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There is a relationship between the covariants of binary forms, a central topic in
classical invariant theory, and the invariants of modular representations of cyclic
groups of prime order. This relationship was identified by Gert Almkvist [1] and
used implicitly in both [15] and [17]. In this note we investigate the relationship
and provide a progress report on an application. Our primary motivation is a
desire to construct nice generating sets for the rings of invariants of modular
representations of cyclic groups of prime order.

1. Modular Invariants

Let p denote a prime number, let Z/p denote the cyclic group of order p,
and let F denote a field of characteristic p. A representation of a cyclic group is
determined by the Jordan canonical form of (the image of) the generator. If n ≤ p
then the n× n matrix over F consisting of a single Jordan block with eigenvalue
1, has order p and determines an indecomposable representation of Z/p which we
denote by Vn (For n > p, the order of the matrix is greater than p.). Note that
there are no non-trivial pth roots of unity in F. Thus 1 is the only eigenvalue for
the image of a generator of Z/p under a representation over F. Therefore, up to
isomorphism, the only indecomposable FZ/p-modules are V1, V2, . . . , Vp.

Let V be any finite dimensional vector space over an arbitrary field k. We
choose a basis, {x1, . . . , xn}, for the dual, V ∗, of V and consider a subgroup G of
GL(V ). The action of G on V induces an action on V ∗ which extends to an action
by algebra automorphisms on the symmetric algebra of V ∗, k[V ] := k[x1, . . . , xn].
The ring of invariants of G is the subring of k[V ] given by

k[V ]G := {f ∈ k[V ] | g · f = f for all g ∈ G}.

If G is a finite group and |G| is not invertible in k then we say the representation
of G on V is modular. If |G| is invertible in k then V is called a non-modular
representation. We will be primarily interested in the case G = Z/p. Note that
V ∗n and Vn are isomorphic Z/p-modules and we will usually choose the basis for
V ∗n so that the generator of Z/p is in Jordan canonical form.
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For a finite G, the transfer is defined by:

TrG : k[V ] −→ k[V ]G

f 7−→
∑
g∈G

g · f

and is a homomorphism of k[V ]G-modules. For non-modular representations,
TrG is surjective. For modular representations, the image of the transfer, IG, is a
proper non-zero ideal of k[V ]G. For proofs of this fact and other general properties
of the modular transfer see [16]. For f ∈ k[V ], we define the norm of f to be the
product over the orbit of f , N(f) :=

∏
h∈G·f h.

The central problem of invariant theory is to find (nice) generators for the al-
gebra k[V ]G. In practice, this problem is much harder in the modular setting.
Even for representations of Z/p, finding manageable generating sets for the ring of
invariants can be difficult. Hughes & Kemper [10] have given an upper bound on
the degrees of the generators for any representation of Z/p. Therefore by taking
all homogeneous invariants with degree less than or equal to the upper bound we
do get a finite generating set. However such generating sets are far from manage-
able. Minimal generating sets for F[V2]Z/p and F[V3]Z/p can be found in Dickson’s
Madison Colloquium [5]. Finite SAGBI bases1 (see Section 4 for definitions) for
F[V4]Z/p and F[V5]Z/p can be found in [15]. The problem of finding a nice gener-
ating set for F[Vn]Z/p for n > 5 remains open. The results of Section 6 represent
preliminary work for n = 6. Even when the invariants of the indecomposable
summands are understood, it can be difficult to construct generating sets for de-
composable representations. Campbell & Hughes, in [3], describe a generating set
for F[mV2]Z/p which is refined to a minimal generating set in [18]. A SAGBI basis
is given for F[V2 ⊕ V3]Z/p in [17]. I understand that Brandon Fodden, a studen-
t at Queen’s University (Canada), has constructed a SAGBI basis for F[2V3]Z/p.
Example 5.4 is related to this problem and Example 5.5 is related to F[V3⊕V4]Z/p

