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Abstract We consider the following risk reserve model. The premium income is
a level dependent Markov-modulated Brownian motion. Claim sizes are iid with a
phase-type distribution. The claim arrival process is a Markov-modulated Poisson
process. For this model the payment of dividends under a threshold dividend strategy
and the time until ruin will be analysed.
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1 Introduction

Threshold dividend strategies are sometimes optimal and therefore a popular object of
interest in insurance mathematics, see e.g. [7, 10] for the compound Poisson model or
[8] for a Brownian motion model. In a threshold strategy, no dividends are paid when
the risk reserve is below a certain threshold, while above this threshold dividends are
paid at a rate that is less than the rate of premium income. This has been generalised
to more than one threshold with different rates of dividend payment (see e.g. [3]).

In the present paper we consider a Markov-additive risk model (to be specified
below) with a finite number of thresholds 0 < b; < ... < by. We derive the joint
distribution (in terms of their joint Laplace transform) of the time until ruin and the
time durations (,, that the risk reserve is between the thresholds b,,_; and b,,. This
information suffices to compute the dividend payments in a threshold dividend strat-
egy.

The premium income process shall be modelled by a level dependent Markov-
modulated Brownian motion. Claim sizes are iid with a phase-type distribution. The
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claim arrival process is a Markov-modulated Poisson process. For an introduction
to Markov-modulated processes, which are special Markov-additive processes, see
chapter XI in [1]. We now proceed to specify the risk model to be considered.

Let J = (J; : t > 0) denote an irreducible Markov process with a finite state
space E = {1,...,m} and infinitesimal generator matrix Q = (g;;) i jen- Wecall Ji

the phase at time ¢. A level dependent Markov-modulated Brownian motion (B, J )
with a finite number of thresholds b1, . .., by is defined by the stochastic differential
equation

W dt+ oW, X, <b
dBy = { pY dt + 05,dWy, by < Xy <bpi, 1<kE< N -1
P dt oy, dWh, X, > by

where ugk) €Rando; > 0fori € E,and W = (Wy : t > 0) denotes the standard
Wiener process. Define the intervals Iy :=| — 0o, b1] for k = 1, Iy, :=]bx_1, by] for
ke{2,...,N}, and Iny; :=]by,o0[ for k = N + 1. We call Ij, together with the

parameters (ugk), O'i> ,i € E, the kth regime of (B, 7).

The process (B, J ) shall serve as our model for the premium income. Typically,
there is a constant rate ¢; dt of premium income, together with a perturbation o;dW;.

Above the threshold by, dividend payments would commence with a constant rate

cz(-l) < ¢;. In amulti-threshold model, other rates cgn) of dividend payments would be-

come effective as soon as the risk reserve surpasses the threshold b,,. This is typically
(1)

< ... < CZ(-N) < ¢;, although this property is not a necessary as-
(€3] kA1) . o oK)

i %

constrained by ¢

sumption for the analysis to follow. We now define p
for k =1,..., N to arrive at the notation above.

We assume that claim sizes C,,, n € N, are iid with a phase-type distribution
of order m¢ and parameters («, T'). The methods presented in this paper would al-
low for claim size distributions to depend on the phase process j . This, however,
would complicate notations which are on the abundant side already. Thus we shall
confine our analysis to iid claim sizes. We assume further that a claim occurs with a
constant rate \;dt when jt = 4. This means that the claim arrival process is a Markov-
modulated Poisson process (N, ) with parameters Dy = Q — A and D; = A where
A = diag()\; : i € E) is the diagonal matrix containing the rates \;.

Altogether our model for the risk reserve X, at time ¢ is given by

= c; and p Ci

Ny
Xt:u—l—Bt—ZCn

n=1

where u = XO denotes the initial risk reserve and N' = (N; : ¢ > 0), i.e. Ny denotes
the number of claims received until time ¢.

