COINVARIANTS FOR MODULAR REPRESENTATIONS OF
CYCLIC GROUPS OF PRIME ORDER

MUFIT SEZER AND R. JAMES SHANK

ABSTRACT. We consider the ring of coinvariants for modular representations
of cyclic groups of prime order. For all cases for which explicit generators
for the ring of invariants are known, we give a reduced Grébner basis for the
Hilbert ideal and the corresponding monomial basis for the coinvariants. We
also describe the decomposition of the coinvariants as a module over the group
ring. For one family of representations, we are able to describe the coinvari-
ants despite the fact that an explicit generating set for the invariants is not
known. In all cases our results confirm the conjecture of Harm Derksen and
Gregor Kemper on degree bounds for generators of the Hilbert ideal. As an
incidental result, we identify the coefficients of the monomials appearing in the
orbit product of a terminal variable for the three dimensional indecomposable
representation.

1. INTRODUCTION

Let V denote a finite dimensional representation of a finite group G over a field
F. If the characteristic of F divides the order of (G, then V in called a modular
representation. Choose a basis { X7, ..., X, } for the dual vector space V*. The
action of G on V induces an action on V* which extends to an action by algebra
automorphisms on the symmetric algebra F[V] := S(V*) = F[X},...,X,]. The
ring of wnwvariants,

FIV®:={f €F[V]| g(f) = f, Vg € G},

is a finitely generated subring of F[V]. The Noether number, 3(V'), is defined to
be the least integer d such that F[V]% is generated by homogeneous elements of
degree less than or equal to d. The Hilbert ideal, which we denote by H, is the
ideal in F[V] generated by the homogeneous invariants of positive degree and the
ring of cotnvariants is the quotient

F[V]e := F[V]/H.

Since the Hilbert ideal is closed under the group action, the coinvariants are a
module over the group ring FG. Furthermore, since G is finite, F[V] and F[V]
have the same Krull dimension. Therefore F[V]¢ is a finite dimensional graded
F-algebra. Let td(F[V]q) denote the top degree of F[V]g, i.e., the largest degree
in which F[V] is non-zero. The ring of coinvariants has been studied extensively
for F a field of characteristic zero, particularly for V' a reflection representation.
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For reflection representations in characteristic zero, the coinvariants are isomor-
phic, as a module over the group ring, to the regular representation (see, for
example, [8], [4, Ch.V, §5.2] or [15, Ch. VII, §24-1]). Coinvariants in character-
istic zero continue to attract attention (see, for example, [11], [12] and [13] ).
Relatively little is known about coinvariants for modular representations. The
coinvariants for the natural modular representations of GL,(F,) and its p-Sylow
subgroup were considered by Campbell et al. in [7]. Larry Smith has investigated
modular coinvariants for two and three dimensional representations [23] and in
the case that the invariants are a polynomial algebra ([24], [25]). In this paper we
consider the coinvariants for the simplest modular representations, the modular
representations of cyclic groups of prime order.

For the remainder of the paper, let p denote a prime number, let Z/p denote the
cyclic group of order p and let F denote a field of characteristic p. A representation
of a cyclic group is determined by the Jordan canonical form of the image of the
generator. If n < p then the nxn matrix over F consisting of a single Jordan block
with eigenvalue 1, has order p and determines an indecomposable representation
of Z/p which we denote by V,, (For n > p, the order of the matrix is greater than
p.). Note that there are no non-trivial p® roots of unity in F. Thus 1 is the
only eigenvalue for the image of a generator of Z/p under a representation over
F. Therefore, up to isomorphism, the only indecomposable FZ/p — modules are
Vi, Va, ..., V,. We will denote the direct sum of m copies of V,, by mV,,.

Despite the simplicity of the representation theory, computing explicit gener-
ators for F[V]%/? is a relatively difficult problem. Minimal generating sets for
F[V])%/? and F[V3]%/P can be found in Dickson’s Madison Colloquium [10]. Fi-
nite SAGBI bases! for F[V,]%/? and F[V5]%/? can be found in [19]. The problem
of finding an explicit generating set for F[V,]%/? for n > 5 remains open. Even
when the invariants of the indecomposable summands are understood, it can be
difficult to construct generating sets for decomposable representations. Campbell
& Hughes, in [6], describe a generating set for F[mV3]%/? which is refined to a
minimal generating set in [21]. SAGBI bases are given for F[V, @ V3]%/P in [20]
and F[2V5]2/P in [5]. We refer to an FZ/p — module as reduced if it is a direct sum
of non-trivial modules. In summary, the only reduced representations for which
explicit generating sets for the ring of invariants are known are: mVs, V4 & Vs,
Vs, 2V3, Vi, V. For each of these representations we will give a reduced Grobner
basis for the Hilbert ideal and describe the corresponding monomial basis for the
coinvariants. We will also use the monomial basis to describe the FZ /p — module
structure of the coinvariants. By relating mV, @ €V3 to (m + £)Va, we are able
describe F[mV, @ (V5]z,, despite the fact that an explicit generating set is not
known for F[mV, @ (V5)%/P. Our results give (m+¢)(p—1) +1 as an upper bound
on the degrees of a minimal generating set for F[mV,@®/¢V5]%/?. Harm Derksen and
Gregor Kemper have conjectured that the order of the group is an upper bound
on the degrees of a minimal homogeneous generating set for the Hilbert ideal [9,
3.8.6 (b)]. For all of the examples considered here, our calculations confirm this
conjecture. We note that F[2V5]z/, was considered in [23].

LA SAGBI basis is a particularly nice generating set.
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Let o denote a generator of Z /p. In the group ring FZ/p, define A := 0 —1 and
Tr:=>"" o' The kernel of A acting on a module gives the invariant elements
in the module and Tr gives a homomorphism of F[V]%/? — modules from F[V] to
F[V]%/? known as the transfer. The image of the transfer is an ideal in the ring
of invariants. Observe that a basis for the coinvariants lifts to a set of generators
for F[V] as a module over F[V]%/?. Applying the transfer to a set of module
generators gives a generating set for the image of the transfer as an ideal. Thus a
basis for the coinvariants gives a generating set for the image of the transfer and
the largest degree of a basis element gives an upper bound on the degrees of a
generating set for the image of the transfer. It is a consequence of [20, 4.2 & 6.3]
and [19, 4.1] that for n > 3, td(F[V,]z/,) > B(Vi) > 2p — 3. The results in this
paper support the following strengthening of [20, Conjecture 6.1].

Conjecture 1.1. Forn > 3, td(F[V,]z/,) = 2p — 3.

For an element ¢ € V*, define the norm of ¢ to be the product over the orbit
of p. Thus, if ¢ € V*\ (V2P N(p) := [['_,0%(p). If we choose a basis
{X,Y,Z} for Vi sothat A(Z) =Y, A(Y) =X and A(X) = 0, then F[V5]%/? is
the hypersurface generated by X, Y2 — X(Y +2Z), N(Y) and N(Z). It is well
known that N(Y) = Y? — Y X?~!. However, the expansion of N(Z) is far more
complicated and, to our knowledge, does not appear in the literature. Knowledge
of certain coefficients in the expansion was necessary for some of our calculations.
In Section 2, we have worked out a complete description of the expansion.

We adopt the convention of using upper case letters to denote variables in F[V]
and the corresponding lower case letters to denote the images of the variables in
F[V]g. We use the term monomial to mean a product of variables. For an ideal
I, we write f =; hif f —h € I. As a general reference for the invariant theory of
finite groups see Benson [2], Derksen & Kemper [9], Neusel & Smith [16] or Smith
[22]. As a reference for Grobner bases we recommend Adams & Loustaunau [1]
or Sturmfels [26].

2. THE EXPANSION OF N(Z)

In this section we describe the expansion of the norm of an FZ/p — module
generator of V*. Choose a basis {X,Y, Z} for V;f with A(Z) =Y, AY) = X
and A(X) =0. Write N(Z) = Ag+ A1 X + --- + A, X? with each A, € F[Y, Z].

Theorem 2.1. Ay =2 — ZY?™ ', A, =A, 1 =0 and

4 - ZZH EpZFY Ptk for1 <i < pr
’ L& 2Ry itk forp;rl<2§p 2,

where &, = cu (pf%ﬂ) (pik)

21 (p—k) \ i—k+1 ) \k—1/"

The proof of Theorem 2.1 follows Lemma 2.8. We start with a number of
combinatorial lemmas concerning F),, the field with p elements. The first lemma
is well known.
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Lemma 2.2. For a positive integer {,

-1  ifp—1 divides ¢;
S -
teFp 0 if p— 1 does not divide (.

Proof. See, for example, [7, 9.4]. O

Let S; denote the set of subsets of F, of size 7 and, for j € F,, let S;; denote
the set of subsets of F, of size i not containing j. For a C F,, let o(a) denote
the k' elementary symmetric polynomial in the elements of . For convenience,
we set og(a) = 1 and to simplify notation we will denote o;(«) by 7(«) for a € S;.
For j < k, define functions b, : F, — F, by

brj(t) ==Y tr(a)o;(aU{t})
a€Sk_1,t

and set di; := ) g T(a)oj(a). Note that doo = 1.

Lemma 2.3. (i) > ;cp bi;(i) = kdy;.
(i1) dis = by (1) + Loes,, 7(@)05(0).

Proof. The first statement follows from the fact that each term of dj ; appears
k times in Zz‘er brj(i). The second statement follows from partitioning Sy into
subsets with ¢ and subsets without t. O

Lemma 2.4. For 1 <k < p, bpo(t) = (—=1)*t* and
0 ifk<p—1;
dpo =
-1 ifk=p-—1
Furthermore b, o(t) =t* —t and d,o = 0.

Proof. The value of dj o follows from the description of by ¢(t) using Lemmas 2.2
and 2.3. We prove the given formula for by o(¢) by induction on k. Since the
product over the empty set is 1, we have by o(t) = ¢t. Using Lemma 2.3, we see

that
Z ( dko—t Z —dko_bko()

Q€S+ a€Sk_1,t

Thus byy10(t) = tdro — thro(t). For k < p — 1, the induction hypothesis gives
dro = 0. Therefore byyi0(t) = —t((—1)*1t%) = (=1)k2k+1 as required. For
k=p—1,byo(t) =tdy_10—thy_10t = —t —t((=1)PtP~1) =¥ — ¢. a

Lemma 2.5. For 1 <k+j<p, with0<j <k, b ;(t) = (—1)F (’;)tkﬂ' and

0 ifk+j<p—1;
dk’j:
—D*0): ifk+i=p-1.
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Proof. The values of dj, ; follow from description of by ;(t) using Lemmas 2.2 and
2.3. We prove the formula for by ;(t) by induction on k + j. For j = 0 we
have byo(t) = (—1)*"t* by Lemma 2.4. Working directly from the definition,
b11(t) = t*. Thus the formula holds for k + j =1 and k + j = 2. Expanding the
second factor of each term gives

beig(t) = ) tr(@)oy(aU{t})

QGSht

= Z tw(a)taj_l(oz) + Z t?T(Ot)O'j(CY)

aGSkJ OéGSk’t

= Z m(a)oj_1(o) + 1 Z m(a)oj(a).