2. Covariants of Binary Forms

Consider the contragradiant action of SL2(C) on the span of x and y, and
extend this to an action by algebra automorphisms on C[x, y]. There is a linear
action of SL2(C) on the span of {a0, a1, . . . , am} with respect to which the binary
form

f :=
m∑
i=0

(
m

i

)
ai x

m−iyi

is invariant. Extend the given actions of SL2(C) to actions by algebra automor-
phisms on C[a0, . . . , am] and C[x, y, a0, . . . , am]. An element of C[a0, . . . , am]SL2(C)

is called an invariant of the binary form while an element of C[x, y, a0, . . . , am]SL2(C)

is called a covariant of the binary from. Following classical terminology, for

1A SAGBI basis is a particularly nice generating set.
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h ∈ C[x, y, a0, . . . , am], the degree of h is its degree as a polynomial in the ai’s
while the order of h is its degree as a polynomial in x and y. Thus, for example, f
has degree 1 and order m. The action of SL2(C) on C[x, y, a0, . . . , am] preserves
both degree and order. Since an arbitrary covariant is the sum of its homogeneous
components, we need only consider elements of C[x, y, a0, . . . , am]SL2(C) which are
homogeneous with respect to both degree and order. The weight of a monomial
ae00 a

e1
1 · · · aemm ∈ C[a0, . . . , am] is defined to be e1 + 2e2 + · · · + mem. The source

of a homogeneous covariant of order k is the coefficient of xk and is a homoge-
neous element of C[a0, . . . , am]. The covariant can be recovered from its source
[9, pp. 41–43]. Furthermore, any homogeneous isobaric element of C[a0, . . . , am]
which is invariant under the upper-triangular unipotent subgroup (a seminvari-
ant), is the source of a homogeneous covariant([13, Theorem 9.45]). If the source
has degree d, and weight ω, then the resulting covariant has order k = m · d− 2ω
([9, pp. 41–43], [8, § 31]). Define

σ :=

(
1 1
0 1

)
.

The action of σ on C[a0, . . . , am] is given by σ(ai) =
∑i

j=0

(
i
j

)
aj and the seminvari-

ants are precisely the elements of C[a0, . . . , am]σ. Take m = n − 1 and choose a
basis, {x1, . . . , xn}, for the span of {a0, . . . , an−1} so that σ is in Jordan canonical
form, i.e., σ(x1) = x1 and σ(xi) = xi + xi−1 for 1 < i ≤ n. For n ≤ 6, a suitable
change of basis is given by a0 = x1, a1 = x2, a2 = 2x3 + x2, a3 = 6x4 + 6x3 + x2,
a4 = 24x5 + 36x4 + 14x3 + x2, a5 = 120x6 + 240x5 + 150x4 + 30x3 + x2.

3. The Connection: Integral Invariants

Define an algebra automorphism, σ, on Z[x1, . . . , xn] by σ(x1) = x1 and σ(xi) =
xi + xi−1 for 1 < i ≤ n. Reducing coefficients modulo p gives a surjection
from Z[x1, . . . , xn] to Fp[x1, . . . , xn] which induces a ring homomorphism from
Z[x1, . . . , xn]σ = Z[x1, . . . , xn]Z to Fp[x1, . . . , xn]σ = Fp[x1, . . . , xn]Z/p. We will
refer to elements in the image of this homomorphism as rational invariants.

The inclusion of Z into C induces a ring monomorphism from Z[x1, . . . , xn]σ to
C[x1, . . . , xn]σ = C[x1, . . . , xn]Z, the ring of seminvariants.

Theorem 3.1. The image of Z[x1, . . . , xn]σ in C[x1, . . . , xn]Z is a generating set
and the image of Z[x1, . . . , xn]σ in Fp[x1, . . . , xn]Z/p is surjective in low degrees.

Proof. This is essentially [1, Theorem 2.5]. The proof relies on comparing Hilbert
series.

