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Abstract. We consider the ring of coinvariants for modular representations
of cyclic groups of prime order. For all cases for which explicit generators
for the ring of invariants are known, we give a reduced Gröbner basis for the
Hilbert ideal and the corresponding monomial basis for the coinvariants. We
also describe the decomposition of the coinvariants as a module over the group
ring. For one family of representations, we are able to describe the coinvari-
ants despite the fact that an explicit generating set for the invariants is not
known. In all cases our results confirm the conjecture of Harm Derksen and
Gregor Kemper on degree bounds for generators of the Hilbert ideal. As an
incidental result, we identify the coefficients of the monomials appearing in the
orbit product of a terminal variable for the three dimensional indecomposable
representation.

1. Introduction

Let V denote a finite dimensional representation of a finite group G over a field
F. If the characteristic of F divides the order of G, then V is called a modular
representation. Choose a basis {X1, . . . , Xn} for the dual vector space V ∗. The
action of G on V induces an action on V ∗ which extends to an action by algebra
automorphisms on the symmetric algebra F[V ] := S(V ∗) = F[X1, . . . , Xn]. The
ring of invariants,

F[V ]G := {f ∈ F[V ] | g(f) = f, ∀g ∈ G},

is a finitely generated subring of F[V ]. The Noether number, β(V ), is defined to
be the least integer d such that F[V ]G is generated by homogeneous elements of
degree less than or equal to d. The Hilbert ideal, which we denote by H, is the
ideal in F[V ] generated by the homogeneous invariants of positive degree and the
ring of coinvariants is the quotient

F[V ]G := F[V ]/H.

Since the Hilbert ideal is closed under the group action, the coinvariants are a
module over the group ring FG. Furthermore, since G is finite, F[V ] is inte-
gral over F[V ]G. Therefore F[V ]G is a finite dimensional graded F-algebra. Let
td(F[V ]G) denote the top degree of F[V ]G, i.e., the largest degree in which F[V ]G
is non-zero. The ring of coinvariants has been studied extensively for F a field of
characteristic zero, particularly for V a reflection representation. For reflection
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representations in characteristic zero, the coinvariants are isomorphic, as a mod-
ule over the group ring, to the regular representation (see, for example, [8], [4,
Ch.V, §5.2] or [15, Ch. VII, §24-1]). Coinvariants in characteristic zero continue to
attract attention (see, for example, [11], [12] and [13] ). Relatively little is known
about coinvariants for modular representations. The coinvariants for the natural
modular representations of GLn(Fq) and its p-Sylow subgroup were considered
by Campbell et al. in [7]. Larry Smith has investigated modular coinvariants for
two and three dimensional representations [25] and in the case that the invariants
are a polynomial algebra ([26], [24]). In this paper we consider the coinvariants
for the simplest modular representations, the modular representations of cyclic
groups of prime order.

For the remainder of the paper, let p denote a prime number, let Z/p denote the
cyclic group of order p and let F denote a field of characteristic p. A representation
of a cyclic group is determined by the Jordan canonical form of the image of the
generator. If n ≤ p then the n×n matrix over F consisting of a single Jordan block
with eigenvalue 1, has order p and determines an indecomposable representation
of Z/p which we denote by Vn (For n > p, the order of the matrix is greater than
p.). Note that there are no non-trivial pth roots of unity in F. Thus 1 is the
only eigenvalue for the image of a generator of Z/p under a representation over
F. Therefore, up to isomorphism, the only indecomposable FZ/p – modules are
V1, V2, . . . , Vp. We will denote the direct sum of m copies of Vn by mVn.

Despite the simplicity of the representation theory, computing explicit gener-
ators for F[V ]Z/p is a relatively difficult problem. Minimal generating sets for
F[V2]

Z/p and F[V3]
Z/p can be found in Dickson’s Madison Colloquium [10]. Fi-

nite SAGBI bases1 for F[V4]
Z/p and F[V5]

Z/p can be found in [20]. The problem
of finding an explicit generating set for F[Vn]Z/p for n > 5 remains open. Even
when the invariants of the indecomposable summands are understood, it can be
difficult to construct generating sets for decomposable representations. Campbell
& Hughes, in [6], describe a generating set for F[mV2]

Z/p which is refined to a
minimal generating set in [22]. SAGBI bases are given for F[V2 ⊕ V3]

Z/p in [21]
and F[2V3]

Z/p in [5]. We refer to an FZ/p – module as reduced if it is a direct sum
of non-trivial modules. In summary, the only reduced representations for which
explicit generating sets for the ring of invariants are known are: mV2, V2 ⊕ V3,
V3, 2V3, V4, V5. For each of these representations we will give a reduced Gröbner
basis for the Hilbert ideal and describe the corresponding monomial basis for the
coinvariants. We will also use the monomial basis to describe the FZ/p – module
structure of the coinvariants. By relating mV2 ⊕ `V3 to (m + `)V2, we are able
describe F[mV2 ⊕ `V3]Z/p despite the fact that an explicit generating set is not

known for F[mV2⊕ `V3]
Z/p. Our results give (m+ `)(p−1)+1 as an upper bound

on the degrees of a minimal generating set for F[mV2⊕`V3]
Z/p. Harm Derksen and

Gregor Kemper have conjectured that the order of the group is an upper bound
on the degrees of a minimal homogeneous generating set for the Hilbert ideal [9,
3.8.6 (b)]. For all of the examples considered here, our calculations confirm this
conjecture. We note that F[2V2]Z/2 was considered in [25].

1A SAGBI basis is a particularly nice generating set.
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Let σ denote a generator of Z/p. In the group ring FZ/p, define ∆ := σ−1 and
Tr :=

∑p
i=1 σi. The kernel of ∆ acting on a module gives the invariant elements

in the module and Tr gives a homomorphism of F[V ]Z/p – modules from F[V ] to
F[V ]Z/p known as the transfer. The image of the transfer is an ideal in the ring
of invariants. Observe that a basis for the coinvariants lifts to a set of generators
for F[V ] as a module over F[V ]Z/p. Applying the transfer to a set of module
generators gives a generating set for the image of the transfer as an ideal. Thus a
basis for the coinvariants gives a generating set for the image of the transfer and
the largest degree of a basis element gives an upper bound on the degrees of a
generating set for the image of the transfer. It is a consequence of [21, 4.2 & 6.3]
and [20, 4.1] that for n > 3, td(F[Vn]Z/p) ≥ β(Vn) ≥ 2p − 3. The results in this
paper support the following strengthening of [21, Conjecture 6.1].

