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Abstract We consider the following risk reserve model. The premium income is
a level dependent Markov-modulated Brownian motion. Claim sizes are iid with a
phase-type distribution. The claim arrival process is a Markov-modulated Poisson
process. For this model the payment of dividends under a threshold dividend strategy
and the time until ruin will be analysed.

Keywords dividends · threshold strategy ·Markov-additive risk model

1 Introduction

Threshold dividend strategies are sometimes optimal and therefore a popular object of
interest in insurance mathematics, see e.g. [7,10] for the compound Poisson model or
[8] for a Brownian motion model. In a threshold strategy, no dividends are paid when
the risk reserve is below a certain threshold, while above this threshold dividends are
paid at a rate that is less than the rate of premium income. This has been generalised
to more than one threshold with different rates of dividend payment (see e.g. [3]).

In the present paper we consider a Markov-additive risk model (to be specified
below) with a finite number of thresholds 0 < b1 < . . . < bN . We derive the joint
distribution (in terms of their joint Laplace transform) of the time until ruin and the
time durations ζn that the risk reserve is between the thresholds bn−1 and bn. This
information suffices to compute the dividend payments in a threshold dividend strat-
egy.

The premium income process shall be modelled by a level dependent Markov-
modulated Brownian motion. Claim sizes are iid with a phase-type distribution. The
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claim arrival process is a Markov-modulated Poisson process. For an introduction
to Markov-modulated processes, which are special Markov-additive processes, see
chapter XI in [1]. We now proceed to specify the risk model to be considered.

Let J̃ = (J̃t : t ≥ 0) denote an irreducible Markov process with a finite state
space Ẽ = {1, . . . ,m} and infinitesimal generator matrixQ = (qij)i,j∈Ẽ . We call J̃t
the phase at time t. A level dependent Markov-modulated Brownian motion (B, J̃ )
with a finite number of thresholds b1, . . . , bN is defined by the stochastic differential
equation

dBt =


µ
(1)
Jt

dt+ σJtdWt, Xt ≤ b1
µ
(k+1)
Jt

dt+ σJtdWt, bk < Xt ≤ bk+1, 1 ≤ k ≤ N − 1

µ
(N+1)
Jt

dt+ σJtdWt, Xt > bN

where µ(k)
i ∈ R and σi > 0 for i ∈ Ẽ, andW = (Wt : t ≥ 0) denotes the standard

Wiener process. Define the intervals I1 :=] −∞, b1] for k = 1, Ik :=]bk−1, bk] for
k ∈ {2, . . . , N}, and IN+1 :=]bN ,∞[ for k = N + 1. We call Ik together with the
parameters

(
µ
(k)
i , σi

)
, i ∈ Ẽ, the kth regime of (B, J̃ ).

The process (B, J̃ ) shall serve as our model for the premium income. Typically,
there is a constant rate ci dt of premium income, together with a perturbation σidWt.
Above the threshold b1, dividend payments would commence with a constant rate
c
(1)
i < ci. In a multi-threshold model, other rates c(n)i of dividend payments would be-

come effective as soon as the risk reserve surpasses the threshold bn. This is typically
constrained by c(1)i < . . . < c

(N)
i < ci, although this property is not a necessary as-

sumption for the analysis to follow. We now define µ(1)
i := ci and µ(k+1)

i := ci−c(k)i

for k = 1, . . . , N to arrive at the notation above.
We assume that claim sizes Cn, n ∈ N, are iid with a phase-type distribution

of order mC and parameters (α, T ). The methods presented in this paper would al-
low for claim size distributions to depend on the phase process J̃ . This, however,
would complicate notations which are on the abundant side already. Thus we shall
confine our analysis to iid claim sizes. We assume further that a claim occurs with a
constant rate λidtwhen J̃t = i. This means that the claim arrival process is a Markov-
modulated Poisson process (N , J̃ ) with parametersD0 = Q−Λ andD1 = Λ where
Λ = diag(λi : i ∈ Ẽ) is the diagonal matrix containing the rates λi.

Altogether our model for the risk reserve X̃t at time t is given by

X̃t = u+Bt −
Nt∑
n=1

Cn

where u = X̃0 denotes the initial risk reserve and N = (Nt : t ≥ 0), i.e. Nt denotes
the number of claims received until time t.

The process (X̃ , J̃ ) is a level dependent Markov-additive process (MAP) with
a generator matrix Q for the phase process J̃ that is independent of the level. The
parameters for the level process X̃ in the kth regime are (µ̃

(k)
i , σ̃i, ν̃i : i ∈ Ẽ), where

the Lévy measures ν̃i(dx) = λiI{x<0} αe
−Txη dx are independent of the level. If
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N = 0, i.e. if there is only one regime, we call the MAP homogeneous (in space). For
literature on homogeneous MAPs see [1], chapter XI, and [5,9,6]. The non-perturbed
case σi = 0 for i ∈ Ẽ has been analysed in [2,3,11].

In the following section some useful results for homogeneous MAPs will be col-
lected for ease of reference. Section 3 contains the analysis for the case N = 1, i.e.
two regimes. In the last section, the results will be generalised to the case of a finite
N .

2 Results for homogeneous MAPs

2.1 Markov–additive Processes with phase–type Jumps

In this section we construct a new MAP (X ,J ) from the given MAP (X̃ , J̃ ) without
losing any information. This new MAP will have continuous paths which consider-
ably simplifies the one- and two-sided exit problems (cf. sections 2.2 and 2.3).