We are primarily interested in using this result to construct elements of Fp[Vn]Z/p

from covariants of the binary (n−1)-form. If we start with a homogeneous covari-
ant, we may easily identify the source. The source is an element of C[x1, . . . , xn]σ.
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If the source lies in Q[x1, . . . , xn]σ, we may clear the denominators to get an ele-
ment of Z[x1, . . . , xn]σ which then projects to an element of Fp[Vn]Z/p. It is a con-
sequence of the above theorem that we may choose the generators of C[x1, . . . , xn]σ

to lie in Z[x1, . . . , xn]σ. The results of Section 5 below will give us a process for ex-
plicitly constructing generating sets for C[x1, . . . , xn]σ which lie in Z[x1, . . . , xn]σ.
However, such a generating set will not necessarily project to a generating set for
the subring of rational invariants. There are a number of serious questions about
the coefficients that have yet to be addressed. Despite this, the process has been
used successfully in a number of cases.

In [15, § 6], I conjectured that, for an indecomposable representation V , the
ring Fp[V ]Z is generated by rational invariants, the image of the transfer and the
norm of the generator of the Z/p-module V ∗. I believe that this should hold for
decomposable representations as well, as long as the norms of a generating set for
the Z/p-module V ∗ are included. Note that for representations of Z/pi, elements
in the image of the relative transfer would need to be added. Also, in this case,
the concept of rational invariant, which is essentially a large prime approximation,
is less useful.

Since the degrees of a generating set for the rational invariants are independent
of the prime, the conjecture implies that for all but a finite (possibly empty) set
of primes, an upper bound on the degrees of a minimal generating set is given by
an upper bound on the degrees of the generators for the image of the transfer.
The same conclusion is reached in [10, § 2.4] using the ‘periodicity’ of Fp[V ].

4. SAGBI bases

A SAGBI basis for a subalgebra of k[x1, . . . , xn] is a Subalgebra Analog to a
Göbner Basis for Ideals and as such is a particularly nice generating set. SAGBI
bases were introduced independently by Robbiano & Sweedler [14] and Kapur
& Madlener [11]. Unfortunately, even a finitely generated subalgebra does not
necessarily have a finite SAGBI basis. In fact, as demonstrated by the ring of
invariants of the canonical representation of the alternating group on three letters,
even the ring of invariants of a finite group may fail to have a SAGBI basis (see
[6, Lemma 2.1], [7] or [20, Example 11.2]).

We use the convention that a monomial is a product of variables and that a
term is a monomial with a non-zero coefficient. See [4, Chapter 2] for a detailed
discussion of monomial orders. For f ∈ k[x1, . . . , xn], we use LT(f) to denote the
lead term of f and LM(f) to denote the lead monomial of f . Suppose that R is
a subalgebra of k[x1, . . . , xn]. Let LT(R) denote the vector space spanned by the
lead terms of elements of R. Then LT(R) is a subalgebra of k[x1, . . . , xn]. If C
is a subset of R then let LM(C) denote the set of lead monomials of elements of
C. If C is a subset of R such that LM(C) generates the algebra LT(R) then C
generates R and C is called a SAGBI basis for R. Note that LT(R) is a graded
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algebra. If the subalgebra generated by LM(C) coincides with LT(R) in degrees
less than or equal to d, we say that C is a SAGBI basis through degree d. For a
detailed discussion of SAGBI bases see [14], [11] or [20, Chapter 11].

Taking C = R gives a SAGBI basis for R. Thus every subalgebra has a SAGBI
basis. However, if LT(R) is not finitely generated then R does not have a finite
SAGBI basis (at least using the given monomial order). Although the character-
ization of subalgebras which admit a finite SAGBI basis remains an important
open problem, there are some circumstances which guarantee the existence of a
finite SAGBI basis.