The process (22 T ) is a level dependent Markov-additive process (MAP) with
a generator matrix () for the phase process 7 that is independent of the level. The
parameters for the level process X in the kth regime are (,15’”, 0,V 11 € E’), where
the Lévy measures ;(dr) = \iljy<0} ae~ Ty dx are independent of the level. If
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N = 0, i.e. if there is only one regime, we call the MAP homogeneous (in space). For
literature on homogeneous MAPs see [1], chapter XI, and [5,9,6]. The non-perturbed
case o; = 0 fori € F has been analysed in [2,3,11].

In the following section some useful results for homogeneous MAPs will be col-
lected for ease of reference. Section 3 contains the analysis for the case N = 1, i.e.
two regimes. In the last section, the results will be generalised to the case of a finite
N.

2 Results for homogeneous MAPs
2.1 Markov—additive Processes with phase—type Jumps

In this section we construct a new MAP (X', 7) from the given MAP (X', 7) without
losing any information. This new MAP will have continuous paths which consider-
ably simplifies the one- and two-sided exit problems (cf. sections 2.2 and 2.3).

Denote the indicator function of a set A by I4. Our assumption that the claim
sizes have a phase-type distribution with parameters («, T') leads to Lévy measures
v; of the form

vi(dr) = Nill{z<0y ae 1%y dx (D

foralli € E , where \; > 0. The column vector i := —T'1 is called the exit vectors,
where 1 denotes the column vector of dimension m with all entries being 1.

The main advantage of the phase—type restriction on the jump distributions is the
possibility of transforming the jumps into a succession of linear pieces of exponential
duration (each with slope 1 or -1), which yields a modified MAP with continuous
paths. We can then retrieve the original process via a simple time change. This is
explained in detail in sections 2.1 and 2.2 of [6]. Here we shall present only the
pertinent information to make the present paper self-contained.

Without the jumps, the Lévy process X during a phase 7 € E is simply a

Brownian motion with parameters 6; > 0 and f; > 0. Write £, := E. Now we
introduce a new phase space
E_:={(i,k) i€ E;,1 <k <m} 2

to model the jumps. Define now the enlarged phase space £ = E, U IZ_. We define
the modified MAP (X, J) over the phase space E as follows. Set the parameters
(piyo2,v;) fori € E as

(-1,0,0), i€ E_

3
(ﬂiaéiao)v ZGEG‘ ( )

(/’Liaaga Vi) = {

The modified phase process 7 is determined by its generator matrix Q = (¢i;)i,jcE-
For this the construction above yields

Gii — Xi, h=1i¢ckE,
Qin = < Gin, heEs;h#i 4
)\iak, h = (i, ]C) e b_
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fori € E, as well as

Qi k), (0 = Tk and gk = Mk &)

fori € E,and 1 < k,l < m. }
The original level process X is retrieved via the time change

t
C(t) 22/ ]I{JSGEG} ds and Xc(t) =X, (6)
0
for all £ > 0. Thus we obtain
7(a) = ¢(1(a)) @)

fora € R and 7(a) := inf{t > 0 : X; < a}. This implies that we can perform an
analysis of the MAP (X, J) in terms of the modified MAP (X, J) alone.

2.2 First Passage Times

A derivation of the Laplace transforms for the first passage times of MAPs has been
given in [5]. Define the first passage times

G(z):=inf{t>0:X; >z} and o(z):=inf{t>0:X; >z}

for all z € R. Note that 5 () is the first passage time over the level « for the original
MAP X, meaning that we do not count the time spent in jump phases ¢ € E_. This
means that

o(x)
5(z) = c(o()) = / I).en,)ds

according to (6). In particular, we may compute expectations over &(x) using the
distribution of the modified MAP (X, J) only and without needing to recur to the
original MAP (X, 7). For v > 0 denote

Eij(e77®)) i= E(e™®) Ty o) = jlo = 1, Xo = 0)
foralli,j € E.Let E(e=7?(*)) denote the matrix with these entries and write

. E (e—’yé(r)) E, . _ (e—vﬁ(r))
O'( ) _ (0'70') (U) )
]E(e voLE ) - (E(_J)(ew&(x)) E(_7_)(677&(m))

in obvious block notation with respect to the subspaces F, (ascending phases) and
FE_ (descending phases). According to section 3 in [S] we can write

(e @) = (Af(; )) (Ve o) )

where I, denotes the identity matrix of dimension F, x F,, 0 the zero matrix of
dimension E, x E_, U(v) is a sub-generator matrix of dimension E, x E,, and
A(7y) is a sub—transition matrix of dimension F_ X E,. An iteration to determine
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A(7) and U(y) is derived in [5] and further specified to the case of phase-type jumps
in [6].