Conjecture 1.1. For n > 3, td(F[Vn]Z/p) = 2p− 3.

For an element ϕ ∈ V ∗, define the norm of ϕ to be the product over the orbit
of ϕ. Thus, if ϕ ∈ V ∗ \ (V ∗)Z/p, N(ϕ) :=

∏p
i=1 σi(ϕ). If we choose a basis

{X, Y, Z} for V ∗
3 so that ∆(Z) = Y , ∆(Y ) = X and ∆(X) = 0, then F[V3]

Z/p is
the hypersurface generated by X, Y 2 −X(Y + 2Z), N(Y ) and N(Z). It is well
known that N(Y ) = Y p − Y Xp−1. However, the expansion of N(Z) is far more
complicated and, to our knowledge, does not appear in the literature. Knowledge
of certain coefficients in the expansion was necessary for some of our calculations.
In Section 6, we have worked out a complete description of the expansion.

We adopt the convention of using upper case letters to denote variables in F[V ]
and the corresponding lower case letters to denote the images of the variables in
F[V ]G. We use the term monomial to mean a product of variables. For an ideal
I, we write f ≡I h if f − h ∈ I. As a general reference for the invariant theory of
finite groups see Benson [2], Derksen & Kemper [9], Neusel & Smith [16] or Smith
[23]. As a reference for Gröbner bases we recommend Adams & Loustaunau [1]
or Sturmfels [27].

At the suggestion of the referee, some of the more computational aspects of the
proofs given in an earlier draft of this paper [19] have been removed. The detailed
proofs can still be found on the arXiv preprint server.

2. The coinvariants of mV2 ⊕ `V3

We start by describing the coinvariants of mV2. Choose a basis {Xi, Yi | i =
1, . . . ,m} for (mV2)

∗ with ∆(Yi) = Xi and ∆(Xi) = 0. For i = 1, . . . ,m and
i < j, define uij := XjYi −XiYj. Campbell and Hughes [6] have shown that

{Xi, N(Yi), uij | i = 1, . . . ,m; i < j} ∪ {Tr(β) | β divides (Y1 · · ·Ym)p−1}

is a generating set for F[mV2]
Z/p. It is well known that N(Yi) = Y p

i − YiX
p−1
i .

Furthermore, if β divides (Y1 · · ·Ym)p−1, then ∆(β) ∈ (X1, . . . , Xm)F[mV2]. Thus
Tr(β) = ∆p−1(β) ∈ (X1, . . . , Xm)F[mV2]. As a consequence, we have the follow-
ing.

Theorem 2.1. A reduced universal Gröbner basis for the Hilbert ideal of mV2 is
given by {Xi, Y

p
i | i = 1, . . . ,m}, the corresponding monomial basis for F[mV2]Z/p
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is given by the monomial factors of (y1 · · · ym)p−1, and F[mV2]Z/p is a trivial FZ/p
– module.

For the rest of this section, we assume p > 2. The natural inclusion of (m+`)V2

into mV2⊕ `V3 induces an algebra epimorphism ρ : F[mV2⊕ `V3] → F[(m+ `)V2].
We will use this map in conjunction with Theorem 2.1 to describe the coinvariants
of mV2 ⊕ `V3. Choose a basis

{Xi, Yi | i = 1, . . . ,m} ∪ {Xi, Yi, Zi | i = m + 1, . . . ,m + `}

for (mV2⊕`V3)
∗ with ∆(Zi) = Yi, ∆(Yi) = Xi and ∆(Xi) = 0. For i = 1, . . . ,m+`

and i < j, define uij := XjYi−XiYj and, for i = m+1, . . . ,m+` and i < j, define
di := Y 2

i −Xi(Yi +2Zi) and wij := ZiXj −YiYj +XiZj +XiYj. A straightforward
calculation verifies that uij, di and wij are all elements of F[mV2 ⊕ `V3]

Z/p. Let I
be the ideal in F[mV2 ⊕ `V3] generated by

{Xi, N(Yi) | i = 1, . . . m} ∪ {Xi, di, wij, N(Zi) | i = m + 1, . . . ,m + l; i < j}.

and define

Λ := {Xi, Y
p
i | i = 1, . . . ,m} ∪ {Xi, YiYj, Z

p
i | i = m + 1, . . . ,m + `; i ≤ j}.

Lemma 2.2. The set Λ is a reduced universal Gröbner basis for I.

Proof. It follows from Section 6 that N(Zi) ≡(Xi) Zp
i −ZiY

p−1
i . Using this, along

with the expansion of N(Yi) given above and the definition of di and wij, it is
clear that Λ generates I. Since Λ is a set of monomials and a minimal generating
set for I, it is a reduced universal Gröbner basis for I. �

Lemma 2.3. If β divides (Y1 · · ·YmZm+1 · · ·Zm+`)
p−1, then Tr(β) ∈ I.

Proof. Write β = Y F ZE where Y F :=
∏m

i=1 Y fi

i with F := (f1, . . . , fm) ∈ Zm

and ZE :=
∏m+`

i=m+1 Zei
i with E := (em+1, . . . , em+`) ∈ Z`. Clearly ∆(Yi) ≡I 0.

Therefore ∆(β) = Y F ∆(ZE) and Tr(β) = ∆p−1(β) = Y F Tr(ZE). Thus it is
sufficient to show that Tr(ZE) ∈ I. Recall that σc(Zi) = Zi + cYi +

(
c
2

)
Xi ≡I

Zi + cYi. Thus

Tr(ZE) =
∑
c∈Fp

σc(ZE)

≡I

∑
c∈Fp

m+∏̀
i=m+1

(Zi + cYi)
ei .