OéESkﬁt O[GSki

So by Lemma 2.3(ii), we have

bi1,5(t) = t*(drjo1 — brg-1(t)) + t(diy — b (t)).
For 2 < k+j < p—1, the induction hypothesis gives dj j_1 = di ; = 0. Therefore

k , k _
bk:-i-l,j(t) — t2(_1)k+2(j_1>tk+3—1_|_t(_1)k+2(j)tk+g

- aen((1) ) e ()

as desired. 0

Lemma 2.6. Suppose p—1 < k+j < 2p—2. Then by ;(t) = (—1)k*! (];)tk+j+f(t),
where f(t) is a polynomial of degree less or equal to k+j— (p—1), and dj,; = 0.

Proof. The values of dy, ; follow from the description of by ;(t) using Lemmas 2.2
and 2.3. The proof of the formula for by ;(¢) is by induction on &+ j. We use the
recursive relation from the proof of the previous lemma,

b1, (1) = t2(dpjo1 — biog—1(t)) + t(diy — bie(t)).
For 7 + k = p, this gives

R T e (PR M OP
- o (G () )

(el )

For j + k = p+ 1, the recursive relation gives

bis(t) = t?(—l)k“(’“ ‘1) (ﬁmﬂ'—?)+t<—1>k+1(’“‘,1)tk—1+j

J—1 J

- e (G (521 T

For p+1 < k+j < 2p — 2, the induction hypothesis gives di j—1 = di; = 0.
Therefore byi(t) = (=1 (5 )7 + p(t) + (=) () + q(t)),
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where p(t) is a polynomial of degree less than or equal to k+j —1— (p—1) and
q(t) is a polynomial of degree less than or equal to &+ j — (p — 1). Collecting
terms gives by ,(t) = (—1)FF2¢h it (kjl) + t%p(t) + tq(t). Since t*p(t) + tq(t) is
a polynomial of degree at most k + j + 1 — (p — 1), the result follows. O

For a set v C F,, let Sy, denote the set of subsets of F), of size b that do not
contain any element from the set 7. We note a counting lemma.

Lemma 2.7.
b+c—7
> artra) = ("7 s
YESe, OéESbw

Proof. Recall that dpic; = > pcs,, 7(0)0;(6). Each term in m(6)o;(6) is of the

form 7(7)7(0) for T a subset of € of size j. The term 7 (7)m(f) occurs (b+zfj)
times on the left hand side of the equation, once for each choice of « € 6\ 7. O

Let Ay, denote the coefficient of X¢Y*ZP=¢=t in N(Z).

Lemma 2.8. (i) Suppose 0 < ¢ < p — 1. If there exists an integer j satisfying
0<j<candb+c+j=p—1, then

(_1)b+2c— j (b+c—j) (bijc)

Ay, = c—j .
b 2¢(b+ c) ’

otherwise A . = 0.
(ZZ) Ap - Ap,1 == U.
(iii) Ag = ZP — ZYP~L.

Proof. Recall that ¢™(Z) = Z + mY + (7)X. By identifying the terms in
[1.ck, ™ (Z) which contribute to the coefficient of Xyt Zzp=c=b we see that

e xS () (S

{i150sic}€Se {J1,--Jb}ESD {iq,... 10}
1
. .9 .
= % g W(Q)H(Z —1).
YESe, OtESb,,y 1€y
Expanding gives

[[@ =9 = > (=)"Via(B)(y)

1€y BCy

= () (=1 a(7).

=0
Substituting this into the previous expression gives

A = o X w1 o)
YESc, a€Sy =0
= 23 Y atm@t)

£=0 YESc, a€Sh
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Using Lemma 2.7, gives

1 — (b+c—1
Ab,c = ? (_1)C K( b )db-‘rc,f-
=0

It follows from the definition of dj, ; that d,; = 0. Thusif b+ c = p, Ay, = 0.
Therefore we may assume ¢ < p — 1. Using Lemma 2.6 and Lemma 2.5, if
0 < c+b+j < 2p—2then dpy.; = O unless b+c+j = p—1. If c = p—1 and b+c < p,
then b = 0. In this case the above summation gives 4,1 = m,%l(dp,l,dep,l,p,l).
However, explicit calculation gives d,,—; ,—1 = 1 and Lemma 2.4 gives d,,_19 = —1.
Thus Ap,—1 = 0. For ¢ =0, we have Agy =1, A,_19 = —1 and all other A, = 0.
For 0 <c < p—1, we have 0 < b+ c+ ¢ < 2p — 2. Therefore, there is at most one
non-zero term in the above summation. If there exists j < cwithb+c+j=p—1
then, using Lemma 2.5, there is non-zero term and

(=) (b+c—3j
Ab,c - ¢ b db—l—c,j

_ (—;ch <b+z—j)(_l>b+c<b;c) bic

T

as required. If no solution exists, A, . = 0. U

To complete the proof of Theorem 2.1, we need to identify A, for 0 < ¢ < p—1.
Fork=p—b—cand Ay, #0, wehave k =p—c—(p—1—c—j) =j+ L
Substituting b =p —k — c and j = k — 1 into the formula for A4; . gives

Ay, = SO <p —k— (k- 1)) <p - k)

2¢(p — k) p—k—c k—1
- (_1)p72k+671 p— 2]{? + 1 - g
- 2¢(p—k) c—k+1) b

For a fixed ¢, the summation is from k£ =1 to k£ = ¢ + 1 subject to the condition
that £k + ¢ < p. For ¢ < (p — 1)/2, this condition imposes no restriction. For
¢ > (p+1)/2, the summation terminates with k = p — c.

3. THE COINVARIANTS OF mV, @ £V3

We start by describing the coinvariants of mV;. Choose a basis {X;,Y; | i =
1,...,m} for (mVy)* with A(Y;) = X; and A(X;) = 0. We use the graded reverse
lexicographic order with X; < Y; < X;4y. For¢ = 1,...,m and i < j, define
w; = X;Y; — X;Y;. Campbell and Hughes [6] have shown that

{Xi, N(Yi),ui; | i =1,...,m; i < j}U{Tx(3) | B divides (Y;---Y,,)P~'}
is a generating set for F[mV4)%/P. Tt is well known that N(Y;) = Y7 — V; X",
Furthermore, if 3 divides (Y; ---Y;,)P~ !, then A(B) € (X1, ..., X,n)F[mV5]. Thus

Tr(3) = AP71(B) € (Xy,...,X,,)F[mV3]. As a consequence, we have the follow-
ing.
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Theorem 3.1. A reduced Grébner basis for the Hilbert ideal of mVy is given
by {X;, Y | i = 1,...,m}, the corresponding monomial basis for F[mVaz,, is
given by the monomial factors of (y1 -+ ym)P~", and F[mValz,, is a trivial FZ/p
— module.

For the rest of this section, we assume p > 2. The natural inclusion of (m+0)V,
into mVa @ (V3 induces an algebra epimorphism p : F[mV, @ (V3] — F[(m+£)Vs].
We will use this map in conjunction with Theorem 3.1 to describe the coinvariants
of mVy @ ¢V5. Choose a basis

for (mVo @ V3)* with A(Z;) =Y;, A(Y;) = X; and A(X;) = 0. We use the graded
reverse lexicographic order with X; <VY; < Z; < X;41. Fori=1,...,m+ ¢ and
i < 7, define u;; = X;Y; — X;Yj and, for i =m+1,...,m+ ¢ and 7 < j, define
di =Y? = X;(Y;+2Z;) and wy; == Z;X; = Y;Y; + X Z; + X;Y;. A straightforward
calculation verifies that w;;, d; and w;; are all elements of F[mV, & €V3]Z/ P Let I
be the ideal in F[mV, @ (V5] generated by

and define
AN={X,, Y |i=1,... m}U{X,Y;Y;, Z |i=m+1,....m+{ i <j}

Lemma 3.2. The set A is a reduced Gréobner basis for I.

Proof. Tt follows from Section 2 that N(Z;) =(x,) 27 — Z;Y?~". Using this, along
with the expansion of N(Y;) given above and the definition of d; and w;;, it is
clear that A generates I. Since A is a set of monomials and a minimal generating
set for I, it is a reduced Grobner basis for 1. O

Lemma 3.3. If 3 divides (Y1 Yy Zmi1 -+ Zmse)P™F, then Tr(B3) € I.

Proof. Write 8 = YFZP where YT = [, Y/ with F = (fi,..., fn) € Z™

and ZF .= H?erﬂ Z7 with E = (emi1, .-, eme) € Z°. Clearly A(Y;) =; 0.
Therefore A(B) = YFA(ZF) and Tr(B) = AP7Y(B) = Y Tr(ZF). Thus it is
sufficient to show that Tr(Z¥) € I. Recall that 0%(Z;) = Z; + cY; + (S)XZ =;

Z; + cY;. Thus
™(z%) = ) o%(2")

ceF,
m—+£

= > 1 @eanr.

ceFy i=m+1

Using the fact that, for i = m +1,...,m + ¢, we have Y;* € I, gives

m+L

T(z%) = > ] (% +ecvizi).

ceFy, i=m+1
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Furthermore, for i = m+1,...,m+ /¢ and i < j, we have Y;Y; € I. Thus

m+L ZE
E — E
(2" = > (Z te Yy emz>

ceF, i=m+1

m+4 ZE
=, zZF Zl + Zc (Zein‘7>-

ceF, ceF, i=m+1

Therefore, using Lemma 2.2, Tr(Z¥) =; 0, as required. U

The algebra epimorphism p : F[mV, & V3] — F[(m + ¢)V3], introduced above,
is a morphism of FZ/p — modules and is determined by p(Z;) = Y;, p(V;) = X;
and p(X;) = 0 for i > m and by p(Y;) = Y; and p(X;) = X; for i < m. The kernel
of p is generated by {X; | i =m +1,...,m + ¢} and is contained in /. Since p
is surjective, the image of I under p is an ideal in F[(m + £)V5]. Intersecting this
ideal with the ring of invariants gives the ideal J := p(I) N F[(m + £)V5])%/7.

