Threshold dividend strategies for a Markov-additive risk model

Lothar Breuer

Received: date / Accepted: date

Abstract

We consider the following risk reserve model. The premium income is a level dependent Markov-modulated Brownian motion. Claim sizes are iid with a phase-type distribution. The claim arrival process is a Markov-modulated Poisson process. For this model the payment of dividends under a threshold dividend strategy and the time until ruin will be analysed.

Keywords dividends • threshold strategy • Markov-additive risk model

1 Introduction

Threshold dividend strategies are sometimes optimal and therefore a popular object of interest in insurance mathematics, see e.g. [7,10] for the compound Poisson model or [8] for a Brownian motion model. In a threshold strategy, no dividends are paid when the risk reserve is below a certain threshold, while above this threshold dividends are paid at a rate that is less than the rate of premium income. This has been generalised to more than one threshold with different rates of dividend payment (see e.g. [3]).

In the present paper we consider a Markov-additive risk model (to be specified below) with a finite number of thresholds $0<b_{1}<\ldots<b_{N}$. We derive the joint distribution (in terms of their joint Laplace transform) of the time until ruin and the time durations ζ_{n} that the risk reserve is between the thresholds b_{n-1} and b_{n}. This information suffices to compute the dividend payments in a threshold dividend strategy.

The premium income process shall be modelled by a level dependent Markovmodulated Brownian motion. Claim sizes are iid with a phase-type distribution. The

[^0]claim arrival process is a Markov-modulated Poisson process. For an introduction to Markov-modulated processes, which are special Markov-additive processes, see chapter XI in [1]. We now proceed to specify the risk model to be considered.

Let $\tilde{\mathcal{J}}=\left(\tilde{J}_{t}: t \geq 0\right)$ denote an irreducible Markov process with a finite state space $\tilde{E}=\{1, \ldots, m\}$ and infinitesimal generator matrix $Q=\left(q_{i j}\right)_{i, j \in \tilde{E}}$. We call \tilde{J}_{t} the phase at time t. A level dependent Markov-modulated Brownian motion $(\mathcal{B}, \tilde{\mathcal{J}})$ with a finite number of thresholds b_{1}, \ldots, b_{N} is defined by the stochastic differential equation

$$
d B_{t}= \begin{cases}\mu_{J_{t}}^{(1)} d t+\sigma_{J_{t}} d W_{t}, & X_{t} \leq b_{1} \\ \mu_{J_{t}}^{(k+1)} d t+\sigma_{J_{t}} d W_{t}, & b_{k}<X_{t} \leq b_{k+1}, 1 \leq k \leq N-1 \\ \mu_{J_{t}}^{(N+1)} d t+\sigma_{J_{t}} d W_{t}, & X_{t}>b_{N}\end{cases}
$$

where $\mu_{i}^{(k)} \in \mathbb{R}$ and $\sigma_{i}>0$ for $i \in \tilde{E}$, and $\mathcal{W}=\left(W_{t}: t \geq 0\right)$ denotes the standard Wiener process. Define the intervals $\left.\left.I_{1}:=\right]-\infty, b_{1}\right]$ for $\left.\left.k=1, I_{k}:=\right] b_{k-1}, b_{k}\right]$ for $k \in\{2, \ldots, N\}$, and $\left.I_{N+1}:=\right] b_{N}, \infty\left[\right.$ for $k=N+1$. We call I_{k} together with the parameters $\left(\mu_{i}^{(k)}, \sigma_{i}\right), i \in \tilde{E}$, the k th regime of $(\mathcal{B}, \tilde{\mathcal{J}})$.

The process $(\mathcal{B}, \tilde{\mathcal{J}})$ shall serve as our model for the premium income. Typically, there is a constant rate $c_{i} d t$ of premium income, together with a perturbation $\sigma_{i} d W_{t}$. Above the threshold b_{1}, dividend payments would commence with a constant rate $c_{i}^{(1)}<c_{i}$. In a multi-threshold model, other rates $c_{i}^{(n)}$ of dividend payments would become effective as soon as the risk reserve surpasses the threshold b_{n}. This is typically constrained by $c_{i}^{(1)}<\ldots<c_{i}^{(N)}<c_{i}$, although this property is not a necessary assumption for the analysis to follow. We now define $\mu_{i}^{(1)}:=c_{i}$ and $\mu_{i}^{(k+1)}:=c_{i}-c_{i}^{(k)}$ for $k=1, \ldots, N$ to arrive at the notation above.

We assume that claim sizes $C_{n}, n \in \mathbb{N}$, are iid with a phase-type distribution of order m_{C} and parameters (α, T). The methods presented in this paper would allow for claim size distributions to depend on the phase process $\tilde{\mathcal{J}}$. This, however, would complicate notations which are on the abundant side already. Thus we shall confine our analysis to iid claim sizes. We assume further that a claim occurs with a constant rate $\lambda_{i} d t$ when $\tilde{J}_{t}=i$. This means that the claim arrival process is a Markovmodulated Poisson process $(\mathcal{N}, \tilde{\mathcal{J}})$ with parameters $D_{0}=Q-\Lambda$ and $D_{1}=\Lambda$ where $\Lambda=\operatorname{diag}\left(\lambda_{i}: i \in \tilde{E}\right)$ is the diagonal matrix containing the rates λ_{i}.

Altogether our model for the risk reserve \tilde{X}_{t} at time t is given by

$$
\tilde{X}_{t}=u+B_{t}-\sum_{n=1}^{N_{t}} C_{n}
$$

where $u=\tilde{X}_{0}$ denotes the initial risk reserve and $\mathcal{N}=\left(N_{t}: t \geq 0\right)$, i.e. N_{t} denotes the number of claims received until time t.

The process $(\tilde{\mathcal{X}}, \tilde{\mathcal{J}})$ is a level dependent Markov-additive process (MAP) with a generator matrix Q for the phase process $\tilde{\mathcal{J}}$ that is independent of the level. The parameters for the level process $\tilde{\mathcal{X}}$ in the k th regime are $\left(\tilde{\mu}_{i}^{(k)}, \tilde{\sigma}_{i}, \tilde{\nu}_{i}: i \in \tilde{E}\right)$, where the Lévy measures $\tilde{\nu}_{i}(d x)=\lambda_{i} \mathbb{I}_{\{x<0\}} \alpha e^{-T x} \eta d x$ are independent of the level. If
$N=0$, i.e. if there is only one regime, we call the MAP homogeneous (in space). For literature on homogeneous MAPs see [1], chapter XI, and [5,9,6]. The non-perturbed case $\sigma_{i}=0$ for $i \in \tilde{E}$ has been analysed in [2,3,11].

In the following section some useful results for homogeneous MAPs will be collected for ease of reference. Section 3 contains the analysis for the case $N=1$, i.e. two regimes. In the last section, the results will be generalised to the case of a finite N.

2 Results for homogeneous MAPs

2.1 Markov-additive Processes with phase-type Jumps

In this section we construct a new $\operatorname{MAP}(\mathcal{X}, \mathcal{J})$ from the given $\operatorname{MAP}(\tilde{\mathcal{X}}, \tilde{\mathcal{J}})$ without losing any information. This new MAP will have continuous paths which considerably simplifies the one- and two-sided exit problems (cf. sections 2.2 and 2.3).

Denote the indicator function of a set A by \mathbb{I}_{A}. Our assumption that the claim sizes have a phase-type distribution with parameters (α, T) leads to Lévy measures $\tilde{\nu}_{i}$ of the form

$$
\begin{equation*}
\tilde{\nu}_{i}(d x)=\lambda_{i} \mathbb{I}_{\{x<0\}} \alpha e^{-T x} \eta d x \tag{1}
\end{equation*}
$$

for all $i \in \tilde{E}$, where $\lambda_{i} \geq 0$. The column vector $\eta:=-T \mathbf{1}$ is called the exit vectors, where 1 denotes the column vector of dimension m with all entries being 1 .

The main advantage of the phase-type restriction on the jump distributions is the possibility of transforming the jumps into a succession of linear pieces of exponential duration (each with slope 1 or -1), which yields a modified MAP with continuous paths. We can then retrieve the original process via a simple time change. This is explained in detail in sections 2.1 and 2.2 of [6]. Here we shall present only the pertinent information to make the present paper self-contained.