Using the fact that, for i = m + 1, . . . ,m + `, we have Y 2
i ∈ I, gives

Tr(ZE) ≡I

∑
c∈Fp

m+∏̀
i=m+1

(
Zei

i + eicYiZ
ei−1
i

)
.
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Furthermore, for i = m + 1, . . . ,m + ` and i < j, we have YiYj ∈ I. Thus

Tr(ZE) ≡I

∑
c∈Fp

(
ZE + c

m+∑̀
i=m+1

eiYi
ZE

Zi

)

≡I ZE

∑
c∈Fp

1

+

∑
c∈Fp

c

( m+∑̀
i=m+1

eiYi
ZE

Zi

)
.

Therefore, using using the fact that
∑

c∈Fp
ct = 0 unless p − 1 divides t (see, for

example,[7, 9.4]), Tr(ZE) ≡I 0, as required. �

The algebra epimorphism ρ : F[mV2 ⊕ `V3] → F[(m + `)V2], introduced above,
is a morphism of FZ/p – modules and is determined by ρ(Zi) = Yi, ρ(Yi) = Xi

and ρ(Xi) = 0 for i > m and by ρ(Yi) = Yi and ρ(Xi) = Xi for i ≤ m. The kernel
of ρ is generated by {Xi | i = m + 1, . . . ,m + `} and is contained in I. Since ρ
is surjective, the image of I under ρ is an ideal in F[(m + `)V2]. Intersecting this
ideal with the ring of invariants gives the ideal J := ρ(I) ∩ F[(m + `)V2]

Z/p.

Lemma 2.4. The natural projection from F[(m + `)V2]
Z/p to F[(m + `)V2]

Z/p/J
induces an epimorphism of vector spaces from

Span ({Xi | i = m + 1, . . . ,m + `} ∪ {uij | i = 1, . . . ,m + `; i < j and m < j})
to F[(m + `)V2]

Z/p/J .

Proof. Recall that F[(m + `)V2]
Z/p is generated by

{Xi, N(Yi), uij | i = 1, . . . ,m + `; i < j} ∪ {Tr(α) | α divides (Y1 · · ·Ym+`)
p−1}.

For each monomial α dividing (Y1 · · ·Ym+`)
p−1, there exists a monomial β dividing

(Y1 · · ·YmZm+1 · · ·Zm+`)
p−1 with ρ(β) = α. By Lemma 2.3, Tr(β) ∈ I. Therefore

Tr(α) = ρ(Tr(β)) ∈ J . For i ≤ m, ρ(Yi) = Yi. Thus N(Yi) = ρ (N (Yi)) ∈ J . For
i > m, ρ(Zi) = Yi giving N(Yi) = ρ(N(Zi)) ∈ J . For i ≤ m, Xi = ρ(Xi) ∈ J .
For i > m, X2

i = ρ(di) ∈ J and XiXj = −ρ(wij) ∈ J . For i < j ≤ m,
uij = ρ(uij) ∈ J . We have shown that, for all i and j, X2

i and XiXj lie in
ρ(I). Therefore uijurs = XjXsYiYr − XiXsYjYr − XjXrYiYs + XiXrYjYs and
Xiurs = XiXsYr −XiXrYs lie in ρ(I). Since these elements are invariant, they lie
in J . �

Theorem 2.5. The ideal I coincides with the Hilbert ideal of mV2 ⊕ `V3.

Proof. By definition, I ⊆ H. Thus it is sufficient to show that every invariant
lies in I. Suppose that f is a homogeneous element of F[mV2 ⊕ `V3]

Z/p with

deg(f) > 2. Then using Lemma 2.4, ρ(f) ∈ J ⊆ ρ(I). Thus there exist f̃ ∈ I

with ρ(f̃) = ρ(f). Therefore f̃ − f ∈ ker(ρ) ⊆ I. Thus f ∈ I as required.

Every homogeneous invariant of degree 1 is a linear combination of the Xi and
hence lies in I. Therefore we need only verify that all homogeneous invariants of
degree 2 lie in I. To do this we grade F[mV2 ⊕ `V3] over Zm+` = ⊕m+`

i=1 biZ by
defining the multidegree of Xi, Yi and Zi to be bi. The group action preserves
multidegree. Therefore we may restrict to invariants which are homogeneous with
respect to multidegree. Since the total degree is 2, the possible multidegrees are
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2bi and bi + bj. For multidegree 2bi, we use the descriptions of F[V2]
Z/p and

F[V3]
Z/p from [10]. For multidegree bi + bj, we use the description of F[2V2]

Z/p

from [6], the description of F[2V3]
Z/p from [5] and the description of F[V2⊕V3]

Z/p

from [21]. In all cases, the only generators in degrees less than or equal to 2 are
Xi, di, uij and wij. All of these invariants appear in I. �

Corollary 2.6. A reduced universal Gröbner basis for the Hilbert ideal of
mV2 ⊕ `V3 is given by

{Xi, Y
p
i | i = 1, . . . ,m} ∪ {Xi, YiYj, Z

p
i | i = m + 1, . . . ,m + `; i ≤ j},

the corresponding monomial basis for F[mV2 ⊕ `V3]Z/p is given by the monomial
factors of yj(y1 · · · ymzm+1 · · · zm+`)

p−1 for j = m + 1, . . . ,m + `, and the Hilbert

series of F[mV2⊕ `V3]Z/p is (`t + 1) (1 + t + · · ·+ tp−1)
m+`

. Furthermore, both as
F-algebras and FZ/p – modules, F[mV2 ⊕ `V3]Z/p

∼= F[mV2]Z/p ⊗ F[`V3]Z/p.

Remark 2.7. We have shown that the Hilbert ideal of mV2 ⊕ `V3 is generated by
homogeneous elements of degree less than or equal to p, the order of the group,
confirming the conjecture of Derksen & Kemper [9, 3.8.6(b)] in this case. Theo-
rem 3.2 and Theorem 4.1 confirm the conjecture for V4 and V5 respectively.

Corollary 2.8. If m + ` > 2, then

(m + `)(p− 1) ≤ β(mV2 ⊕ `V3) ≤ (m + `)(p− 1) + 1.