Denote the indicator function of a set A by IA. Our assumption that the claim
sizes have a phase-type distribution with parameters (α, T ) leads to Lévy measures
ν̃i of the form

ν̃i(dx) = λiI{x<0} αe
−Txη dx (1)

for all i ∈ Ẽ, where λi ≥ 0. The column vector η := −T1 is called the exit vectors,
where 1 denotes the column vector of dimension m with all entries being 1.

The main advantage of the phase–type restriction on the jump distributions is the
possibility of transforming the jumps into a succession of linear pieces of exponential
duration (each with slope 1 or -1), which yields a modified MAP with continuous
paths. We can then retrieve the original process via a simple time change. This is
explained in detail in sections 2.1 and 2.2 of [6]. Here we shall present only the
pertinent information to make the present paper self-contained.

Without the jumps, the Lévy process X̃ (i) during a phase i ∈ Ẽ is simply a
Brownian motion with parameters σ̃i > 0 and µ̃i > 0. Write Eσ := Ẽ. Now we
introduce a new phase space

E− := {(i, k) : i ∈ Eσ, 1 ≤ k ≤ m} (2)

to model the jumps. Define now the enlarged phase space E = Eσ ∪ E−. We define
the modified MAP (X ,J ) over the phase space E as follows. Set the parameters
(µi, σ

2
i , νi) for i ∈ E as

(µi, σ
2
i , νi) :=

{
(−1, 0,0), i ∈ E−
(µ̃i, σ̃i,0), i ∈ Eσ

(3)

The modified phase process J is determined by its generator matrix Q = (qij)i,j∈E .
For this the construction above yields

qih =


q̃ii − λi, h = i ∈ Eσ
q̃ih, h ∈ Eσ, h 6= i

λiαk, h = (i, k) ∈ E−
(4)
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for i ∈ Eσ as well as

q(i,k),(i,l) = Tkl and q(i,k),i = ηk (5)

for i ∈ Eσ and 1 ≤ k, l ≤ m.
The original level process X̃ is retrieved via the time change

c(t) :=

∫ t

0

I{Js∈Eσ} ds and X̃c(t) = Xt (6)

for all t ≥ 0. Thus we obtain
τ̃(a) = c(τ(a)) (7)

for a ∈ R and τ(a) := inf{t ≥ 0 : Xt < a}. This implies that we can perform an
analysis of the MAP (X̃ , J̃ ) in terms of the modified MAP (X ,J ) alone.

2.2 First Passage Times

A derivation of the Laplace transforms for the first passage times of MAPs has been
given in [5]. Define the first passage times

σ̃(x) := inf{t ≥ 0 : X̃t > x} and σ(x) := inf{t ≥ 0 : Xt > x}

for all x ∈ R. Note that σ̃(x) is the first passage time over the level x for the original
MAP X̃ , meaning that we do not count the time spent in jump phases i ∈ E−. This
means that

σ̃(x) = c(σ(x)) =

∫ σ(x)

0

I{Js∈Eσ}ds

according to (6). In particular, we may compute expectations over σ̃(x) using the
distribution of the modified MAP (X ,J ) only and without needing to recur to the
original MAP (X̃ , J̃ ). For γ ≥ 0 denote

Eij(e−γσ̃(x)) := E(e−γσ̃(x); Jτ(x) = j|J0 = i,X0 = 0)

for all i, j ∈ E. Let E(e−γσ̃(x)) denote the matrix with these entries and write

E(e−γσ̃(x)) =
(
E(σ,σ)(e

−γσ̃(x)) E(σ,−)(e
−γσ̃(x))

E(−,σ)(e
−γσ̃(x)) E(−,−)(e

−γσ̃(x))

)
in obvious block notation with respect to the subspaces Eσ (ascending phases) and
E− (descending phases). According to section 3 in [5] we can write

E(e−γσ̃(x)) =
(
Iσ
A(γ)

)(
eU(γ)x 0

)
(8)

where Iσ denotes the identity matrix of dimension Eσ × Eσ , 0 the zero matrix of
dimension Eσ × E−, U(γ) is a sub–generator matrix of dimension Eσ × Eσ , and
A(γ) is a sub–transition matrix of dimension E− × Eσ . An iteration to determine
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A(γ) and U(γ) is derived in [5] and further specified to the case of phase-type jumps
in [6].

In order to determine the downward first passage times (in particular the time of
ruin), we reflect at the original level X0 and consider upward first passage times for
the negative of X . Let (X+,J ) denote the MAP as constructed in section 2.1 and
define the process X− = (X−t : t ≥ 0) by X−t := −X+

t for all t > 0 given that
X+

0 = X−0 = 0. Thus (X−,J ) is the negative of (X+,J ). The two processes have
the same generator matrix Q for J , but the drift parameters are different. Denoting
variation and drift parameters for X± by σ±i and µ±i , respectively, this means σ+

i =
σ−i and µ−i = −µ+

i for all i ∈ E. This of course implies that phases i ∈ E− are
ascending phases for X−.