In order to determine the downward first passage times (in particular the time of
ruin), we reflect at the original level X and consider upward first passage times for
the negative of X. Let (X1, 7) denote the MAP as constructed in section 2.1 and
define the process X~ = (X; :t > 0) by X, := —X, forall t > 0 given that
X = Xy = 0. Thus (X, ) is the negative of (X, J). The two processes have
the same generator matrix () for J, but the drift parameters are different. Denoting
variation and drift parameters for X+ by Uz-i and /1,?:, respectively, this means O';L =
o; and pu; = —p forall i € E. This of course implies that phases i € E_ are
ascending phases for X'~

Let A* () and U*(7) denote the matrices that determine the first passage times
in (8). We shall write A* = A*(y) and U* = U () except in cases when we wish
to underline the dependence on . Note that in our case all phases are ascending for
X~ such that A~ vanishes, i.e. has dimension 0. Define the (downward) first passage
times

Flo):=inf{t >0: X; <z} and 7(x):=inf{t>0:X, <z}
for all x € R. We now obtain
E(e_'ﬁ(m)p(o —a) = U () (a—xw) 9)

forall z < a.

2.3 The two-sided Exit Problem

For | < u, define the stopping times
o(lyu) :=inf{t >0: X; <l or X;>u} (10)

and
o(l,u) B B
a(l,u) = / Isep,yds =inf{t >0: Xy <l or X;>u} a1
0

which are the exit times of X’ and X from the interval [1, u], respectively. Choose any
~ > 0. For the main result we need an expression for

W;;(’U/ — l|.’IJ — l) =K (6_76(l7u);Xa(l,u) = b7 Ja(l,u) = JlJO =1,Xo= -7;)

where € [l,u] and i,j € E. Clearly ¥\ (u — l|z — 1) = 0 for j € E_ since an
exit over the upper boundary can occur only in an ascending phase. Define the matrix
Ut (u—lz—1):= (Wjj'(u —llz —1))icp jer, - A formula for " (u — |z — [) has
been derived in [9]. In order to state it we need some additional notation. Define the
matrices

ct= (AI‘;) and O := (I, 0) (12)
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of dimensions ' x E, and E, x F, respectively, where I, denotes the identity matrix
of dimension E, x E,. Further let Z* := CieUi'(“*l). Then equation (23) in [9]
states that

WJF(U —lz-1)= (C+€U+.(u7m) _ eU_~(:1:fl)Z+) . (I . Z7Z+)71 (13)

for 0 < x < b. This matrix has dimension £ x E,, due to the fact that exit from
below can only happen in an ascending phase. By reflection at the initial level x, we
obtain further

U (u—llz—1):=E (6_75(1’“); X, = 0| Xo = x)
= (eU_'(I*l) — C+eU+'(“*””)Z*) . (I - ZJFZ7)71 (14)

for € [l,u]. This matrix has dimension £ x E. Note that the expressions on the
right-hand sides of (13) and (14) depend on a choice of v > 0.

3 The single threshold case
We first consider the time of ruin for the case N = 1, i.e. one threshold only. Denote
the level of this threshold by b > 0. The time of ruin is defined as

7(0) ;= inf{t > 0: X; < 0} (15)

We seek to find an expression for E (6*7%(0) | Xo = u) where v > 0 and u denotes
the initial risk reserve. Let U:" = U (v), AF = A¥(v),and ¥ = U () denote
the matrices introduced in section 2 for the ith regime, where i = 1 means X; < b
and 7 = 2 means X; > b.