Proof. From [21, 4.2], we know that the Noether number of a representation
is greater than or equal to the Noether number of a subrepresentation. Thus
β ((m + `) V2) ≤ β (mV2 ⊕ `V3). From [6] or [17], for m + ` > 2, the Noether
number of (m + `)V2 is (m + `)(p− 1). This gives the first inequality. To see the
second inequality, first recall that using [14, 2.12], F[mV2 ⊕ `V3]

Z/p is generated
by elements in degree p, elements from the image of the transfer, and elements in
degree less than or equal to (m+ `)(p− 2)− `. The top degree of the coinvariants
gives an upper bound on the degrees of generators coming form the image of the
transfer. Thus td

(
F[mV2 ⊕ `V3]Z/p

)
= (m + `)(p − 1) + 1 is an upper bound on

the degrees of the generators of F[mV2 ⊕ `V3]
Z/p. �

Remark 2.9. The generating sets for F[V2⊕V3]
Z/p and F[2V3]

Z/p in [21] and [5]
respectively, include elements of degree 2(p − 1) + 1. However, these generating
sets are not proven to be minimal. MAGMA [3] calculations for the primes 3,
5 and 7 do give 2(p − 1) + 1 as the Noether number for these representations.
Further MAGMA calculations show that 2V2 ⊕ V3, V2 ⊕ 2V3 and 3V3 at p = 3, all
have Noether number 7.

In order to describe the FZ/p – module structure of F[mV2 ⊕ `V3]Z/p, we use
the grading introduced in the proof of Theorem 2.5. Since H is generated by
elements which are homogeneous with respect to multidegree, the grading on
F[mV2 ⊕ `V3] induces a grading on F[mV2 ⊕ `V3]Z/p. The group action preserves
the multidegree. Therefore the homogeneous components give an FZ/p – module
decomposition. Furthermore, since F[mV2 ⊕ `V3]Z/p

∼= F[mV2]Z/p ⊗ F[`V3]Z/p

and F[mV2]Z/p is a trivial FZ/p – module, it is sufficient to describe the module
structure of F[`V3]Z/p. Using the notation from the proof of Lemma 2.3 we can
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describe the basis elements for F[`V3]Z/p as yε
jz

E where j > m, ε ∈ {0, 1} and

E = (e1, . . . , e`) ∈ Z` with 0 ≤ ei ≤ p− 1. It is clear that ∆(yjz
E) = 0 and

∆(zE) =
∑

j∈{m+i|ei 6=0}

yj
zE

zj

.

Sorting the basis elements into their multidegree components gives the following.

Theorem 2.10. In top degree, `(p − 1) + 1, the ` multidegree components of
F[`V3]Z/p are one dimensional with each component given by yjz

(p−1,p−1,...,p−1)F.
For total degree greater than zero and less than `(p − 1) + 1, each multidegree
component is given by the span of {zE, yjz

E/zj | ej−m 6= 0} and is isomorphic to
V2 ⊕ (k − 1)V1 where k is the number of non-zero entries in E.

3. The coinvariants of V4

In this section we use the generating set for F[V4]
Z/p given in [20] to con-

struct a reduced universal Gröbner basis for the Hilbert ideal. Choose a basis
{X1, X2, X3, X4} for V ∗

4 with ∆(Xi) = Xi−1 for i > 1 and ∆(X1) = 0. We use
the graded reverse lexicographic order with X1 < X2 < X3 < X4. We start with
a useful lemma.

Lemma 3.1. Suppose β = X i
2X

j
3 . Further suppose that α is a monomial with

α < β and deg(α) = deg(β). Then α lies in the ideal generated by {X1, X
i+1
2 }.

Proof. When comparing α and β using the graded reverse lexicographic order, we
first compare the exponents of X1 and then, if necessary, the exponents of X2. �

Theorem 3.2. A reduced universal Gröbner basis for the Hilbert ideal of V4

is given by {X1, X
2
2 , X2X

p−3
3 , Xp−1

3 , Xp
4}, the corresponding monomial basis for

F[V4]Z/p is given by the monomial factors of xp−2
3 xp−1

4 and x2x
p−4
3 xp−1

4 , and the
Hilbert series of F[V4]Z/p is given by (1+2(t+t2+· · ·+tp−3)+tp−2)(1+t+· · ·+tp−1).

Proof. By [20, 4.1], the ring of invariants is generated by X1, X2
2 −X1(X2 +2X3),

X3
2 + X2

1 (3X4 − X2) − 3X1X2X3, g = X2
2X

2
3 + · · · , N(X4) and the following

families:
(i) Tr(X i

3X
p−1
4 ) for 0 ≤ i ≤ p− 2,

(ii) Tr(X i
3X

p−2
4 ) for 3 ≤ i ≤ p− 2,

(iii) Tr(Xj
4) for q ≤ j ≤ p− 2,

(iv) Tr(X2
3X

j
4) for 2l − 1 ≤ j ≤ p− 2.

where l = p−1
3

, q = 2l + 1 if p ≡ 1 modulo 3 and l = p+1
3

, q = 2l − 1 if p ≡ −1
modulo 3. In the following, we will determine the contribution of each generator
to the reduced Gröbner basis. We first note that the ideal generated by X1,
X2

2 −X1(X2 + 2X3), X3
2 + X2

1 (3X4 −X2)− 3X1X2X3 has reduced Gröbner basis
{X1, X

2
2}. Furthermore, by Lemma 3.1, all of the monomials appearing in g lie

in the ideal (X1, X
2
2 ).

The leading monomials of the elements in the transfer families above were com-
puted in [20]. Using these results, we compute the contributions to the Gröbner
basis of the second, third and fourth families.
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For the third family, using [20, 3.2], the leading monomials are LM(Tr(Xj
4)) =

Xp−1−j
2 X2j−p+1

3 for q ≤ j ≤ p−2. For j < p−2, the leading monomial is divisible
by X2

2 . For j = p − 2, the leading monomial is X2X
p−3
3 . Using Lemma 3.1 all

“non-leading” monomials are in the ideal (X1, X
2
2 ). Therefore the third family

contributes X2X
p−3
3 to the Gröbner basis.

