +200

i − 1, n2 − 1).201

b. A simpler exhaustive summary for the capture-recapture-recovery model con-202

sists of the terms:203

• si,j = φi,jpi+1,j+1 for all i = 1, . . . , n2 and j = i, . . . , min(n1 + i − 1, n2),204

• ti,j = φi,j(1 − pi+1,j+1) for all i = 1, . . . , n2 − 1 and j = i, . . . , min(n1 +205

i − 1, n2 − 1),206

• ri,j = (1−φi,j)λi,j for all i = 1, . . . , n2 and j = i, . . . , min(n1 + i− 1, n2).207

The proof of Theorem 1 is given in Appendix A of the supplementary mate-208

rial. A modified PLUR decomposition, or Turing factorisation, of the derivative209

matrix can reveal whether or not full rank results are valid for the whole pa-210

rameter space [20]. In this case PLUR decompositions show that Theorem 1 is211

valid everywhere in the parameter space except at boundary values.212

Theorem 1 gives a much simpler exhaustive summary than the exhaustive213

summary consisting of all possible histories. For example when n1 = n2 =214

12 there are 12285 possible histories whereas there are only 222 exhaustive215

summary terms in the simpler exhaustive summary of Theorem 1.216

Example 1:217

Consider the capture-recapture model T/C with n1 = n2 = 3 years of218

marking and recapture. This is the CJS model with constant recapture prob-219

ability. In this case Theorem 1a. results in the exhaustive summary κ =220
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[φ1p, φ2p, φ3p, φ1(1 − p), φ2(1 − p)], with repeated terms excluded. The param-221

eters in this model are θ = [φ1, φ2, φ3, p]. The derivative matrix,222

D =
[
∂κ

∂θ

]
=


p 0 0 1 − p 0

0 p 0 0 1 − p

0 0 p 0 0

φ1 φ2 φ3 −φ1 −φ2

 ,

has rank 4. Therefore the model is full rank and all 4 parameters can be esti-223

mated. The model can be extended using the extension theorem of [9, 20] for224

larger values of n1 and n2 to show that the T/C model is actually full rank for225

all values of n1 ≥ 2 and n2 ≥ 2 (as the same result can also be shown to be226

valid for n1 = n2 = 2).227

Example 2:228

Consider the capture-recapture-recovery model A,T/(A;A,T) with n1 =229

n2 = 3 years of marking and recapture/recovery. In this case Theorem 1b.230

results in the exhaustive summary κ = [φ1,1p2, φ1,2p2, φ1,3p2, φ2,2p3, φ2,3p3,231

φ3,3p4, φ1,1(1 − p2), φ1,2(1 − p2), φ2,2(1 − p3), (1 − φ1,1)λ1,1, (1 − φ1,2)λ1,2,232

(1 − φ1,3)λ1,3, (1 − φ2,2)λ2,2, (1 − φ2,3)λ2,3, (1 − φ3,3)λ3,3]. The parameters in233

this model are θ = [φ1,1, φ1,2, φ1,3, φ2,2, φ2,3, φ3,3, p2, p3, p4, λ1,1, λ1,2, λ1,3,234

λ2,2, λ2,3, λ3,3]. The derivative matrix D = ∂κ/∂θ has rank 14. As there are235

15 parameters the model is parameter redundant with deficiency 1. To find if236

any of the original parameters can be estimated we solve αT D = 0 to give237

αT =
[

0 0 0 0 0 (1−φ3,3)
φ3,3λ3,3

0 0 (1−φ3,3)
λ3,3

0 0 0 0 0 1
]
.

The position of the zeros shows we can estimate the 12 parameters φ1,1, φ1,2,

φ1,3, φ2,2, φ2,3, p2, p3, λ1,1, λ1,2, λ1,3, λ2,2 and λ2,3. The remaining estimable

terms can be found by solving the partial equation

∂ψ

∂φ3,3

(1 − φ3,3)
φ3,3λ3,3

+
∂ψ

∂p4

(1 − φ3,3)
λ3,3

+
∂ψ

∂λ3,3
= 0.