In the case u < b we obtain

E (eﬂ*<0>|xo - u) = U7 (blu) + ¥ (blu) E (e*WO)p{O - b)
while for « > b path continuity of X" yields
E (6*7%(0)‘){'0 = u) — Uz (u-b) | (6*“/?(0)|X0 - b)

Thus it suffices to determine E (e =77(0)| X, = b). Write

(b =)= () 2r) = (50) oo

in obvious block notation. In general we shall use for any matrix M of dimension
E x E the block notation

_. (M) Moy _. (M@, _.
M= (M<—,a> M) " \Mc-,) (Mo M)

By (0) = ¥y (b)) + 27" (01b) () B, (0) a7
Thus it remains to determine £, ,(b) and E(,,_)(b). This will be pursued in theo-
rem 1, for which we state two lemmata first.

Then
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Lemma 1 Write

H+ + (E)
Ur(b+elb—e) = =)
1 ( ‘ ) <H(+’O_)(€) H(J: 7)(6)
in block notation. Then

d ot

Hf = I@H(U’U) (5)

_ B —1
—2(Ufe U s crupe et ) (U - cret o)
Proof: According to (13),
HE, () = (€972 — Celi =2 cf U049

(0,0

< (I, — O VT g U049
- (erf-wfe) _ C;eUf'U’*E)cj)

% (erf'-(bJre) . Cl—eUl—.(bJre)CfL)_l

After abbreviating

F(E) — (e—Uf(b—e) _ Cl—eUf'(b—e)Cil-)
and . -

G(e) = (erl (b+e) _ o eUs -(b+s)01+>

we apply the formal rules of derivation for functions of a real variable (see [4], sec-
tions 1.1.3-4) to obtain

H = F'(0)G(0)~" = F(0)G(0)~'G"(0)G(0)~*
where
F(0) = e Ui _ CreUitor, F(0) = Uje—Uf‘b + OrUT VT ve
and
G0) = e U — orelibo,  GN0) = —Ue Uit — T U eV hOf

Thus F(0) = G(0) and G'(0) = —F’(0), which yields the statement.
O

Lemma 2 Write

. o (WMo E) Wi y(e)
Uy (b+elb—e¢) = ( —o (& W _(e)

in block notation. Then
d

Wi = %W(;,.)(g)

-1

= —2(CrUT +UFCY) (e—Uf'b - Cerf‘bC;)
e=0
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Proof: The proof is analogous to lemma 1. According to (14),

() = (Cr eV 479 — (U 2o el 049))
% (I _ C+6Uf~(b+£)cer1_~(b+a)) -1
_ (Cl—e—U;Qs B 6U1+-2501—>

% (erl_-(bJrE) - C+6U1+-(b+e)cl—>_1
Write Fi(e) = Cp e 2Ur e — 2UieCy and G(e) = e~ Ur -(b+e) — it el -(b+e) 0
to obtain

d___

TWo 0 = ZFEGE)

e=0 e=0

= F'(0)G(0)™" = F(0)G(0)~' G (0)G(0) ™

according to [4], sections 1.1.3-4, where F/(0) = 0, F'(0) = —2 (C7 Uy + U CY)
and further G(0) = e~Ur b — O Vi 2Cy . Altogether this yields the statement.
U

Theorem 1 Write E(,.)(b) := (E(s,0)(b) E(s,—)(b)) for the first row in (16). Then

-1
By (b) = (2 (U5) gy W5 (010 ) — H —2 (U;)(M))

x (W( +2(U5) ) gp;(b|b)(,,.))