Theorem 4.1. ([18, Lemma 3.1] ) Suppose {h1, . . . , hn} is a homogeneous system
of parameters for k[x1, . . . , xn] with LM(hi) = xdii . If A ⊆ k[x1, . . . , xn] is a
subalgebra with {h1, . . . , hn} ⊆ A, then A has a finite SAGBI basis.

Suppose that V is a modular representation of Z/p. Choose our basis for V ∗

so that the generator, say σ, is in Jordan canonical form, i.e., σ is represented by
an upper-triangular unipotent matrix. Choose a monomial order with x1 < x2 <

· · · < xn. Then LM(N(xi)) = x
[G:Gxi ]

i , where Gxi is the isotropy subgroup of xi,
and {N(x1), N(x2), . . . , N(xn)} is a homogeneous system of parameters for F[V ].
Therefore, using this basis and order, F[V ]Z/p has a finite SAGBI basis (see [18,
Theorem 3.3, Corollary 3.4]).

Suppose that C ⊆ k[V ]. A tête-a-tête (over C) is the analogue of an S-
polynomial and consists of two factorisations of a monomial over LM(C). We
will refer to a tête-a-tête as trivial if the two factorisations have a common factor
greater than 1. A tête-a-tête is given by two subsets Λ1,Λ2 ⊆ C and positive
integers es for s ∈ Λ1 and dh for h ∈ Λ2 such that∏

s∈Λ1

LM(ses) =
∏
h∈Λ2

LM(hdh).

It is then possible to choose c1, c2 ∈ k so that

c1

∏
s∈Λ1

LT(ses) = c2

∏
h∈Λ2

LT(hdh).

The difference
c1

∏
s∈Λ1

ses − c2

∏
h∈Λ2

hdh

is either zero or has a smaller lead monomial. Despite the ambiguity, we will
sometimes refer to this difference as the tête-a-tête.

Subduction is the analogue of reduction. For a homogeneous f ∈ k[V ] of positive
degree, if LM(f) has a factorisation over LM(C) then, there exits a finite subset
Λ ⊆ C, a coefficient c ∈ k and positive integers eh for h ∈ Λ such that

LT(f) = c
∏
h∈Λ

LT(h)eh .
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The difference,

f − c
∏
h∈Λ

heh ,

is called a primary subduction of f and is either zero or has a lead monomial less
than LM(f). A full subduction of f consists of iterating this process as long as
the lead monomial has a factorisation over LM(C). If C is a SAGBI basis for the
subalgebra, then subduction provides a test for subalgebra membership: f is an
element of the subalgebra if and only if f subducts to zero [14, 16.6]. Subduction
also provides a SAGBI basis test: C is a SAGBI basis for the subalgebra generated
by C if and only if every non-trivial tête-a-tête subducts to zero [14, 2.6] (Note
that we work exclusively with homogeneous polynomials.).

For a finite subset C ⊆ k[V ], define d := |C| and AC := k[t1, . . . , td]. Further
define φ : AC → k[V ] by φ(th) = LT(h) and Φ : AC → k[V ] by Φ(th) = h. The
kernel of φ, IC , is a toric ideal whose binomial2 generators correspond to tête-a-
têtes over C. Let TC be a finite generating set for IC consisting of binomials.

Theorem 4.2. C is a SAGBI basis for the subalgebra generated by C if and only
every element of Φ(TC) subducts to zero.

Proof. This is essentially [20, Corollary 11.5]. The elements of TC correspond to
a set of generating tête-a-têtes.

Algorithm 4.3.

Given a finite set C of homogeneous polynomials of positive degree in k[V ], and
a positive integer d, return a SAGBI basis through degree d for the subalgebra
generated by C.

(1) Define m := min{degree(h) | h ∈ C}. Set G to be the set of elements of C
of degree m and set i := m+ 1.

(2) Compute a Gröbner basis of binomials through degree i for the kernel of
φ : AG → k[V ]. Call this basis B.

