CLASSICAL COVARIANTS AND MODULAR INVARIANTS

R. JAMES SHANK

There is a relationship between the covariants of binary forms, a central topic in
classical invariant theory, and the invariants of modular representations of cyclic
groups of prime order. This relationship was identified by Gert Almkvist [1] and
used implicitly in both [15] and [17]. In this note we investigate the relationship
and provide a progress report on an application. Our primary motivation is a
desire to construct nice generating sets for the rings of invariants of modular
representations of cyclic groups of prime order.

1. MODULAR INVARIANTS

Let p denote a prime number, let Z/p denote the cyclic group of order p,
and let F' denote a field of characteristic p. A representation of a cyclic group is
determined by the Jordan canonical form of (the image of ) the generator. If n < p
then the n x n matrix over F consisting of a single Jordan block with eigenvalue
1, has order p and determines an indecomposable representation of Z/p which we
denote by V,, (For n > p, the order of the matrix is greater than p.). Note that
there are no non-trivial p'* roots of unity in F. Thus 1 is the only eigenvalue for
the image of a generator of Z/p under a representation over F. Therefore, up to
isomorphism, the only indecomposable FZ /p-modules are V3, Va,... , V).

Let V be any finite dimensional vector space over an arbitrary field k. We
choose a basis, {z1,...,x,}, for the dual, V* of V' and consider a subgroup G of
GL(V). The action of G on V induces an action on V* which extends to an action
by algebra automorphisms on the symmetric algebra of V*, k[V] := k[z1, ..., z,).
The ring of invariants of G is the subring of k[V] given by

k[V]:={feck[V]|g-f=fforall g€ G}

If G is a finite group and |G| is not invertible in k then we say the representation
of G on V is modular. If |G| is invertible in k then V' is called a non-modular
representation. We will be primarily interested in the case G = Z/p. Note that
V¥ and V,, are isomorphic Z/p-modules and we will usually choose the basis for
V* so that the generator of Z/p is in Jordan canonical form.
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For a finite G, the transfer is defined by:
Tr%: k[V] —  Kk[V]¢

fo— > g-f

and is a homomorphism of k[V]“-modules. For non-modular representations,
Tr¢ is surjective. For modular representations, the image of the transfer, I, is a
proper non-zero ideal of k[V]¢. For proofs of this fact and other general properties
of the modular transfer see [16]. For f € k[V], we define the norm of f to be the
product over the orbit of f, N(f) := []cq.;h-

The central problem of invariant theory is to find (nice) generators for the al-
gebra k[V]9. In practice, this problem is much harder in the modular setting.
Even for representations of Z/p, finding manageable generating sets for the ring of
invariants can be difficult. Hughes & Kemper [10] have given an upper bound on
the degrees of the generators for any representation of Z/p. Therefore by taking
all homogeneous invariants with degree less than or equal to the upper bound we
do get a finite generating set. However such generating sets are far from manage-
able. Minimal generating sets for F[V5)%/? and F[V3]%/P can be found in Dickson’s
Madison Colloquium [5]. Finite SAGBI bases! (see Section 4 for definitions) for
F[V4]%/? and F[V5)%/? can be found in [15]. The problem of finding a nice gener-
ating set for F[V,,]2/P for n > 5 remains open. The results of Section 6 represent
preliminary work for n = 6. Even when the invariants of the indecomposable
summands are understood, it can be difficult to construct generating sets for de-
composable representations. Campbell & Hughes, in [3], describe a generating set
for F[mVa]%/? which is refined to a minimal generating set in [18]. A SAGBI basis
is given for F[V, @ V3]%/7 in [17]. T understand that Brandon Fodden, a studen-
t at Queen’s University (Canada), has constructed a SAGBI basis for F[2V3]%/.
Example 5.4 is related to this problem and Example 5.5 is related to F[Vs @ V,]%/?