Lemma 3.4. The natural projection from F[(m + 0)Vo]%/? to F|(m + £)Vo)%/7/)J
induces an epimorphism of vector spaces from

Span ({X; |i=m+1,... m+LtU{u;|i=1,....,m+{ i <jand m < j})
to F[(m + 0)Va)2/P/J.

Proof. Recall that F[(m + £)V5]%/P is generated by
{Xi, N(Y)),ugj |i=1,....m+0; i <jU{Tr(a) | adivides (Y} -+ Yy)? '}

For each monomial « dividing (Y} - - - Y,,,4¢)P~ !, there exists a monomial 3 dividing
(Y1 YuZmi1 -+ Zmie)? ! with p(8) = @. By Lemma 3.3, Tr(3) € I. Therefore
Tr(a) = p(Tr(B)) € J. For i <m, p(Y;) =Y;. Thus N(Y;) = p(N (V7)) € J. For
i >m, p(Z;) =Y giving N(Y;) = p(N(Z;)) € J. Fori <m, X; = p(X;) € J.
For i > m, X? = p(d;) € J and X;X; = —p(w;;) € J. Fori < j < m,
u;; = plu;) € J. We have shown that, for all ¢ and j, X? and X;X; lie in
p(I). Therefore w;ju,s = X; XYY, — X; XYY, — X; X, VY, + X; X, Y,Y, and
Xiuys = X; XY, — X; X, Y5 lie in p(I). Since these elements are invariant, they lie
in J. U

Theorem 3.5. The ideal I coincides with the Hilbert ideal of mVs & (V3.

Proof. By definition, I C ‘H. Thus it is sufficient to show that every invariant
lies in /. Suppose that f is a homogeneous element of F[mVy @ (V3]%/P with

deg(f) > 2. Then using Lemma 3.4, p(f) € J C p(I). Thus there exist f € [
with p(f) = p(f). Therefore f — f € ker(p) C I. Thus f € I as required.

Every homogeneous invariant of degree 1 is a linear combination of the X; and
hence lies in I. Therefore we need only verify that all homogeneous invariants of
degree 2 lie in 1. To do this we grade F[mV, @ (V3] over Z™ = @m™'b,Z by
defining the multidegree of X;, Y; and Z; to be b;. The group action preserves
multidegree. Therefore we may restrict to invariants which are homogeneous with
respect to multidegree. Since the total degree is 2, the possible multidegrees are
2b; and b; 4+ b;. For multidegree 2b;, we use the descriptions of F[VQ]Z/p and
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F[V3]%/P from [10]. For multidegree b; + b;, we use the description of F[2V5]%/P
from [6], the description of F[2V3]%/P from [5] and the description of F[V; @ V3]%/P
from [20]. In all cases, the only generators in degrees less than or equal to 2 are
Xi, d;, u;; and w;;. All of these invariants appear in 1. O

Corollary 3.6. A reduced Gréibner basis for the Hilbert ideal of mVy & £V3 is
given by

(X, YP |i=1,... o myU{X.,Y,Y;, Z0 li=m+1,... m+0 i<j},

the corresponding monomial basis for F[mV, @ V3)z,, is given by the monomial
factors of (Y1 -+ YmZmi1 *+ Zmie)? " for j=m+1,...,m+{, and the Hilbert
series of FmVo ® Vs, is (0t + 1) (L4t +--- + =1 Furthermore, both as
F-algebras and FZ/p — modules, FmV, @ (V3]z,, = FmVa)z, @ F[(V3]z,.

Remark 3.7. We have shown that the Hilbert ideal of mVsy @® (V3 is generated by
homogeneous elements of degree less than or equal to p, the order of the group,
confirming the conjecture of Derksen € Kemper [9, 3.8.6(b)] in this case. Theo-
rem 4.2 and Theorem 5.1 confirm the conjecture for Vy and Vs respectively.

Corollary 3.8. If m+{ > 2, then
(m+0)(p—1) < BmVa@ Vs) < (m+0)(p—1)+1.

Proof. From [20, 4.2], we know that the Noether number of a representation
is greater than or equal to the Noether number of a subrepresentation. Thus
B((m+0)Vy) < B(mVy @ Vs). From [6] or [17], for m 4+ ¢ > 2, the Noether
number of (m + ¢)Vs is (m +£)(p — 1). This gives the first inequality. The second
inequality follows from [14, 2.12] using the fact that td (F[mVs @ (V3]z,) = (m+
0)(p — 1) + 1 is an upper bound on the degrees of the generators of the image of
the transfer. g

Remark 3.9. The generating sets for F[Vo @ V3]%/P and F[2V5)%/? in [20] and [5]
respectively, include elements of degree 2(p — 1) + 1. Howewver, these generating
sets are not proven to be minimal. MAGMA [3] calculations for the primes 3,
5 and 7 do give 2(p — 1) + 1 as the Noether number for these representations.
Further MAGMA calculations show that 2V & Vs, Vo @ 2V and 3Vs at p = 3, all
have Noether number 7.

In order to describe the FZ/p — module structure of F[mV, @ (V3]z,,, we use
the grading introduced in the proof of Theorem 3.5. Since H is generated by
elements which are homogeneous with respect to multidegree, the grading on
F[mV, ® (V3] induces a grading on F[mV, @ (V3]z,,. The group action preserves
the multidegree. Therefore the homogeneous components give an FZ/p — module
decomposition. Furthermore, since F[mV, @ (V3]z,, = FmValz,, @ FiV3]z),
and F[mVs]z/, is a trivial FZ/p — module, it is sufficient to describe the module
structure of F[{V3]z/,. Using the notation from the proof of Lemma 3.3 we can
describe the basis elements for F[(Vs]z/, as y52” where j > m, ¢ € {0,1} and
E=(ey,...,e;) € Z" with 0 <e; <p—1. It is clear that A(y;2¥) = 0 and

LB
AGR) = Y =

e 2
je{m+ile;#0}
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Sorting the basis elements into their multidegree components gives the following.

Theorem 3.10. In top degree, {(p — 1) + 1, the ¢ multidegree components of

For total degree greater than zero and less than {(p — 1) + 1, each multidegree
component is given by the span of {z¥,y;2¥/z; | €j_m # 0} and is isomorphic to
Vo @ (k — 1)V} where k is the number of non-zero entries in E.

4. THE COINVARIANTS OF V,

In this section we use the generating set for F[V,]%/P given in [19] to construct
a reduced Grobner basis for the Hilbert ideal. Choose a basis { X7, Xs, X3, X4}
for V" with A(X;) = X, for i > 1 and A(X;) = 0. We use the graded reverse
lexicographic order with X; < X5 < X3 < X4. We start with a useful lemma.

Lemma 4.1. Suppose 3 = X;Xﬁ. Further suppose that o is a monomial with
a < (3 and deg(a) = deg(B). Then « lies in the ideal generated by {X,, X5}

Proof. When comparing « and 3 using the graded reverse lexicographic order, we
first compare the exponents of X; and then, if necessary, the exponents of X,. [J

Theorem 4.2. A reduced Grobner basis for the Hilbert ideal of Vi is given by
(X1, X2, Xo X572 X071 XPY, the corresponding monomial basis for F[Vi]z, is
given by the monomial factors of x5 2a"~" and xo2? 22", and the Hilbert series

of F[Vilzp is given by (1 +2(t + 12 + - +t273) + P 2) (1 +t +--- + 771,

Proof. By [19, 4.1], the ring of invariants is generated by X;, X2 — X (X5 +2X3),
X3+ X2(3Xy — Xo) — 3X1X0X3, g = X3X2 + -+, N(Xy) and the following
families:

(i) Tr(XiXP™") for 0 <i <p—2,

(i) Tr(XiXP?) for 3<i<p—2,

(iii) Tr(X]) for ¢ < j <p—2,

(iv) Tr(X2X]) for 21 —1 < j <p—2.

wherel:’%1,q:21—|—1ifpz1modu103andl:’%1,q:2l—1ifpz—1
modulo 3. In the following, we will determine the contribution of each generator
to the reduced Grobner basis. We first note that the ideal generated by Xj,
X2 — X1(Xo+2X3), X5+ X7(3Xy — X3) — 3X1 X, X3 has reduced Grobner basis
{X1, X2}. Furthermore, by Lemma 4.1, all of the monomials appearing in g lie
in the ideal (X1, X3).

The leading monomials of the elements in the transfer families above were com-

puted in [19]. Using these results, we compute the contributions to the reduced
the Grobner basis of the second, third and fourth families.

For the third family, using [19, 3.2], the leading monomials are LM(Tr(X7])) =
XP1IXI TP for g < j < p—2. For j < p—2, the leading monomial is divisible
by X2. For j = p — 2, the leading monomial is X2X§_3. Using Lemma 4.1 all
“non-leading” monomials are in the ideal (X7, X2). Therefore the third family
contributes X5 X7~ to the reduced Crobner basis.
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For the second family of transfers, by [19, 3.4] we have LM(Tr(XiX? %)) =
X2X§+p_3 for 3 < i < p— 2. Thus each leading monomial is divisible by XQX?{’_?’
and, using Lemma 4.1, the non-leading monomials lie in (X, X?). Thus the
second family does not contribute to the reduced Grobner basis.

For the fourth family, by [19, 3.5], we have LM(Tr(X2X7)) = XF~ '/ X377+
for 21 —1 < j < p—2. For j < p—2, the leading monomial is divisible by X2. For
7 = p — 2 the leading monomial is divisible by X2X§_3. Again using Lemma 4.1,
all of the non-leading monomials lie in (X7, X3). Therefore the fourth family does
not contribute to the reduced Grébner basis.

For the first family, by [19, 3.3] and [19, 3.2], we have LM(Tr(XiX?™") =
X§+p “lfor 0 < i < p—2. Thus the leading monomials are all divisible by
X?'. We claim that the non-leading monomials appearing in Tr(XiX?~') all
lie in (X1, X2, X,X27®). Therefore, proving the claim will show that the first
family contributes X:’,:_l to the reduced Grobner basis. To prove the claim, we
first observe that

. 7 . . p—1
o (X5XT) = (X3 + X+ (;)Xl) (X4 + X5+ @) X, + @ Xl) .