Let A±(γ) and U±(γ) denote the matrices that determine the first passage times
in (8). We shall write A± = A±(γ) and U± = U±(γ) except in cases when we wish
to underline the dependence on γ. Note that in our case all phases are ascending for
X− such that A− vanishes, i.e. has dimension 0. Define the (downward) first passage
times

τ̃(x) := inf{t ≥ 0 : X̃t < x} and τ(x) := inf{t ≥ 0 : Xt < x}

for all x ∈ R. We now obtain

E(e−γτ̃(x)|X0 = a) = eU
−(γ)·(a−x) (9)

for all x < a.

2.3 The two-sided Exit Problem

For l < u, define the stopping times

σ(l, u) := inf{t ≥ 0 : Xt < l or Xt > u} (10)

and

σ̃(l, u) :=

∫ σ(l,u)

0

I{Js∈Eσ}ds = inf{t ≥ 0 : X̃t < l or X̃t > u} (11)

which are the exit times of X and X̃ from the interval [l, u], respectively. Choose any
γ ≥ 0. For the main result we need an expression for

Ψ+
ij (u− l|x− l) := E

(
e−γσ̃(l,u);Xσ(l,u) = b, Jσ(l,u) = j|J0 = i,X0 = x

)
where x ∈ [l, u] and i, j ∈ E. Clearly Ψ+

ij (u − l|x − l) = 0 for j ∈ E− since an
exit over the upper boundary can occur only in an ascending phase. Define the matrix
Ψ+(u− l|x− l) := (Ψ+

ij (u− l|x− l))i∈E,j∈Eσ . A formula for Ψ+(u− l|x− l) has
been derived in [9]. In order to state it we need some additional notation. Define the
matrices

C+ :=

(
Iσ
A+

)
and C− :=

(
Iσ 0

)
(12)
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of dimensionsE×Eσ andEσ×E, respectively, where Iσ denotes the identity matrix
of dimension Eσ × Eσ . Further let Z± := C±eU

±·(u−l). Then equation (23) in [9]
states that

Ψ+(u− l|x− l) =
(
C+eU

+·(u−x) − eU
−·(x−l)Z+

)
·
(
I − Z−Z+

)−1
(13)

for 0 ≤ x ≤ b. This matrix has dimension E × Eσ , due to the fact that exit from
below can only happen in an ascending phase. By reflection at the initial level x, we
obtain further

Ψ−(u− l|x− l) := E
(
e−γσ̃(l,u);Xσ(l,u) = 0|X0 = x

)
=
(
eU

−·(x−l) − C+eU
+·(u−x)Z−

)
·
(
I − Z+Z−

)−1
(14)

for x ∈ [l, u]. This matrix has dimension E × E. Note that the expressions on the
right-hand sides of (13) and (14) depend on a choice of γ ≥ 0.

3 The single threshold case

We first consider the time of ruin for the case N = 1, i.e. one threshold only. Denote
the level of this threshold by b > 0. The time of ruin is defined as

τ̃(0) := inf{t ≥ 0 : X̃t < 0} (15)

We seek to find an expression for E
(
e−γτ̃(0)|X0 = u

)
where γ ≥ 0 and u denotes

the initial risk reserve. Let U±i = U±i (γ), A±i = A±i (γ),and Ψ±i = Ψ±i (γ) denote
the matrices introduced in section 2 for the ith regime, where i = 1 means Xt < b
and i = 2 means Xt ≥ b.

In the case u < b we obtain

E
(
e−γτ̃(0)|X0 = u

)
= Ψ−1 (b|u) + Ψ+

1 (b|u) E
(
e−γτ̃(0)|X0 = b

)
while for u > b path continuity of X yields

E
(
e−γτ̃(0)|X0 = u

)
= eU

−
2 ·(u−b) E

(
e−γτ̃(0)|X0 = b

)
Thus it suffices to determine E

(
e−γτ̃(0)|X0 = b

)
. Write

E
(
e−γτ̃(0)|X0 = b

)
=:

(
E(σ,σ)(b) E(σ,−)(b)
E(−,σ)(b) E(−,−)(b)

)
=:

(
E(σ,·)(b)
E(−,·)(b)

)
(16)

in obvious block notation. In general we shall use for any matrix M of dimension
E × E the block notation

M =:

(
M(σ,σ) M(σ,−)
M(−,σ) M(−,−)

)
=:

(
M(σ,·)
M(−,·)

)
=:
(
M(.,σ) M(.,−)

)
Then

E(−,·)(b) = Ψ−1 (b|b)(−,·) + Ψ+
1 (b|b)(−,σ)E(σ,·)(b) (17)

Thus it remains to determine E(σ,σ)(b) and E(σ,−)(b). This will be pursued in theo-
rem 1, for which we state two lemmata first.
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Lemma 1 Write

Ψ+
1 (b+ ε|b− ε) =

(
H+

(σ,σ)(ε) H
+
(σ,−)(ε)

H+
(−,σ)(ε) H

+
(−,−)(ε)

)
in block notation. Then

H+
1 :=

d

dε
H+

(σ,σ)(ε)

∣∣∣∣
ε=0

= 2
(
U+
1 e
−U+

1 ·b + C−1 U
−
1 e

U−
1 ·bC+

1

)(
e−U

+
1 ·b − C−1 eU

−
1 ·bC+

1

)−1
Proof: According to (13),

H+
(σ,σ)(ε) =

(
eU

+
1 ·2ε − C−1 eU

−
1 ·(b−ε)C+

1 e
U+

1 ·(b+ε)
)