Proof: We consider E(b—¢) := E (e777(0)| X, = b — ¢) and assume that the regime
changes at b+ ¢ for upward crossings of b and at b — ¢ for downward crossings. Then
we let e | 0. Due to (17), we need to determine the upper row E(,.)(b—¢) only. First
we obtain

Eyb—e) =W, () + HY ()07 eY2 2#B(b—¢)

(0,9)

)

=W () + HE, ) (£)C™ (eU’; '28) o Beab=)
+HY ()0 (eY2 % B, (b—¢
b0 (%) Bab—2)

where H ™

(0:0)

(€) and Wi (¢) are defined in lemmata 1 and 2. This implies
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‘We observe that

limHt | (¢) =limC~ (eU;'QE) =1,
el0 (0,0) el0 (+,0)

%% : - Uy -2¢e _
lslﬁ)l ()& =0, IE%IC (e ’ )(.}7)_0
lim B y(b—¢)=E. (b

lim B (b =€) = B (0)

where O denotes a zero matrix of appropriate dimension. Thus we can write
-1
lime (I, — HY . (e)C~ (eU;'QE)
el0 (9,9) (-,0)

-1
<; (UU (U 25)(‘7‘7) 5-0)
d
- (z#

Io +Ia ic’* (eU;-ZE)
_ de (o)

E

(0 o)

>—1
e=0
__ (Hl+ +2 (U;)(M))

see [4], section I.1.3, and lemma 1 for the last two equalities. In a similar manner,

lime™ ! W~

i (0,.)(5) = %W(;.)(S) _ =Wy

according to lemma 2. Finally,

~ + — (U7 2¢ - _
lime™" H ()0 (e ; )('7_) EZ . (b—¢)
_ o1 = (UF 2
=1, (lglﬁ)le C (e 2 )(.’)> E y(b)
=2 (U{)(G,_) E(_y.)(b)

Pasting the above results together, the limit € | 0 yields

E.(b) = — (Hl+ +2 (Ug)(g7g))7 (Wf +2 (Uzi)(gﬁ) E(*,A)(b))
— (Hf +2 (U;)(M))*1 (Wi +2(U5),_, o7 0l ))

_ <H1+ +2 (U;)(M)) 2(Us5) gy ¥ (B10) (- ) B (B)
after using (17). Thus
B0 = (1o = (87 +2(05) ) 205) O )
( w))_l (Wi +2(U3) ., 1 blb) )
== (B +2(U5) 0y~ 2(U3) (T B) )
(

< (Wi +2(U5),,. w;(b|b)(,,.))
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which is the expression in the statement.
Considering now E(b + ¢) = E (e 7"|X, = b+ ¢) instead of E(b — ) as
above, we observe that

E(b+e)=C"e">*E(b—e¢)
due to path continuity. Since lim, o eV2 2 = I, we obtain
. — lim (I oy B
lim Eq,. (b +¢) = lim (I, 0) E(b—¢) lim Eo,.) (b~ €)
such that the limits from both sides coincide.

]
Let ¢(b) :=1 ({t <7(0): X; > b}) denote the Lebesgue measure of the time

before ruin that the risk reserve process spends above the threshold b. Then the div-
idends paid out before ruin amount to D = ¢1{(b). We now wish to state the joint
distribution of the time to ruin and the time spent above b in terms of their joint
Laplace transform.

Corollary 1
E (e—v%<o>—6<<b> 1Xo = b)

_ _ -1
= (203 (v +0) (0, )¥1 (0,Y[0) (o) — 2Us (7 + 8)(0,0) — H{ (7))
< (205 (v + 0) (0,0 ¥y (0,710) -y + W (7))
Proof: We integrate over the same set of sample paths as in theorem 1, only with
the additional integrand function e =% when X; > b. Thus the only difference to the

statement in theorem 1 is the Laplace argument -y + 6 for U, .
d

4 Multi-threshold strategies

We now consider a Markov-additive risk model (X, ) with a finite number of
thresholds b1, ..., by. Define

E~(a,]):=E (e—w%(z)—zﬁ;; 5nln |Xo = a)
forl < a, where §,, > Oforn=1,...,N + 1 and
Coi=1 ({t <#(0) :bpoy < Xy < bn})

denotes the Lebesgue measure of the time spent in the interval [b,,_1, b, [ before ruin,
with by := 0 and by 41 := oo. Path continuity of X" yields

E~ (u,l) = E~ (u,a)E~ (a,l)
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foralll < a < u. Foru > by, E~ (u,by—_1) has been determined in section 3 (set
b:=bn — by_1). We wish to determine

E~(u,0) = E~ (u,bp) E~ (bg, bp—1) . .. E~ (by,0)

where k := max{n < N : b, < u}.In order to pursue this, let U,;t = U,;t(fy + 0),
A,f = Af (v+ ), and W,;t = W (v + Jx) denote the matrices introduced in section
2 where the parameters are taken from the kth regime, withk =1,..., N + 1.

