
Introduction to Stochastic Processes

Lothar Breuer



Contents

1 Some general definitions 1

2 Markov Chains and Queues in Discrete Time 3
2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Classification of States . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Stationary Distributions . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Restricted Markov Chains . . . . . . . . . . . . . . . . . . . . . 20
2.5 Conditions for Positive Recurrence . . . . . . . . . . . . . . . . .22
2.6 The M/M/1 queue in discrete time . . . . . . . . . . . . . . . . . 24

3 Markov Processes on Discrete State Spaces 33
3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Stationary Distribution . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Skip–Free Markov Processes and Markovian Queues . . . . . .. 44

3.3.1 The M/M/1 Queue . . . . . . . . . . . . . . . . . . . . . 44
3.3.2 Skip–Free Markov Processes . . . . . . . . . . . . . . . . 46
3.3.3 The M/M/∞ Queue . . . . . . . . . . . . . . . . . . . . . 48
3.3.4 The M/M/k Queue . . . . . . . . . . . . . . . . . . . . . 49
3.3.5 The M/M/k/k Queue . . . . . . . . . . . . . . . . . . . . 51
3.3.6 The M/M/k/k+c/N Queue . . . . . . . . . . . . . . . . . 52

4 Renewal Theory 57
4.1 Renewal Processes . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Renewal Function and Renewal Equations . . . . . . . . . . . . . 60
4.3 Renewal Theorems . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4 Stationary Renewal Processes . . . . . . . . . . . . . . . . . . . 65

i



ii CONTENTS

5 Appendix 71
5.1 Conditional Expectations and Probabilities . . . . . . . . .. . . . 71
5.2 Extension Theorems . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2.1 Stochastic chains . . . . . . . . . . . . . . . . . . . . . . 74
5.2.2 Stochastic processes . . . . . . . . . . . . . . . . . . . . 75

5.3 Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3.1 z–transforms . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3.2 Laplace–Stieltjes transforms . . . . . . . . . . . . . . . . 78

5.4 Gershgorin’s circle theorem . . . . . . . . . . . . . . . . . . . . . 79



CONTENTS iii



Chapter 1

Some general definitions

see notes under
http://www.kent.ac.uk/IMS/personal/lb209/files/notes1.pdf
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Chapter 2

Markov Chains and Queues in
Discrete Time

2.1 Definition

LetXn with n ∈ N0 denote random variables on a discrete spaceE. The sequence
X = (Xn : n ∈ N0) is called astochastic chain. If P is a probability measureX
such that

P (Xn+1 = j|X0 = i0, . . . , Xn = in) = P (Xn+1 = j|Xn = in) (2.1)

for all i0, . . . , in, j ∈ E andn ∈ N0, then the sequenceX shall be called aMarkov
chain onE. The probability measureP is called the distribution ofX , andE is
called thestate spaceof X .
If the conditional probabilitiesP (Xn+1 = j|Xn = in) are independent of the time
indexn ∈ N0, then we call the Markov chainX homogeneousand denote

pij := P (Xn+1 = j|Xn = i)

for all i, j ∈ E. The probabilitypij is calledtransition probability from statei to
statej. The matrixP := (pij)i,j∈E shall be calledtransition matrix of the chain
X . Condition (2.1) is referred to as theMarkov property .

Example 2.1 If (Xn : n ∈ N0) are random variables on a discrete spaceE, which
are stochastically independent and identically distributed (shortly: iid), then the
chainX = (Xn : n ∈ N0) is a homogeneous Markov chain.

3



4 CHAPTER 2. MARKOV CHAINS AND QUEUES IN DISCRETE TIME

Example 2.2 Discrete Random Walk
SetE := Z and let(Sn : n ∈ N) be a sequence of iid random variables with values
in Z and distributionπ. DefineX0 := 0 andXn :=

∑n
k=1 Sk for all n ∈ N. Then

the chainX = (Xn : n ∈ N0) is a homogeneous Markov chain with transition
probabilitiespij = πj−i. This chain is calleddiscrete random walk.