×
(
Iσ − C−1 eU

−
1 ·(b+ε)C+

1 e
U+

1 ·(b+ε)
)−1

=
(
e−U

+
1 ·(b−ε) − C−1 eU

−
1 ·(b−ε)C+

1

)
×
(
e−U

+
1 ·(b+ε) − C−1 eU

−
1 ·(b+ε)C+

1

)−1
After abbreviating

F (ε) :=
(
e−U

+
1 ·(b−ε) − C−1 eU

−
1 ·(b−ε)C+

1

)
and

G(ε) :=
(
e−U

+
1 ·(b+ε) − C−1 eU

−
1 ·(b+ε)C+

1

)
we apply the formal rules of derivation for functions of a real variable (see [4], sec-
tions I.1.3-4) to obtain

H+
1 = F ′(0)G(0)−1 − F (0)G(0)−1G′(0)G(0)−1

where

F (0) = e−U
+
1 ·b − C−1 eU

−
1 ·bC+

1 , F ′(0) = U+
1 e
−U+

1 ·b + C−1 U
−
1 e

U−
1 ·bC+

1

and

G(0) = e−U
+
1 ·b − C−1 eU

−
1 ·bC+

1 , G′(0) = −U+
1 e
−U+

1 ·b − C−1 U
−
1 e

U−
1 ·bC+

1

Thus F (0) = G(0) and G′(0) = −F ′(0), which yields the statement.
�

Lemma 2 Write

Ψ−1 (b+ ε|b− ε) =

(
W−(σ,σ)(ε) W

−
(σ,−)(ε)

W−(−,σ)(ε) W
−
(−,−)(ε)

)
in block notation. Then

W−1 :=
d

dε
W−(σ,·)(ε)

∣∣∣∣
ε=0

= −2
(
C−1 U

−
1 + U+

1 C
−
1

) (
e−U

−
1 ·b − C+

1 e
U+

1 ·bC−1

)−1
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Proof: The proof is analogous to lemma 1. According to (14),

W−(σ,·)(ε) =
(
C−1 e

U−
1 ·(b−ε) − eU

+
1 ·2εC−1 e

U−
1 ·(b+ε)

)
×
(
I − C+eU

+
1 ·(b+ε)C−1 e

U−
1 ·(b+ε)

)−1
=
(
C−1 e

−U−
1 ·2ε − eU

+
1 ·2εC−1

)
×
(
e−U

−
1 ·(b+ε) − C+eU

+
1 ·(b+ε)C−1

)−1
Write F (ε) = C−1 e

−2U−
1 ε − e2U

+
1 εC−1 and G(ε) = e−U

−
1 ·(b+ε) − C+

1 e
U+

1 ·(b+ε)C−1
to obtain

d

dε
W−(σ,·)(ε)

∣∣∣∣
ε=0

=
d

dε
F (ε)G(ε)−1

∣∣∣∣
ε=0

= F ′(0)G(0)−1 − F (0)G(0)−1G′(0)G(0)−1

according to [4], sections I.1.3-4, where F (0) = 0, F ′(0) = −2
(
C−1 U

−
1 + U+

1 C
−
1

)
and further G(0) = e−U

−
1 ·b − C+

1 e
U+

1 ·bC−1 . Altogether this yields the statement.
�

Theorem 1 Write E(σ,·)(b) :=
(
E(σ,σ)(b) E(σ,−)(b)

)
for the first row in (16). Then

E(σ,·)(b) =
(
2
(
U−2
)
(σ,−) Ψ

+
1 (b|b)(−,σ) −H+

1 − 2
(
U−2
)
(σ,σ)

)−1
×
(
W−1 + 2

(
U−2
)
(σ,−) Ψ

−
1 (b|b)(−,·)

)
Proof: We considerE(b−ε) := E

(
e−γτ̃(0)|X0 = b− ε

)
and assume that the regime

changes at b+ ε for upward crossings of b and at b− ε for downward crossings. Then
we let ε ↓ 0. Due to (17), we need to determine the upper row E(σ,·)(b−ε) only. First
we obtain

E(σ,·)(b− ε) =W−(σ,·)(ε) +H+
(σ,σ)(ε)C

−eU
−
2 ·2εE(b− ε)

=W−(σ,·)(ε) +H+
(σ,σ)(ε)C

−
(
eU

−
2 ·2ε

)
(·,−)

E(−,·)(b− ε)

+H+
(σ,σ)(ε)C

−
(
eU

−
2 ·2ε

)
(·,σ)

E(σ,·)(b− ε)

where H+
(σ,σ)(ε) and W−(σ,·)(ε) are defined in lemmata 1 and 2. This implies

E(σ,·)(b− ε) =
(
Iσ −H+

(σ,σ)(ε)C
−
(
eU

−
2 ·2ε

)
(·,σ)

)−1
· ε

× ε−1
(
W−(σ,·)(ε) +H+

(σ,σ)(ε)C
−
(
eU

−
2 ·2ε

)
(·,−)

E(−,·)(b− ε)
)
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We observe that

lim
ε↓0

H+
(σ,σ)(ε) = lim

ε↓0
C−

(
eU

−
2 ·2ε

)
(·,σ)

= Iσ

lim
ε↓0

W−(σ,·)(ε) = 0, lim
ε↓0

C−
(
eU

−
2 ·2ε

)
(·,−)