For the second family of transfers, by [20, 3.4] we have LM(Tr(X i
3X

p−2
4 )) =

X2X
i+p−3
3 for 3 ≤ i ≤ p− 2. Thus each leading monomial is divisible by X2X

p−3
3

and, using Lemma 3.1, the non-leading monomials lie in (X1, X
2
2 ). Thus the

second family does not contribute to the Gröbner basis.

For the fourth family, by [20, 3.5], we have LM(Tr(X2
3X

j
4)) = Xp−1−j

2 X2j−p+3
3

for 2l−1 ≤ j ≤ p−2. For j < p−2, the leading monomial is divisible by X2
2 . For

j = p− 2 the leading monomial is divisible by X2X
p−3
3 . Again using Lemma 3.1,

all of the non-leading monomials lie in (X1, X
2
2 ). Therefore the fourth family does

not contribute to the Gröbner basis.

For the first family, by [20, 3.3] and [20, 3.2], we have LM(Tr(X i
3X

p−1
4 ) =

X i+p−1
3 for 0 ≤ i ≤ p− 2. Thus the leading monomials are all divisible by Xp−1

3 .
We claim that the non-leading monomials appearing in Tr(X i

3X
p−1
4 ) all lie in

(X1, X
2
2 , X2X

p−3
3 ). Therefore, proving the claim will show that the first family

contributes Xp−1
3 to the Gröbner basis. To prove the claim, we first observe that

σj(X i
3X

p−1
4 ) =

(
X3 + jX2 +

(
j

2

)
X1

)i(
X4 + jX3 +

(
j

2

)
X2 +

(
j

3

)
X1

)p−1

.

Using the fact that
∑

j∈Fp
jt = 0 unless p− 1 divides t, the only term not divis-

ible by X1 or X2 which “survives” the summation is jp−1Xp+i−1
3 . Clearly terms

divisible by X1 or X2
2 lie in the ideal (X1, X

2
2 , X2X

p−3
3 ). Thus we may restrict

our attention to monomials of the form X2X
p−2+i−a
3 Xa

4 . If p− 2 + i− a ≥ p− 3,
this monomial lies in (X1, X

2
2 , X2X

p−3
3 ). Therefore, it is sufficient to show that if

a > i+1, the term with monomial X2X
p−2+i−a
3 Xa

4 does not survive the summation.
The coefficient of X2X

p−2+i−a
3 Xa

4 in σj(Xp−1
4 ) is (p−1)jp−2−a

(
j
2

)(
p−2
a

)
+ijp−a

(
p−1
a

)
.

This coefficient has degree p − a as a polynomial in j. Since i + 1 < a, we have
p− a < p− (i + 1) = (p− 1)− i. Therefore p− a < p− 1 and the term does not
survive the summation, proving the claim.

The only remaining invariant is N(X4). Working modulo (X1), the variable
X4 generates an FZ/p – module isomorphic to V3. Thus we may use the results
of Section 6. Write N(X4) ≡(X1,X2

2 ) A0 + A1X2 for A0, A1 ∈ F[X3, X4]. By

Theorem 6.1, we may take A0 = Xp
4−X4X

p−1
3 and A1 = ξ11X4X

p−2
3 +ξ12X

2
4X

p−3
3 .

Thus X2A1 ∈ (X2X
p−3
3 ) and N(X4) − Xp

4 ∈ (X1, X
2
2 , X2X

p−3
3 , Xp−1

3 ). Therefore
N(X4) contributes Xp

4 to the Gröbner basis.

We have shown that {X1, X
2
2 , X2X

p−3
3 , Xp−1

3 , Xp
4} generates the Hilbert ideal.

Furthermore, it is clear that this is a minimal generating set of monomials and
is, therefore, a reduced universal Gröbner basis. The corresponding monomial
basis consists of all monomials not divisible by any of the generators and the
description of the Hilbert series comes from the monomial basis. �
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Remark 3.3. We observe that the top degree of F[V4]Z/p is 2p − 3. It is clear
that 2p − 3 is an upper bound for the Noether number of V4. Using the theory
of SAGBI bases it is possible to prove that that Tr(Xp−2

3 Xp−1
4 ) is indecomposable

and, therefore, β(V4) = 2p − 3. We give a sketch of the proof. For the required
background see [18] or [27, Ch. 11].

Let C denote the generating set given above and define D = C\{Tr(Xp−2
3 Xp−1

4 )}.
Note that the elements of D all have degree less than 2p − 3. Recall that C is a
SAGBI basis for F[V4]

Z/p. Therefore D is “SAGBI to degree 2p−4”. The leading
monomial of Tr(Xp−2

3 Xp−1
4 ) is X2p−3

3 . The powers of X3 appearing in LM(D)
are Xp−1

3 , Xp
3 , . . . , X2p−4

3 . Therefore the leading monomial of Tr(Xp−2
3 Xp−1

4 ) does
not factor over LM(D) and D is not a SAGBI basis for F[V4]

Z/p. Thus either
Tr(Xp−2

3 Xp−1
4 ) is indecomposable or a non-trivial tête-a-tête from D subducts to

an invariant with leading monomial X2p−3
3 . However, the only monomials in

degree 2p − 3 which are greater than X2p−3
3 are of the form X2p−3−a

3 Xa
4 and the

only element of D whose lead monomial is divisible by X4 is N(X4). Therefore
the only tête-a-têtes from D which could subduct to an invariant with leading
monomial X2p−3

3 are of the form f1N(X4)− f2N(X4). However, D is “SAGBI to
degree 2p−4”. Therefore the tête-a-tête f1−f2 subducts to zero. Thus f1N(X4)−
f2N(X4) subducts to zero. Since no tête-a-tête from D can subduct to an invariant
with leading monomial X2p−3

3 , Tr(Xp−2
3 Xp−1

4 ) is indecomposable.