The solutions to this equation are φ3,3p4 and (1−φ3,3)λ3,3, and these 2 parame-238

ter combinations complete the set of 14 parameters that can be estimated. The239
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reparameterisation and extension theorems of [20] can then be used to show240

that this capture-recapture-recovery model has a parameter deficiency of 1 for241

any n1, n2 ≥ 2.242

Example 3:243

Consider the capture-recapture-recovery model T/(C;A,T) also with n1 =244

n2 = 3 years of marking and recapture/recovery: the exhaustive summary con-245

sists of the terms in the vector κ = [φ1p, φ2p, φ3p, φ1(1 − p), φ2(1 − p), (1 −246

φ1)λ1,1, (1 − φ2)λ2,2, (1 − φ3)λ3,3, (1 − φ2)λ1,2, (1 − φ3)λ2,3, (1 − φ3)λ1,3], with247

parameters θ = [φ1, φ2, φ3, p, λ1,1, λ1,2, λ1,3, λ2,2, λ2,3, λ3,3]. To determine the248

model rank it is possible to follow exactly the same procedure as above. How-249

ever it is possible to deduce that the model T/(C;A,T) is full rank from knowl-250

edge of the capture-recapture T/C model of example 1. As the first part of the251

exhaustive summary is the same as that for the full rank T/C model, we can252

estimate φ1, φ2, φ3 and p. Then from the second part of the exhaustive sum-253

mary, we see that every λi,j term has a separate exhaustive summary term. As254

every exhaustive summary term in the T/C model is in the T/(C;A,T) model255

plus additional exhaustive summary terms containing λi,j , and each of these256

additional exhaustive summary terms contains only one distinct λi,j parameter257

for each term, therefore we can estimate every λi,j .258

The intuitive observation of the last example is formalised for all full rank259

capture-recapture models via the Full Rank Theorem below.260

Theorem 2. (Full Rank Theorem) If the capture-recapture y/z1 model is261

full rank, then the capture-recapture-recovery y/(z1; z2) model with the same y262

and z1, but any z2 is also full rank.263

Proof of Theorem 2 is given in Appendix A of the supplementary material.264

There is not a similar theorem for full-rank mark-recovery models.265

5. Results266

5.1. Models where we do not distinguish separate juvenile survival267

We now make use of the results of this paper in order to provide general268

tables of the parameter redundancy status of many common models for capture-269

recapture and capture-recapture-recovery.270
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Table 2: Table of parameter deficiencies for capture-recapture y/z models

Model Rank Deficiency Confounded Parameters
C/C 2 0
C/T n2 + 1 0
C/A n2 + 1 0
C/A,T E + 1 0
T/C n2 + 1 0
T/T 2n2 − 1 1 φn2pn2+1

T/A 2n2 0
T/A,T E + n2 − 1 1 φn2p

†
i+1,n2+1

A/C n2 + 1 0
A/T 2n2 0
A/A 2n2 − 1 1 φn2pn2+1

A/A,T E + n2 − 1 1 φn2pn2+1,n2+1

A,T/C E + 1 0
A,T/T E + n2 − 1 1 φi,n2p

†
n2+1

A,T/A E + n2 − 1 1 φn2,n2pn2+1

A,T/A,T 2E − n1 n1 φi,n2p
†
i+1,n2+1

Key: E = n1n2 − 1
2n2

1 + 1
2n1;

† in the confounded parameters i goes from n2 − n1 + 1 to n2.

General results for y/z capture-recapture models and y/(z1; z2) capture-271

recapture-recovery models are given in Tables 2 and 3 respectively. The second272

column specifies the rank of the models, which is the number of estimable pa-273

rameters. The third column provides the parameter deficiency, d. It is assumed274

that there are at least two years of marking and at least two years of recap-275

ture/recovery with n2 ≥ n1.276

The final columns of Tables 2 and 3 show which parameters are confounded277

in each case as appropriate; the parameters which are not listed are estimable.278

Observe that the parameter deficiency of the model is the number of original279

parameter minus the number of estimable parameter combinations there are in280

the model, and is not how many confounded parameter combinations there are281

in the model.282

Table 3 excludes model combinations that are full rank due to the Full Rank283

Theorem. All the model listed below are full rank:284
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Table 3: Table of parameter deficiencies for capture-recapture-recovery y/(z1; z2) models