= 0

lim
ε↓0

E(−,·)(b− ε) = E(−,·)(b)

where 0 denotes a zero matrix of appropriate dimension. Thus we can write

lim
ε↓0

ε

(
Iσ −H+

(σ,σ)(ε)C
−
(
eU

−
2 ·2ε

)
(·,σ)

)−1
= −

(
d

dε
H+

(σ,σ)(ε)C
−
(
eU

−
2 ·2ε

)
(·,σ)

∣∣∣∣
ε=0

)−1
= −

(
d

dε
H+

(σ,σ)(ε)

∣∣∣∣
ε=0

Iσ + Iσ
d

dε
C−

(
eU

−
2 ·2ε

)
(·,σ)

∣∣∣∣
ε=0

)−1
= −

(
H+

1 + 2
(
U−2
)
(σ,σ)

)−1
see [4], section I.1.3, and lemma 1 for the last two equalities. In a similar manner,

lim
ε↓0

ε−1 W−(σ,·)(ε) =
d

dε
W−(σ,·)(ε)

∣∣∣∣
ε=0

=W−1

according to lemma 2. Finally,

lim
ε↓0

ε−1 H+
(σ,σ)(ε)C

−
(
eU

−
2 ·2ε

)
(·,−)

E−(−,·)(b− ε)

= Iσ

(
lim
ε↓0

ε−1 C−
(
eU

−
2 ·2ε

)
(·,−)

)
E(−,·)(b)

= 2
(
U−2
)
(σ,−)E(−,·)(b)

Pasting the above results together, the limit ε ↓ 0 yields

E(σ,·)(b) = −
(
H+

1 + 2
(
U−2
)
(σ,σ)

)−1 (
W−1 + 2

(
U−2
)
(σ,−)E(−,·)(b)

)
= −

(
H+

1 + 2
(
U−2
)
(σ,σ)

)−1 (
W−1 + 2

(
U−2
)
(σ,−) Ψ

−
1 (b|b)(−,·)

)
−
(
H+

1 + 2
(
U−2
)
(σ,σ)

)−1
2
(
U−2
)
(σ,−) Ψ

+
1 (b|b)(−,σ)E(σ,·)(b)

after using (17). Thus

E(σ,·)(b) = −
(
Iσ −

(
H+

1 + 2
(
U−2
)
(σ,σ)

)−1
2
(
U−2
)
(σ,−) Ψ

+
1 (b|b)(−,σ)

)−1
×
(
H+

1 + 2
(
U−2
)
(σ,σ)

)−1 (
W−1 + 2

(
U−2
)
(σ,−) Ψ

−
1 (b|b)(−,·)

)
= −

(
H+

1 + 2
(
U−2
)
(σ,σ)

− 2
(
U−2
)
(σ,−) Ψ

+
1 (b|b)(−,σ)

)−1
×
(
W−1 + 2

(
U−2
)
(σ,−) Ψ

−
1 (b|b)(−,·)

)
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which is the expression in the statement.
Considering now E(b + ε) = E

(
e−γτ(u)|X0 = b+ ε

)
instead of E(b − ε) as

above, we observe that

E(σ,·)(b+ ε) = C−eU
−
2 2εE(b− ε)

due to path continuity. Since limε↓0 e
U−

2 ·2ε = I , we obtain

lim
ε↓0

E(σ,·)(b+ ε) = lim
ε↓0

(
Iσ 0

)
E(b− ε) = lim

ε↓0
E(σ,·)(b− ε)

such that the limits from both sides coincide.
�

Let ζ(b) := l
(
{t < τ̃(0) : X̃t > b}

)
denote the Lebesgue measure of the time

before ruin that the risk reserve process spends above the threshold b. Then the div-
idends paid out before ruin amount to D = c1ζ(b). We now wish to state the joint
distribution of the time to ruin and the time spent above b in terms of their joint
Laplace transform.

Corollary 1

E
(
e−γτ̃(0)−δζ(b)|X0 = b

)
=
(
2U−2 (γ + δ)(σ,−)Ψ

+
1 (b, γ|b)(−,σ) − 2U−2 (γ + δ)(σ,σ) −H+

1 (γ)
)−1

×
(
2U−2 (γ + δ)(σ,−)Ψ

−
1 (b, γ|b)(−,·) +W−1 (γ)

)
Proof: We integrate over the same set of sample paths as in theorem 1, only with
the additional integrand function e−δt when X̃t > b. Thus the only difference to the
statement in theorem 1 is the Laplace argument γ + δ for U−2 .
�

4 Multi-threshold strategies

We now consider a Markov-additive risk model (X̃ , J̃ ) with a finite number of
thresholds b1, . . . , bN . Define

E−(a, l) := E
(
e−γτ̃(l)−

∑N+1
n=1 δnζn |X0 = a

)
for l < a, where δn ≥ 0 for n = 1, . . . , N + 1 and

ζn := l
(
{t < τ̃(0) : bn−1 ≤ X̃t < bn}

)
denotes the Lebesgue measure of the time spent in the interval [bn−1, bn[ before ruin,
with b0 := 0 and bN+1 :=∞. Path continuity of X yields

E−(u, l) = E−(u, a)E−(a, l)



Threshold dividend strategies for a Markov-additive risk model 11

for all l < a < u. For u ≥ bN , E−(u, bN−1) has been determined in section 3 (set
b := bN − bN−1). We wish to determine

E−(u, 0) = E−(u, bk)E
−(bk, bk−1) . . . E

−(b1, 0)

where k := max{n ≤ N : bn < u}. In order to pursue this, let U±k = U±k (γ + δk),
A±k = A±k (γ+ δk), and Ψ±k = Ψ±k (γ+ δk) denote the matrices introduced in section
2 where the parameters are taken from the kth regime, with k = 1, . . . , N + 1.