Example 2.3 Bernoulli process
SetE := N0 and choose any parameter0 < p < 1. The definitionsX0 := 0 as
well as

pij :=

{
p, j = i+ 1

1− p, j = i

for i ∈ N0 determine a homogeneous Markov chainX = (Xn : n ∈ N0). It is
calledBernoulli processwith parameterp.

So far, al examples have been chosen as to be homogeneous. Thefollowing theo-
rem shows that there is a good reason for this:

Theorem 2.4 BeX = (Xn : n ∈ N0) a Markov chain on a discrete state space
E. Then there is a homogeneous Markov chainX ′ = (X ′

n : n ∈ N0) on the state
spaceE × N0 such thatXn = pr1(X

′
n) for all n ∈ N0, with pr1 denoting the

projection to the first dimension.

Proof: Let X be a Markov chain with transition probabilities

pn;ij := P(Xn+1 = j|Xn = i)

which may depend on the time instantn. Define the two–dimensional random
variablesX ′

n := (Xn, n) for all n ∈ N0 and denote the resulting distribution of
the chainX ′ = (X ′

n : n ∈ N0) by P′. By definition we obtainXn = pr1(X
′
n) for

all n ∈ N0.
FurtherP′(X ′

0 = (i, k)) = δk0 · P(X0 = i) holds for alli ∈ E, and all transition
probabilities

p′(i,k),(j,l) = P
′(X ′

k+1 = (j, l)|X ′
k = (i, k)) = δl,k+1 · pk;ij

can be expressed without a time index. Hence the Markov chainX ′ is homoge-
neous.
�

Because of this result, we will from now on treat only homogeneous Markov
chains and omit the adjective "homogeneous".
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LetP denote the transition matrix of a Markov chain onE. Then as an immediate
consequence of its definition we obtainpij ∈ [0, 1] for all i, j ∈ E and

∑
j∈E pij =

1 for all i ∈ E. A matrix P with these properties is called astochastic matrix
onE. In the following we shall demonstrate that, given an initial distribution, a
Markov chain is uniquely determined by its transition matrix. Thus any stochastic
matrix defines a family of Markov chains.

Theorem 2.5 Let X denote a homogeneous Markov chain onE with transition
matrixP . Then the relation

P (Xn+1 = j1, . . . , Xn+m = jm|Xn = i) = pi,j1 · . . . · pjm−1,jm

holds for alln ∈ N0, m ∈ N, andi, j1, . . . , jm ∈ E.

Proof: This is easily shown by induction onm. Form = 1 the statement holds
by definition ofP . Form > 1 we can write

P(Xn+1 =j1, . . . , Xn+m = jm|Xn = i)

=
P (Xn+1 = j1, . . . , Xn+m = jm, Xn = i)

P (Xn = i)

=
P (Xn+1 = j1, . . . , Xn+m = jm, Xn = i)

P (Xn+1 = j1, . . . , Xn+m−1 = jm−1, Xn = i)

× P (Xn+1 = j1, . . . , Xn+m−1 = jm−1, Xn = i)

P (Xn = i)

= P (Xn+m = jm|Xn = i, Xn+1 = j1, . . . , Xn+m−1 = jm−1)

× pi,j1 · . . . · pjm−2,jm−1

= pjm−1,jm · pi,j1 · . . . · pjm−2,jm−1

because of the induction hypothesis and the Markov property.
�

Let π be a probability distribution onE with P(X0 = i) = πi for all i ∈ E. Then
theorem 2.5 immediately yields

P (X0 = j0, X1 = j1, . . . , Xm = jm) = πj0 · pj0,j1 . . . pjm−1,jm (2.2)

for all m ∈ N andj0, . . . , jm ∈ E. The chain with this distributionP is denoted
by X π and called theπ–versionof X . The probability measureπ is calledinitial
distribution for X .
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Theorem 2.5 and the extension theorem by Tulcea (see appendix 5.2) show that
a Markov chain is uniquely determined by its transition matrix and its initial dis-
tribution. Whenever the initial distributionπ is not important or understood from
the context, we will simply writeX instead ofX π. However, in an exact manner
the notationX denotes the family of all the versionsX π of X , indexed by their
initial distributionπ.