Using Lemma 2.2, the only term not divisible by X; or X, which “survives” the
summation is jp*1X§+Z_1. Clearly terms divisible by X; or X2 lie in the ideal
(X1, X2, X, X2*). Thus we may restrict our attention to monomials of the form
XoXE2H70Xe If p—2+i—a > p— 3, this monomial lies in (X7, X2, Xo X2 7%).
Therefore, it is sufficient to show that if a > ¢ + 1, the term with monomial
X, XP7#7 X ¢ does not survive the summation. The coefficient of X, X2~ 277 X¢
in o/ (X? ) is (p—1)5P~2@ (2) (7?) +igP=*("_"). This coefficient has degree p—a
as a polynomial in j. Since i+ 1 <a,wehavep—a<p—(i+1)=(p—1)—1.
Therefore p — a < p — 1 and, by Lemma 2.2, the term does not survive the
summation, proving the claim.

The only remaining invariant is N(X,). Working modulo (X;), the variable
X, generates an FZ/p — module isomorphic to V3. Thus we may use the results
of Section 2. Write N(Xy) =(x,.x2) Ag + A1 X5 for Ag, Ay € F[X3,Xy]. By
Theorem 21, we may take AO = Xﬁ)—X4X§_1 and A1 = §11X4X§_2+§12XZX§_3.
Thus Xo4; € (XoX2™%) and N(X,) — XP € (X1, X2, Xo X273 XP71). Therefore
N(X,) contributes X7} to the reduced Grobner basis.

We have shown that {X;, X2, XoX? ™ X?~' XP} generates the Hilbert ideal.
Furthermore, it is clear that this is a minimal generating set of monomials and is,
therefore, a reduced Grobner basis. The corresponding monomial basis consists
of all monomials not divisible by any of the generators and the description of the
Hilbert series comes from the monomial basis. U

Remark 4.3. We observe that the top degree of F[Vi|z, is 2p — 3. It is clear
that 2p — 3 is an upper bound for the Noether number of V,. Using the theory
of SAGBI bases it is possible to prove that that Tr(Xg_zXff_l) 15 1ndecomposable
and, therefore, 3(Vy) = 2p — 3. We give a sketch of the proof. For the required
background see [18] or [26, Ch. 11].



MODULAR COINVARIANTS 13

Let C denote the generating set given above and define D = C\{Tr(XZ > X?~1)}.
Note that the elements of D all have degree less than 2p — 3. Recall that C is a
SAGBI basis for F[Vy)2/P. Therefore D is “SAGBI to degree 2p—4”. The leading
monomial of Tr(XY2XP™") is X3P™°. The powers of X3 appearing in LM(D)
are XP7U XP . X271 Therefore the leading monomial of Tr(XE2XP™Y) does
not factor over LM(D) and D is not a SAGBI basis for F[V4]2/P. Thus either
Te(X22XP™Y is indecomposable or a non-trivial téte-a-téte from D subducts to
an invartant with leading monomial X§p‘3. However, the only monomials in
degree 2p — 3 which are greater than X% are of the form X2""*7*X% and the
only element of D whose lead monomial is divisible by Xy is N(Xy). Therefore
the only téte-a-tétes from D which could subduct to an invariant with leading
monomial X3"~° are of the form fiN(Xy) — foN(Xy4). However, D is “SAGBI to
degree 2p—47. Therefore the téte-a-téte f1— fo subducts to zero. Thus fiN(Xy)—
faIN(X4) subducts to zero. Since no téte-a-téte from D can subduct to an invariant
with leading monomial X37%, Tr(XE2 X2~ is indecomposable.

5. THE COINVARIANTS OF Vj

In this section we use the generating set for F[V5]%/? given in [19] to construct a
reduced Grobner basis for the Hilbert ideal. Choose a basis { X1, Xa, X3, X4, X5}
for Vof with A(X;) = X;_1 for i > 1 and A(X;) = 0. We use the graded reverse
lexicographic order with X; < Xy < X3 < X, < X5.

Theorem 5.1. For p > 5, a reduced Grobner basis for the Hilbert ideal of Vi is
given by

(X1, X2, X2 —2X, Xy — X3Xo, Xy X5 Xo, XPT0X,, XT3 X, X1 XP)

the corresponding monomial basis for F[Vs]z,, is given by the monomial factors
2 p-1 —4_p-1 —5_p—1 -1 : ‘
of &y Tat™, waal T, wod CatT, and xaxsxt T, and the Hilbert series of

F[Vilz/p is given by (143t +42+3(t> 4 - - +tP~) + 2P 3 427 2) (1 -t 4 - - 177 1),

Remark 5.2. Forp =5, a MAGMA [3] calculation shows that a reduced Grébner
basis for the Hilbert ideal of V5 is given by

(X1, X3, X2 —2X4Xo — X3 X, Xo X3 Xy, X2 X5+ 2X2 Xy, X0 Xy, X}, X5},

the corresponding monomial basis for F[Vs]z,s is given by the monomial factors
of xixs, xaxaxs, Toxias, and xoxsxy and the Hilbert series of F(Vs|z,, is given by
(143t +4t2 +263) (1 + t + 12 + 3 + t4).

The rest of the section is devoted to the proof of Theorem 5.1. The generating
set given in [19, 5.1] consists of a list of prime independent rational invariants, a list
of transfers, and N(X5). The first four rational invariants are X, X2 — X;(X, +
2X3), X2—Xo(X3+2X,)+ X1 (X3+3X,4+2X5) and X5+ X7 (3X4—Xo)—3X, X X3.
These invariants contribute X7, X2 and X3 —X5(X3+2X,) to the reduced Grobner
basis. The fifth rational invariant, denoted by inv(X3) in [19], can be computed
using the algorithm given in the proof of [19, 2.3]. Working modulo the ideal
generated by X7, this computation gives inv(X3) =(x,) 2X5—6Xo X35 X, +6 X3 X;—
2X2X5 — 3X2X§ — 6X2X,. This invariant contributes X, X3X, to the reduced
Grobner basis. The sixth rational invariant is in fact decomposable and was
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required in [19, 5.1] in order for the generating set to be a SAGBI basis. Therefore,
denoting the ideal generated by the rational invariants by R, we have

R = (X1, X7, X2 — Xo(X3+2Xy), Xo X3X,)F[V].
Note that X, X2 and X3 are both elements of R.

The following lemma will be used in determining the contribution of the image
of the transfer to the Hilbert ideal.

Lemma 5.3. Suppose a, b, ¢ and d are non-negative integers.
(i) If c+2b+3a < p— 1, then X$X5X$X¢ does not appear in Tr(X}).
(ii) If i —d+b+2a <p—1, then X$X,X$XZ does not appear in Tr(XFXE).

Proof. Note that o7 (X}) = (X5 +j X4+ (J) X3+ () X2+ () X1)’. Thus the coeffi-

cient of X$X5X¢Xd in 07(XE) is (1) (%) (iff;b) (%)a(%) bjc which is a polynomial
of degree ¢+ 2b + 3a in j. Hence by Lemma 2.2 the coefficients will sum to zero

under the transfer if ¢ +2b+ 3a < p — 1.

For the second statement, note that

oI (XEXD) =(x,) <X4 + Xy + (;) X2> (X5 + X+ (2) X;+ (;) XQ) .

We show that the coefficient of X¢X2X{X¢ as a polynomial in j is of degree 2a +

b+i—d. Assume that X' X2' X§' comes from the first factor and X5> X522 X X ¢

comes from the second factor. Note that we have a1+as = a, bi+by = b, c1+c = ¢,

a; + b1 +c = k, as + b2 + Cco + d = 1. The coefficient of Xngngil in O’j(X!f)

is of degree by 4+ 2a; in j. On the other hand the coefficient of X5>X% X X¢

in o’ (Xg) is of degree ¢y + 2by 4+ 3as in j. It follows that the coefficient of the

product X§X§X§X5d has degree ¢ + 2by + by + 3as +2a; = co + by +as + b+ 2a =

1 —d+ b+ 2a. By Lemma 2.2 the coefficient will sum to zero under the transfer

ifi—d+b+2a<p—1. O
The generating set in [19, 5.1] includes one exceptional transfer, Tr(XngXép_l)/Q),

and the following five families:

(i) Tr(XiXE™) and Tr(XoXiXEP ™) for 0 <i < p—2,

(ii) Tr(XiXP~?) and Tr(X,XiXP ) for 3<i<p—2,

(iii) Tr(X2X}) and Tr(X, X3 XE) for (p—1)/2<i<p-—2,

(iv) Tr(X?) for (p+1)/2<i<p-—1,

(v) Tr(XX}) for (p—1)/2<i<p-—2.

We start with the fourth family. By [19, 3.2] the leading monomial of Tr(X}) is
XP1P X2 P Therefore, as 4 runs from (p4-1)/2 to p—1, the leading monomials
are Xép_ngf, Xép_BWXff, ., X5 XP73 XP7! The hypothesis p > 5 means that
(p—3)/2>2.

First assume ¢ < p—4. In this case, the leading monomial is divisible by X3 and
hence lies in . Suppose « is a monomial of degree i with a < X2~ ' 7* X7 7P*! and
a & *R. Since we are using the graded reverse lexicographic order and p — 1 —14 >
3, a must be divisible by X;, X, or X3. Note that X;, X3, XpX3?, X3 and
X9 X3X, lie in R. Thus « is either X2X3X§_2 or of the form XngXé_c_l. Since
p > 5, it follows from Lemma 5.3(i) that X5 X3X: ? does not appear in Tr(X}).
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Furthermore, since i <p—4 and i —c—12> 0, we have ¢+ 3 < p — 2. Therefore,
by Lemma 5.3(1), Xo X{X: ! does not appear in Tr(X¢). Thus Tr(X?Z) does not
contribute to the reduced Grobner basis.

Next assume i = p—3. Then the leading monomial of Tr(X}) is X2X%~°. Using
Lemma 5.3(i), the only other monomial appearing in Tr(X?~?) and not contained

in R is X, X?~*. The coefficient of X2X?~° in Tr(X2™°) is

3 N CUICIE

J€Fp

and the coefficient of X, X2~ is

I

j€Fp
Therefore 5 1

Tr(XP?) =x %)Q?.Xff5 + §X2Xﬁ”4.
Since X2 — Xy(X3 + 2X,) € R and p > 5, it follows that R + (Tr(XE?%)) =
R+ (X X2,

For i = p— 2, the leading monomial of Tr(X}) is X3X%~*. Using Lemma 5.3(i),
we observe that all monomials less than X5 X?~* which appear in Tr(X? 2 are
divisible by at least one of X1, XoX3Xy, X7, X3, X, X?™* or X2X?7°. Since all
of these monomials are in 9 + (Tr(X?™?)), it follows that the contribution to the
Hilbert ideal from Tr(X?7?) is X5 X772,

For i = p—1, the leading monomial of Tr(X{) is X', Again using Lemma 5.3(i),
it is not difficult to see that the smaller monomials appearing in Tr(XZ™") are
divisible by at least one of X7, X2 or X3, XoX?™* X2XP7° or X3XP7° all of
which are in 9 + (Tr(X?~?), Tr(X?~?)). Therefore the contribution to the Hilbert
ideal from Tr(X?™') is XP~ "

We define I := R+ (Tr(XE) | i = (p—3)/2,...,p — 1). We have shown that
{X1, X2, X3 — 2X4 Xy — X5 X0, X4 X3 X0, X2 Xy, XP° X3, XP7'} is a generating
set for I. We will show that the remaining families of transfers do not contribute
to the Grobner basis and that N(Xj) contributes X?.