First note that

E−(u, bk) = Ψ−k+1(bk+1 − bk|u− bk) + Ψ+
k+1(bk+1 − bk|u− bk)E−(bk+1, bk)

such that it suffices to determine the matrices E−(bk, bk−1) for k = 1, . . . , N − 1.
Recalling the definitions (10) and (11), define the matrices

E+(k) := E
(
e−γσ̃(bk−1,bk+1)−

∑N+1
n=1 δnζn ;Xσ(bk−1,bk+1) = u|X0 = bk

)
and

E−(k) := E
(
e−γσ̃(bk−1,bk+1)−

∑N+1
n=1 δnζn ;Xσ(bk−1,bk+1) = l|X0 = bk

)
for k = 1, . . . , N − 1. Since

E−(bk, bk−1) = E−(k) + E+(k)E−(bk+1, bk)E
−(bk, bk−1)

we obtain
E−(bk, bk−1) =

(
I − E+(k)E−(bk+1, bk)

)−1
E−(k)

for k ≤ N−1. This will provide a recursion scheme forE−(u, 0) if we can determine
E+(k) and E−(k) for k ≤ N − 1.

4.1 Determine E+(k)

We first observe thatE+
(·,−)(k) = 0 as an upward exit from an interval cannot happen

in a descending phase. Further,

E+
(−,σ)(k) = Ψ+

k (bk − bk−1|bk − bk−1)(−,σ)E+
(σ,σ)(k)

such that it remains to determine E+
(σ,σ)(k). We shall pursue this in theorem 2 but

need some additional lemmata before.

Lemma 3 For k ≤ N − 1, write

Ψ−k+1(bk+1 − bk + ε|2ε) =
(
H−k+1(ε)(σ,σ) H

−
k+1(ε)(σ,−)

H−k+1(ε)(−,σ) H
−
k+1(ε)(−,−)

)
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in block notation. Then

H−k+1 :=
d

dε
H−k+1(ε)(σ,·)

∣∣∣∣
ε=0

= 2
[(
U−k+1e

−U−
k+1·(bk+1−bk) + C+

k+1U
+
k+1e

U+
k+1·(bk+1−bk)C−

)
×
(
e−U

−
k+1·(bk+1−bk) − C+

k+1e
U+
k+1·(bk+1−bk)C−

)−1]
(σ,·)

Proof: According to (14),

H−k+1(ε)(σ,·) =
(
C−eU

−
k+12ε − eU

+
2 ·(bk+1−bk−ε)C−eU

−
k+1·(bk+1−bk+ε)

)
×
(
I − C+

k+1e
U+
k+1·(bk+1−bk+ε)C−eU

−
k+1·(bk+1−bk+ε)

)−1
= C−

(
e−U

−
k+1·(bk+1−bk−ε) − C+

k+1e
U+
k+1·(bk+1−bk−ε)C−

)
×
(
e−U

−
k+1·(bk+1−bk+ε) − C+

k+1e
U+
k+1·(bk+1−bk+ε)C−

)−1
After abbreviating F (ε) := e−U

−
k+1·(bk+1−bk−ε)−C+

k+1e
U+
k+1·(bk+1−bk−ε)C− as well

as G(ε) := e−U
−
k+1·(bk+1−bk+ε) − C+

k+1e
U+
k+1·(bk+1−bk+ε)C− we apply the formal

rules of derivation for functions of a real variable (see [4], sections I.1.3-4) to obtain

H−k+1 = C−
(
F ′(0)G(0)−1 − F (0)G(0)−1G′(0)G(0)−1

)
where

F (0) = e−U
−
k+1·(bk+1−bk) − C+

k+1e
U+
k+1·(bk+1−bk)C− = G(0)

F ′(0) = U−k+1e
−U−

k+1·(bk+1−bk) + C+
k+1U

+
k+1e

U+
k+1·(bk+1−bk)C− = −G′(0)

Hence H−k+1 = 2
(
F ′(0)G(0)−1

)
(σ,·), which is the statement.

�

Lemma 4 For k ≤ N − 1, write

Ψ+
k (bk − bk−1 + ε|bk − bk−1 − ε) =

(
H+
k (ε)(σ,σ) H

+
k (ε)(σ,−)

H+
k (ε)(−,σ) H

+
k (ε)(−,−)

)
in block notation. Then

H+
k :=

d

dε
H+
k (ε)(σ,σ)

∣∣∣∣
ε=0

= 2
(
U+
k e
−U+

k ·(bk−bk−1) + C−k U
−
k e

U−
k ·(bk−bk−1)C+

k

)
×
(
e−U

+
k ·(bk−bk−1) − C−k e

U−
k ·(bk−bk−1)C+

k

)−1
Proof: Use exactly the same arguments as in lemma 1.
�
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Lemma 5 For k ≤ N − 1, write