4. The coinvariants of V5

The generating set for F[V5]
Z/p given in [20] can be used to construct a reduced

Gröbner basis for the Hilbert ideal. Choose a basis {X1, X2, X3, X4, X5} for V ∗
5

with ∆(Xi) = Xi−1 for i > 1 and ∆(X1) = 0. We use the graded reverse
lexicographic order with X1 < X2 < X3 < X4 < X5.

Theorem 4.1. For p > 5, a reduced Gröbner basis for the Hilbert ideal of V5 is
given by

{X1, X
2
2 , X

2
3 − 2X4X2 −X3X2, X4X3X2, X

p−4
4 X2, X

p−3
4 X3, X

p−1
4 , Xp

5},
the corresponding monomial basis for F[V5]Z/p is given by the monomial factors

of xp−2
4 xp−1

5 , x3x
p−4
4 xp−1

5 , x2x
p−5
4 xp−1

5 , and x2x3x
p−1
5 , and the Hilbert series of

F[V4]Z/p is given by (1+3t+4t2+3(t3+ · · ·+tp−4)+2tp−3+tp−2)(1+t+ · · ·+tp−1).

Remark 4.2. For p = 5, a MAGMA [3] calculation shows that a reduced Gröbner
basis for the Hilbert ideal of V5 is given by

{X1, X
2
2 , X

2
3 − 2X4X2 −X3X2, X2X3X4, X

2
4X3 + 2X2

4X2, X
3
4X2, X

4
4 , X

5
5},

the corresponding monomial basis for F[V5]Z/5 is given by the monomial factors
of x3

4x
4
5, x3x4x

4
5, x2x

2
4x

4
5, and x2x3x

4
5 and the Hilbert series of F[V5]Z/p is given by

(1 + 3t + 4t2 + 2t3)(1 + t + t2 + t3 + t4).

We give an outline of the proof of Theorem 4.1 and refer the reader to Section 5
of [19] for the details. The generating set given in [20, 5.1] consists of a list of prime
independent rational invariants, a list of transfers, and N(X5). The first four
rational invariants are X1, X2

2−X1(X2+2X3), X2
3−X2(X3+2X4)+X1(X3+3X4+

2X5) and X3
2 + X2

1 (3X4 −X2) − 3X1X2X3. These invariants contribute X1, X2
2
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and X2
3−X2(X3+2X4) to the reduced Gröbner basis. The fifth rational invariant,

denoted by inv(X3
3 ) in [20], can be computed using the algorithm given in the

proof of [20, 2.3]. Working modulo the ideal generated by X1, this computation
gives inv(X3

3 ) ≡(X1) 2X3
3 − 6X2X3X4 +6X2

2X5− 2X2
2X3− 3X2X

2
3 − 6X2

2X4. This
invariant contributes X2X3X4 to the reduced Gröbner basis. The sixth rational
invariant is in fact decomposable and was required in [20, 5.1] in order for the
generating set to be a SAGBI basis. Therefore, denoting the ideal generated by
the rational invariants by R, we have

R = (X1, X
2
2 , X

2
3 −X2(X3 + 2X4), X2X3X4)F[V ].

We next consider the contribution of the transfers to the Hilbert ideal. The
generating set in [20, 5.1] includes one exceptional transfer, Tr(X2X3X

(p−1)/2
5 ),

and the following five families:
(i) Tr(X i

4X
p−1
5 ) and Tr(X2X

i
4X

p−1
5 ) for 0 ≤ i ≤ p− 2,

(ii) Tr(X i
4X

p−2
5 ) and Tr(X2X

i
4X

p−2
5 ) for 3 ≤ i ≤ p− 2,

(iii) Tr(X2
4X

i
5) and Tr(X2X

2
4X

i
5) for (p− 1)/2 ≤ i ≤ p− 2,

(iv) Tr(X i
5) for (p + 1)/2 ≤ i ≤ p− 1,

(v) Tr(X2X
i
5) for (p− 1)/2 ≤ i ≤ p− 2.

The only contribution to the Hilbert ideal comes from the fourth family. Define
I := R + (Tr(X i

5) | i = (p − 3)/2, . . . , p − 1). Careful term analysis can be used
to show that {X1, X

2
2 , X

2
3 − 2X4X2 −X3X2, X4X3X2, X

p−4
4 X2, X

p−3
4 X3, X

p−1
4 } is

a generating set for I (see pages 14–16 of [19]).

The final element remaining in the generating set is N(X5). The leading mono-
mial of N(X5) is clearly Xp

5 . Choose polynomials B0 and B1 in F[X3, X4, X5] such
that N(X5) ≡(X1,X2

2 ) B0 + X2B1. Working modulo (X1, X2), the variable X5 gen-

erates an FZ/p – module isomorphic to V3. Thus the results of Section 6 may be
applied to compute B0 giving B0 ≡I Xp

5 . A careful expansion and simplification
gives X2B1 ∈ I, completing the proof of Theorem 4.1 (see pages 17 and 18 of
[19]).

Remark 4.3. We observe that the top degree of F[V5]Z/p is 2p−3. It is clear that
2p−3 is an upper bound for the Noether number of V4. It follows from Remark 3.3
and [21, 4.2], that the Noether number of V5 is 2p− 3.

5. The module structure for the coinvariants of V4 and V5

The bases constructed in Sections 3 and 4 can be used to determine the FZ/p
– module structure of the coinvariants of V4 and V5. Note that, since the Hilbert
ideal is homogeneous, the coinvariants are a graded ring. Furthermore, the group
action preserves degrees. Thus the homogeneous components are FZ/p – module
summands. We will refine this decomposition by describing each homogeneous
component as a direct sum of indecomposable modules.

Recall that the socle of a module is the sum of its irreducible submodules.
For an FZ/p – module, this is the span of the fixed points. A non-zero cyclic
FZ/p – module has a one dimensional socle and, since all indecomposable FZ/p
– modules are cyclic, the dimension of the socle is the number of summands.
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Lemma 5.1. Suppose that W1, W2, . . . Wm are cyclic submodules of W and that ωi

spans the socle of Wi. If {ω1, ω2, . . . , ωm} is linearly independent and dim(W ) =
dim(W1) + dim(W2) + · · ·+ dim(Wm), then W = W1 ⊕W2 ⊕ · · · ⊕Wm.