First note that

B~ (u,by) = ¥y (b — bplu — bi) + ¥, (bt — bi|u — bi) E™ (byy1, b))

such that it suffices to determine the matrices E~ (b, bx—1) fork = 1,..., N — 1.
Recalling the definitions (10) and (11), define the matrices

E+(k) — (e—Vﬁ(bk—l,bk+1)_zfyill 5"C";XU )= u|Xo = bk)

(bk—1,bk41
and
E-(k):=E (e—v&(bkﬂ,bm)—zﬁfg bau X X = bk)

o(br—1,bk41)
fork=1,...,N — 1. Since
E™ (bg,br—1) = E (k) + E+(k)E_(bk+1, br)E™ (b, br—1)

we obtain
B (b, by—1) = (I = E¥(K)E™ (bpg,br)) ' B (k)

for k < N —1. This will provide a recursion scheme for £~ (u, 0) if we can determine
Et(k)and E~ (k) fork < N — 1.

4.1 Determine E* (k)

We first observe that £~ 0 (k) = 0 as an upward exit from an interval cannot happen
in a descending phase. Further,

E(Jr_va)(k:) =5 (bp — be—1]bk — be—1) (- EL (k)

(0,9)

such that it remains to determine E(TT o) (k). We shall pursue this in theorem 2 but
need some additional lemmata before.

Lemma 3 For k£ < N — 1, write

_ H,_ . (¢) H, . ()(o—
W (b1 — by +¢]2¢ =( kt1350(000) k1 (00)
it (Bhs = 0 ¢f2e) r1(8) (o) Hi (€) (- )
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in block notation. Then

_ d __
Hy = dEHk+1(5)(0,-) o
e=

=92 {(U;;+1€_U;+1‘(bk+1—bk) + C;+1U;+16Ulj+1‘(bk+1—bk)0—>
X (e_UI:+1'(bk+1—bk) _ C;+16U;+1'(bk+1—bk)c)l:|
(0,)

Proof: According to (14),
Hl:-&-l(g)(o = (C_eUk_HQE — eU;r'(b’““_b’“_E)C_BU’:+1.(bk+l_bk+a))
X (I — C,jHeU;fﬂ‘(bk+1—bk+5)C_eUE+1‘(bk+1—bk+5))71

U, (bpsa—b— F(bpsr—br—e) v
=C~ (e Upgr-(bryr—br—e) _ C]:"+16Uk+1 (br41—br—e) )
_ -1
% (e_UkJrl'(karl_bk""E) _ C,jJrleU’jﬂ'(b"“_b’“'*'s)C_)
- U, (b —br— byt —be—
After abbreviating F'(¢) := e~ User (brer=be=e) _oof Ui (i =0 0= yq well

as G(g) 1= e Ut (beri=bute) _ C,j_HeU':rJrl'(b’““*b*’H)C* we apply the formal
rules of derivation for functions of a real variable (see [4], sections 1.1.3-4) to obtain

Hi,, =C (F(0)G(0)™! = F(0)G(0)'G'(0)G(0)™)
where
F(O) = o Ukgr (brtr=by) _ C]j_i_leU’Zrl'(bk*libk)C_ _ G(O)
F'(0) = U;+16_U;+1.(bk+l_bk) + CIjHUleeU;“.(bkﬂ_bk)c_ =-G'(0)
Hence H, | =2 (F'(O)G(O)*l)(a 3y which is the statement.
O
Lemma 4 For k < N — 1, write

HF H;' _
Ut (b — bp—1 +elby — bp—y —€) = ( i (E))(J’”) kG )>

in block notation. Then
H = iH*(a)
* de k) e=0

-9 (U}:‘e_UJ:r‘(bk—bk—l) + Ck_Uk_eU;'(bk—bk—l)C;')