Ψ+
k+1(bk+1 − bk + ε|2ε) =

(
W+
k+1(ε)(σ,σ) W

+
k+1(ε)(σ,−)

W+
k+1(ε)(−,σ) W

+
k+1(ε)(−,−)

)
in block notation. Then

W+
k+1 :=

d

dε
W+
k+1(ε)(σ,σ)

∣∣∣∣
ε=0

= −2
(
U+
k+1 + C−U−k+1C

+
k+1

)
×
(
e−U

+
k+1·(bk+1−bk) − C−eU

−
k+1·(bk+1−bk)C+

k+1

)−1
Proof: The proof is analogous to lemma 3. According to (13),

W+
k+1(ε)(σ,σ) =

(
eU

+
k+1·(bk+1−bk−ε) − C−eU

−
k+1·2εC+

k+1e
U+
k+1·(bk+1−bk+ε)

)
×
(
I − C−eU

−
k+1·(bk+1−bk+ε)C+

k+1e
U+
k+1·(bk+1−bk+ε)

)−1
=
(
e−U

+
k+1·2ε − C−eU

−
k+1·2εC+

k+1

)
×
(
e−U

+
k+1·(bk+1−bk+ε) − C−eU

−
k+1·(bk+1−bk+ε)C+

k+1

)−1
We abbreviate F (ε) = e−U

+
k+1·2ε − C−eU

−
k+1·2εC+

k+1 as well as

G(ε) = e−U
+
k+1·(bk+1−bk+ε) − C−eU

−
k+1·(bk+1−bk+ε)C+

k+1

to obtain

d

dε
W+
k+1(ε)(σ,σ)

∣∣∣∣
ε=0

=
d

dε
F (ε)G(ε)−1

∣∣∣∣
ε=0

= F ′(0)G(0)−1 − F (0)G(0)−1G′(0)G(0)−1

according to [4], sections I.1.3-4, where

F (0) = 0 and F ′(0) = −2
(
U+
k+1 + C−U−k+1C

+
k+1

)
and further

G(0) = e−U
+
k+1·(bk+1−bk) − C−eU

−
k+1·(bk+1−bk)C+

k+1

Altogether this yields the statement.
�

Theorem 2 For k ≤ N − 1,

E+
(σ,σ)(k) = 2

(
H−k+1 +H+

k

)−1 (
U+
k+1 + C−U−k+1C

+
k+1

)
×
(
e−U

+
k+1·(bk+1−bk) − C−eU

−
k+1·(bk+1−bk)C+

k+1

)−1
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Proof: The proof is analogous to the one for theorem 1. We consider the matrix

E(ε) := E
(
e−γσ̃(bk−1,bk+1)−δkζk−δk+1ζk+1 ;Xσ(bk−1,bk+1) = bk+1|X0 = bk + ε

)
and assume that the regime changes at bk − ε for downward crossings of bk and at
bk + ε for upward crossings. Then we let ε ↓ 0. We first find that

E(σ,σ)(ε) =W+
k+1(ε)(σ,σ) +H−k+1(ε)(σ,·)H

+
k (ε)(·,σ)E(σ,σ)(ε)

=
(
Iσ −H−k+1(ε)(σ,·)H

+
k (ε)(·,σ)

)−1
ε ε−1 W+

k+1(ε)(σ,σ)

Since limε↓0H
−
k+1(ε)(σ,·) =

(
Iσ 0

)
and limε↓0H

+
k (ε)(·,σ) =

(
Iσ
0

)
, we can write

lim
ε↓0

ε
(
Iσ −H−k+1(ε)(σ,·)H

+
k (ε)(·,σ)

)−1
= −

(
d

dε
H−k+1(ε)(σ,·)H

+
k (ε)(·,σ)

∣∣∣∣
ε=0

)−1
= −

(
d

dε
H−k+1(ε)(σ,·)

∣∣∣∣
ε=0

(
Iσ
0

)
+
(
Iσ 0

) d

dε
H+
k (ε)(·,σ)

∣∣∣∣
ε=0

)−1
= −

(
d

dε
H−k+1(ε)(σ,σ)

∣∣∣∣
ε=0

+
d

dε
H+
k (ε)(σ,σ)

∣∣∣∣
ε=0

)−1
= −

(
H−k+1 +H+

k

)−1
where we have used [4], sections I.1.3-4, as well as lemmata 3 and 4. Similarly, since
limε↓0W

+
k+1(ε)(σ,σ) = 0, we obtain

lim
ε↓0

ε−1 W+
k+1(ε)(σ,σ) =

d

dε
W+
k+1(ε)(σ,σ)

∣∣∣∣
ε=0

=W+
k+1

according to lemma 5. Altogether this yields the expression in the statement.
Considering now

E(−ε) := E
(
e−γσ̃(bk−1,bk+1)−δkζk−δk+1ζk+1 ;Xσ(bk−1,bk+1) = u|X0 = bk − ε

)
instead of E(ε) as above, we observe that

E(σ,σ)(−ε) = H+
k (ε)(σ,σ) E(σ,σ)(ε)

due to path continuity. Since limε↓0H
+
k (ε)(σ,σ) = Iσ , we obtain

lim
ε↓0

E(σ,σ)(−ε) = lim
ε↓0

E(σ,σ)(ε)

meaning that the limits from both sides coincide.
�
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4.2 Determine E−(k)

Regarding the matrix E−(k), we find that

E−(−,·)(k) = Ψ−k (bk − l|bk − l)(−,·) + Ψ+
k (bk − l|bk − l)(−,σ)E−(σ,·)(k) (18)

Thus it suffices to determine E−(σ,·)(k).