2. COVARIANTS OF BINARY FORMS

Consider the contragradiant action of SLy(C) on the span of z and y, and
extend this to an action by algebra automorphisms on Clz,y]. There is a linear
action of SLy(C) on the span of {ag, a1, ... ,a,} with respect to which the binary

form .
m m—i_ i
f= ;_O(Z,>ai:c Y

is invariant. Extend the given actions of SLy(C) to actions by algebra automor-
phisms on Clag, . .. , ay] and Clz,y, ag, . . . ,an]. Anelement of Clay, ... , a,,]2(©)
is called an invariant of the binary form while an element of Clx, ¥, ag, . . . , @y,]372(©)

is called a covariant of the binary from. Following classical terminology, for

' A SAGBI basis is a particularly nice generating set.
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h € Clz,y,aq,. .. ,ay], the degree of h is its degree as a polynomial in the a;’s
while the order of h is its degree as a polynomial in x and y. Thus, for example, f
has degree 1 and order m. The action of SLs(C) on Clz,y,ao, ... ,an| preserves
both degree and order. Since an arbitrary covariant is the sum of its homogeneous
components, we need only consider elements of C[z,y, ag, . . . , a,,]"2(®) which are
homogeneous with respect to both degree and order. The weight of a monomial
ai’att -+ -afm € Clag, ... ,an] is defined to be e; + 2e5 + - - - + me,,. The source
of a homogeneous covariant of order k is the coefficient of z* and is a homoge-
neous element of Clay, ... ,a,]|. The covariant can be recovered from its source
9, pp. 41-43]. Furthermore, any homogeneous isobaric element of Clag, ... , ]
which is invariant under the upper-triangular unipotent subgroup (a seminvari-
ant), is the source of a homogeneous covariant([13, Theorem 9.45]). If the source
has degree d, and weight w, then the resulting covariant has order k = m -d — 2w
([9, pp. 41-43], [8, § 31]). Define

~(31)

The action of o on Clay, . . . , a,] is given by o(a;) = Z;:o (;) a; and the seminvari-
ants are precisely the elements of Clay, ... ,a,]7. Take m = n — 1 and choose a
basis, {x1,...,x,}, for the span of {ao, ... ,a, 1} so that ¢ is in Jordan canonical

form, i.e., o(x1) = 1 and o(x;) = x; + x;_; for 1 < i < n. For n < 6, a suitable
change of basis is given by ag = x1, a1 = x3, as = 2x3 + T2, az = 6x4 + 6x3 + 22,
ay = 241'5 + 36[E4 + ].41'3 + Zo, A5 = 12OZL'6 + 2401‘5 + 1501’4 + 301‘3 + Zo.

3. THE CONNECTION: INTEGRAL INVARIANTS

Define an algebra automorphism, o, on Z[z1, ..., x,] by o(x;) = 27 and o(z;) =
x; + x;-1 for 1 < ¢ < n. Reducing coefficients modulo p gives a surjection
from Z[zy,...,x,] to Fplzy,...,z,] which induces a ring homomorphism from
Zlxy, ..., 20,7 = Zlxy, ..., 20)% to Fplzy, ..., 2,)7 = Fplzy, ..., 2,)%P. We will
refer to elements in the image of this homomorphism as rational invariants.

The inclusion of Z into C induces a ring monomorphism from Z[zy, ..., x,]
Clry,...,2,)° = Clzy,...,7,]%, the ring of seminvariants.

g

to
Theorem 3.1. The image of Z[x1,...,x,]° in Clxy,. .., x,]% is a generating set
and the image of Z|x1,...,x,)7 in Fylry, ..., 2,27 is surjective in low degrees.

Proof. This is essentially [1, Theorem 2.5]. The proof relies on comparing Hilbert
series. 0

We are primarily interested in using this result to construct elements of F,[V,,]2/P
from covariants of the binary (n—1)-form. If we start with a homogeneous covari-
ant, we may easily identify the source. The source is an element of Clxq, ..., z,]7.
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If the source lies in Q[x1,...,x,]7, we may clear the denominators to get an ele-
ment of Z[zy, ..., z,]° which then projects to an element of F,[V;]%/?. Tt is a con-
sequence of the above theorem that we may choose the generators of Clxzy, ..., z,]”
to lie in Z[x1, ..., 2,])?. The results of Section 5 below will give us a process for ex-
plicitly constructing generating sets for Clzy, ..., x,]” which lie in Z[xq, ..., z,]%.
However, such a generating set will not necessarily project to a generating set for
the subring of rational invariants. There are a number of serious questions about
the coefficients that have yet to be addressed. Despite this, the process has been
used successfully in a number of cases.