Without the jumps, the Lévy process $\tilde{\mathcal{X}}^{(i)}$ during a phase $i \in \tilde{E}$ is simply a Brownian motion with parameters $\tilde{\sigma}_{i}>0$ and $\tilde{\mu}_{i}>0$. Write $E_{\sigma}:=\tilde{E}$. Now we introduce a new phase space

$$
\begin{equation*}
E_{-}:=\left\{(i, k): i \in E_{\sigma}, 1 \leq k \leq m\right\} \tag{2}
\end{equation*}
$$

to model the jumps. Define now the enlarged phase space $E=E_{\sigma} \cup E_{-}$. We define the modified $\operatorname{MAP}(\mathcal{X}, \mathcal{J})$ over the phase space E as follows. Set the parameters $\left(\mu_{i}, \sigma_{i}^{2}, \nu_{i}\right)$ for $i \in E$ as

$$
\left(\mu_{i}, \sigma_{i}^{2}, \nu_{i}\right):= \begin{cases}(-1,0, \mathbf{0}), & i \in E_{-} \tag{3}\\ \left(\tilde{\mu}_{i}, \tilde{\sigma}_{i}, \mathbf{0}\right), & i \in E_{\sigma}\end{cases}
$$

The modified phase process \mathcal{J} is determined by its generator matrix $Q=\left(q_{i j}\right)_{i, j \in E}$. For this the construction above yields

$$
q_{i h}= \begin{cases}\tilde{q}_{i i}-\lambda_{i}, & h=i \in E_{\sigma} \tag{4}\\ \tilde{q}_{i h}, & h \in E_{\sigma}, h \neq i \\ \lambda_{i} \alpha_{k}, & h=(i, k) \in E_{-}\end{cases}
$$

for $i \in E_{\sigma}$ as well as

$$
\begin{equation*}
q_{(i, k),(i, l)}=T_{k l} \quad \text { and } \quad q_{(i, k), i}=\eta_{k} \tag{5}
\end{equation*}
$$

for $i \in E_{\sigma}$ and $1 \leq k, l \leq m$.
The original level process $\tilde{\mathcal{X}}$ is retrieved via the time change

$$
\begin{equation*}
c(t):=\int_{0}^{t} \mathbb{I}_{\left\{J_{s} \in E_{\sigma}\right\}} d s \quad \text { and } \quad \tilde{X}_{c(t)}=X_{t} \tag{6}
\end{equation*}
$$

for all $t \geq 0$. Thus we obtain

$$
\begin{equation*}
\tilde{\tau}(a)=c(\tau(a)) \tag{7}
\end{equation*}
$$

for $a \in \mathbb{R}$ and $\tau(a):=\inf _{\tilde{\tilde{J}}}\left\{t \geq 0: X_{t}<a\right\}$. This implies that we can perform an analysis of the $\operatorname{MAP}(\tilde{\mathcal{X}}, \tilde{\mathcal{J}})$ in terms of the modified $\operatorname{MAP}(\mathcal{X}, \mathcal{J})$ alone.

2.2 First Passage Times

A derivation of the Laplace transforms for the first passage times of MAPs has been given in [5]. Define the first passage times

$$
\tilde{\sigma}(x):=\inf \left\{t \geq 0: \tilde{X}_{t}>x\right\} \quad \text { and } \quad \sigma(x):=\inf \left\{t \geq 0: X_{t}>x\right\}
$$

for all $\underset{\tilde{\chi}}{x} \in \mathbb{R}$. Note that $\tilde{\sigma}(x)$ is the first passage time over the level x for the original $\operatorname{MAP} \tilde{\mathcal{X}}$, meaning that we do not count the time spent in jump phases $i \in E_{-}$. This means that

$$
\tilde{\sigma}(x)=c(\sigma(x))=\int_{0}^{\sigma(x)} \mathbb{I}_{\left\{J_{s} \in E_{\sigma}\right\}} d s
$$

according to (6). In particular, we may compute expectations over $\tilde{\sigma}(x)$ using the distribution of the modified $\operatorname{MAP}(\mathcal{X}, \mathcal{J})$ only and without needing to recur to the original MAP $(\tilde{\mathcal{X}}, \tilde{\mathcal{J}})$. For $\gamma \geq 0$ denote

$$
\mathbb{E}_{i j}\left(e^{-\gamma \tilde{\sigma}(x)}\right):=\mathbb{E}\left(e^{-\gamma \tilde{\sigma}(x)} ; J_{\tau(x)}=j \mid J_{0}=i, X_{0}=0\right)
$$

for all $i, j \in E$. Let $\mathbb{E}\left(e^{-\gamma \tilde{\sigma}(x)}\right)$ denote the matrix with these entries and write

$$
\mathbb{E}\left(e^{-\gamma \tilde{\sigma}(x)}\right)=\left(\begin{array}{ll}
\mathbb{E}_{(\sigma, \sigma)}\left(e^{-\gamma \tilde{\sigma}(x)}\right) & \mathbb{E}_{(\sigma,-)}\left(e^{-\gamma \tilde{\sigma}(x)}\right) \\
\mathbb{E}_{(-, \sigma)}\left(e^{-\gamma \tilde{\sigma}(x)}\right) & \mathbb{E}_{(-,-)}\left(e^{-\gamma \tilde{\sigma}(x)}\right)
\end{array}\right)
$$

in obvious block notation with respect to the subspaces E_{σ} (ascending phases) and E_{-}(descending phases). According to section 3 in [5] we can write

$$
\begin{equation*}
\mathbb{E}\left(e^{-\gamma \tilde{\sigma}(x)}\right)=\binom{I_{\sigma}}{A(\gamma)}\left(e^{U(\gamma) x} \mathbf{0}\right) \tag{8}
\end{equation*}
$$

where I_{σ} denotes the identity matrix of dimension $E_{\sigma} \times E_{\sigma}, \mathbf{0}$ the zero matrix of dimension $E_{\sigma} \times E_{-}, U(\gamma)$ is a sub-generator matrix of dimension $E_{\sigma} \times E_{\sigma}$, and $A(\gamma)$ is a sub-transition matrix of dimension $E_{-} \times E_{\sigma}$. An iteration to determine
$A(\gamma)$ and $U(\gamma)$ is derived in [5] and further specified to the case of phase-type jumps in [6].

In order to determine the downward first passage times (in particular the time of ruin), we reflect at the original level X_{0} and consider upward first passage times for the negative of \mathcal{X}. Let $\left(\mathcal{X}^{+}, \mathcal{J}\right)$ denote the MAP as constructed in section 2.1 and define the process $\mathcal{X}^{-}=\left(X_{t}^{-}: t \geq 0\right)$ by $X_{t}^{-}:=-X_{t}^{+}$for all $t>0$ given that $X_{0}^{+}=X_{0}^{-}=0$. Thus $\left(\mathcal{X}^{-}, \mathcal{J}\right)$ is the negative of $\left(\mathcal{X}^{+}, \mathcal{J}\right)$. The two processes have the same generator matrix Q for \mathcal{J}, but the drift parameters are different. Denoting variation and drift parameters for $\mathcal{X}^{ \pm}$by $\sigma_{i}^{ \pm}$and $\mu_{i}^{ \pm}$, respectively, this means $\sigma_{i}^{+}=$ σ_{i}^{-}and $\mu_{i}^{-}=-\mu_{i}^{+}$for all $i \in E$. This of course implies that phases $i \in E_{-}$are ascending phases for \mathcal{X}^{-}.

Let $A^{ \pm}(\gamma)$ and $U^{ \pm}(\gamma)$ denote the matrices that determine the first passage times in (8). We shall write $A^{ \pm}=A^{ \pm}(\gamma)$ and $U^{ \pm}=U^{ \pm}(\gamma)$ except in cases when we wish to underline the dependence on γ. Note that in our case all phases are ascending for \mathcal{X}^{-}such that A^{-}vanishes, i.e. has dimension 0 . Define the (downward) first passage times

$$
\tilde{\tau}(x):=\inf \left\{t \geq 0: \tilde{X}_{t}<x\right\} \quad \text { and } \quad \tau(x):=\inf \left\{t \geq 0: X_{t}<x\right\}
$$

for all $x \in \mathbb{R}$. We now obtain

$$
\begin{equation*}
\mathbb{E}\left(e^{-\gamma \tilde{\tau}(x)} \mid X_{0}=a\right)=e^{U^{-}(\gamma) \cdot(a-x)} \tag{9}
\end{equation*}
$$

for all $x<a$.

2.3 The two-sided Exit Problem

For $l<u$, define the stopping times

$$
\begin{equation*}
\sigma(l, u):=\inf \left\{t \geq 0: X_{t}<l \quad \text { or } \quad X_{t}>u\right\} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{\sigma}(l, u):=\int_{0}^{\sigma(l, u)} \mathbb{I}_{\left\{J_{s} \in E_{\sigma}\right\}} d s=\inf \left\{t \geq 0: \tilde{X}_{t}<l \quad \text { or } \quad \tilde{X}_{t}>u\right\} \tag{11}
\end{equation*}
$$

which are the exit times of \mathcal{X} and $\tilde{\mathcal{X}}$ from the interval $[l, u]$, respectively. Choose any $\gamma \geq 0$. For the main result we need an expression for

$$
\Psi_{i j}^{+}(u-l \mid x-l):=\mathbb{E}\left(e^{-\gamma \tilde{\sigma}(l, u)} ; X_{\sigma(l, u)}=b, J_{\sigma(l, u)}=j \mid J_{0}=i, X_{0}=x\right)
$$

where $x \in[l, u]$ and $i, j \in E$. Clearly $\Psi_{i j}^{+}(u-l \mid x-l)=0$ for $j \in E_{-}$since an exit over the upper boundary can occur only in an ascending phase. Define the matrix $\Psi^{+}(u-l \mid x-l):=\left(\Psi_{i j}^{+}(u-l \mid x-l)\right)_{i \in E, j \in E_{\sigma}}$. A formula for $\Psi^{+}(u-l \mid x-l)$ has been derived in [9]. In order to state it we need some additional notation. Define the matrices

$$
C^{+}:=\binom{I_{\sigma}}{A^{+}} \quad \text { and } \quad C^{-}:=\left(\begin{array}{ll}
I_{\sigma} & \mathbf{0} \tag{12}
\end{array}\right)
$$

of dimensions $E \times E_{\sigma}$ and $E_{\sigma} \times E$, respectively, where I_{σ} denotes the identity matrix of dimension $E_{\sigma} \times E_{\sigma}$. Further let $Z^{ \pm}:=C^{ \pm} e^{U^{ \pm} \cdot(u-l)}$. Then equation (23) in [9] states that

$$
\begin{equation*}
\Psi^{+}(u-l \mid x-l)=\left(C^{+} e^{U^{+} \cdot(u-x)}-e^{U^{-} \cdot(x-l)} Z^{+}\right) \cdot\left(I-Z^{-} Z^{+}\right)^{-1} \tag{13}
\end{equation*}
$$

for $0 \leq x \leq b$. This matrix has dimension $E \times E_{\sigma}$, due to the fact that exit from below can only happen in an ascending phase. By reflection at the initial level x, we obtain further

$$
\begin{align*}
\Psi^{-}(u-l \mid x-l) & :=\mathbb{E}\left(e^{-\gamma \tilde{\sigma}(l, u)} ; X_{\sigma(l, u)}=0 \mid X_{0}=x\right) \\
& =\left(e^{U^{-} \cdot(x-l)}-C^{+} e^{U^{+} \cdot(u-x)} Z^{-}\right) \cdot\left(I-Z^{+} Z^{-}\right)^{-1} \tag{14}
\end{align*}
$$

for $x \in[l, u]$. This matrix has dimension $E \times E$. Note that the expressions on the right-hand sides of (13) and (14) depend on a choice of $\gamma \geq 0$.