Model Rank Deficiency Confounded Parameters
T/(T;C) 2n2 + 1 0
T/(T;T) 3n2 − 1 1 φn2pn2+1, (1 − φn2)λn2

T/(T;A) 3n2 0
T/(T;A,T) E + 2n2 − 1 1 φn2pn2+1, (1 − φn2)λ

†
i,n2

T/(A,T;C) E + n2 + 1 0
T/(A,T;T) E + 2n2 − 1 1 φn2p

†
i+1,n2+1, (1 − φn2)λn2

T/(A,T;A) E + 2n2 0
T/(A,T;A,T) 2E + n2 − 1 1 φn2p

†
i+1,n2+1, (1 − φn2)λ

†
i,n2

A/(A;C) 2n2 + 1 0
A/(A;T) 3n2 0
A/(A;A) 3n2 − 1 1 φn2pn2+1, (1 − φn2)λn2

A/(A;A,T) E + 2n2 − 1 1 φn2pn2+1, (1 − φn2)λn2,n2

A/(A,T;C) E + n2 + 1 0
A/(A,T;T) E + 2n2 0
A/(A,T;A) E + 2n2 − 1 1 φn2pn2+1,n2+1, (1 − φn2)λn2

A/(A,T;A,T) 2E + n2 − 1 1 φn2pn2+1,n2+1, (1 − φn2)λn2,n2

A,T/(T;C) E + n2 + 1 0
A,T/(T;T) E + 2n2 0
A,T/(T;A) E + 2n2 0
A,T/(T;A,T) 2E + n2 − 1 1 φi,n2p

†
n2+1, (1 − φi,n2)λ

†
i,n2

A,T/(A;C) E + n2 + 1 0
A,T/(A;T) E + 2n2 0
A,T/(A;A) E + 2n2 − 1 1 φn2,n2pn2+1, (1 − φn2,n2)λn2

A,T/(A;A,T) 2E + n2 − 1 1 φn2,n2pn2+1,n2+1, (1 − φn2,n2)λn2,n2

A,T/(A,T;C) 2E + 1 0
A,T/(A,T;T) 2E + n2 − 1 1 φi,n2p

†
i+1,n2+1, (1 − φi,n2)λ

†
n2

A,T/(A,T;A) 2E + n2 − 1 1 φn2,n2pn2+1,n2+1, (1 − φn2,n2)λn2

A,T/(A,T;A,T) 3E − n1 n1 φi,n2p
†
i+1,n2+1, (1 − φi,n2)λ

†
i,n2

Key: E = n1n2 − 1
2n2

1 + 1
2n1;

† in the confounded parameters i goes from n2 − n1 + 1 to n2.

• C/(z1, z2),285

• T/(C, z2),286

• T/(A, z2),287

• A/(C, z2),288
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• A/(T, z2),289

• A, T/(C, z2),290

where z1 and z2, can be any of C, T , A or A, T . Their model ranks can be291

found by adding 1 if z2 = C, by adding n2 if z2 = T or A, or by adding292

E = n1n2− 1
2n2

1 + 1
2n1 if z2 = A, T to the model rank of the equivalent capture-293

recapture model. For example the model T/A,T has full rank r = n2 + E; the294

model T/(A,T;C) therefore is also full rank with rank r = n2 + E + 1. We295

further note that the T/T model is the CJS model.296

5.2. Modelling separate juvenile survival297

It is often the case that wild animals in their first/early years of life ex-298

perience higher mortality than adult animals. The same may also be true of299

extremely old animals, who experience senescence. As an illustration of how300

to deal with this kind of age-dependent mortality, we present the parameter301

redundancy of models in which first year survival is different from that of older302

animals in Appendix B of the supplementary material.303

6. Applications: the effect of data on parameter redundancy results304

The results of Section 5 are concerned with intrinsic parameter redundancy.305

Specifically the results assume that every possible history is observed, and this306

is unlikely to be the case in practise. For example, if the recapture probability307

in a study is quite low or in a long study no animals may remain alive for the308

whole length of the study, then the probability of the history where an animal309

is recaptured at every recapture point in the study is extremely small. In this310