(3) Subduct each element of Φ(B) against the set C and adjoin non-zero full
subductions to C.

(4) If i+ 1 = d, return G ∪ C. Otherwise set i := i+ 1.
(5) Adjoin elements of degree i from C to G and go to Step 2.

Remark 4.4. The Magma [2] command “Groebner(S,d)” was introduced with
version 2.7 and allows the computation of a partial Gröbner basis through degree
d. David Wehlau and I have written a Magma script implementing subduction.
Thus the above algorithm has essentially been implemented in Magma. We note
that the algorithm, as described here, does not produce a minimal SAGBI basis.

2Our convention is that a binomial is a linear combination of two distinct monomials.
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5. Transvectants

The transvection process can be used to produce new covariants from old.
Define algebra homomorphisms ρ : C[x, y, a0, . . . , am]→ C[X,Y, x, y, a0, . . . , am]
and π : C[X,Y, x, y, a0, . . . , am] → C[x, y, a0, . . . , am] by ρ(ai) = ai, ρ(x) = X,
ρ(y) = Y , π(ai) = ai, π(X) = x, π(Y ) = y, π(x) = x and π(y) = y. The
transvectant of two covariants is defined using Cayley’s Ω-operator,

Ω :=
∂2

∂x∂Y
− ∂2

∂y∂X
.

The rth transvectant of h and g is (h, g)r := π(Ωr(h · ρ(g))) (see [21], [8, § 48],
[13, Ch. 5] and [19, § 4.3]). Note that if h is homogeneous of degree d1 and order
k1, and g is homogeneous of degree d2 and order k2, then (h, g)r is homogeneous
of degree d1 + d2 and order k1 + k2 − 2r. Also note that to combat coefficient
bloat, Grace & Young scale the transvectant by a coefficient which depends on
the degree and order of h and g.

The transvectant of two covariants is again a covariant and a generating set for
the ring of covariants can be constructed by starting with the binary form and
iteratively constructing transvectants. This is a key element in Gordan’s proof
that the ring of covariants is finitely generated [8, Chapter VI].

Example 5.1. The Cubic. A fundamental set of covariants is given by the form
f , the Hessian H := (f, f)2, t := (f,H)1 and ∆ := (f, t)3 (see [8, § 88], [9, p. 68],
[19, Proposition 3.7.7],[13, p. 39] and [12, § 6.4]). The source of f gives x1. The
source of H gives an invariant with lead monomial x2

2. The source of t gives an
invariant with lead monomial x3

2. The source of ∆ gives an invariant with lead
monomial x2

2x
2
3. Comparing with [15, § 4], we see that we have a SAGBI basis for

the ring of rational invariants.

Example 5.2. The Quartic. A fundamental set of covariants is given by f , H =
(f, f)2, i := (f, f)4, t = (f,H)1, and j := (f,H)4 [8, § 89]. The lead monomials
of the corresponding rational invariants are x1, x2

2, x2
3, x3

2 and x3
3. Subducting the

tête-a-tête formed from the third and fifth invariants gives an invariant with lead
monomial x2

4x
2
3x

2
2. Comparing with [15, § 5], we see that we have a SAGBI basis

for the ring of rational invariants.

The next three examples involve simultaneous covariants of a system of binary
forms. Although Sections 2 and 3 dealt only with covariants of a single form,
there are natural generalisations to a system of forms. Furthermore, a generating
set for the ring of simultaneous covariants for a finite set of binary forms can
be constructed by starting with the binary forms and iteratively constructing
transvectants [8, Chapter VIII].

Example 5.3. A linear form ` and a quadratic form f . A fundamental set of
covariants is given by `, f , the discriminant ∆ := (f, f)2, (f, `)1, and (f, `2)2
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[8, § 138 A] 3. If we use {x1, y1, x2, y2, z2} as our basis for V ∗2 ⊕ V ∗3 , the lead
monomials of the corresponding rational invariants are x1, x2, y2

2, x2y1 and x2y
2
1.