In [15, § 6], I conjectured that, for an indecomposable representation V', the
ring F,[V]% is generated by rational invariants, the image of the transfer and the
norm of the generator of the Z/p-module V*. I believe that this should hold for
decomposable representations as well, as long as the norms of a generating set for
the Z/p-module V* are included. Note that for representations of Z/p’, elements
in the image of the relative transfer would need to be added. Also, in this case,
the concept of rational invariant, which is essentially a large prime approximation,
is less useful.

Since the degrees of a generating set for the rational invariants are independent
of the prime, the conjecture implies that for all but a finite (possibly empty) set
of primes, an upper bound on the degrees of a minimal generating set is given by
an upper bound on the degrees of the generators for the image of the transfer.
The same conclusion is reached in [10, § 2.4] using the ‘periodicity’ of F,[V].

4. SAGBI BASES

A SAGBI basis for a subalgebra of k[zy,...,z,] is a Subalgebra Analog to a
Gobner Basis for Ideals and as such is a particularly nice generating set. SAGBI
bases were introduced independently by Robbiano & Sweedler [14] and Kapur
& Madlener [11]. Unfortunately, even a finitely generated subalgebra does not
necessarily have a finite SAGBI basis. In fact, as demonstrated by the ring of
invariants of the canonical representation of the alternating group on three letters,
even the ring of invariants of a finite group may fail to have a SAGBI basis (see
[6, Lemma 2.1], [7] or [20, Example 11.2]).

We use the convention that a monomial is a product of variables and that a
term is a monomial with a non-zero coefficient. See [4, Chapter 2] for a detailed
discussion of monomial orders. For f € k[zy,...,x,], we use LT(f) to denote the
lead term of f and LM(f) to denote the lead monomial of f. Suppose that R is
a subalgebra of k[z,...,x,]. Let LT(R) denote the vector space spanned by the
lead terms of elements of R. Then LT(R) is a subalgebra of k[zy,...,z,]. If C
is a subset of R then let LM(C) denote the set of lead monomials of elements of
C. If C is a subset of R such that LM(C') generates the algebra LT(R) then C
generates R and C' is called a SAGBI basis for R. Note that LT(R) is a graded
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algebra. If the subalgebra generated by LM(C') coincides with LT(R) in degrees
less than or equal to d, we say that C' is a SAGBI basis through degree d. For a
detailed discussion of SAGBI bases see [14], [11] or [20, Chapter 11].

Taking C' = R gives a SAGBI basis for R. Thus every subalgebra has a SAGBI
basis. However, if LT(R) is not finitely generated then R does not have a finite
SAGBI basis (at least using the given monomial order). Although the character-
ization of subalgebras which admit a finite SAGBI basis remains an important
open problem, there are some circumstances which guarantee the existence of a

finite SAGBI basis.

Theorem 4.1. ([18, Lemma 3.1] ) Suppose {hy, ..., h,} is a homogeneous system
of parameters for K[y, ..., x,] with LM(h;) = 2%, If A C K[zy,...,z,] is a
subalgebra with {hy,... ,h,} C A, then A has a finite SAGBI basis.

Suppose that V' is a modular representation of Z/p. Choose our basis for V*
so that the generator, say o, is in Jordan canonical form, i.e., ¢ is represented by
an upper-triangular unipotent matrix. Choose a monomial order with r; < xy <

-+« < x,. Then LM(N(x;)) = [GiGz]

; , where G, is the isotropy subgroup of z;,
and {N(x1), N(z2),...,N(z,)} is a homogeneous system of parameters for F[V].
Therefore, using this basis and order, F[V]%/? has a finite SAGBI basis (see [18,
Theorem 3.3, Corollary 3.4]).