Section we consider extrinsic parameter redundancy.311

It is possible to study the effect of a particular set of data on parameter312

redundancy, by using an exhaustive summary consisting of the probabilities313

of each history that is present. Maple code for analysing particular sets of314

animal histories is given in the supplementary material. If a model is parameter315

redundant it will remain parameter redundant, but the deficiency may increase316
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due to there being less information in the exhaustive summary. If a model is full317

rank, there may be certain data sets for which the model will become parameter318

redundant. We consider two data sets. The first involves capture-recapture only,319

and is the European dipper data set of Table 1.320

To create a general measure of sparseness, c, for data sets, consider the321

C/C model with φ = 0.5 and p = 0.5. If 50 animals were marked in year 1322

and followed for three further years the capture-histories with an expectation323

greater than 1 are 1110, 1100, 1010 and 1000. We would only expect to see324

an animal for c = 3 years. If 100 animals were marked in the first year, all 8325

histories have an expectation great than 1. So we expect to see animals for all326

c = 4 years. These expectations vary with different models and with the values327

φ and p, but generally more sparse data should have a lower value of c. We take328

c as the maximum number of years between marking and last recapture. We329

suppose we have all histories with c or fewer years between first marking and330

last recapture and calculate the deficiency for each model. Real data will never331

have this exact pattern of histories, but we would expect a data set which is332

very sparse and/or has few recaptures per year to behave like a model with a333

low value of c.334

6.1. Dipper data335

In this capture-recapture study the animals there are n1 = 6 years of marking336

and n2 = 6 years of recovery, with males and females combined and considered337

separately. This makes the data set quite sparse as less than a quarter of the338

possible capture-histories were observed in the study. There are 24 different339

male histories, 29 different female histories, and 31 different male and female340

combined (M & F) histories in total out of a maximum of 126 possible histories.341

The dipper data set consists of adult birds of unknown age. So that we may342

illustrate when age-dependent models can be fitted to data similar to that of343

the dipper data, we suppose that all dippers were of the same known age when344

marked. The deficiencies for the dipper data are given in Table 4 in columns345

2 to 4. Using the measure of spareness described the deficiency for any data346
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Table 4: Table of parameter deficiencies for capture-recapture y/z models for the Dipper data
set from [36]; M & F indicates male and female data sets are combined.

Model Male Female M & F Statistic of Sparseness Intrinsic
C/C 0 0 0 0 0
C/T 0 0 0 0 0
C/A 0 0 0 0 0
C/A,T 2 0 0 1

2 (n2 − c)(n2 − c − 1) 0
T/C 0 0 0 0 0
T/T 1 1 1 1 1
T/A 0 0 0 0 0
T/A,T 5 2 1 1

2 (n2 − c)(n2 − c − 1) + 1 1
A/C 0 0 0 0 0
A/T 0 0 0 0 0
A/A 2 1 1 n2 − c 1
A/A,T 6 2 2 1

2 (n2 − c + 1)(n2 − c) + 1 1
A,T/C 2 0 0 1

2 (n2 − c)(n2 − c − 1) 0
A,T/T 5 2 2 1

2 (n2 − c)(n2 − c − 1) + 1 1
A,T/A 6 2 2 1

2 (n2 − c + 1)(n2 − c) + 1 1
A,T/A,T 19 15 13 (n2 − c)2 + n2 6

set with n1 = n2 and 1 < c < 6 is given in column 5. The final column of347

Table 4 shows the deficiency of the model with all 126 possible histories, i.e. the348

intrinsic deficiency with complete data.349

Table 4 shows that the majority of the intrinsically full rank models remain350

full rank even with relatively sparse data sets; the exceptions are the models351

C/A,T and A,T/C. In these models, to be able to estimate pi,j or φi,j respec-352

tively, capture-histories are needed where the bird is marked in the first year353

and also seen in the seventh year.354

6.2. Cormorant data355

The second data set involves dead recoveries as well as alive recaptures. This356

data set from [28] follows cormorants, Phalacrocorax carbo, for n1 = n2 = 12357

years. The birds are observed over 6 different colonies, and the most appropriate358

models are multi-site models; see [5, 38, 39]. Here for illustration we examine359

colony 3 (Col. 3) and colony 1 (Col. 1) separately as well as all colonies360

together (All). When we consider all colonies together the multi-site information361

is ignored and common φ and p parameters are assumed across all 6 colonies.362
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The colony 3 data set is the most sparse with 121 different histories; colony 1363

only has 465 different histories, and all the colonies combined have 580 different364

histories. Tables 5 and 6 gives the parameter deficiency for colonies 1 and 3,365

and all colonies together, in columns 2 to 4. The final column of Tables 5 and366