Lemma 5.4. Suppose that a and (5 are monomials with o < [ and deg(a) =
deg(B). If XoX3X, divides 3 then a € (X1, X3, Xo X2, X0 X3X,).

Proof. The lemma follows from the definition of the graded reverse lexicographic
order. 0

By [19, 3.2 & 3.6], the leading monomial of Tr(XngXép_l)/Q) is Xo X3 X P2/2,
Therefore, using Lemma 5.4, each monomial appearing in Tr(X2X3X5(p_1)/2)) lies
in I. Thus the exceptional transfer does not contribute to the Grébner basis.

For the fifth family of transfers, using [19, 3.2 & 3.6], the leading monomials
are Xo X2 IXP P for i = (p—1)/2,...,p— 2. Fori = (p—1)/2, this gives
XoX ép 72 Which clearly lies in I and, by Lemma 4.1, all of the smaller monomials
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appearing in Tr(XQXépfl)/Q) lie in 1. For i > (p — 1)/2, the leading monomial
of Tr(X,X}) is divisible by X5X3X4. Therefore this monomial lies in I and,
by Lemma 5.4, every monomial appearing in Tr(X,X}) lies in I. Thus the fifth
family does not contribute to the Grobner basis of the Hilbert ideal. Similarly the
invariants of the form Tr(X,X?X}) appearing in family three and the invariants
of form Tr(X,X:X?~?) appearing in family two, have leading monomials divisible
by X5 X35X, and therefore do not contribute to the Grobner basis.

For the invariants of the form Tr(X7X}) appearing in family three, by [19, 3.5],
the leading monomials are X2~ ' 7" X77?* Therefore, as i runs from (p — 1)/2
to p — 2, the leading monomials are X~ V/2x2 | X3XP™° X2XP73 X xP7'
Clearly these monomials lie in /. We will show that the smaller monomials ap-
pearing in these transfers also lie in I. Suppose j > 0 and « is a monomial with
o < XX deg(a) = i+ 2 and a € I. Then one of the following holds:
(1) o = XoX3XE, (i) @ = Xo XXt with e < p—4, (iii) j = 1,4 =p —2
and o = XZX5XP7*7¢ with ¢ < p — 3. We use Lemma 5.3(ii). For the first case
t—d+b+2a=3<p-—1, for the second case 1 —d+b+2a =c+1<p—1
and for the third case i —d+b+2a =p—2—(p—2—-¢c)+2=c+2<p-—-1
Therefore none of these monomials appear in Tr(X7X}).

For the invariants of the form Tr(X}X?™?) appearing in the second family, by
[19, 3.4], the leading monomials are Xngerk_?’ for k =3,...,p— 2. Clearly these
monomials lie in /. We will show that the smaller monomials appearing in these
transfers also lie in /. Suppose « is a monomial with o < X3Xf+k_3, deg(a) =
p+k—2and a ¢ I. Then one of the following holds: (i) o = Xo Xz X4,
(il) o = X, XEXPTR7% with ¢ < p — 4, (iil) a = XZXSXPPF72 with ¢ < p — 3.
Clearly the exponent of X5 must be less than or equal to p — 2 for any monomial
appearing in Tr(XfX§_2). For the first case, this exponent on X5 isp+k —2 >
p+3—2 = p—1. Thus this monomial does not appear. Using Lemma 5.3(ii), for
the second case, i —d+b+2a=p—2—(p+k—c—3)+2=c+3—k <p—1and
for the third case i —d+b+2a=p—2— (p+k—c—4)+2=c+4—k<p—1.
Therefore none of these monomials appear in Tr(XFX? .

For the invariants of the form Tr(Xijg_l) appearing in the first family, by
[19, 3.3], the leading monomial is Xfﬁk*l for k = 1,...,p — 2. (The case of
k = 0 appears in the fourth family.) Clearly these monomials lie in /. As with
the previous families, we will show that all smaller monomials appearing in the
transfer also lie in I. Suppose a is a monomial with a < X! deg(a) =
p+k—1and a ¢ I. Then one of the following holds: (i) o = Xo X3 X 72,
(il) @ = XoXSXPH 2 with ¢ < p—4, (iii) o = XEXCXPF 1P with e < p— 3
and b = 1,2. Again we us Lemma 5.3. For the first case i —d + b + 2a =
p—1—(p+k—2)+3=4—k < p—1 and for the second case i — d + b+ 2a =
p—1—(p+k—c—2)+2 = c—k+3 < p—1. Therefore these monomials do not appear
in Tr(X¥X2~"). For the third case i —d+b+2a=p—1—(p+k—c—b—1)+b=
c—k+2b. This is less than p—1 except for k =1, b = 2, ¢ = p—4. However, since
X3 — XoX3 —2X5,X, € I, we have X2XP X2 = (X, X5 + 2Xo X)XV X2 € I
Finally, we consider the invariants of the form Tr(X,X}X? _1) appearing in the
first family. Since A(X3) =(x,) 0, we have Tr(XoXFXE ™) =(x,) Xo Tr(XFXE™).
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Since we have shown that every monomial appearing in Tr(X}X? _1) lies in I, it
follows that every monomial appearing in Tr(X,X¥X?™") lies in 1.

The final element remaining in the generating set is N(X5). The leading mono-
mial of N(Xj5) is clearly X?. We will show that the remaining monomials appear-
ing in N(X5) lie in I. We choose polynomials By and B; in F[X3, X4, X5] such
that N(X5) =x, xz) Bo + X2B1. Working modulo (Xi, X5), the variable Xj
generates an FZ/p — module isomorphic to V3. Thus we may use the results of
Section 2 to compute By. By Theorem 2.1 we have

By =xg3 X5- X0 X5+ X5 (0 X X072 + 62X2X070)
X2 (En X5 XT3 4 £y X2XT™ 4 €03 X2XPT0) .

Therefore By =; XP + X3 (&2 X2X0 " + €3 X2 X)) Since p > 5, and X2 —
Xo X3 —2X9X, and X5 X3X, are both in 7, we have

X3 (€ XX 4 € XEXT ") =1 2 (2 XEXoX] 7+ € X320 XTTY) .
Furthermore, using the fact that X, X?™* € I, gives By =; X?.
To complete the proof of Theorem 5.1 we need to show that XysB; € I. Note

that
N(Xs) = [ (X5 +Xa+ (;)Xg + (;)Xg) .

JEFp
Therefore
‘ k
XoB, = Z @)XQ H | <X5 + kX, + (2>X3) :
JEFp k‘EFp\{]}

Since X5 X2 and X, X3X, lie in I, we have

. B . I{?

oz (250 T | enxar s 52 (5)(5)
JEF, keF,\{j} JEFp keFp\{j}

Using Lemma'2.2, we see that Zker\{j} (S) = —(é) giving Zjer Zker\{j} (%) (S) -

~ 2 jeF, (3)(3) =0 for p > 5. Thus

XoBi=; ) (g)xg T Xs+kxy).

JEFp keFp\{j}
However
[T xs+kx) = Hcer, (X5 - h4)
KeF,\(7) Xs X4

_ XXX (1 - <X4/X5>p-1>
X5+ 57X,y 1+ (jX4/X5)

For the purposes of computing XsB; modulo I, we may assume j # 0. This
means that (j)P~! = 1. Thus, using (1 —a")/(1—a)=1+a+---+a" ! with
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a=—7X,/X5, we see that

H (Xs+kXy) = Xg—l (1 + (=i Xy/X5)+ -+ (—jX4/X5)p72)
keFp\{j}
— ngl _jX4X§72 +j2XZX§*3 44 (_j)p72Xi)*2X5.

Therefore
XoBi =1y T\ x (X2 — X, XE —j)P2XP2X,
21 =1 g )42 (A5 JXa X5 "4+ (=) 4 5)'
JEFy
Since (é) is a polynomial of degree 3 in j, using Lemma 2.2 gives

Xoby =1 3 ()X (P X0 + (AP XE R (),

JEF,
Therefore, since X, X2 € I, we have X,B; € I.
We have shown that N(X5) =; XF. Therefore the Hilbert ideal is generated by
(X1, X2, X2 —2X, Xy — X3Xo, Xy X5 Xo, X074 X5, XP3 X, XP71 X2}

It is clear that this set is a reduced Grobner basis. The corresponding monomial
basis consists of all monomials not divisible by any of the generators and the
description of the Hilbert series comes from the monomial basis.

Remark 5.5. We observe that the top degree of F[Vs]z, is 2p—3. It is clear that
2p—3 1s an upper bound for the Noether number of Vy. It follows from Remark 4.3
and [20, 4.2], that the Noether number of Vs is 2p — 3.

6. THE MODULE STRUCTURE FOR THE COINVARIANTS OF V; AND Vj

In this section we use the bases constructed in Sections 4 and 5 to determine
the FZ/p — module structure of the coinvariants of V; and V;. Note that, since
the Hilbert ideal is homogeneous, the coinvariants are a graded ring. Further-
more, the group action preserves degrees. Thus the homogeneous components are
FZ/p — module summands. We will refine this decomposition by describing each
homogeneous component as a direct sum of indecomposable modules. Recall that
the socle of a module is the sum of its irreducible submodules. For an FZ/p —
module, this is the span of the fixed points. A non-zero cyclic FZ/p — module
has a one dimensional socle and, since all indecomposable FZ/p — modules are
cyclic, the dimension of the socle is the number of summands. For a non-zero
cyclic module with socle Span(v), we will say that v determines the socle.

Lemma 6.1. Suppose that Wy, Wy, ... W, are cyclic submodules of W and that
w; determines the socle of W;. If {wi,ws,...,wy} is linearly independent and

dim(W) = dim(Wy) + dim(Ws) + - - - + dim(W,,,), then W = W, @ Wo @ - - - @ W,,.