Comparing with [17, § 5], we see that we have a SAGBI basis for the ring of
rational invariants.

Example 5.4. Two quadratics: f1 and f2. A fundamental set of covariants is
given by f1, f2, (f1, f1)2, (f2, f2)2, (f1, f2)1 and (f1, f2)2 [8, § 139]. If we use
{x1, y1, z1, x2, y2, z2} as our basis for V ∗3 ⊕ V ∗3 , the lead monomials of the corre-
sponding rational invariants are x1, x2, y2

1, y2
2, x2y1 and x2z1. The only non-trivial

tête-a-tête is formed from the second, third and fifth generators. This subducts to
0. Therefore we have a SAGBI basis for the rational invariants. This is consistent
with unpublished work of Brandon Fodden on Fp[2V3]Z/p.

Example 5.5. A quadratic φ and a cubic f . A fundamental set of covariants is
given in [8, § 140]. We use {x1, y1, z1, x2, y2, z2, w2} as our basis for V ∗3 ⊕ V ∗4 .
Below we describe the fundamental covariants along with the lead monomials of
the corresponding rational invariants. The covariant ci,j has degree i and order
j. The fundamental covariants:
φ, x1; f, x2; D := c2,0 := (φ, φ)2, y2

1; H := c2,2 := (f, f)2, y2
2;

T := c3,3 := (f,H)1, y3
2; ∆ := c4,0 := (H,H)2, z2

2y
2
2;

c2,3 := (φ, f)1, x2y1; c2,1 := (φ, f)2, x2z1;
c3,2 := (φ,H)1, y2

2y1; c3,1 := (φ2, f)3, x2z1y1; c3,0 := (φ,H)2, y2
2z1;

c4,1 := (φ, T )2, y3
2z1; c5,1 := (φ2, T )3, y3

2z1y1; c5,0 := (φ3, f 2)6, x2
2z

3
1 ;

c7,0 := (φ3, fT )6, y3
2x2z

3
1 .

For a covariant c, let inv(c) denote a corresponding rational invariant. The tête-
a-tête given by (inv(c2,1) inv(H), inv(f) inv(c3,0)) subducts to an invariant with
lead monomial y3

2y1. A Magma [2] calculation based on Theorem 4.2 verifies that
we now have a SAGBI basis for the Q[x1, y1, z1, x2, y2, z2, w2]Z.

6. The Binary Quintic

A fundamental set of covariants for the binary quintic can be found either in
[8, Ch. VII] or [21]. The descriptions are slightly different but yield the same lead
monomials for the corresponding rational invariants. Grace & Young describe
each covariant as a transvectant in terms of f , i, H and t while Sylvester uses
various lower degree covariants in his description. There is a certain elegance to
the Grace & Young description but Sylvester’s description is more computation-
ally efficient – a Magma [2] construction using the Grace & Young description
takes four times longer than one based on Sylvester’s construction. Below we give
Sylvester’s description of the fundamental covariants along with the lead mono-
mial of the corresponding rational invariant. The covariant ci,j has degree i and
order j. Sylvester’s covariants:

3Beware the typographical error in the last line of [8, § 138] : (f, `)2 = 0.
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f, x1; H = (f, f)2, x2
2; i := (f, f)4, x2

3;
t = (f,H)1, x3

2; c3,5 := (i, f)1, x2
3x2; c3,3 := (i, f)2, x3

3;
c4,6 := (c3,3, f)1, x3

3x2; c4,4 := (c3,3, f)2, x4
3; c4,0 := (i, i)2, x2

4x
2
3;

c5,7 := (c4,4, f)1, x4
3x2; c5,3 := (c3,3, i)

1, x2
4x

2
3x2; c5,1 := (c3,3, i)