Suppose that C' C k[V]. A téte-a-téte (over C') is the analogue of an S-
polynomial and consists of two factorisations of a monomial over LM(C'). We
will refer to a téte-a-téte as trivial if the two factorisations have a common factor
greater than 1. A téte-a-téte is given by two subsets A, As C C' and positive

integers e, for s € Ay and dj, for h € Ay such that
[T Lv(se) = T LM(n).
seAq heAs

It is then possible to choose c1, ¢y € k so that

er [ LT(s%) = e [ LT(2™).

sEN heAy
The difference
cy H s — ¢y H J
s hEAs

is either zero or has a smaller lead monomial. Despite the ambiguity, we will
sometimes refer to this difference as the téte-a-téte.

Subduction is the analogue of reduction. For a homogeneous f € k[V] of positive
degree, if LM(f) has a factorisation over LM(C') then, there exits a finite subset
A C C, a coefficient ¢ € k and positive integers e, for h € A such that

LT(f) = ¢ [ LT(n).

heA
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The difference,

f=c]]n
heA

is called a primary subduction of f and is either zero or has a lead monomial less
than LM(f). A full subduction of f consists of iterating this process as long as
the lead monomial has a factorisation over LM(C'). If C'is a SAGBI basis for the
subalgebra, then subduction provides a test for subalgebra membership: f is an
element of the subalgebra if and only if f subducts to zero [14, 16.6]. Subduction
also provides a SAGBI basis test: C'is a SAGBI basis for the subalgebra generated
by C' if and only if every non-trivial téte-a-téte subducts to zero [14, 2.6] (Note
that we work exclusively with homogeneous polynomials.).

For a finite subset C' C k[V], define d := |C| and A¢ := K[t1,... ,t4). Further
define ¢ : Ac — k[V] by ¢(ty,) = LT(h) and ® : Ac — k[V] by ®(t,) = h. The
kernel of ¢, I¢, is a toric ideal whose binomial? generators correspond to téte-a-
tétes over C. Let 7 be a finite generating set for I consisting of binomials.

Theorem 4.2. C' is a SAGBI basis for the subalgebra generated by C' if and only
every element of ®(7¢) subducts to zero.

Proof. This is essentially [20, Corollary 11.5]. The elements of 7¢ correspond to
a set of generating téte-a-tétes. O

Algorithm 4.3.

Given a finite set C' of homogeneous polynomials of positive degree in k[V], and
a positive integer d, return a SAGBI basis through degree d for the subalgebra
generated by C.

(1) Define m := min{degree(h) | h € C'}. Set G to be the set of elements of C
of degree m and set 7 :=m + 1.

(2) Compute a Grobner basis of binomials through degree ¢ for the kernel of
¢ : Ag — k[V]. Call this basis B.

(3) Subduct each element of ®(B) against the set C' and adjoin non-zero full
subductions to C.

(4) If i + 1 = d, return GU C. Otherwise set i := i + 1.

(5) Adjoin elements of degree i from C' to G and go to Step 2.

Remark 4.4. The Magma [2] command “Groebner(S,d)” was introduced with
version 2.7 and allows the computation of a partial Grobner basis through degree
d. David Wehlau and I have written a Magma script implementing subduction.
Thus the above algorithm has essentially been implemented in Magma. We note
that the algorithm, as described here, does not produce a minimal SAGBI basis.

2Qur convention is that a binomial is a linear combination of two distinct monomials.
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5. TRANSVECTANTS

The transvection process can be used to produce new covariants from old.
Define algebra homomorphisms p : Clz,y, ag, ... ,an] — C[X,Y, 2,9, a0, .. ,an]
and 7 : C[X,Y,z,y,a0,...,an] — Clz,y,a0,...,an] by pla;) = a;, p(x) = X,
ply) =Y, mla;) = a;, 7(X) = @, n(Y) =y, 7(x) = = and 7(y) = y. The
transvectant of two covariants is defined using Cayley’s Q2-operator,

0? 0?
Q= — :
oxdY  0yoX

The r'" transvectant of h and g is (h,g)" := w(Q"(h - p(g))) (see [21], [8, § 48],
[13, Ch. 5] and [19, § 4.3]). Note that if h is homogeneous of degree d; and order
ki, and g is homogeneous of degree dy and order ko, then (h,g)" is homogeneous
of degree dy + ds and order ky + ks — 2r. Also note that to combat coefficient
bloat, Grace & Young scale the transvectant by a coefficient which depends on
the degree and order of A and g.