3 The single threshold case

We first consider the time of ruin for the case $N=1$, i.e. one threshold only. Denote the level of this threshold by $b>0$. The time of ruin is defined as

$$
\begin{equation*}
\tilde{\tau}(0):=\inf \left\{t \geq 0: \tilde{X}_{t}<0\right\} \tag{15}
\end{equation*}
$$

We seek to find an expression for $\mathbb{E}\left(e^{-\gamma \tilde{\tau}(0)} \mid X_{0}=u\right)$ where $\gamma \geq 0$ and u denotes the initial risk reserve. Let $U_{i}^{ \pm}=U_{i}^{ \pm}(\gamma), A_{i}^{ \pm}=A_{i}^{ \pm}(\gamma)$, and $\Psi_{i}^{ \pm}=\Psi_{i}^{ \pm}(\gamma)$ denote the matrices introduced in section 2 for the i th regime, where $i=1$ means $X_{t}<b$ and $i=2$ means $X_{t} \geq b$.

In the case $u<b$ we obtain

$$
\mathbb{E}\left(e^{-\gamma \tilde{\tau}(0)} \mid X_{0}=u\right)=\Psi_{1}^{-}(b \mid u)+\Psi_{1}^{+}(b \mid u) \mathbb{E}\left(e^{-\gamma \tilde{\tau}(0)} \mid X_{0}=b\right)
$$

while for $u>b$ path continuity of \mathcal{X} yields

$$
\mathbb{E}\left(e^{-\gamma \tilde{\tau}(0)} \mid X_{0}=u\right)=e^{U_{2}^{-} \cdot(u-b)} \mathbb{E}\left(e^{-\gamma \tilde{\tau}(0)} \mid X_{0}=b\right)
$$

Thus it suffices to determine $\mathbb{E}\left(e^{-\gamma \tilde{\tau}(0)} \mid X_{0}=b\right)$. Write

$$
\mathbb{E}\left(e^{-\gamma \tilde{\tau}(0)} \mid X_{0}=b\right)=:\left(\begin{array}{cc}
E_{(\sigma, \sigma)}(b) & E_{(\sigma,-)}(b) \tag{16}\\
E_{(-, \sigma)}(b) & E_{(-,-)}(b)
\end{array}\right)=:\binom{E_{(\sigma, \cdot)}(b)}{E_{(-, \cdot)}(b)}
$$

in obvious block notation. In general we shall use for any matrix M of dimension $E \times E$ the block notation

$$
M=:\left(\begin{array}{ll}
M_{(\sigma, \sigma)} & M_{(\sigma,-)} \\
M_{(-, \sigma)} & M_{(-,-)}
\end{array}\right)=:\binom{M_{(\sigma, \cdot)}}{M_{(-, \cdot)}}=:\left(M_{(., \sigma)} M_{(.,-)}\right)
$$

Then

$$
\begin{equation*}
E_{(-, \cdot)}(b)=\Psi_{1}^{-}(b \mid b)_{(-, \cdot)}+\Psi_{1}^{+}(b \mid b)_{(-, \sigma)} E_{(\sigma, \cdot)}(b) \tag{17}
\end{equation*}
$$

Thus it remains to determine $E_{(\sigma, \sigma)}(b)$ and $E_{(\sigma,-)}(b)$. This will be pursued in theorem 1 , for which we state two lemmata first.

Lemma 1 Write

$$
\Psi_{1}^{+}(b+\varepsilon \mid b-\varepsilon)=\left(\begin{array}{cc}
H_{(\sigma, \sigma)}^{+}(\varepsilon) & H_{(\sigma,-)}^{+}(\varepsilon) \\
H_{(-, \sigma)}^{+}(\varepsilon) & H_{(-,-)}^{+}(\varepsilon)
\end{array}\right)
$$

in block notation. Then

$$
\begin{aligned}
H_{1}^{+} & :=\left.\frac{d}{d \varepsilon} H_{(\sigma, \sigma)}^{+}(\varepsilon)\right|_{\varepsilon=0} \\
& =2\left(U_{1}^{+} e^{-U_{1}^{+} \cdot b}+C_{1}^{-} U_{1}^{-} e^{U_{1}^{-} \cdot b} C_{1}^{+}\right)\left(e^{-U_{1}^{+} \cdot b}-C_{1}^{-} e^{U_{1}^{-} \cdot b} C_{1}^{+}\right)^{-1}
\end{aligned}
$$

Proof: According to (13),

$$
\begin{aligned}
H_{(\sigma, \sigma)}^{+}(\varepsilon)= & \left(e^{U_{1}^{+} \cdot 2 \varepsilon}-C_{1}^{-} e^{U_{1}^{-} \cdot(b-\varepsilon)} C_{1}^{+} e^{U_{1}^{+} \cdot(b+\varepsilon)}\right) \\
& \times\left(I_{\sigma}-C_{1}^{-} e^{U_{1}^{-} \cdot(b+\varepsilon)} C_{1}^{+} e^{U_{1}^{+} \cdot(b+\varepsilon)}\right)^{-1} \\
= & \left(e^{-U_{1}^{+} \cdot(b-\varepsilon)}-C_{1}^{-} e^{U_{1}^{-} \cdot(b-\varepsilon)} C_{1}^{+}\right) \\
& \times\left(e^{-U_{1}^{+} \cdot(b+\varepsilon)}-C_{1}^{-} e^{U_{1}^{-} \cdot(b+\varepsilon)} C_{1}^{+}\right)^{-1}
\end{aligned}
$$

After abbreviating

$$
F(\varepsilon):=\left(e^{-U_{1}^{+} \cdot(b-\varepsilon)}-C_{1}^{-} e^{U_{1}^{-} \cdot(b-\varepsilon)} C_{1}^{+}\right)
$$

and

$$
G(\varepsilon):=\left(e^{-U_{1}^{+} \cdot(b+\varepsilon)}-C_{1}^{-} e^{U_{1}^{-} \cdot(b+\varepsilon)} C_{1}^{+}\right)
$$

we apply the formal rules of derivation for functions of a real variable (see [4], sections I.1.3-4) to obtain

$$
H_{1}^{+}=F^{\prime}(0) G(0)^{-1}-F(0) G(0)^{-1} G^{\prime}(0) G(0)^{-1}
$$

where

$$
F(0)=e^{-U_{1}^{+} \cdot b}-C_{1}^{-} e^{U_{1}^{-} \cdot b} C_{1}^{+}, \quad F^{\prime}(0)=U_{1}^{+} e^{-U_{1}^{+} \cdot b}+C_{1}^{-} U_{1}^{-} e^{U_{1}^{-} \cdot b} C_{1}^{+}
$$

and

$$
G(0)=e^{-U_{1}^{+} \cdot b}-C_{1}^{-} e^{U_{1}^{-} \cdot b} C_{1}^{+}, \quad G^{\prime}(0)=-U_{1}^{+} e^{-U_{1}^{+} \cdot b}-C_{1}^{-} U_{1}^{-} e^{U_{1}^{-} \cdot b} C_{1}^{+}
$$

Thus $F(0)=G(0)$ and $G^{\prime}(0)=-F^{\prime}(0)$, which yields the statement.