6 shows intrinsic deficiency for direct comparison.367

These results are generalised by again considering having all capture/recovery-368

histories with a maximum of c years between first capture and either recovery369

or last capture if there is no recovery. Column 5 in Tables 5 and 6 gives the370

deficiency for any n1 = n2 with 1 ≤ c < n2.371

There is obviously a lack of data in colony 3 alone, so that here more models372

are parameter redundant. However there are still some models that remain373

full rank. Ignoring colony 3 results, most models remain full rank even with374

relatively sparse data. The exceptions are again models where one parameter is375

age- and time-dependent.376

7. Discussion377

It is essential to know whether a model is parameter-redundant or not, as in378

a parameter redundant model it is not possible to estimate all the parameters379

using classical inference and a weakly-identifiable model may result if Bayesian380

analysis is used [25]. This paper uses a novel approach to derive a simple ex-381

haustive summary for capture-recapture and capture-recapture-recovery mod-382

els. This exhaustive summary has the advantage of being structurally simpler383

than other exhaustive summaries, which allows Maple to calculate the rank of384

the appropriate derivative matrix even for the most complex models. The ex-385

haustive summary is also flexible so that it can accommodate both age- and386

time-dependency.387

General results have been derived for a large number of capture-recapture388

and capture-recapture-recovery models. The models we consider are frequently389

used in ecology, and the tables of the paper and the supplementary material pro-390

vide for the first time a comprehensive description of the parameter-redundancy391
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Table 5: Table of parameter deficiencies for capture-recapture-recovery C/(z1; z2) and
T/(z1; z2) models for the Cormorant data set from [28]

Model Col.3 Col.1 All Statistic of Sparseness Intrinsic
C/(C;C) 0 0 0 0 0
C/(C;T) 0 0 0 0 0
C/(C;A) 1 0 0 0 0
C/(C;A,T) 4 0 0 1

2 (n2 − c)(n2 − c − 1) 0
C/(T;C) 0 0 0 0 0
C/(T;T) 1 0 0 0 0
C/(T;A) 1 0 0 0 0
C/(T;A,T) 5 0 0 1

2 (n2 − c)(n2 − c − 1) 0
C/(A;C) 1 0 0 0 0
C/(A;T) 1 0 0 0 0
C/(A;A) 2 0 0 n2 − c 0
C/(A;A,T) 7 0 0 1

2 (n2 − c + 1)(n2 − c) 0
C/(A,T;C) 8 0 0 1

2 (n2 − c)(n2 − c − 1) 0
C/(A,T;T) 9 0 0 1

2 (n2 − c)(n2 − c − 1) 0
C/(A,T;A) 11 0 0 1

2 (n2 − c + 1)(n2 − c) 0
C/(A,T;A,T) 36 1 1 (n2 − c)2 0
T/(C;C) 0 0 0 0 0
T/(C;T) 1 0 0 0 0
T/(C;A) 1 0 0 0 0
T/(C;A,T) 5 0 0 1

2 (n2 − c)(n2 − c − 1) 0
T/(T;C) 1 0 0 0 0
T/(T;T) 5 1 1 1 1
T/(T;A) 1 0 0 0 0
T/(T;A,T) 8 1 1 1

2 (n2 − c)(n2 − c − 1) 1
T/(A;C) 1 0 0 0 0
T/(A;T) 1 0 0 0 0
T/(A;A) 2 0 0 n2 − c 0
T/(A;A,T) 9 0 0 1

2 (n2 − c + 1)(n2 − c) 0
T/(A,T;C) 9 0 0 1

2 (n2 − c)(n2 − c − 1) 0
T/(A,T;T) 12 1 1 1

2 (n2 − c)(n2 − c − 1) + 1 1
T/(A,T;A) 12 0 0 1

2 (n2 − c + 1)(n2 − c) 0
T/(A,T;A,T) 41 2 2 n2

2 − 2n2c + c2 + 1 1

status of the models considered. Knowing the exact rank of a parameter-392

redundant model is useful if covariates or trends are added to the model, as393

no further derivative calculations are required to find the rank of the model394

with such covariates or trends [17, 19].395

We have also shown that many models remain full rank, so that all param-396
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Table 6: Table of deficiency (d) for the capture-recapture-recovery A/(z1; z2) and A, T/(z1; z2)
models for the cormorant data set of [28].