The transvectant of two covariants is again a covariant and a generating set for
the ring of covariants can be constructed by starting with the binary form and
iteratively constructing transvectants. This is a key element in Gordan’s proof
that the ring of covariants is finitely generated [8, Chapter VI].

Example 5.1. The Cubic. A fundamental set of covariants is given by the form
f, the Hessian H := (f, f)?, t := (f, H)* and A := (f,t)® (see [8, § 88], [9, p. 68],
(19, Proposition 3.7.7],[13, p. 39] and [12, § 6.4]). The source of f gives z1. The
source of H gives an invariant with lead monomial 3. The source of ¢ gives an
invariant with lead monomial z3. The source of A gives an invariant with lead
monomial x3x3. Comparing with [15, § 4], we see that we have a SAGBI basis for
the ring of rational invariants.

FExample 5.2. The Quartic. A fundamental set of covariants is given by f, H =
(f, )2 0= (f,HY t=(f,H), and j := (f, H)* [8, § 89]. The lead monomials
of the corresponding rational invariants are 1, 2, 22, z3 and x3. Subducting the
téte-a-tete formed from the third and fifth invariants gives an invariant with lead
monomial z3z3z3. Comparing with [15, § 5], we see that we have a SAGBI basis
for the ring of rational invariants.

The next three examples involve simultaneous covariants of a system of binary
forms. Although Sections 2 and 3 dealt only with covariants of a single form,
there are natural generalisations to a system of forms. Furthermore, a generating
set for the ring of simultaneous covariants for a finite set of binary forms can
be constructed by starting with the binary forms and iteratively constructing
transvectants [8, Chapter VIII].

Example 5.3. A linear form ¢ and a quadratic form f. A fundamental set of
covariants is given by ¢, f, the discriminant A := (f, f)?, (f,£)!, and (f,(?)?
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8, § 138 A] 3. If we use {z1,y1,22,Ys, 22} as our basis for V;* & V5, the lead
monomials of the corresponding rational invariants are y, xa, y3, Toy; and Tay3.
Comparing with [17, § 5], we see that we have a SAGBI basis for the ring of
rational invariants.

Example 5.4. Two quadratics: f; and f;. A fundamental set of covariants is
given by fi, fo, (f1, 1) (f2, f2)% (f1, f2)' and (f1, f2)? [8, § 139]. If we use
{z1,y1, 21, %2, Y2, 22} as our basis for V5" @& V5", the lead monomials of the corre-
sponding rational invariants are x1, Ts, ¥}, y3, T2y and x9z;. The only non-trivial
téte-a-téte is formed from the second, third and fifth generators. This subducts to
0. Therefore we have a SAGBI basis for the rational invariants. This is consistent
with unpublished work of Brandon Fodden on F,[2V3]2/P.

FExample 5.5. A quadratic ¢ and a cubic f. A fundamental set of covariants is
given in [8, § 140]. We use {z1,y1, 21, T2, Y2, 22, wa} as our basis for Vy* @ V'
Below we describe the fundamental covariants along with the lead monomials of
the corresponding rational invariants. The covariant ¢; ; has degree i and order
j. The fundamental covariants:

¢, x1;  f, xa; D =g = (9, 02 yi; H:= oo = (f, f)%5 v

T :=c33:= (f, H)17 yé”; A= cyp = (H, H)2> Z%?J%S

C2,3 ' = (o, f)17 Tay1; Co1 = (o, f)Q, L2715

cso = (9, H)17 y%yl; C3,1 = (¢27f)3, Taz1y1; 30 = (9, H) yzzla

ca1 = (¢, T)?, y221, €1 = (6%, T)°, yszyis 50 = (07, f?)°, wiei;

cro = (¢, fT) Y2z

For a covariant ¢, let inv(c) denote a corresponding rational invariant. The téte-
a-téte given by (inv(ceq)inv(H),inv(f)inv(cso)) subducts to an invariant with
lead monomial y3y;. A Magma [2] calculation based on Theorem 4.2 verifies that
we now have a SAGBI basis for the Q[z1,y1, 21, T2, ¥a, 22, W) 2.