% (67Uk+.(brb,€_1) _ Ck—eU];.(bkfbk_l)Olj>_

1

Proof: Use exactly the same arguments as in lemma 1.
O
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Lemma 5 For k < N — 1, write

Wt (e) Wt () (o
W (b1 — by + €2 :( k+11=0(000) D k410" (o)
k+1( k+1 k | ) W]:r+1(5)(—,o) WJ+1(€)(_7_)

in block notation. Then

d
WI:_Jrl . dfswﬁl(f)(ma) ;.

=2 (Ulj+1 + CiUlc_-&-lClj-&-l)

X (€7U’j+1'(b’“+1’b’“) — C”eU@l'(b’““*b’“)CLl)_l
Proof: The proof is analogous to lemma 3. According to (13),

+ _ (UL (bry1—br—e) — U 26+ UL (b1 —br+e)
Wk+1(€)(070) = (e k+1 — (O ekt Ck+16 k1

_ -1
% (I _ C—eUk+l.(bk_H7b,c+s)c]:r+1eU,j'+l~(bk+1fbk+5))

_ (e—U;r_HQs _ Cer,;H-QsOIjH)

x (er'jﬂ'(bk“*b”g) — C*eU@f(bk“*bk“)Cﬁl)_

. Ut . _ur, -
We abbreviate F(¢) = e~ Ur+12 — 0~ eVt 2502'+1 as well as
— U (ki —bite) —oUkt1 (k1 —br+e) o+
G(e) = e “rt1 — O~ e k1 Ciiq

to obtain
d d 1
EViCen| = ZFEGE)

e= e=0

= F'(0)G(0)™! — F(0)G(0)"*G"(0)G(0)~*
according to [4], sections 1.1.3-4, where
F(0)=0 and F'(0)=—-2(U%L,+C U ,C5y)
and further

G(0) = ¢Vl Ors=00) _ 0= Ui Grsa=b) ot

Altogether this yields the statement.
O

Theorem 2 Fork < N — 1,

E+

(0,0

_ -1 R
y(k) =2(Hy + HY) (U +C UGl

X (e—U,jH-(le—bk) _ CieU’:‘H'(bk“_bk)C];:l)i
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Proof: The proof is analogous to the one for theorem 1. We consider the matrix
E(E) —F (e—'y&(bk—l7bk+1)—6kgk—6k+1Ck+1;Xg(bk_l’bk*—l) — bk+1|X0 = by + E)

and assume that the regime changes at by, — ¢ for downward crossings of b;, and at
by, + € for upward crossings. Then we let ¢ | 0. We first find that

Eo.0)(€) = Wi 1 (8)(0.0) + Hiy 1 (€) 0.y Hy (€)(.0) B0 (€)
_ —1 _
= (Ir = Hy 1 () o) Hy (€) (o)) 6 Wi (8)(00)

Since lim. o Hy 1 (¢)(0,) = (I 0) and lim.yo H; (£)(..5) = (%), we can write

. _ —1
1;{{)15 (Io = Hi 1 (&) (o) HiE (€) (o)

d —1
=—| —H 1) H+(€) o >
<d5 k+1\) (o) (o) 0
d I d -1
—_(%g- , o I, 0) —H(e) (o
(gt (§)+ o) Zraren| )
d —1
= — iHi (E) 0,0 —_ +(5> o.0 )
(de k+1\¢/(0,0) 0 de 'k (0,0) 0

_ —1
Hp,, + HY)

—~

where we have used [4], sections 1.1.3-4, as well as lemmata 3 and 4. Similarly, since
limeyo W' 1 (€) (0,0) = 0, we obtain

o d
lime ! W];:,l(g)(o’,o) = 7W+ (6)(0’0)

=W
<10 dE k+1 k+1

e=0

according to lemma 5. Altogether this yields the expression in the statement.
Considering now