2, x2
4x

3
3;

c6,4 := (c4,4, i)
1, x2

4x
3
3x2; c6,2 := (c3,3, c3,3)2, x2

4x
4
3;

c7,5 := (c4,4, c3,3)1, x2
4x

4
3x2; c7,1 := (c4,4, c3,5)4, x3

4x
4
3;

c8,2 := (c4,4, c4,6)4, x3
4x

5
3; c8,0 := (c4,4, c4,4)4, x4

4x
4
3;

c9,3 := (c6,2, c3,3)1, x3
4x

6
3; c11,1 := (c5,1, c6,2)1, x5

4x
6
3; c12,0 := (c6,2, c6,2)2, x6

4x
6
3;

c13,1 := (c7,1, c6,2)1, x6
4x

7
3; c18,0 := (c13,1, c5,1)1, x2

5x
5
4x

11
3 .

For comparison, the Grace & Young degree 18 covariant is (i7, ft)14.
A SAGBI basis for Q[x1, x2, x3, x4, x5, x6]Z through degree 25 was computed

using a variation of Algorithm 4.3 in Magma [2] on Medicis4. The lead monomials
for the 60 generators:
x1, x

2
2, x

2
3, x

3
2, x

2
3x2, x

3
3, x

2
4x

2
2, x

3
3x2, x

2
4x

2
3,

x2
4x

3
2, x

2
4x

2
3x2, x

2
4x

3
3, x

3
4x

3
2, x

2
4x

3
3x2, x

3
4x

2
3x2, x

3
4x

4
2, x

4
4x

3
2, x

3
4x

2
3x

2
2, x

3
4x

3
3x2, x

3
4x

4
3,

x5
4x

3
2, x

3
4x

3
3x

2
2, x

2
5x

2
4x

2
3x

2
2, x

3
4x

5
3, x

5
4x

4
2, x

5
4x

2
3x

2
2, x

6
4x

4
2, x

5
4x

3
3x

2
2, x

6
4x

2
3x

2
2,

x7
4x

4
2, x

6
4x

3
3x

2
2, x

2
5x

2
4x

6
3x2, x

8
4x

4
2, x

2
5x

2
4x

7
3x2, x

2
5x

2
4x

8
3, x

8
4x

5
2, x

2
5x

2
4x

9
3, x

9
4x

5
2, x

8
4x

3
3x

3
2,

x10
4 x

5
2, x

9
4x

3
3x

3
2, x

11
4 x

5
2, x

9
4x

5
3x

2
2, x

11
4 x

6
2, x

10
4 x

4
3x

3
2, x

2
5x

5
4x

9
3x2,

x12
4 x

6
2, x

11
4 x

3
3x

4
2, x

2
5x

5
4x

11
3 , x

13
4 x

6
2, x

14
4 x

6
2, x

14
4 x

7
2, x

13
4 x

4
3x

4
2,

x15
4 x

7
2, x

14
4 x

3
3x

5
2, x

14
4 x

4
3x

4
2, x

16
4 x

7
2, x

14
4 x

5
3x

4
2, x

17
4 x

7
2, x

17
4 x

8
2.

Conjecture 6.1. Using the graded reverse lexicographic order with
x1 < x2 < x3 < x4 < x5 < x6,
(i) For a given k > 1, the smallest j such that xk4x

j
2 is the lead monomial of a

rational invariant is given by j = bk
3
c+ 2;

(ii) The rational invariants do not have a finite SAGBI basis.

Reviewing the SAGBI basis through degree 25 verifies (i) for k ≤ 17. The
second part of the conjecture is easily seen to be a consequence of the first.

The preceding analysis of the binary quintic originated in an attempt to con-
struction of a finite SAGBI basis for Fp[V6]Z/p. We know that Fp[V6]Z/p does have
a finite SAGBI basis. However, the rôle that the subring of rational invariants
will play in the description of this SAGBI basis is unclear.
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