6. THE BINARY QUINTIC

A fundamental set of covariants for the binary quintic can be found either in
(8, Ch. VII] or [21]. The descriptions are slightly different but yield the same lead
monomials for the corresponding rational invariants. Grace & Young describe
each covariant as a transvectant in terms of f, ¢, H and t while Sylvester uses
various lower degree covariants in his description. There is a certain elegance to
the Grace & Young description but Sylvester’s description is more computation-
ally efficient — a Magma [2] construction using the Grace & Young description
takes four times longer than one based on Sylvester’s construction. Below we give
Sylvester’s description of the fundamental covariants along with the lead mono-
mial of the corresponding rational invariant. The covariant ¢; ; has degree ¢ and
order j. Sylvester’s covariants:

3Beware the typographical error in the last line of [8, § 138] : (f,£)? = 0.
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[y (ff) %, Z—(ff) x37

= (f H) ) xga C35 -—( ) $3l‘2, C3,3 := (i7f)27 x%;

C46 = (033;f)17 mg%; Cqy4 = (0337f)2a mg; Cq0 : = (1, Z)Qa 57542@%%

Cs7 = (044, ) ) 903$2, C53 = (03,37 )17 %2190%@7 Cs1 ‘= (63,3,i)2, 51012@3;

Coa = (Caa,i ) 3345535132, Cp2 ‘= (0373,0373)27 T3T3;

Crs = (044,03 3)1’ $4IB3332> Cr1 = (04,4703,5)4, -113?133%;

Cg2 = (044,04 6) ) xixi, Cg,0 ‘= (04,4704,4)4, 1’2135%;

€93 = (CG 2,C3 3) ) l’iiUg; C11,1 ‘= (C5,1766,2)17 l’i%g; C12,0 ‘= (CG,2766,2)27 xixg;

e 1 ..6..7. o 1 ..2..5,.11
C13,1 : = (0717662> y Lgqg; €180 - (013 1, Cs, 1) y LeLydg™ .

For comparison, the Grace & Young degree 18 covariant is (7, ft)4.

A SAGBI basis for Q[zy, 29, x3, 24, 5, )% through degree 25 was computed
using a variation of Algorithm 4.3 in Magma [2] on Medicis*. The lead monomials
for the 60 generators:

2 2 3 2 3 2,.2 3 2,.2
.CE]_, 272, ,213’3, $2, xSxQ, 333, .2341’2, .2331’2, x4$3,
2,.3 2,.2 3 3.3 2.3 3 3 3 3 3,.3 3
LyLg, TyX3ly, T5Lylaly, 5’749537 wyxy, viriry, afwy, vivivy, ajvid,

7.4 6,32 226 8 22,7 2,2,8 8.5 2,29 9.5  8.3.3
wiay, 2Sadxd) viaiaSes, 28wy, xivialry, xixial) afal, x2xixd, xfxd, afxdad,

10,5 ,9.3.3 11,5 .9.5.2 11,6 10,43 .25 9
LTy Loy Tyl3zly, Ty Ty Tylzgly, Ty Ly, Ty TzXy, Tplyl3la,

12,6 1134 2.5 11 ,13..6 14..6 147 134 4
Ty Ty, Ty T3To, TTylz , Ty Lo, Ly Lo, Ty Ty, Ty T3To,

Pl witedel, altedad, 220 witadad, xlTxl xlTad.

Conjecture 6.1. Using the graded reverse lexicographic order with

T < Tog < T3 < Ty <y < Tg, '

(i) For a given k > 1, the smallest j such that zXx} is the lead monomial of a
rational invariant is given by j = LgJ +2;

(i1) The rational invariants do not have a finite SAGBI basis.

Reviewing the SAGBI basis through degree 25 verifies (i) for & < 17. The
second part of the conjecture is easily seen to be a consequence of the first.

The preceding analysis of the binary quintic originated in an attempt to con-
struction of a finite SAGBI basis for F,[V5]%4/P. We know that F,[V5]%/? does have
a finite SAGBI basis. However, the role that the subring of rational invariants
will play in the description of this SAGBI basis is unclear.
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