Proof. For a homomorphism of modules, the socle of the kernel is the kernel
of the restriction of the homomorphism to the socle. Thus a homomorphism
which is injective on its socle is injective. Apply this to the homomorphism from
the external direct sum of the W to their internal sum. Since {wy,ws,...,wn}
is linearly independent, this map is injective on its socle and hence injective.
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Therefore the internal sum of the W; is direct and W, @ Wy @& --- @ W, is a
subspace of W. However, since dim(W) = dim(W;) + dim(Ws) + - - - dim(W,,),
the subspace coincides with . U

We define the weight of a monomial in F[V,] by wt(X7*--- X&) = e + 2ey +
-+ -+ne,. If fis alinear combination of monomials of the same weight, we will refer
to f as isobaric and we will take the weight of f to be the common weight of the
monomials appearing in f. Note that if 5 is a monomial appearing in A(f) with
f isobaric, then wt(3) < wt(f). Thus, for a fixed positive integer m, the span of
the monomials of weight less than m forms an FZ/p — submodule. Allowing m to
vary over the positive integers gives a weight filtration of the polynomial ring. For
Vy and V5 we fix a basis for the coinvariants given by images of monomials. For
V4, the basis is given in Theorem 4.2 and for V5 the basis is given by Theorem 5.1.
We define the weight of the basis elements to be the weight of the corresponding
monomial and, as in the polynomial ring, a linear combination of basis elements
of a common weight is isobaric with a well defined weight.

Lemma 6.2. If f is an isobaric coinvariant of weight m, then A(f) is in the
span of the basis elements of weight less than m.

Proof. Since A is linear it is sufficient to consider A(f3) for a basis element 3
of weight m. To compute A(3), we lift to the corresponding monomial in the
polynomial ring, say 3, compute A(3), and then project back to coinvariants.
The terms appearing in A(3) all have weight less than m. For Vj, the reduced
Grébner basis is a set of monomials. Thus each term appearing in A(3) either
projects to zero or projects to a term of weight less than m. For Vj, there are seven
monomial relations and one non-isobaric relation given by X2 — 2X, X, — X, Xj.
This last relation is used to give a rewriting rule which replaces the product x3-z3
with 2xox4+2x223. Thus an element of weight 6 in the polynomial ring is identified
with a sum of two terms, one of weight 6 and one of weight 5, in the coinvariants.

Thus each term appearing in A((3) either projects to zero or projects to a linear
combination of terms with weight less than m. ]

As a consequence of Lemma 6.2, for each positive integer m, the span of the
basis elements of weight less than m form an FZ/p — submodule. Collectively
these submodules give a weight filtration of the coinvariants. Suppose [ is a
basis element of weight m. Define §((3) to be the sum of terms of weight m — 1
appearing in A((3) and extend § to linear map on the coinvariants. We can think
of ¢ as the linear map induced by A on the associated graded module of the weight
filtration. In the following we use F[V]4 Jp to denote the homogeneous component
of degree d.

Lemma 6.3. Suppose n is 4 or 5, and m is the minimum weight occurring in
F[Vn]dz/p. For an isobaric coinvariant f of weight ¢ and a positive integer k, any

term appearing in 0*(f) — AF(f) has weight less than ¢ — k. In particular, if
{=m+k, then 8*(f) = A*(f). Furthermore, if { = m, then f is invariant.

Proof. The proof is by induction on k. For k£ = 1, the result is essentially the
definition of §. Suppose the result is true for k > 1. Then §*(f) = A*(f)+h where
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h is a sum of terms of weight less than £ — k. Thus §(6%(f)) consists of the sum of
the terms of weight £—k—1in A(A*(f))+A(h). However, from Lemma 6.2, all of
terms appearing in A(h) have weight less than /—k—1. Therefore 6**1(f) consists
of the sum of the terms of weight ¢ — (k + 1) appearing in A*1(f), as required.
If / — k = m, there are no terms of weight less than ¢ — k so 6%(f) = A*(f). If
¢ = m, the fact that f is invariant follows from Lemma 6.2. U

The following lemma will play an important role in determining the FZ/p —
module structure of F[Vj]zp.

Lemma 6.4. In F[V,|z,, for j >k,

o T | I
§F(zhal) = — J x?kxi *+ Gki1 J (zk + (2)> Toxith 2y TR

Proof. The proof is by 1nduct10n on k. For k = 1, a straight forward calculation

gives 0(zia)) = jas ™ +ixexl ta). For k > 1 we have

O (ahay) = (0% (a5ay))

- o(Eet s g (e () )

; I )
= L (= k)l ; - 0+ Rt

(= H)!
7! ~ k - ith—1, j—k
+ Py (zk:+ (2)) (J — k+ Dagxy™ oy
!

(" My Y (g™ i (F
Gir 1)) + G (i + k) + ik + 5
i+ (

j=
(4!

)
(J
)
(j— (k+1))! (j—(k+1)+1)! 2
as required. O
Theorem 6.5. (i) F[Vi]y,, = F[V4]2p =V, FlVily, = Vi

(i) Ford=p,...,2p — 4,

F[Vig, =25 PVt ' FZ/p @ woa§ Pal  FLIp 2 Vi o g ® Vap s

Z/p —

Z/p

with (FM]% /p> — Span{z%? xf(p 2 T (r— 3)}_

(i1i) Ford=p—1,p—2,
FVily,, = 2{FZ/p® x20] 'FZ[/p=V, 1 & V,_3
Z/p

with (PVi, )" = Span{al 2t 0, ayaf ol 09,

w) Ford=2,...,p—3,
(i)
d—+2

F[w]%/p = 2{FZ/p & (1’%952 - . ) FZ/p = Vi ® Vi

z/
with (F[m]%p) . Span{zd — daoxd?ay, woxd '}

.’173+ k+1) ZL (k’+1) (j!>x2xé+(k+1)72xif(k+l)+l ((k + 1) + (k + 1

)
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Proof. Part (i) is clear.
(i) For p < d < 2p — 4, from Theorem 4.2, a basis for F[W]Czl/p is given by

B R e B SNl
and
R T U TR0
Therefore the dimension of F[V4]Z/ is (2p —2 —d)+ (2p — 3 — d). The ele-
ments x4 QZL‘Z P=2) and Toxh 4mi (P=3) are invariant and have minimum weight.
From Lemma 6.4, §27~3=4(z4~ #5271} i5 a linear combination of 25~ %2¢?~ and
x2x§74xj_(p 9 Wlth the coefficient of z§~ zxi »=2) non-zero. Applying Lemma 6.3

gives AZ=3=d(gd= 071 p=1y — §2p=3-d( =1 p=1) Ppyg 02720072 geperates
a module of dimension 2p — 2 — d. Again using Lemma 6.4,

52p_4_d(x2ngp pil) = x252p_4_d(x§l*pxp

-1y p—4 _d—(p—3)
xh 170) = cxoahy xy

with ¢ = (p — 1)!/(d — p + 3)! # 0. Therefore 28 P2%" generates a module
of dimension 2p — 3 — d. Since the fixed points are linearly independent, using
Lemma 6.1 shows that the sum of 9 VP 'FZ/p and 202l P2l 'FZ/p is
direct. Therefore :v3 ~=1) " 'FZ/p+ szl'd PeP~'FZ/p is a submodule isomorphic
to Vop_o_q®Vap_3_4. Since the dimensions match, this submodule is all of F[V4]‘é Ip-

(iii) The proof for case (iii) is similar to case (ii). It follows from Lemma 6.4 that
x4 and xgxi_l generate modules of the dimensions p—1 and p—3, respectively and
that 672(2%) and 0P~*(2o297') are linearly independent invariants of minimum
weight. Therefore, using Lemma 6.1, we have identified a submodule isomorphic
to V-1 @ V,_3. The result follows from the observation that both F[‘Q]ZZ; and

F[VJZQ have dimension 2p — 4.

(iv) For 2 < d < p — 3, a basis for F[V4]Z/ is given by ¢ 24 'y, ..., x8

and 2923t woxd%xy, ... wex$'. Therefore the dimension of F[V4]Z/p is 2d +

1. The minimum weight subspace is given by Span(xQ:cg’l). A second invari-
ant, isobaric but with non-minimum weight, is given by x4 — dx2x3 2r4. Us-
ing Lemma 6.4, 6%(2§) = d! (2§ + d(d — 1)xs23 *z4/2). Direct calculation gives
6 (2)) = 6 (60%29)) = dld(d — 1)zpz§ '/2. Thus 334 generates a module of
dimension d + 2. Again using Lemma 6.4 gives 6 2(x¢ — (d + 2)zo29 1 /2) =

(d —1)!(z¢ — daoxi224). The only basis element with weight less than 3d is the
invariant oz '. Therefore, usmg Lemma 6.3, A%2(z¢ — (d + 2)aow 1/2)

(d— 1) (2 — dzoxd™2x,) + caoxd™" for some constant c. Thus 24 — (d+2)xoxi /2
generates a module of dimension d — 1. The intersection of the socles of the two
given submodules is trivial. Therefore, using Lemma 6.1, the sum of the modules
is direct. Thus F[V4]dz Ip has a submodule isomorphic to Vo & V;_1 and, since

the dimension of F[‘/zx]czl/p is 2d + 1, this submodule is all of F[Vzl]czl/p' .

We will require a number of technical lemmas to determine the FZ/p — module
structure of F[Vs]z/,.



22 MUFIT SEZER AND R. JAMES SHANK

Lemma 6.6. In F[Vs]z,,, for j > F,

i J! wei gk, JRIEHEY) iy en j—k+2
§F(zaxial :—a:x“:v Y 7 B + T3
where ¢, = 0 unless k+i = 3 in which case ¢ equals the coefficient ofxga:”k 2:657’”2

in 0N xazial).