Lemma 2 Write

$$
\Psi_{1}^{-}(b+\varepsilon \mid b-\varepsilon)=\left(\begin{array}{ll}
W_{(\sigma, \sigma)}^{-}(\varepsilon) & W_{(\sigma,-)}^{-}(\varepsilon) \\
W_{(-, \sigma)}^{-}(\varepsilon) & W_{(-,-)}^{-}(\varepsilon)
\end{array}\right)
$$

in block notation. Then

$$
W_{1}^{-}:=\left.\frac{d}{d \varepsilon} W_{(\sigma, \cdot)}^{-}(\varepsilon)\right|_{\varepsilon=0}=-2\left(C_{1}^{-} U_{1}^{-}+U_{1}^{+} C_{1}^{-}\right)\left(e^{-U_{1}^{-} \cdot b}-C_{1}^{+} e^{U_{1}^{+} \cdot b} C_{1}^{-}\right)^{-1}
$$

Proof: The proof is analogous to lemma 1. According to (14),

$$
\begin{aligned}
W_{(\sigma, \cdot)}^{-}(\varepsilon)= & \left(C_{1}^{-} e^{U_{1}^{-} \cdot(b-\varepsilon)}-e^{U_{1}^{+} \cdot 2 \varepsilon} C_{1}^{-} e^{U_{1}^{-} \cdot(b+\varepsilon)}\right) \\
& \times\left(I-C^{+} e^{U_{1}^{+} \cdot(b+\varepsilon)} C_{1}^{-} e^{U_{1}^{-} \cdot(b+\varepsilon)}\right)^{-1} \\
=(& C_{1}^{-} e^{-U_{1}^{-} \cdot 2 \varepsilon}-e^{U_{1}^{+} \cdot 2 \varepsilon} C_{1}^{-} \\
& \times\left(e^{-U_{1}^{-} \cdot(b+\varepsilon)}-C^{+} e^{U_{1}^{+} \cdot(b+\varepsilon)} C_{1}^{-}\right)^{-1}
\end{aligned}
$$

Write $F(\varepsilon)=C_{1}^{-} e^{-2 U_{1}^{-} \varepsilon}-e^{2 U_{1}^{+} \varepsilon} C_{1}^{-}$and $G(\varepsilon)=e^{-U_{1}^{-} \cdot(b+\varepsilon)}-C_{1}^{+} e^{U_{1}^{+} \cdot(b+\varepsilon)} C_{1}^{-}$ to obtain

$$
\begin{aligned}
\left.\frac{d}{d \varepsilon} W_{(\sigma, \cdot)}^{-}(\varepsilon)\right|_{\varepsilon=0} & =\left.\frac{d}{d \varepsilon} F(\varepsilon) G(\varepsilon)^{-1}\right|_{\varepsilon=0} \\
& =F^{\prime}(0) G(0)^{-1}-F(0) G(0)^{-1} G^{\prime}(0) G(0)^{-1}
\end{aligned}
$$

according to [4], sections I.1.3-4, where $F(0)=\mathbf{0}, F^{\prime}(0)=-2\left(C_{1}^{-} U_{1}^{-}+U_{1}^{+} C_{1}^{-}\right)$ and further $G(0)=e^{-U_{1}^{-} \cdot b}-C_{1}^{+} e^{U_{1}^{+} \cdot b} C_{1}^{-}$. Altogether this yields the statement.

Theorem 1 Write $E_{(\sigma, \cdot)}(b):=\left(E_{(\sigma, \sigma)}(b) E_{(\sigma,-)}(b)\right)$ for the first row in (16). Then

$$
\begin{aligned}
E_{(\sigma, \cdot)}(b)= & \left(2\left(U_{2}^{-}\right)_{(\sigma,-)} \Psi_{1}^{+}(b \mid b)_{(-, \sigma)}-H_{1}^{+}-2\left(U_{2}^{-}\right)_{(\sigma, \sigma)}\right)^{-1} \\
& \times\left(W_{1}^{-}+2\left(U_{2}^{-}\right)_{(\sigma,-)} \Psi_{1}^{-}(b \mid b)_{(-, \cdot)}\right)
\end{aligned}
$$

Proof: We consider $E(b-\varepsilon):=\mathbb{E}\left(e^{-\gamma \tilde{\tau}(0)} \mid X_{0}=b-\varepsilon\right)$ and assume that the regime changes at $b+\varepsilon$ for upward crossings of b and at $b-\varepsilon$ for downward crossings. Then we let $\varepsilon \downarrow 0$. Due to (17), we need to determine the upper row $E_{(\sigma, \cdot)}(b-\varepsilon)$ only. First we obtain

$$
\begin{aligned}
E_{(\sigma, \cdot)}(b-\varepsilon)= & W_{(\sigma, \cdot)}^{-}(\varepsilon)+H_{(\sigma, \sigma)}^{+}(\varepsilon) C^{-} e^{U_{2}^{-} \cdot 2 \varepsilon} E(b-\varepsilon) \\
= & W_{(\sigma, \cdot)}^{-}(\varepsilon)+H_{(\sigma, \sigma)}^{+}(\varepsilon) C^{-}\left(e^{U_{2}^{-} \cdot 2 \varepsilon}\right)_{(\cdot,-)} E_{(-, \cdot)}(b-\varepsilon) \\
& +H_{(\sigma, \sigma)}^{+}(\varepsilon) C^{-}\left(e^{U_{2}^{-} \cdot 2 \varepsilon}\right)_{(\cdot, \sigma)} E_{(\sigma, \cdot)}(b-\varepsilon)
\end{aligned}
$$

where $H_{(\sigma, \sigma)}^{+}(\varepsilon)$ and $W_{(\sigma, \cdot)}^{-}(\varepsilon)$ are defined in lemmata 1 and 2. This implies

$$
\begin{aligned}
E_{(\sigma, \cdot)}(b-\varepsilon)= & \left(I_{\sigma}-H_{(\sigma, \sigma)}^{+}(\varepsilon) C^{-}\left(e^{U_{2}^{-} \cdot 2 \varepsilon}\right)_{(\cdot, \sigma)}\right)^{-1} \cdot \varepsilon \\
& \times \varepsilon^{-1}\left(W_{(\sigma, \cdot)}^{-}(\varepsilon)+H_{(\sigma, \sigma)}^{+}(\varepsilon) C^{-}\left(e^{U_{2}^{-} \cdot 2 \varepsilon}\right)_{(\cdot,-)} E_{(-, \cdot)}(b-\varepsilon)\right)
\end{aligned}
$$

We observe that

$$
\begin{aligned}
& \lim _{\varepsilon \downarrow 0} H_{(\sigma, \sigma)}^{+}(\varepsilon)=\lim _{\varepsilon \downarrow 0} C^{-}\left(e^{U_{2}^{-} \cdot 2 \varepsilon}\right)_{(\cdot, \sigma)}=I_{\sigma} \\
& \lim _{\varepsilon \downarrow 0} W_{(\sigma, \cdot)}^{-}(\varepsilon)=\mathbf{0}, \quad \lim _{\varepsilon \downarrow 0} C^{-}\left(e^{U_{2}^{-} \cdot 2 \varepsilon}\right)_{(\cdot,-)}=\mathbf{0} \\
& \lim _{\varepsilon \downarrow 0} E_{(-, \cdot)}(b-\varepsilon)=E_{(-, \cdot)}(b)
\end{aligned}
$$

where $\mathbf{0}$ denotes a zero matrix of appropriate dimension. Thus we can write

$$
\begin{aligned}
\lim _{\varepsilon \downarrow 0} \varepsilon & \left(I_{\sigma}-H_{(\sigma, \sigma)}^{+}(\varepsilon) C^{-}\left(e^{U_{2}^{-} \cdot 2 \varepsilon}\right)_{(\cdot, \sigma)}\right)^{-1} \\
& =-\left(\left.\frac{d}{d \varepsilon} H_{(\sigma, \sigma)}^{+}(\varepsilon) C^{-}\left(e^{U_{2}^{-} \cdot 2 \varepsilon}\right)_{(\cdot, \sigma)}\right|_{\varepsilon=0}\right)^{-1} \\
& =-\left(\left.\frac{d}{d \varepsilon} H_{(\sigma, \sigma)}^{+}(\varepsilon)\right|_{\varepsilon=0} I_{\sigma}+\left.I_{\sigma} \frac{d}{d \varepsilon} C^{-}\left(e^{U_{2}^{-} \cdot 2 \varepsilon}\right)_{(\cdot, \sigma)}\right|_{\varepsilon=0}\right)^{-1} \\
& =-\left(H_{1}^{+}+2\left(U_{2}^{-}\right)_{(\sigma, \sigma)}\right)^{-1}
\end{aligned}
$$

see [4], section I.1.3, and lemma 1 for the last two equalities. In a similar manner,

$$
\lim _{\varepsilon \downarrow 0} \varepsilon^{-1} W_{(\sigma, \cdot)}^{-}(\varepsilon)=\left.\frac{d}{d \varepsilon} W_{(\sigma, \cdot)}^{-}(\varepsilon)\right|_{\varepsilon=0}=W_{1}^{-}
$$

according to lemma 2. Finally,

$$
\begin{aligned}
& \lim _{\varepsilon \downarrow 0} \varepsilon^{-1} H_{(\sigma, \sigma)}^{+}(\varepsilon) C^{-}\left(e^{U_{2}^{-} \cdot 2 \varepsilon}\right)_{(\cdot,-)} E_{(-, \cdot)}^{-}(b-\varepsilon) \\
&=I_{\sigma}\left(\lim _{\varepsilon \downarrow 0} \varepsilon^{-1} C^{-}\left(e^{U_{2}^{-} \cdot 2 \varepsilon}\right)_{(\cdot,-)}\right) E_{(-, \cdot)}(b) \\
&=2\left(U_{2}^{-}\right)_{(\sigma,-)} E_{(-, \cdot)}(b)
\end{aligned}
$$