Proof. For a homomorphism of modules, the socle of the kernel is the kernel
of the restriction of the homomorphism to the socle. Thus a homomorphism
which is injective on its socle is injective. Apply this to the homomorphism from
the external direct sum of the Wi to their internal sum. Since {ω1, ω2, . . . , ωm}
is linearly independent, this map is injective on its socle and hence injective.
Therefore the internal sum of the Wi is direct and W1 ⊕ W2 ⊕ · · · ⊕ Wm is a
subspace of W . However, since dim(W ) = dim(W1) + dim(W2) + · · · dim(Wm),
the subspace coincides with W . �

We define the weight of a monomial in F[Vn] by wt(Xe1
1 · · ·Xen

n ) = e1 + 2e2 +
· · ·+nen. If f is a linear combination of monomials of the same weight, we will refer
to f as isobaric and we will take the weight of f to be the common weight of the
monomials appearing in f . Note that if β is a monomial appearing in ∆(f) with
f isobaric, then wt(β) < wt(f). Thus, for a fixed positive integer m, the span of
the monomials of weight less than m forms an FZ/p – submodule. Allowing m to
vary over the positive integers gives a weight filtration of the polynomial ring. For
V4 and V5 we fix a basis for the coinvariants given by images of monomials. For
V4, the basis is given in Theorem 3.2 and for V5 the basis is given by Theorem 4.1.
We define the weight of the basis elements to be the weight of the corresponding
monomial and, as in the polynomial ring, a linear combination of basis elements
of a common weight is isobaric with a well defined weight.

Lemma 5.2. If f is an isobaric coinvariant of weight m, then ∆(f) is in the
span of the basis elements of weight less than m.

Proof. Since ∆ is linear it is sufficient to consider ∆(β) for a basis element β
of weight m. To compute ∆(β), we lift to the corresponding monomial in the
polynomial ring, say β, compute ∆(β), and then project back to coinvariants.
The terms appearing in ∆(β) all have weight less than m. For V4, the reduced
Gröbner basis is a set of monomials. Thus each term appearing in ∆(β) either
projects to zero or projects to a term of weight less than m. For V5, there are seven
monomial relations and one non-isobaric relation given by X2

3 − 2X2X4 −X2X3.
This last relation is used to give a rewriting rule which replaces the product x3 ·x3

with 2x2x4+x2x3. Thus an element of weight 6 in the polynomial ring is identified
with a sum of two terms, one of weight 6 and one of weight 5, in the coinvariants.
Thus each term appearing in ∆(β) either projects to zero or projects to a linear
combination of terms with weight less than m. �

As a consequence of Lemma 5.2, for each positive integer m, the span of the
basis elements of weight less than m form an FZ/p – submodule. Collectively
these submodules give a weight filtration of the coinvariants. Suppose β is a
basis element of weight m. Define δ(β) to be the sum of terms of weight m − 1
appearing in ∆(β) and extend δ to a linear map on the coinvariants. We can
think of δ as the linear map induced by ∆ on the associated graded module of
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the weight filtration. In the following we use F[V ]dZ/p to denote the homogeneous
component of degree d.

Lemma 5.3. Suppose n is 4 or 5, and m is the minimum weight occurring in
F[Vn]dZ/p. For an isobaric coinvariant f of weight ` and a positive integer k, any

term appearing in δk(f) − ∆k(f) has weight less than ` − k. In particular, if
` = m + k, then δk(f) = ∆k(f). Furthermore, if ` = m, then f is invariant.

Proof. The proof is by induction on k. For k = 1, the result is essentially the
definition of δ. Suppose the result is true for k > 1. Then δk(f) = ∆k(f)+h where
h is a sum of terms of weight less than `−k. Thus δ(δk(f)) consists of the sum of
the terms of weight `−k−1 in ∆(∆k(f))+∆(h). However, from Lemma 5.2, all of
terms appearing in ∆(h) have weight less than `−k−1. Therefore δk+1(f) consists
of the sum of the terms of weight `− (k + 1) appearing in ∆k+1(f), as required.
If ` − k = m, there are no terms of weight less than ` − k so δk(f) = ∆k(f). If
` = m, the fact that f is invariant follows from Lemma 5.2. �

Theorem 5.4. F[V4]
0
Z/p

∼= V1 and F[V4]
1
Z/p

∼= V3.

For d = 2, . . . , p− 3,

F[V4]
d
Z/p = xd

4FZ/p⊕
(

x2
3x

d−2
4 − d + 2

2
x2x

d−1
4

)
FZ/p ∼= Vd+2 ⊕ Vd−1

with
(
F[V4]

d
Z/p

)Z/p

= Span{xd
3 − dx2x

d−2
3 x4, x2x

d−1
3 }.

For d = p− 2, p− 1,

F[V4]
d
Z/p = xd

4FZ/p⊕ x2x
d−1
4 FZ/p ∼= Vp−1 ⊕ Vp−3

with
(
F[V4]

d
Z/p

)Z/p

= Span{xp−2
3 x

d−(p−2)
4 , x2x

p−4
3 x

d−(p−3)
4 }.

For d = p, . . . , 2p− 4,

F[V4]
d
Z/p = x

d−(p−1)
3 xp−1

4 FZ/p⊕ x2x
d−p
3 xp−1

4 FZ/p ∼= V2p−2−d ⊕ V2p−3−d

with
(
F[V4]

d
Z/p

)Z/p

= Span{xp−2
3 x

d−(p−2)
4 , x2x

p−4
3 x

d−(p−3)
4 }.

F[V4]
2p−3
Z/p = Span(xp−2

3 xp−1
4 ) ∼= V1.

Theorem 5.5. Suppose p > 5.

F[V5]
0
Z/p

∼= V1, F[V5]
1
Z/p

∼= V4 and F[V5]
2
Z/p

∼= V6 ⊕ V2.

For p > 11: F[V5]
3
Z/p

∼= V6 ⊕ V4 ⊕ V1 and F[V5]
4
Z/p

∼= V7 ⊕ V4 ⊕ V3.