E(—¢):=E (6_76'(bkr71,bk+1)_6k<k—6k+1<k+1;Xo_(bk_l’bk+l) =u|Xo = by, — 5)
instead of E(e) as above, we observe that
Eo0)(=€) = H{ (£)(0.0) Eio,0)(€)
due to path continuity. Since lim. o H;' (¢)(5,0) = I, we obtain
lim g, (—€) = lim Eig.q) (<)

meaning that the limits from both sides coincide.
d
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4.2 Determine E~ (k)
Regarding the matrix £~ (k), we find that

B (k) =9 (be — bk — D)~y + & (b — U — )~ o) B, (k) (18)

Thus it suffices to determine £ (k).
Lemma 6 Write Aby, := b, — bi,_1 and

_ W (€)(e.o) Wi (€)(o—
W (Db + 2| Aby — ) = (W:_ 8((_’ g (<€)>(<_’ ) )

in block notation. Then

d

W];:£

W,; (E)(gv.)

e=0
— -1
= =2 (CTU7 + U ) (70 a0 - el Aee)

Proof: Use exactly the same arguments as in lemma 2.
]

Theorem 3 Write Aby, := by — by—1 and H,_ | = (H,;_q H,;r;) Then

. L o
By (k) = (H 0 (Abe| Aby) o) — Hf = HJ5)
x (Wi + Hy 3 W (Abg|Abg) )

for k < N — 1, where the matrices Hl;+1’ H,:r and W, are given in lemmata 3, 4

and 6.

Proof: The proof is almost the same as the proof of theorem 1, with H 41 instead of

C~eY2 22 We consider

E(bk—é‘) -— (ef'ya'(bk—l»bk-f—l)*ékgk*(skﬁ—lgk-#l;Xo_(bk717bk+l) _ bk—1|XO —p_ 8)

and assume that the regime changes at b + ¢ for upward crossings of b and at b — &

for downward crossings. Then we let € | 0. First we obtain

E(U’.)(b].C — 6) = W{(&)(U’.) + H;(&)(U’G)Hk;l(E)(g’.)E(b — 6)

= Wi (&) (o) + Hy (€)(0,0) Hpp 1 (€) (0, B~ (b — €)

+ Hl—g‘r(g)(o,a)H; - Hk_—i-l(e)(a,o)E(a,‘)(bk - 5)

where H, (€) (5,07, Hj 1 () (0, and W, (€)(,,.) are defined in lemmata 4, 3 and 6.

This implies

_ —1
B yb—¢)= (Io — Hi () 0.0)Hy1 () (0,)) - €

X et (Wi () () + Hif () (0.0) Hiy1(€) (0 B~y (b — €))
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‘We observe that

lim H;_(E)(U,U) = 1!-:iinHk_+1 (5>(0,0) =1
ls%lwk (E)oy =0, LM H,(e)(0) =0

lalﬁ)l B by —¢)= E(,,)(k‘)

where 0 denotes a zero matrix of appropriate dimension. As in the proof to theorem
1 we obtain

-1 -1

lime (I = B (€)oo Hia (o) = = (H + H )

using lemmata 4 and 3. In a similar manner,

d
. 1 — — _
e e @ = W @] =W

according to lemma 6. Finally,

lime™ Hy' (€)(0.0) Hyi1 ()0, By (b =€) = HiZ B (br)

Pasting the above results together, the limit € | 0 yields

_ —o\—1 _ _
E(, (k) = — (H{ + H.5) (Wk +H B )(k))
— (B} + H,;f)’l (W + Hy i 0 (Abg | Ab) )
—(H+H.5) H,;;W(Abkmbk) — o B (k)

after using (18). Thus

-1

B, () = = (I = (H + H) ™ Hy 9 (Ab] Ab) o))

Hf+H.7) (W—+H,;+;gz/ (Abg|Abg)(— )

x(
B B 300 )
(W,

k+1

+ H W (Abg | Aby) (- )

X
which is the expression in the statement. The same arguments as in the proof to
theorem 1 show that lim. o E(,..y(b + &) = limc o E(s,.)(b — €).

d
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