Pasting the above results together, the limit $\varepsilon \downarrow 0$ yields

$$
\begin{aligned}
E_{(\sigma, \cdot)}(b)= & -\left(H_{1}^{+}+2\left(U_{2}^{-}\right)_{(\sigma, \sigma)}\right)^{-1}\left(W_{1}^{-}+2\left(U_{2}^{-}\right)_{(\sigma,-)} E_{(-, \cdot)}(b)\right) \\
= & -\left(H_{1}^{+}+2\left(U_{2}^{-}\right)_{(\sigma, \sigma)}\right)^{-1}\left(W_{1}^{-}+2\left(U_{2}^{-}\right)_{(\sigma,-)} \Psi_{1}^{-}(b \mid b)_{(-, \cdot)}\right) \\
& -\left(H_{1}^{+}+2\left(U_{2}^{-}\right)_{(\sigma, \sigma)}\right)^{-1} 2\left(U_{2}^{-}\right)_{(\sigma,-)} \Psi_{1}^{+}(b \mid b)_{(-, \sigma)} E_{(\sigma, \cdot)}(b)
\end{aligned}
$$

after using (17). Thus

$$
\begin{aligned}
E_{(\sigma, \cdot)}(b)= & -\left(I_{\sigma}-\left(H_{1}^{+}+2\left(U_{2}^{-}\right)_{(\sigma, \sigma)}\right)^{-1} 2\left(U_{2}^{-}\right)_{(\sigma,-)} \Psi_{1}^{+}(b \mid b)_{(-, \sigma)}\right)^{-1} \\
& \times\left(H_{1}^{+}+2\left(U_{2}^{-}\right)_{(\sigma, \sigma)}\right)^{-1}\left(W_{1}^{-}+2\left(U_{2}^{-}\right)_{(\sigma,-)} \Psi_{1}^{-}(b \mid b)_{(-, \cdot)}\right) \\
= & -\left(H_{1}^{+}+2\left(U_{2}^{-}\right)_{(\sigma, \sigma)}-2\left(U_{2}^{-}\right)_{(\sigma,-)} \Psi_{1}^{+}(b \mid b)_{(-, \sigma)}\right)^{-1} \\
& \times\left(W_{1}^{-}+2\left(U_{2}^{-}\right)_{(\sigma,-)} \Psi_{1}^{-}(b \mid b)_{(-, \cdot)}\right)
\end{aligned}
$$

which is the expression in the statement.
Considering now $E(b+\varepsilon)=\mathbb{E}\left(e^{-\gamma \tau(u)} \mid X_{0}=b+\varepsilon\right)$ instead of $E(b-\varepsilon)$ as above, we observe that

$$
E_{(\sigma, \cdot)}(b+\varepsilon)=C^{-} e^{U_{2}^{-} 2 \varepsilon} E(b-\varepsilon)
$$

due to path continuity. Since $\lim _{\varepsilon \downarrow 0} e^{U_{2}^{-} \cdot 2 \varepsilon}=I$, we obtain

$$
\lim _{\varepsilon \downarrow 0} E_{(\sigma, \cdot)}(b+\varepsilon)=\lim _{\varepsilon \downarrow 0}\left(I_{\sigma} \mathbf{0}\right) E(b-\varepsilon)=\lim _{\varepsilon \downarrow 0} E_{(\sigma, \cdot)}(b-\varepsilon)
$$

such that the limits from both sides coincide.
Let $\zeta(b):=l\left(\left\{t<\tilde{\tau}(0): \tilde{X}_{t}>b\right\}\right)$ denote the Lebesgue measure of the time before ruin that the risk reserve process spends above the threshold b. Then the dividends paid out before ruin amount to $D=c_{1} \zeta(b)$. We now wish to state the joint distribution of the time to ruin and the time spent above b in terms of their joint Laplace transform.

Corollary 1

$$
\begin{aligned}
& \mathbb{E}\left(e^{-\gamma \tilde{\tau}(0)-\delta \zeta(b)} \mid X_{0}=b\right) \\
& =\left(2 U_{2}^{-}(\gamma+\delta)_{(\sigma,-)} \Psi_{1}^{+}(b, \gamma \mid b)_{(-, \sigma)}-2 U_{2}^{-}(\gamma+\delta)_{(\sigma, \sigma)}-H_{1}^{+}(\gamma)\right)^{-1} \\
& \quad \times\left(2 U_{2}^{-}(\gamma+\delta)_{(\sigma,-)} \Psi_{1}^{-}(b, \gamma \mid b)_{(-, \cdot)}+W_{1}^{-}(\gamma)\right)
\end{aligned}
$$

Proof: We integrate over the same set of sample paths as in theorem 1 , only with the additional integrand function $e^{-\delta t}$ when $\tilde{X}_{t}>b$. Thus the only difference to the statement in theorem 1 is the Laplace argument $\gamma+\delta$ for U_{2}^{-}.

4 Multi-threshold strategies

We now consider a Markov-additive risk model $(\tilde{\mathcal{X}}, \tilde{\mathcal{J}})$ with a finite number of thresholds b_{1}, \ldots, b_{N}. Define

$$
E^{-}(a, l):=\mathbb{E}\left(e^{-\gamma \tilde{\tau}(l)-\sum_{n=1}^{N+1} \delta_{n} \zeta_{n}} \mid X_{0}=a\right)
$$

for $l<a$, where $\delta_{n} \geq 0$ for $n=1, \ldots, N+1$ and

$$
\zeta_{n}:=l\left(\left\{t<\tilde{\tau}(0): b_{n-1} \leq \tilde{X}_{t}<b_{n}\right\}\right)
$$

denotes the Lebesgue measure of the time spent in the interval $\left[b_{n-1}, b_{n}\right.$ [before ruin, with $b_{0}:=0$ and $b_{N+1}:=\infty$. Path continuity of \mathcal{X} yields

$$
E^{-}(u, l)=E^{-}(u, a) E^{-}(a, l)
$$

for all $l<a<u$. For $u \geq b_{N}, E^{-}\left(u, b_{N-1}\right)$ has been determined in section 3 (set $b:=b_{N}-b_{N-1}$). We wish to determine

$$
E^{-}(u, 0)=E^{-}\left(u, b_{k}\right) E^{-}\left(b_{k}, b_{k-1}\right) \ldots E^{-}\left(b_{1}, 0\right)
$$

where $k:=\max \left\{n \leq N: b_{n}<u\right\}$. In order to pursue this, let $U_{k}^{ \pm}=U_{k}^{ \pm}\left(\gamma+\delta_{k}\right)$, $A_{k}^{ \pm}=A_{k}^{ \pm}\left(\gamma+\delta_{k}\right)$, and $\Psi_{k}^{ \pm}=\Psi_{k}^{ \pm}\left(\gamma+\delta_{k}\right)$ denote the matrices introduced in section 2 where the parameters are taken from the k th regime, with $k=1, \ldots, N+1$.

First note that

$$
E^{-}\left(u, b_{k}\right)=\Psi_{k+1}^{-}\left(b_{k+1}-b_{k} \mid u-b_{k}\right)+\Psi_{k+1}^{+}\left(b_{k+1}-b_{k} \mid u-b_{k}\right) E^{-}\left(b_{k+1}, b_{k}\right)
$$

such that it suffices to determine the matrices $E^{-}\left(b_{k}, b_{k-1}\right)$ for $k=1, \ldots, N-1$. Recalling the definitions (10) and (11), define the matrices

$$
E^{+}(k):=\mathbb{E}\left(e^{-\gamma \tilde{\sigma}\left(b_{k-1}, b_{k+1}\right)-\sum_{n=1}^{N+1} \delta_{n} \zeta_{n}} ; X_{\sigma\left(b_{k-1}, b_{k+1}\right)}=u \mid X_{0}=b_{k}\right)
$$

and

$$
E^{-}(k):=\mathbb{E}\left(e^{-\gamma \tilde{\sigma}\left(b_{k-1}, b_{k+1}\right)-\sum_{n=1}^{N+1} \delta_{n} \zeta_{n}} ; X_{\sigma\left(b_{k-1}, b_{k+1}\right)}=l \mid X_{0}=b_{k}\right)
$$

for $k=1, \ldots, N-1$. Since

$$
E^{-}\left(b_{k}, b_{k-1}\right)=E^{-}(k)+E^{+}(k) E^{-}\left(b_{k+1}, b_{k}\right) E^{-}\left(b_{k}, b_{k-1}\right)
$$

we obtain

$$
E^{-}\left(b_{k}, b_{k-1}\right)=\left(I-E^{+}(k) E^{-}\left(b_{k+1}, b_{k}\right)\right)^{-1} E^{-}(k)
$$

for $k \leq N-1$. This will provide a recursion scheme for $E^{-}(u, 0)$ if we can determine $E^{+}(k)$ and $E^{-}(k)$ for $k \leq N-1$.

4.1 Determine $E^{+}(k)$

We first observe that $E_{(\cdot,-)}^{+}(k)=\mathbf{0}$ as an upward exit from an interval cannot happen in a descending phase. Further,

$$
E_{(-, \sigma)}^{+}(k)=\Psi_{k}^{+}\left(b_{k}-b_{k-1} \mid b_{k}-b_{k-1}\right)_{(-, \sigma)} E_{(\sigma, \sigma)}^{+}(k)
$$

such that it remains to determine $E_{(\sigma, \sigma)}^{+}(k)$. We shall pursue this in theorem 2 but need some additional lemmata before.