For d = 5, . . . , p− 4: if 3d− 1 6≡(p) 0 and 3d− 2 6≡(p) 0 then

F[V5]
d
Z/p

∼= Vd+3 ⊕ Vd ⊕ Vd−2 ⊕ V1;

if 3d− 1 6≡(p) 0 and 3d− 2 ≡(p) 0 then

F[V5]
d
Z/p

∼= Vd+3 ⊕ 2Vd−1 ⊕ V1;

if 3d− 1 ≡(p) 0 then F[V5]
d
Z/p

∼= Vd+2 ⊕ Vd+1 ⊕ Vd−2 ⊕ V1.
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For d = p− 3 and p > 11: F[V5]
d
Z/p

∼= Vp−1 ⊕ Vp−3 ⊕ Vp−5 ⊕ V1.

For d = p− 2, p− 1: F[V5]
d
Z/p

∼= Vp−1 ⊕ Vp−3 ⊕ Vp−4 ⊕ V1.

For d = p, p + 1: F[V5]
d
Z/p

∼= V2p−d−2 ⊕ V2p−d−3 ⊕ V2p−d−4 ⊕ V1.

For d = p + 2, . . . , 2p− 5: F[V5]
d
Z/p

∼= V2p−d−2 ⊕ V2p−d−3 ⊕ V2p−d−4.

F[V5]
2p−4
Z/p

∼= V2 ⊕ V1 and F[V5]
2p−3
Z/p

∼= V1.

Remark 5.6. MAGMA [3] calculations give the following:

For p = 5, the homogeneous component of F[V5]Z/5, in increasing degree, are
isomorphic to V1, V4, 2V4, 2V4 ⊕ 2V1, 2V4 ⊕ 2V1, V3 ⊕ V4 ⊕ 2V1, V4 ⊕ 2V1, 2V1;

For p = 7: F[V5]
3
Z/7

∼= V6 ⊕ V3 ⊕ V2 and F[V5]
4
Z/7

∼= V6 ⊕ V4 ⊕ V3;

For p = 11: F[V5]
3
Z/11

∼= V6 ⊕ V4 ⊕ V1, F[V5]
4
Z/11

∼= V6 ⊕ V5 ⊕ V3 and F[V5]
8
Z/11

∼=
V10 ⊕ 2V7 ⊕ V1.

The proofs of Theorems 5.4 and 5.5 involve calculating δk(β) for various coin-
variants β, and using the results to determine the socles and dimensions of the
corresponding cyclic modules. Lemma 5.1 is then used to identity the decompo-
sition. The details can be found in Section 6 of [19].

6. The expansion of N(Z)

In this section we describe the expansion of the norm of an FZ/p – module
generator of V ∗

3 . This expansion is used in the proofs of Theorems 3.2 and 4.1.
Furthermore, although the result is somewhat technical, we believe it may be of
independent interest.

Choose a basis {X, Y, Z} for V ∗
3 with ∆(Z) = Y , ∆(Y ) = X and ∆(X) = 0.

Write N(Z) = A0 + A1X + · · ·+ ApX
p with each Ai ∈ F[Y, Z].

Lemma 6.1. A0 = Zp − ZY p−1, Ap = Ap−1 = 0 and

Ai =

{∑i+1
k=1 ξikZ

kY p−i−k for 1 ≤ i ≤ p−1
2

,∑p−i
k=1 ξikZ

kY p−i−k for p+1
2
≤ i ≤ p− 2,

where ξik = (−1)i

2i(p−k)

(
p−2k+1
i−k+1

)(
p−k
k−1

)
.

Proof. Let Si denote the set of subsets of Fp of size i and, for j ∈ Fp, let Si,j

denote the set of subsets of Fp of size i not containing j. For a set γ ⊆ Fp, let Sb,γ

denote the set of subsets of Fp of size b that do not contain any element from the
set γ and for α ⊆ Fp, let σk(α) denote the kth elementary symmetric polynomial
in the elements of α. For convenience, we set σ0(α) = 1 and to simplify notation
we will denote σi(α) by π(α) for α ∈ Si. For j ≤ k, define functions bk,j : Fp → Fp

by

bk,j(t) :=
∑

α∈Sk−1,t

tπ(α)σj(α ∪ {t})

and set dk,j :=
∑

α∈Sk
π(α)σj(α). Note that d0,0 = 1.
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Let Ab,c denote the coefficient of XcY bZp−c−b in N(Z). Recall that σm(Z) =
Z + mY +

(
m
2

)
X. By identifying the terms in

∏
m∈Fp

σm(Z) which contribute to

the coefficient of XcY bZp−c−b we see that

Ab,c =
∑

{i1,...,ic}∈Sc

∑
{j1,...jb}∈Sb,{i1,...,ic}

(
i1
2

)(
i2
2

)
· · ·
(

ic
2

)
j1 · · · jb

=
1

2c

∑
γ∈Sc, α∈Sb,γ

π(α)
∏
i∈γ

(i2 − i).

Expanding gives

∏
i∈γ

(i2 − i) =
∑
β⊆γ

(−1)|γ\β|π(β)π(γ) = π(γ)
c∑

`=0

(−1)c−lσ`(γ).

Substituting this into the previous expression gives

Ab,c =
1

2c

∑
γ∈Sc, α∈Sb,γ

π(α)π(γ)
c∑

`=0

(−1)c−lσ`(γ)

=
1

2c

c∑
`=0

(−1)c−`

 ∑
γ∈Sc, α∈Sb,γ

σ`(γ)π(α)π(γ)

 .

Using Lemma 2.7 of [19] gives

Ab,c =
1

2c

c∑
`=0

(−1)c−`

(
b + c− `

b

)
db+c,`.

From [19, Lemma 2.5], dk,j = (−1)k

k

(
k
j

)
if k+j = p−1. From [19, Lemmas 2.5–2.7],

dk,j = 0 if 1 ≤ k + j < 2p − 2 and k + j 6= p − 1. The polynomial Ai is clearly
determined by the coefficients Ab,i, completing the proof of the lemma. �
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