Proof. The proof is by induction on k. First con31der k = 1. A direct calculation

gives §(x3xixl) = worlal+izda 4 jusa™ ai!. In F[Vs]z,p, we have the relation

T3 = x9(2x4 + x3). Since § picks out the highest weight terms of A We may

substitute 2zyz4 for a3 giving §(zszial) = (20 + Dagrial + jrgzi™al™. For
k > 1, we have
O (wgzial) = 6 (5k($3$§11‘?—)))
J! k+i.j—k J'(2ik + kz) k+i—1, j—k+1 j—k+2
= 5 —LF—agaktial , Tox x + Crrax3T
((]—k)'34 ’ (j—k+1)!24 ; KP2a%s
] 1 , k+i _j—k
7! k+i+1 -1 J!(k +Z) 2 k+i—1_j—k (]')552964 $5
= 7 L3l o] 3% T
Gkt (G =kt 0 (j— k)

J1(2ik + k?) ;

Substituting 2zox4 for x3 gives

' ] k4i+1 J k-1 ] ; ; 2
5 () S (7Y xsxy U2k +i) + 142k + k >a: ki ik

j—k+2
+ Cr4+1X2T3T .

s k1) G— k) S
_ (GOwsai 2l Qi+ 1) + R+ 1))
See) TRor T Gk
as required. O

Lemma 6.7. Forp—4>d >3, §%(z32¢™) = d(d)wex it

Proof. From Lemma 6.6,
TN @328 ™) Z(pes) (d— Dlazz§™! + (d — D)I(d — 1)%202] %25,
Applying § and using Lemma 6.6 gives
6 (aszd™) = (d— 1) ((2d — 1) + (d — 1)?) 2p2] ' = d®(d — 1)lapaf
as required. Il
Lemma 6.8. In F[Vi]z,,, for j >k,
OF(xial) = apaiFal™F 4 bpasatF T2l T oy et TRl TR L gt T2

where
]I

e "k:#ﬁm(i“@)’

Cr = (J+I+2)' (g) <2z‘2 + (2k = 5)i + k Q)é% — 7))

and dy, = 0 unless i + k =5 in which case dj, = cj_1.

ap =
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Proof. The proof is by 1nduction on k. For k =1, a straight forward calculation

ives 0(xixl) = jait el +izsat™ 2l For k > 1 we have
g 4T5) = JTy Tj 3Ly Ly

k1 k42 +j—2
S (zial) =6 <a A T N A A R R A R A )

Using the definition of 6 and Lemma 6.6 gives

M (aial) = ap(j — k)aitH el +ak(z+k)x3;z:§j’“ Lyd

+bi(j — b+ Dasay™ e + be(2(i + k — 2) + D)oz ™ 22l”
+cp(i + k — 3)zomaay Lyt +on(G — b+ 2)aartth gl k!

= ap(j — k)ait gl R (ak(z + k) +bp(j — k+ 1)) mgaithtgdF
+ (b (20 + 2k — 3) + i (j — k +2)) wox™~ 2365 k41

: +h—4, j—k+2
+ex(i + k — 3)wgmaxy Tl TN

k+1

Since zoz3xy = 0, it is clear that dyyq = 0 unless i + (k+1) —5 = 0 in which case
diy1 = cx. The fact that ag1 = ax(j—Fk) and byy1 = agp(i+k)+bx(j—k+1) follows

from the proof of Lemma 6.4. Thus we need only verify c;;. The coefficient of

xzx?(kﬂ)_sxé (FDF2 i) the preceding expression is by (21 42k — 3) + ¢ (j — k +2).

Substituting the expressions for b and ¢ gives

(j!)(.2z'+2k—3) (ik+ <k>>+(j!).(j —k+2) <k> (22,2 (2 — BYi + (k — 2)é3k—7)> ‘

(j—k+1)! 2 (J—k+2)! \2

Factoring gives

(]_(]‘Z;ll)l ((2i+2k—3) (z'k:+ (];)) + (];) <2i2+(2k—5)i+ (k_2)ésk_7))> :

A MAGMA[3] calculation can be used to verify that, as polynomials in ¢ and k,

<k+1> (22,2+(2(k+1)_5)l,+ ((k;+1)—2)(3(k+1)—7))

2 6
equals
k k k—2)(3k—17
(20 + 2k — 3) (Zk’ + <2)> 4 <2) (22'2 + (2k — 5)i + ( )é )) .
This completes the induction step. 0

Lemma 6.9. (i) Forp—3>d >4,

d(d+1)!

§i(ad) = S

(6252 " + (d — 1)(3d — 4)z02] *x5) .

(ii) Forp—4 >d > 3, §42(22) = Wxgxi_l.

Proof. Using Lemma 6.8,

d _ d—2)(3d—T7
(Sd(ajg) =(z23) d'ﬂ?i +d! (2) (l’gﬂ?i 21*5 + ( )1(2 )11725132 333%)
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Applying ¢ and using Lemma 6.6 gives

g (g d d 3d?> —13d + 14
—df ) = (2923) (CH— (2)) 5173:132 14 (2) <2d— 3+ G )372551 x5

d(d+1 _ d\ 3d*> —d — 4 _
=(z223) %xgxff 14 <2> sza:j‘f 23:5

d(d+1
= T (Gt o+ (0= )3 — st 2a)
Therefore,
d(d+ 1)(d!
541(at) = WD) (60000 1 (0 1)(3d — ) 2a5) + camyad ™

where ¢ = 0 unless d = 4 in which case ¢ = (d!)d(d — 1)(d —2)(3d — 7)/24 = 120.
Again applying 0 and using Lemma 6.6 gives

1)(d!
52 w) Zaany WD (600 - 1) 1) 4 (a - 130 — )
d(d+1)(d)(3d* +5d—2) 4,
=(zoz3) 12 Toly .
Therefore,
1)(d! -1 2
o2 gy = A+ )(d)(?;l WA+2) o1 4 gy

where ¢ = 0 unless d = 3 in which case ¢/ = (d!)d(d—1)(d+1)(3d—4)/12 = 60. O
Lemma 6.10. For 1 <d < p, F[Vg,]czl/p is generated as an FZ/p — module by

d-1 . d-
N O L B g

Hence F[‘/g,]czl/p decomposes into a sum of at most four indecomposable summands.

Proof. Having fixed a basis for F[V;]z,, consisting of the images of monomials
we can use the order on F[V;] to give a total order on the basis and a partial
order on the coinvariants. Thus it is possible to determine the leading term of a
coinvariant. Note, however, that the order is not multiplicative. We will denote
the leading term of a coinvariant f by LT(f). To show that F[V5]2 Jp 18 generated
by [ o= {afd, 23208t 2028t 2ow32? 2} it is sufficient to show that {LT(AF(B)) |

B € I'} spans F[V},]Z/ Furthermore, for every 8 € ', LT(6%(8)) = LT(A*(3)).
Observe that 6*(zo28™!) = 250"(227!). Thus 6*(x2x2 ") can be computed for
E<d-1 usmg Lemma 6.8. Therefore, using Lemma 6.8 and Lemma 6.6, we see
that {wozszd 2} U{LT(0%(x?) | 0 < k < d} U{LT(0"(zszl™)), LT((S’“(@:E% N
0 <k <d-1}is a basis for F[V5] 7/~ Hence I' is a generating set.

To see that the number of generators is an upper bound on the number of inde-
composable summands, work inductively. Certainly a module with one generator
is indecomposable. Suppose a module has more than one generator. It is conve-
nient to define the length of a generator to be the dimension of the submodule it
generates. By looking at the decomposition of the module, it is not hard to see
that a generator of maximum length generates a summand. Il
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Theorem 6.11. Suppose p > 5.
(i) F[Vsly,, = FVsl7," = Vi and F[Vsly,, = V.

(it) FVslg ' = Vo ® Vi and F[Vs]}, = Ve & Va.

3z /p
(iii) Ford=p+2,...,2p—5: F[V5]g, = Vop 4 2@ Vap g3 D Vapaa-
(iv) Ford=p, p+1: F[V:’)]Czl/p = Vop—d—2® Vop_aq—3 D Vop_g—a @ V1.
(v) Ford=p—1,p—2: F[Vg,]czl/p EVp1 OV, 3DV s @ VL.
(vi) Ford=p—3 and p > 11: F[Vg,]czl/p V1@V, 30V, 5@ V1.
(vii) For d =5,...,p—4:if 3d — 1 #4;,) 0 and 3d — 2 #(,) 0 then
F[Vs]%/p EVapzs® VgD Vg ® Vi;
if 3d — 1 Z) 0 and 3d — 2 =(,) 0 then
F[Vs]g, = Vays © 2V © Vi
if 3d — 1 =) 0 then F[V5]g ,, = Viyo ® Vi @ Va2 @ V1.
(viii) For p > 11: F[Vs]y, = Vs @ Vi ® Vi and F[Vsly, = Vi @V, @ V3.
Remark 6.12. MAGMA [3] calculations give the following.

(i) For p = 5, the homogeneous component of F[Vs|z/5 in increasing degree are
isomorphic to Vi, Vi, 2Vy, 2Va @ 2V4, 2Vy @ 2V1, Vs @ Vi @ 2V3, Vi & 2V4, 2V,

(it) Forp =11: F[%]z/n =VsdVion, F[%]%/ll =Vs@Vs D Vs a”dF[VEJSz/n =
Vio®@2Vz & Wi

(iii) For p =T: F[Vg)]%/? =Ve@Vs® Vy and F[v5];/7 ~Vod Vo Vs,

Proof. Part (i) is clear.

(ii) For d = 2p — 4: 2% %2?~" generates a submodule of dimension 2 and both
277?227 and x32? "2 are invariant. For d = 2: A straight forward calculation
shows that zZ generates a submodule of dimension 6 with socle Span(zyr3). A
second calculation shows that 2:5?1 —3x315 — 3x005 — 2T974 generates a submodule
of dimension 2 with socle Span(zzxy — 3z925 — 2x9my). Since the dimension of
the degree 2 homogeneous component is 8, Lemma 6.1 applies to give the stated

decomposition.

(iii) For p+2 < d < 2p — 5, a basis for F[V},]‘é/ is given by

IZ_Q d_p+2,l’§_3 d—p+3’ xi p—l—lx5 17

Y N AN el p+4, wgzd Pl

Y R A Y e A oy v
Therefore the dimension ofF[V5]Z/ is (2p—d—2)+(2p—d—3)+(2p—d—4). The
elements 22 228 P12 gaat 128 and xy2f P2 P are invariants of minimum

weight. It follows from Lemma 6.8 that 02%~9=3(z{ ?™'22™") is a linear combi-

~2_d—pt2
zs "™ non-zero. It follows
—4_d—p+3
Pt

nation of these invariants with the coefficient of 2/
from Lemma 6.6 that 629 4(z325 P22~") is a linear combination of z5z"
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and z,2% 287" with the coefficient of zsaf 'z P*® non-zero. Since z, is in-
variant, 6277975 (2o Pal ™) = 262743 (29 P27 ") which, by Lemma 6.8, is a
non-zero scalar multiple of 2% °z% ™ Thus we have submodules of dimen-
sions 2p—d —2, 2p—d—3 and 2p — d — 4 such that the sum of the socles is direct.
By Lemma 6.1, this gives the required decomposition.