Lemma 3 For $k \leq N-1$, write

$$
\Psi_{k+1}^{-}\left(b_{k+1}-b_{k}+\varepsilon \mid 2 \varepsilon\right)=\left(\begin{array}{cc}
H_{k+1}^{-}(\varepsilon)_{(\sigma, \sigma)} & H_{k+1}^{-}(\varepsilon)_{(\sigma,-)} \\
H_{k+1}^{-}(\varepsilon)_{(-, \sigma)} & H_{k+1}^{-}(\varepsilon)_{(-,-)}
\end{array}\right)
$$

in block notation. Then

$$
\begin{aligned}
H_{k+1}^{-}:= & \left.\frac{d}{d \varepsilon} H_{k+1}^{-}(\varepsilon)_{(\sigma, \cdot)}\right|_{\varepsilon=0} \\
=2 & {\left[\left(U_{k+1}^{-} e^{-U_{k+1}^{-} \cdot\left(b_{k+1}-b_{k}\right)}+C_{k+1}^{+} U_{k+1}^{+} e^{U_{k+1}^{+} \cdot\left(b_{k+1}-b_{k}\right)} C^{-}\right)\right.} \\
& \left.\times\left(e^{-U_{k+1}^{-} \cdot\left(b_{k+1}-b_{k}\right)}-C_{k+1}^{+} e^{U_{k+1}^{+} \cdot\left(b_{k+1}-b_{k}\right)} C^{-}\right)^{-1}\right]_{(\sigma, \cdot)}
\end{aligned}
$$

Proof: According to (14),

$$
\begin{aligned}
& H_{k+1}^{-}(\varepsilon)_{(\sigma,)}=(\left.C^{-} e^{U_{k+1}^{-} 2 \varepsilon}-e^{U_{2}^{+} \cdot\left(b_{k+1}-b_{k}-\varepsilon\right)} C^{-} e^{U_{k+1}^{-} \cdot\left(b_{k+1}-b_{k}+\varepsilon\right)}\right) \\
& \times\left(I-C_{k+1}^{+} e^{U_{k+1}^{+} \cdot\left(b_{k+1}-b_{k}+\varepsilon\right)} C^{-} e^{U_{k+1}^{-} \cdot\left(b_{k+1}-b_{k}+\varepsilon\right)}\right)^{-1} \\
&=C^{-}\left(e^{-U_{k+1}^{-} \cdot\left(b_{k+1}-b_{k}-\varepsilon\right)}-C_{k+1}^{+} e^{U_{k+1}^{+} \cdot\left(b_{k+1}-b_{k}-\varepsilon\right)} C^{-}\right) \\
& \times\left(e^{-U_{k+1}^{-} \cdot\left(b_{k+1}-b_{k}+\varepsilon\right)}-C_{k+1}^{+} e^{U_{k+1}^{+} \cdot\left(b_{k+1}-b_{k}+\varepsilon\right)} C^{-}\right)^{-1}
\end{aligned}
$$

After abbreviating $F(\varepsilon):=e^{-U_{k+1}^{-} \cdot\left(b_{k+1}-b_{k}-\varepsilon\right)}-C_{k+1}^{+} e^{U_{k+1}^{+} \cdot\left(b_{k+1}-b_{k}-\varepsilon\right)} C^{-}$as well as $G(\varepsilon):=e^{-U_{k+1}^{-} \cdot\left(b_{k+1}-b_{k}+\varepsilon\right)}-C_{k+1}^{+} e^{U_{k+1}^{+} \cdot\left(b_{k+1}-b_{k}+\varepsilon\right)} C^{-}$we apply the formal rules of derivation for functions of a real variable (see [4], sections I.1.3-4) to obtain

$$
H_{k+1}^{-}=C^{-}\left(F^{\prime}(0) G(0)^{-1}-F(0) G(0)^{-1} G^{\prime}(0) G(0)^{-1}\right)
$$

where

$$
\begin{aligned}
F(0) & =e^{-U_{k+1}^{-} \cdot\left(b_{k+1}-b_{k}\right)}-C_{k+1}^{+} e^{U_{k+1}^{+} \cdot\left(b_{k+1}-b_{k}\right)} C^{-}=G(0) \\
F^{\prime}(0) & =U_{k+1}^{-} e^{-U_{k+1}^{-} \cdot\left(b_{k+1}-b_{k}\right)}+C_{k+1}^{+} U_{k+1}^{+} e^{U_{k+1}^{+} \cdot\left(b_{k+1}-b_{k}\right)} C^{-}=-G^{\prime}(0)
\end{aligned}
$$

Hence $H_{k+1}^{-}=2\left(F^{\prime}(0) G(0)^{-1}\right)_{(\sigma, \cdot)}$, which is the statement.

Lemma 4 For $k \leq N-1$, write

$$
\Psi_{k}^{+}\left(b_{k}-b_{k-1}+\varepsilon \mid b_{k}-b_{k-1}-\varepsilon\right)=\left(\begin{array}{cl}
H_{k}^{+}(\varepsilon)_{(\sigma, \sigma)} & H_{k}^{+}(\varepsilon)_{(\sigma,-)} \\
H_{k}^{+}(\varepsilon)_{(-, \sigma)} & H_{k}^{+}(\varepsilon)_{(-,-)}
\end{array}\right)
$$

in block notation. Then

$$
\begin{aligned}
H_{k}^{+}:= & \left.\frac{d}{d \varepsilon} H_{k}^{+}(\varepsilon)_{(\sigma, \sigma)}\right|_{\varepsilon=0} \\
= & 2\left(U_{k}^{+} e^{-U_{k}^{+} \cdot\left(b_{k}-b_{k-1}\right)}+C_{k}^{-} U_{k}^{-} e^{U_{k}^{-} \cdot\left(b_{k}-b_{k-1}\right)} C_{k}^{+}\right) \\
& \times\left(e^{-U_{k}^{+} \cdot\left(b_{k}-b_{k-1}\right)}-C_{k}^{-} e^{U_{k}^{-} \cdot\left(b_{k}-b_{k-1}\right)} C_{k}^{+}\right)^{-1}
\end{aligned}
$$

Proof: Use exactly the same arguments as in lemma 1.

Lemma 5 For $k \leq N-1$, write

$$
\Psi_{k+1}^{+}\left(b_{k+1}-b_{k}+\varepsilon \mid 2 \varepsilon\right)=\left(\begin{array}{cc}
W_{k+1}^{+}(\varepsilon)_{(\sigma, \sigma)} & W_{k+1}^{+}(\varepsilon)_{(\sigma,-)} \\
W_{k+1}^{+}(\varepsilon)_{(-, \sigma)} & W_{k+1}^{+}(\varepsilon)_{(-,-)}
\end{array}\right)
$$

in block notation. Then

$$
\begin{aligned}
W_{k+1}^{+}:= & \left.\frac{d}{d \varepsilon} W_{k+1}^{+}(\varepsilon)_{(\sigma, \sigma)}\right|_{\varepsilon=0} \\
= & -2\left(U_{k+1}^{+}+C^{-} U_{k+1}^{-} C_{k+1}^{+}\right) \\
& \times\left(e^{-U_{k+1}^{+} \cdot\left(b_{k+1}-b_{k}\right)}-C^{-} e^{U_{k+1}^{-} \cdot\left(b_{k+1}-b_{k}\right)} C_{k+1}^{+}\right)^{-1}
\end{aligned}
$$

Proof: The proof is analogous to lemma 3. According to (13),

$$
\begin{aligned}
& W_{k+1}^{+}(\varepsilon)_{(\sigma, \sigma)}=\left(e^{U_{k+1}^{+} \cdot\left(b_{k+1}-b_{k}-\varepsilon\right)}-C^{-} e^{U_{k+1}^{-} \cdot 2 \varepsilon} C_{k+1}^{+} e^{U_{k+1}^{+} \cdot\left(b_{k+1}-b_{k}+\varepsilon\right)}\right) \\
& \times\left(I-C^{-} e^{U_{k+1}^{-} \cdot\left(b_{k+1}-b_{k}+\varepsilon\right)} C_{k+1}^{+} e^{U_{k+1}^{+} \cdot\left(b_{k+1}-b_{k}+\varepsilon\right)}\right)^{-1} \\
&=\left(e^{-U_{k+1}^{+} \cdot 2 \varepsilon}-C^{-} e^{U_{k+1}^{-} \cdot 2 \varepsilon} C_{k+1}^{+}\right) \\
& \times\left(e^{-U_{k+1}^{+} \cdot\left(b_{k+1}-b_{k}+\varepsilon\right)}-C^{-} e^{U_{k+1}^{-} \cdot\left(b_{k+1}-b_{k}+\varepsilon\right)} C_{k+1}^{+}\right)^{-1}
\end{aligned}
$$

We abbreviate $F(\varepsilon)=e^{-U_{k+1}^{+} \cdot 2 \varepsilon}-C^{-} e^{U_{k+1}^{-} \cdot 2 \varepsilon} C_{k+1}^{+}$as well as

$$
G(\varepsilon)=e^{-U_{k+1}^{+} \cdot\left(b_{k+1}-b_{k}+\varepsilon\right)}-C^{-} e^{U_{k+1}^{-} \cdot\left(b_{k+1}-b_{k}+\varepsilon\right)} C_{k+1}^{+}
$$

to obtain

$$
\begin{aligned}
\left.\frac{d}{d \varepsilon} W_{k+1}^{+}(\varepsilon)_{(\sigma, \sigma)}\right|_{\varepsilon=0} & =\left.\frac{d}{d \varepsilon} F(\varepsilon) G(\varepsilon)^{-1}\right|_{\varepsilon=0} \\
& =F^{\prime}(0) G(0)^{-1}-F(0) G(0)^{-1} G^{\prime}(0) G(0)^{-1}
\end{aligned}
$$

according to [4], sections I.1.3-4, where

$$
F(0)=\mathbf{0} \quad \text { and } \quad F^{\prime}(0)=-2\left(U_{k+1}^{+}+C^{-} U_{k+1}^{-} C_{k+1}^{+}\right)
$$

and further

$$
G(0)=e^{-U_{k+1}^{+} \cdot\left(b_{k+1}-b_{k}\right)}-C^{-} e^{U_{k+1}^{-} \cdot\left(b_{k+1}-b_{k}\right)} C_{k+1}^{+}
$$

Altogether this yields the statement.