Theorem 2.6 LetX denote a homogeneous Markov chain with transition matrix
P . Then the relation

P(Xn+m = j|Xn = i) = Pm(i, j)

holds for allm,n ∈ N0 and i, j ∈ E, with Pm(i, j) denoting the(i, j)th entry of
themth power of the matrixP . In particular,P 0 equals the identity matrix.

Proof: This follows by induction onm. For m = 1 the statement holds by
definition ofP . Form > 1 we can write

P(Xn+m = j|Xn = i) =
P (Xn+m = j,Xn = i)

P (Xn = i)

=
∑

k∈E

P (Xn+m = j,Xn+m−1 = k,Xn = i)

P (Xn+m−1 = k,Xn = i)

× P (Xn+m−1 = k,Xn = i)

P (Xn = i)

=
∑

k∈E

P (Xn+m = j|Xn+m−1 = k,Xn = i) · Pm−1(i, k)

=
∑

k∈E

pkj · Pm−1(i, k) = Pm(i, j)

because of the induction hypothesis and the Markov property.
�

Thus the probabilities for transitions inm steps are given by themth power of the
transition matrixP . The rulePm+n = PmP n for the multiplication of matrices
and theorem 2.6 lead to the decompositions

P(Xm+n = j|X0 = i) =
∑

k∈E

P(Xm = k|X0 = i) · P(Xn = j|X0 = k)

which are known as theChapman–Kolmogorov equations.
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For later purposes we will need a relation closely related tothe Markov property,
which is called thestrong Markov property . Let τ denote a random variable
with values inN0 ∪ {∞}, such that the condition

P(τ ≤ n|X ) = P(τ ≤ n|X0, . . . , Xn) (2.3)

holds for alln ∈ N0. Such a random variable is called a (discrete)stopping
time for X . The defining condition means that the probability for the event{τ ≤
n} depends only on the evolution of the chain until timen. In other words, the
determination of a stopping time does not require any knowledge of the future.
Now the strong Markov property is stated in

Theorem 2.7 Let X denote a Markov chain andτ a stopping time forX with
P(τ < ∞) = 1. Then the relation

P(Xτ+m = j|X0 = i0, . . . , Xτ = iτ ) = P(Xm = j|X0 = iτ )

holds for allm ∈ N andi0, . . . , iτ , j ∈ E.

Proof: The fact that the stopping timeτ is finite and may assume only countably
many values can be exploited in the transformation

P(Xτ+m = j|X0 = i0, . . . , Xτ = iτ )

=

∞∑

n=0

P(τ = n,Xτ+m = j|X0 = i0, . . . , Xτ = iτ )

=

∞∑

n=0

P(Xτ+m = j|τ = n,X0 = i0, . . . , Xτ = iτ )

× P(τ = n|X0 = i0, . . . , Xτ = iτ )

=
∞∑

n=0

P(Xn+m = j|Xn = iτ ) · P(τ = n|X )

=

∞∑

n=0

P(τ = n|X ) · P(Xm = j|X0 = iτ )

which yields the statement, asτ is finite with probability one.
�
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2.2 Classification of States

Let X denote a Markov chain with state spaceE and transition matrixP . We
call a statej ∈ E accessiblefrom a statei ∈ E if there is a numberm ∈ N0

with P (Xm = j|X0 = i) > 0. This relation shall be denoted byi → j. If for
two statesi, j ∈ E, the relationsi → j andj → i hold, theni andj are said to
communicate, in notationi ↔ j.

Theorem 2.8 The relation↔ of communication between states is an equivalence
relation.