Model Col.3 Col.1 All Statistic of Sparseness Intrinsic
A/(C;C) 1 0 0 0 0
A/(C;T) 1 0 0 0 0
A/(C;A) 2 0 0 n2 − c 0
A/(C;A,T) 8 0 0 1

2 (n2 − c + 1)(n2 − c) 0
A/(T;C) 1 0 0 0 0
A/(T;T) 1 0 0 0 0
A/(T;A) 2 0 0 n2 − c 0
A/(T;A,T) 9 0 0 1

2 (n2 − c + 1)(n2 − c) 0
A/(A;C) 2 0 0 n2 − c 0
A/(A;T) 2 0 0 n2 − c 0
A/(A;A) 6 2 2 2(n2 − c) 1
A/(A;A,T) 13 2 2 1

2 (n2 − c + 1)(n2 − c) + n2 − c 1
A/(A,T;C) 12 0 0 1

2 (n2 − c + 1)(n2 − c) 0
A/(A,T;T) 13 0 0 1

2 (n2 − c + 1)(n2 − c) 0
A/(A,T;A) 17 1 1 1

2 (n2 − c)(n2 − c + 1) + n2 − c + 1 1
A/(A,T;A,T) 43 2 2 3(n2 − c) + (n2 − c − 1)2 1
A,T/(C;C) 3 0 0 1

2 (n2 − c)(n2 − c − 1) 0
A,T/(C;T) 5 0 0 1

2 (n2 − c)(n2 − c − 1) 0
A,T/(C;A) 7 0 0 1

2 (n2 − c + 1)(n2 − c) 0
A,T/(C;A,T) 42 10 6 (n2 − c)2 0
A,T/(T;C) 6 0 0 1

2 (n2 − c)(n2 − c − 1) 0
A,T/(T;T) 9 0 0 1

2 (n2 − c)(n2 − c − 1) 0
A,T/(T;A) 10 1 1 1

2 (n2 − c + 1)(n2 − c) 0
A,T/(T;A,T) 48 12 8 n2

2 − 2n2c + c2 + 1 1
A,T/(A;C) 8 0 0 1

2 (n2 − c + 1)(n2 − c) 0
A,T/(A;T) 10 0 0 1

2 (n2 − c + 1)(n2 − c) 0
A,T/(A;A) 12 1 1 1

2 (n2 − c + 1)(n2 − c) + n2 − c 1
A,T/(A;A,T) 49 12 8 3(n2 − c) + (n2 − c − 1)2 1
A,T/(A,T;C) 41 7 6 (n2 − c)2 0
A,T/(A,T;T) 46 8 7 n2

2 − 2n2c + c2 + 1 1
A,T/(A,T;A) 46 8 7 3(n2 − c) + (n2 − c − 1)2 1
A,T/(A,T;A,T) 96 32 28 3

2 (n2 − c + 1)(n2 − c) + c 12

eters can still be estimated, even when a data set is quite sparse. If parameters397

are constant, only depend on age or only depend on time, then parameter re-398

dundancy in practice is most likely to be caused by the inherent structure of399

the model rather than the data itself.400

In parameter-redundant models, determining which parameters are con-401
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founded is possible by solving the appropriate set of partial differential equa-402

tions, as demonstrated in example 2. This method works best when n1 and n2403

are small, as when deriving intrinsic parameter redundancy results. The results404

can then be extended to a general n1 and n2 using the reparameterisation and405

extension theorems; see [20]. For a specific data set when n1 and n2 are large406

and extrinsic redundancy is considered, if the symbolic method does not work,407

the alternative hybrid-symbolic-numeric method of [15] can be used. This hy-408

brid method will determine which of the original parameters can be estimated,409

but cannot be used to find any other estimable parameter combinations.410
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