Theorem 2 For $k \leq N-1$,

$$
\begin{aligned}
E_{(\sigma, \sigma)}^{+}(k)=2 & \left(H_{k+1}^{-}+H_{k}^{+}\right)^{-1}\left(U_{k+1}^{+}+C^{-} U_{k+1}^{-} C_{k+1}^{+}\right) \\
& \times\left(e^{-U_{k+1}^{+} \cdot\left(b_{k+1}-b_{k}\right)}-C^{-} e^{U_{k+1}^{-} \cdot\left(b_{k+1}-b_{k}\right)} C_{k+1}^{+}\right)^{-1}
\end{aligned}
$$

Proof: The proof is analogous to the one for theorem 1. We consider the matrix

$$
E(\varepsilon):=\mathbb{E}\left(e^{-\gamma \tilde{\sigma}\left(b_{k-1}, b_{k+1}\right)-\delta_{k} \zeta_{k}-\delta_{k+1} \zeta_{k+1}} ; X_{\sigma\left(b_{k-1}, b_{k+1}\right)}=b_{k+1} \mid X_{0}=b_{k}+\varepsilon\right)
$$

and assume that the regime changes at $b_{k}-\varepsilon$ for downward crossings of b_{k} and at $b_{k}+\varepsilon$ for upward crossings. Then we let $\varepsilon \downarrow 0$. We first find that

$$
\begin{aligned}
E_{(\sigma, \sigma)}(\varepsilon) & =W_{k+1}^{+}(\varepsilon)_{(\sigma, \sigma)}+H_{k+1}^{-}(\varepsilon)_{(\sigma, \cdot)} H_{k}^{+}(\varepsilon)_{(\cdot, \sigma)} E_{(\sigma, \sigma)}(\varepsilon) \\
& =\left(I_{\sigma}-H_{k+1}^{-}(\varepsilon)_{(\sigma, \cdot)} H_{k}^{+}(\varepsilon)_{(\cdot, \sigma)}\right)^{-1} \varepsilon \varepsilon^{-1} W_{k+1}^{+}(\varepsilon)_{(\sigma, \sigma)}
\end{aligned}
$$

Since $\lim _{\varepsilon \downarrow 0} H_{k+1}^{-}(\varepsilon)_{(\sigma, \cdot)}=\left(I_{\sigma} \mathbf{0}\right)$ and $\lim _{\varepsilon \downarrow 0} H_{k}^{+}(\varepsilon)_{(\cdot, \sigma)}=\binom{I_{\sigma}}{\mathbf{0}}$, we can write

$$
\begin{aligned}
\lim _{\varepsilon \downarrow 0} & \varepsilon\left(I_{\sigma}-H_{k+1}^{-}(\varepsilon)_{(\sigma, \cdot)} H_{k}^{+}(\varepsilon)_{(\cdot, \sigma)}\right)^{-1} \\
& =-\left(\left.\frac{d}{d \varepsilon} H_{k+1}^{-}(\varepsilon)_{(\sigma, \cdot)} H_{k}^{+}(\varepsilon)_{(\cdot, \sigma)}\right|_{\varepsilon=0}\right)^{-1} \\
& =-\left(\left.\frac{d}{d \varepsilon} H_{k+1}^{-}(\varepsilon)_{(\sigma, \cdot)}\right|_{\varepsilon=0}\binom{I_{\sigma}}{\mathbf{0}}+\left.\left(I_{\sigma} \mathbf{0}\right) \frac{d}{d \varepsilon} H_{k}^{+}(\varepsilon)_{(\cdot, \sigma)}\right|_{\varepsilon=0}\right)^{-1} \\
& =-\left(\left.\frac{d}{d \varepsilon} H_{k+1}^{-}(\varepsilon)_{(\sigma, \sigma)}\right|_{\varepsilon=0}+\left.\frac{d}{d \varepsilon} H_{k}^{+}(\varepsilon)_{(\sigma, \sigma)}\right|_{\varepsilon=0}\right)^{-1} \\
& =-\left(H_{k+1}^{-}+H_{k}^{+}\right)^{-1}
\end{aligned}
$$

where we have used [4], sections I.1.3-4, as well as lemmata 3 and 4. Similarly, since $\lim _{\varepsilon \downarrow 0} W_{k+1}^{+}(\varepsilon)_{(\sigma, \sigma)}=\mathbf{0}$, we obtain

$$
\lim _{\varepsilon \downarrow 0} \varepsilon^{-1} W_{k+1}^{+}(\varepsilon)_{(\sigma, \sigma)}=\left.\frac{d}{d \varepsilon} W_{k+1}^{+}(\varepsilon)_{(\sigma, \sigma)}\right|_{\varepsilon=0}=W_{k+1}^{+}
$$

according to lemma 5. Altogether this yields the expression in the statement.
Considering now

$$
E(-\varepsilon):=\mathbb{E}\left(e^{-\gamma \tilde{\sigma}\left(b_{k-1}, b_{k+1}\right)-\delta_{k} \zeta_{k}-\delta_{k+1} \zeta_{k+1}} ; X_{\sigma\left(b_{k-1}, b_{k+1}\right)}=u \mid X_{0}=b_{k}-\varepsilon\right)
$$

instead of $E(\varepsilon)$ as above, we observe that

$$
E_{(\sigma, \sigma)}(-\varepsilon)=H_{k}^{+}(\varepsilon)_{(\sigma, \sigma)} E_{(\sigma, \sigma)}(\varepsilon)
$$

due to path continuity. Since $\lim _{\varepsilon \downarrow 0} H_{k}^{+}(\varepsilon)_{(\sigma, \sigma)}=I_{\sigma}$, we obtain

$$
\lim _{\varepsilon \downarrow 0} E_{(\sigma, \sigma)}(-\varepsilon)=\lim _{\varepsilon \downarrow 0} E_{(\sigma, \sigma)}(\varepsilon)
$$

meaning that the limits from both sides coincide.
4.2 Determine $E^{-}(k)$

Regarding the matrix $E^{-}(k)$, we find that

$$
\begin{equation*}
E_{(-, \cdot)}^{-}(k)=\Psi_{k}^{-}\left(b_{k}-l \mid b_{k}-l\right)_{(-, \cdot)}+\Psi_{k}^{+}\left(b_{k}-l \mid b_{k}-l\right)_{(-, \sigma)} E_{(\sigma, \cdot)}^{-}(k) \tag{18}
\end{equation*}
$$

Thus it suffices to determine $E_{(\sigma, \cdot)}^{-}(k)$.
Lemma 6 Write $\Delta b_{k}:=b_{k}-b_{k-1}$ and

$$
\Psi_{k}^{-}\left(\Delta b_{k}+\varepsilon \mid \Delta b_{k}-\varepsilon\right)=\left(\begin{array}{cc}
W_{k}^{-}(\varepsilon)_{(\sigma, \sigma)} & W_{k}^{-}(\varepsilon)_{(\sigma,-)} \\
W_{k}^{-}(\varepsilon)_{(-, \sigma)} & W_{k}^{-}(\varepsilon)_{(-,-)}
\end{array}\right)
$$

in block notation. Then

$$
\begin{aligned}
W_{k}^{-} & :=\left.\frac{d}{d \varepsilon} W_{k}^{-}(\varepsilon)_{(\sigma, \cdot)}\right|_{\varepsilon=0} \\
& =-2\left(C^{-} U_{k}^{-}+U_{k}^{+} C^{-}\right)\left(e^{-U_{k}^{-} \cdot \Delta b_{k}}-C_{k}^{+} e^{U_{k}^{+} \cdot \Delta b_{k}} C^{-}\right)^{-1}
\end{aligned}
$$

Proof: Use exactly the same arguments as in lemma 2.

Theorem 3 Write $\Delta b_{k}:=b_{k}-b_{k-1}$ and $H_{k+1}^{-}=\left(H_{k+1}^{-, \sigma} H_{k+1}^{-,-}\right)$. Then

$$
\begin{aligned}
E_{(\sigma, \cdot)}^{-}(k)= & \left(H_{k+1}^{-,-} \Psi_{k}^{+}\left(\Delta b_{k} \mid \Delta b_{k}\right)_{(-, \sigma)}-H_{k}^{+}-H_{k+1}^{-, \sigma}\right)^{-1} \\
& \times\left(W_{k}^{-}+H_{k+1}^{-,-} \Psi_{k}^{-}\left(\Delta b_{k} \mid \Delta b_{k}\right)_{(-, \cdot)}\right)
\end{aligned}
$$

for $k \leq N-1$, where the matrices H_{k+1}^{-}, H_{k}^{+}and W_{k}^{-}are given in lemmata 3, 4 and 6 .