Lemma 6 Write ∆bk := bk − bk−1 and

Ψ−k (∆bk + ε|∆bk − ε) =
(
W−k (ε)(σ,σ) W

−
k (ε)(σ,−)

W−k (ε)(−,σ) W
−
k (ε)(−,−)

)
in block notation. Then

W−k :=
d

dε
W−k (ε)(σ,·)

∣∣∣∣
ε=0

= −2
(
C−U−k + U+

k C
−) (e−U−

k ·∆bk − C+
k e

U+
k ·∆bkC−

)−1
Proof: Use exactly the same arguments as in lemma 2.
�

Theorem 3 Write ∆bk := bk − bk−1 and H−k+1 =
(
H−,σk+1 H

−,−
k+1

)
. Then

E−(σ,·)(k) =
(
H−,−k+1Ψ

+
k (∆bk|∆bk)(−,σ) −H+

k −H
−,σ
k+1

)−1
×
(
W−k +H−,−k+1Ψ

−
k (∆bk|∆bk)(−,·)

)
for k ≤ N − 1, where the matrices H−k+1, H+

k and W−k are given in lemmata 3, 4
and 6.

Proof: The proof is almost the same as the proof of theorem 1, with H−k+1 instead of
C−eU

−
2 ·2ε. We consider

E(bk−ε) := E
(
e−γσ̃(bk−1,bk+1)−δkζk−δk+1ζk+1 ;Xσ(bk−1,bk+1) = bk−1|X0 = b− ε

)
and assume that the regime changes at b + ε for upward crossings of b and at b − ε
for downward crossings. Then we let ε ↓ 0. First we obtain

E(σ,·)(bk − ε) =W−k (ε)(σ,·) +H+
k (ε)(σ,σ)H

−
k+1(ε)(σ,·)E(b− ε)

=W−k (ε)(σ,·) +H+
k (ε)(σ,σ)H

−
k+1(ε)(σ,−)E(−,·)(bk − ε)

+H+
k (ε)(σ,σ)H

+
k −H

−
k+1(ε)(σ,σ)E(σ,·)(bk − ε)

where H+
k (ε)(σ,σ), H

−
k+1(ε)(σ,·) and W−k (ε)(σ,·) are defined in lemmata 4, 3 and 6.

This implies

E(σ,·)(b− ε) =
(
Iσ −H+

k (ε)(σ,σ)H
−
k+1(ε)(σ,σ)

)−1 · ε
× ε−1

(
W−k (ε)(σ,·) +H+

k (ε)(σ,σ)H
−
k+1(ε)(σ,−)E(−,·)(b− ε)

)
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We observe that

lim
ε↓0

H+
k (ε)(σ,σ) = lim

ε↓0
H−k+1(ε)(σ,σ) = Iσ

lim
ε↓0

W−k (ε)(σ,·) = 0, lim
ε↓0

H−k+1(ε)(σ,−) = 0

lim
ε↓0

E(−,·)(bk − ε) = E−(−,·)(k)

where 0 denotes a zero matrix of appropriate dimension. As in the proof to theorem
1 we obtain

lim
ε↓0

ε
(
Iσ −H+

k (ε)(σ,σ)H
−
k+1(ε)(σ,σ)

)−1
= −

(
H+
k +H−,σk+1

)−1
using lemmata 4 and 3. In a similar manner,

lim
ε↓0

ε−1 W−k (ε)(σ,·) =
d

dε
W−k (ε)(σ,·)

∣∣∣∣
ε=0

=W−k

according to lemma 6. Finally,

lim
ε↓0

ε−1 H+
k (ε)(σ,σ)H

−
k+1(ε)(σ,−)E(−,·)(bk − ε) = H−,−k+1E(−,·)(bk)

Pasting the above results together, the limit ε ↓ 0 yields

E−(σ,·)(k) = −
(
H+
k +H−,σk+1

)−1 (
W−k +H−,−k+1E

−
(−,·)(k)

)
= −

(
H+
k +H−,σk+1

)−1 (
W−k +H−,−k+1Ψ

−
k (∆bk|∆bk)(−,·)

)
−
(
H+
k +H−,σk+1

)−1
H−,−k+1Ψ

+
k (∆bk|∆bk)(−,σ)E−(σ,·)(k)

after using (18). Thus

E−(σ,·)(k) = −
(
Iσ −

(
H+
k +H−,σk+1

)−1
H−,−k+1Ψ

+
k (∆bk|∆bk)(−,σ)

)−1
×
(
H+
k +H−,σk+1

)−1 (
W−k +H−,−k+1Ψ

−
k (∆bk|∆bk)(−,·)

)
= −

(
H+
k +H−,σk+1 −H

−,−
k+1Ψ

+
k (∆bk|∆bk)(−,σ)

)−1
×
(
W−k +H−,−k+1Ψ

−
k (∆bk|∆bk)(−,·)

)
which is the expression in the statement. The same arguments as in the proof to
theorem 1 show that limε↓0E(σ,·)(b+ ε) = limε↓0E(σ,·)(b− ε).
�
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