(iv)(d = p, p+1) As in (iii), the elements 2 *T' 227! zg2f P22™" and zox{ Pa?”

generate submodules of dimensions 2p—d—2, 2p—d—3 and 2p—d—4, respectively.

2p—d—3 (. d—p+1,p=1\ ¢2p—d—4 d—p.p—1 2p—d—5 d=p .,
Furthermore, 0P~ (zy " at ), 6°P (m3:§4d x52 )andf Z 3(m2x4 5x5dp —41)
- xB—p-F - 335—;0-&- - x5—p+ )

1

are linearly independent elements of Span(z] , x3rl , T2l
The invariant basis element zyz322 2 generates a submodule of dimension 1. Thus
the sum of the socles of these four submodules is direct and the sum of their dimen-
sions is the dimension of the homogeneous component. Therefore, by Lemma 6.1,
we have the required decomposition.

(v) (d = p—2,p—1) As in (iii), the elements a5 2zl P*? g tgd P+

—5_d—p+d : . . . :
and xox} x5 P™* are invariants of minimum weight. Using Lemma 6.8 and
Lemma 6.6, the basis elements z¢, z322 ! and z2? ' generate submodules of di-

mensions p— 1, p— 3 and p — 4, respectively. Furthermore, 6*~*(z¢), 51”3(:1633:?_1)

and 6P ~*(xyx27!) are linearly independent minimum weight invariants. As in (iv),
the invariant basis element zyz32f 2 is a non-minimum weight invariant. Thus,
applying Lemma 6.1, we have four submodules whose sum is direct and whose
dimensions sum to the dimension of the homogeneous component.

(vi) (d = p—3, p> 11) From Lemma 6.10, F[V},]Zﬁ is a sum of at most four
indecomposable summands. We will identify four linearly independent invariants.
Since each summand has a one dimensional socle, this means that there are four
summands and we have found a basis for the invariants. In this homogeneous
component, the minimum weight is 4p — 13 and the minimum weight subspace is
Span(zsxh !, 2,25 °). This gives two linearly independent invariants. The weight
4p—12 subspace is Span(zf~®, z32% " z2% %22). (Note that wt(zozs2? ") = 5p—
20. Therefore, since p > 8, wt(zox322 >) > 4p—12.) Since § is a linear map taking
the three dimensional weight 4p — 12 subspace to the two dimensional weight
4p—13 subspace, there exists a non-zero element f € Span (25>, z52% >, zo2% °22)
with 0(f) = 0. Using Lemma 6.3, A(f) = 0(f). Therefore f is invariant. The

. . . -3
fourth invariant is zoxzzf °.

From Lemma 6.9(i),

- —-3)(p—2)! _ _
P2l = (p )1(2p ) (6528~ + (p — 4)(3p — 13)202% P,

while from Lemma 6.6,
P M2l ) = (0 — D! (wah* + (p — 4) m02h Cs) .

A simple calculation shows that for p > 11, 6(p — 4)* Z) (p — 4)(3p — 13).
Therefore 607~4(z322™*) and 67~2(22~?) are linearly independent minimum weight
invariants. Using Lemma 6.8, 07 ~5(zo22 ") = (p — 4)lz92? x5, Thus zoa?*
generates a submodule of dimension p — 4 whose socle is contained in the the
minimum weight subspace. Since 0?~*(z322™*) and 672(22"?%) are a basis for the
minimum weight subspace, it is possible to choose coefficients ¢; and ¢y so that
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0P (zoxl ™!+ e10(x522 ™) 4 203 (227%)) = 0. We claim that h := 67~4(zpa? " +

c10(z322 ™) +¢26%(227%)) is non-zero scalar multiple of f. Clearly A is an invariant
of weight 4p — 12. However, if h is zero, then f is not contained in the submodule
generated by {a27% zg2? ™! 202 zy2522 %} contradicting Lemma 6.10.

: -3 —4 —4 —4 -3 -4
In conclusion, 287, w3l ", moal ™" + 10(z32 ") + 0% (2277°), and zowzat

generate submodules of dimensions p—1, p—3, p—>5 and 1, respectively. The sum
of the socles of these modules is direct and the sum of the dimensions matches
the dimension of F[V})]’Z;’ Therefore, by Lemma 6.1, F[%]@;}f’ =2V, 10V, 3®
Vp—5 ® V1.

(vii) For d =6,...,p — 4 a basis for F[Vg,]dz/p is given by

. g, e wird 2’72 x4x§ ?, r287t ad,
3Ty 3Ty Tyy wvoenn. X3TyTy —, T3Ty
Y 0 e S v - S Toxd !
$2I3Ig_2,

where elements in the same column have the equal weight. The case d = 5 is
essentially the same except the element in the fourth row lies in the third column.
As in (vi), using Lemma 6.10, F[V5]4 Jp is the sum of at most four indecomposable
summands. We first show that there are four linearly independent invariants
and hence four summands. The elements :Uﬂj‘f_l, xgxgxg_Q, and xgx —(2d —
1)ao29 25 are easily seen to be invariant and linearly independent. A fourth
invariant can be constructed as a linear combination of x¢, x3x{ x5, wox§ >z
and 2929 2x5. To see this, first observe that the weight 4d subspace has dimension
3 (4 for d = 5) and that the weight 4d — 1 subspace has dimension 2. Therefore
there is a non-zero linear combination of 24, z329 %5 and zo2f *22 in the kernel
of §, say f. By Lemma 6.3, §(f) and A(f) agree in weight 4d — 1. Furtherrnore
the only basis element of lower weight is zox3~'. Thus A(f) is a scalar multiple of
2924, Note that A(x,x$ %25) is a non-zero scalar multiple of 2,297". Therefore
there exists a € F with A(f —azyz§ x5) = 0, giving the required invariant. Thus
we have four linearly independent invariants and four indecomposable summands.
Suppose 3d — 1 #(,) 0. From Lemma 6.9(ii), 04+2(2¢) = z32f 'd(3d — 1)(d +
2)!/12. Thus x¢ generates a submodule of dirnension d+3 with socle Span(z,z¢!).
From Lemma 6.7, §%(z328 ") = d(d!)zez{ . Thus §%(zszd ™ — c6?(2?)) = 0 with
c=12/((d+1)(d+2)(3d — 1)). Using Lemnia 6.6 and Lemma 6.9(i), we have

5 (gt — o) = ((d— 1)1 — L) g

1 ((d C1)2(d—1)! - cd(d— 1)(3;12_4)(d+1)!> oz,

Substituting for ¢ and simplifying gives

—(d —1)(3d —2)(d — 1)! (
(d+2)(3d—1)

Note that 647! (z328 "' — 052(:55)) and A1 (2328 " — ¢6%(2d)) differ by a scalar

multiple of the invariant x2x4 Suppose 3p — 2 #(,) 0. Then x3x§f T cd?(xd)
generates a module of dirnensmn d. Furthermore, it 18 possible to choose a linear

64 (w32l — 6% (2f)) = w3z "+ (2d — V)aox 2us) .
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combination of xoxd™!, zsx,28? and 232373, say h, so that h generates a sub-
module of dimension d — 2 with socle given by the span of f 4 axy29 x5, Thus

applying Lemma 6.1 gives a decomposition isomorphic to Vd+3EBVQEBV;1_2@V1. On
the other hand, suppose 3p—2 =(,) 0. Then A% (xgxg ' — c6?(22)) is a multiple
of o4t and, for some ¢ € F, w302 — c0?(2f) 4 ¢x3xd™3 generates a module of
dimension at most d — 1. Furthermore, it is possible to choose a linear combina-

tion of 2o2d™!, zax,2d™? and 232373, say b/, so that A’ generates a submodule of
dimension d — 1 with socle given by the span of x3x¢ ! + (2d — 1)ao29 225, Since

{m5, xgxf-f ! xgxg x2x3x5 2} is generating set for the homogeneous eomponent

the module generated by zszd* — cd?(zf) —I— dz32473 has dimension d — 1 and its
socle does not lie in Span ((L’Ql‘i ,:vga:gxg xga:j‘f Ty + (2d — 1)9321:4 [E5). Thus,
using Lemma 6.1, we have a decomposition isomorphic to V3 &2V, 1 & V;.

Suppose 3d—1 =) 0. By Lemma 6.9, g generates a module of dimension d+ 2

with socle Span(3z3xf ! 4 moxt 2x5 + caox$ ') for some ¢ € F. By Lemma 6.7

rard generates a module of dimension d + 1 with socle Span(zy29™). Clearly

Toxsrl? generates a module of dimension 1. Since {2¢, 2328, moxd ™ wowsad~?}

generates the homogeneous component, a suitable linear combination of xgxgl L
r3x4287%, and 23227 generates a module of dimension d—2 with socle determined
by f — axgzrff 2z5. Applying Lemma 6.1 gives a decomposition isomorphic to

Vigo @ Vi1 @ Vig_o @ V1.

(viii) For d = 3: The dimension of the homogeneous component is 11. A direct
calculation of 6°(x3) shows that z3 generates a module of dimension 6 with with
socle Span(4zex3 + Tow3ws). A direct calculation of §3(z3x2) shows that zzz?
generates a submodule of dimension 4 with socle Span(9z,2% + 4xoz375). The
linear map A takes the span of the elements of weight less than 13, a subspace of
dimension 7, to the the span of the elements of weight less than 12, a subspace of
dimension 4. Thus the kernel of A has dimension at least 3. Applying Lemma 6.1
gives the required decomposition

For d = 4: Tt is clear that wox3, w3z — Txewizs and wowsz? are invariant.
Note that, for p > 7, the dimension of the homogeneous component is 14. From
Lemma 6.9, §%(xd) = 2640zo23. Thus, for p > 11, z: generates a module of
dimension 7 with socle Span(zoz3). From Lemma 6.7, 6*(z328) = 96z923. De-
fine g; = 553z — 26%(z}). Using Lemma 6.9(i) and Lemma 6.6, §3(g;) =
—150(z323 — Twoxiws) + 420x2x3x§. Thus ¢, generates a module of dimension
4. Using Lemma 6.8, §(zox}) = 6z9x3. Define g := 440x2x§ — 83(x}). From
Lemma 6.8, 0%(g2) = —240(z323 — Twx3zs) + 1200292322, Thus go generates a
module of dimension 3. For p > 11, §3(gs) and §*(g;) are linearly independent.
Thus A3(gy) and A?(gy) are linearly independent and applying Lemma 6.1 gives
the required decomposition. Il
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