Proof: The proof is almost the same as the proof of theorem 1, with H_{k+1}^{-}instead of $C^{-} e^{U_{2}^{-} \cdot 2 \varepsilon}$. We consider
$E\left(b_{k}-\varepsilon\right):=\mathbb{E}\left(e^{-\gamma \tilde{\sigma}\left(b_{k-1}, b_{k+1}\right)-\delta_{k} \zeta_{k}-\delta_{k+1} \zeta_{k+1}} ; X_{\sigma\left(b_{k-1}, b_{k+1}\right)}=b_{k-1} \mid X_{0}=b-\varepsilon\right)$
and assume that the regime changes at $b+\varepsilon$ for upward crossings of b and at $b-\varepsilon$ for downward crossings. Then we let $\varepsilon \downarrow 0$. First we obtain

$$
\begin{aligned}
E_{(\sigma, \cdot)}\left(b_{k}-\varepsilon\right)= & W_{k}^{-}(\varepsilon)_{(\sigma, \cdot)}+H_{k}^{+}(\varepsilon)_{(\sigma, \sigma)} H_{k+1}^{-}(\varepsilon)_{(\sigma, \cdot)} E(b-\varepsilon) \\
= & W_{k}^{-}(\varepsilon)_{(\sigma, \cdot)}+H_{k}^{+}(\varepsilon)_{(\sigma, \sigma)} H_{k+1}^{-}(\varepsilon)_{(\sigma,-)} E_{(-, \cdot)}\left(b_{k}-\varepsilon\right) \\
& +H_{k}^{+}(\varepsilon)_{(\sigma, \sigma)} H_{k}^{+}-H_{k+1}^{-}(\varepsilon)_{(\sigma, \sigma)} E_{(\sigma, \cdot)}\left(b_{k}-\varepsilon\right)
\end{aligned}
$$

where $H_{k}^{+}(\varepsilon)_{(\sigma, \sigma)}, H_{k+1}^{-}(\varepsilon)_{(\sigma, \cdot)}$ and $W_{k}^{-}(\varepsilon)_{(\sigma, \cdot)}$ are defined in lemmata 4, 3 and 6 . This implies

$$
\begin{aligned}
E_{(\sigma, \cdot)}(b-\varepsilon)=(& \left.I_{\sigma}-H_{k}^{+}(\varepsilon)_{(\sigma, \sigma)} H_{k+1}^{-}(\varepsilon)_{(\sigma, \sigma)}\right)^{-1} \cdot \varepsilon \\
& \times \varepsilon^{-1}\left(W_{k}^{-}(\varepsilon)_{(\sigma, \cdot)}+H_{k}^{+}(\varepsilon)_{(\sigma, \sigma)} H_{k+1}^{-}(\varepsilon)_{(\sigma,-)} E_{(-, \cdot)}(b-\varepsilon)\right)
\end{aligned}
$$

We observe that

$$
\begin{aligned}
& \lim _{\varepsilon \downarrow 0} H_{k}^{+}(\varepsilon)_{(\sigma, \sigma)}=\lim _{\varepsilon \downarrow 0} H_{k+1}^{-}(\varepsilon)_{(\sigma, \sigma)}=I_{\sigma} \\
& \lim _{\varepsilon \downarrow 0} W_{k}^{-}(\varepsilon)_{(\sigma, \cdot)}=\mathbf{0}, \quad \lim _{\varepsilon \downarrow 0} H_{k+1}^{-}(\varepsilon)_{(\sigma,-)}=\mathbf{0} \\
& \lim _{\varepsilon \downarrow 0} E_{(-, \cdot)}\left(b_{k}-\varepsilon\right)=E_{(-, \cdot)}^{-}(k)
\end{aligned}
$$

where $\mathbf{0}$ denotes a zero matrix of appropriate dimension. As in the proof to theorem 1 we obtain

$$
\lim _{\varepsilon \downarrow 0} \varepsilon\left(I_{\sigma}-H_{k}^{+}(\varepsilon)_{(\sigma, \sigma)} H_{k+1}^{-}(\varepsilon)_{(\sigma, \sigma)}\right)^{-1}=-\left(H_{k}^{+}+H_{k+1}^{-, \sigma}\right)^{-1}
$$

using lemmata 4 and 3. In a similar manner,

$$
\lim _{\varepsilon \downarrow 0} \varepsilon^{-1} W_{k}^{-}(\varepsilon)_{(\sigma, \cdot)}=\left.\frac{d}{d \varepsilon} W_{k}^{-}(\varepsilon)_{(\sigma, \cdot)}\right|_{\varepsilon=0}=W_{k}^{-}
$$

according to lemma 6. Finally,

$$
\lim _{\varepsilon \downarrow 0} \varepsilon^{-1} H_{k}^{+}(\varepsilon)_{(\sigma, \sigma)} H_{k+1}^{-}(\varepsilon)_{(\sigma,-)} E_{(-, \cdot)}\left(b_{k}-\varepsilon\right)=H_{k+1}^{-,-} E_{(-, \cdot)}\left(b_{k}\right)
$$

Pasting the above results together, the limit $\varepsilon \downarrow 0$ yields

$$
\begin{aligned}
E_{(\sigma, \cdot)}^{-}(k)= & -\left(H_{k}^{+}+H_{k+1}^{-, \sigma}\right)^{-1}\left(W_{k}^{-}+H_{k+1}^{-,-} E_{(-, \cdot)}^{-}(k)\right) \\
= & -\left(H_{k}^{+}+H_{k+1}^{-, \sigma}\right)^{-1}\left(W_{k}^{-}+H_{k+1}^{-,-} \Psi_{k}^{-}\left(\Delta b_{k} \mid \Delta b_{k}\right)_{(-, \cdot)}\right) \\
& -\left(H_{k}^{+}+H_{k+1}^{-, \sigma}\right)^{-1} H_{k+1}^{-,-} \Psi_{k}^{+}\left(\Delta b_{k} \mid \Delta b_{k}\right)_{(-, \sigma)} E_{(\sigma, \cdot)}^{-}(k)
\end{aligned}
$$

after using (18). Thus

$$
\begin{aligned}
E_{(\sigma, \cdot)}^{-}(k)= & -\left(I_{\sigma}-\left(H_{k}^{+}+H_{k+1}^{-, \sigma}\right)^{-1} H_{k+1}^{-,-} \Psi_{k}^{+}\left(\Delta b_{k} \mid \Delta b_{k}\right)_{(-, \sigma)}\right)^{-1} \\
& \times\left(H_{k}^{+}+H_{k+1}^{-, \sigma}\right)^{-1}\left(W_{k}^{-}+H_{k+1}^{-,-} \Psi_{k}^{-}\left(\Delta b_{k} \mid \Delta b_{k}\right)_{(-, \cdot)}\right) \\
= & -\left(H_{k}^{+}+H_{k+1}^{-, \sigma}-H_{k+1}^{-,-} \Psi_{k}^{+}\left(\Delta b_{k} \mid \Delta b_{k}\right)_{(-, \sigma)}\right)^{-1} \\
& \times\left(W_{k}^{-}+H_{k+1}^{-,-} \Psi_{k}^{-}\left(\Delta b_{k} \mid \Delta b_{k}\right)_{(-, \cdot)}\right)
\end{aligned}
$$

which is the expression in the statement. The same arguments as in the proof to theorem 1 show that $\lim _{\varepsilon \downarrow 0} E_{(\sigma, \cdot)}(b+\varepsilon)=\lim _{\varepsilon \downarrow 0} E_{(\sigma, \cdot)}(b-\varepsilon)$.

References

1. Asmussen, S.: Applied Probability and Queues. New York etc.: Springer (2003)
2. Badescu, A., Drekic, S., Landriault, D.: Analysis of a threshold dividend strategy for a MAP risk model. Scand. Act. J. pp. 227-247 (2007)
3. Badescu, A., Drekic, S., Landriault, D.: On the analysis of a multi-threshold Markovian risk model. Scand. Act. J. pp. 248-260 (2007)
4. Bourbaki, N.: Functions of a Real Variable. Springer (2004)
5. Breuer, L.: First passage times for Markov-additive processes with positive jumps of phase-type. J. Appl. Prob. 45(3), 779-799 (2008)
6. Breuer, L.: A quintuple law for Markov-additive processes with phase-type jumps. J. Appl. Prob. 47(2), 441-458 (2010)
7. Gerber, H., Shiu, E.: On optimal dividend strategies in the compound poisson model. North American Actuarial Journal 10, 76-93 (2006)
8. Gerber, H., Shiu, E.: On optimal dividends: From reflection to refraction. Journal of Computational and Applied Mathematics 186, 4-22 (2006)
9. Jiang, Z., Pistorius, M.: On perpetual American put valuation and first-passage in a regime-switching model with jumps. Finance Stoch. 12, 331-355 (2008)
10. Lin, S., Pavlova, K.: The compound Poisson risk model with a threshold. Insurance: Mathematics and Economics 38, 57-80 (2006)
11. da Silva Soares, A., Latouche, G.: Fluid queues with level dependent evolution. European J. Oper. Res. 196, 1041-1048 (2009)

[^0]: L. Breuer

 School of Mathematics, Statistics and Actuarial Science
 University of Kent
 Canterbury CT2 7NF
 UK
 Tel.: +44-1227-824789
 E-mail: L.Breuer@kent.ac.uk