Proof: Because ofP 0 = I, communication is reflexive. Symmetry holds by
definition. Thus it remains to show transitivity. For this, assumei ↔ j andj ↔ k
for three statesi, j, k ∈ E. This means that there are numbersm,n ∈ N0 with
Pm(i, j) > 0 andP n(j, k) > 0. Hence, by the Chapman–Kolmogorov equation,
we obtain

P(Xm+n = k|X0 = i) =
∑

h∈E

P(Xm = h|X0 = i) · P(Xn = k|X0 = h)

≥ P(Xm = j|X0 = i) · P(Xn = k|X0 = j) > 0

which provesi → k. The remaining proof ofk → i is completely analogous.
�

Because of this result and the countability, we can divide the state spaceE of a
Markov chain into a partition of countably many equivalenceclasses with respect
to the communication of states. Any such equivalence class shall be calledcom-
munication class. A communication classC ⊂ E that does not allow access to
states outside itself, i.e. for which the implication

i → j, i ∈ C ⇒ j ∈ C

holds, is calledclosed. If a closed equivalence class consists only of one state,
then this state shall be calledabsorbing. If a Markov chain has only one com-
munication class, i.e. if all states are communicating, then it is calledirreducible .
Otherwise it is calledreducible.

Example 2.9 Let X denote a discrete random walk (see example 2.2) with the
specificationπ1 = p andπ−1 = 1 − p for some parameter0 < p < 1. ThenX is
irreducible.
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Example 2.10 The Bernoulli process (see example 2.3) with non–trivial parame-
ter0 < p < 1 is to the highest degree reducible. Every statex ∈ N0 forms an own
communication class. None of these is closed, thus there areno absorbing states.

Theorem 2.11 BeX a Markov chain with state spaceE and transition matrixP .
LetC = {cn : n ∈ I} ⊂ E with I ⊂ N be a closed communication class. Define
the matrixP ′ by its entriesp′ij := pci,cj for all i, j ∈ I. ThenP ′ is stochastic.

Proof: By definition,p′ij ∈ [0, 1] for all i, j ∈ I. Since C is closed,pci,k = 0 for
all i ∈ I andk /∈ C. This implies

∑

j∈I

p′ij =
∑

j∈I

pci,cj = 1−
∑

k/∈C

pci,k = 1

for all i ∈ I, asP is stochastic.
�

Thus the restriction of a Markov chainX with state spaceE to the states of one of
its closed communication classesC defines a new Markov chain with state space
C. If the states are relabeled according to their affiliation to a communication
class, the transition matrix ofX can be displayed in a block matrix form as

P =




Q Q1 Q2 Q3 Q4 . . .
0 P1 0 0 0 . . .
0 0 P2 0 0 . . .
0 0 0 P3 0 . . .
...

...
. . . . . . . . .




(2.4)

with Pn being stochastic matrices on the closed communication classesCn. The
first row contains the transition probabilities starting from communication classes
that are not closed.
Let X denote a Markov chain with state spaceE. In the rest of this section we
shall investigate distribution and expectation of the following random variables:
Defineτj as the stopping time of thefirst visit to the statej ∈ E, i.e.

τj := min{n ∈ N : Xn = j}

Denote the distribution ofτj by

Fk(i, j) := P(τj = k|X0 = i)

for all i, j ∈ E andk ∈ N.
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Lemma 2.12 The conditional distribution of the first visit to the statej ∈ E,
given an initial stateX0 = i, can be determined iteratively by

Fk(i, j) =

{
pij, k = 1∑

h 6=j pihFk−1(h, j), k ≥ 2

for all i, j ∈ E.

Proof: Fork = 1, the definition yields

F1(i, j) = P(τj = 1|X0 = i) = P(X1 = j|X0 = i) = pij

for all i, j ∈ E. Fork ≥ 2, conditioning uponX1 yields

Fk(i, j) = P(X1 6= j, . . . , Xk−1 6= j,Xk = j|X0 = i)

=
∑

h 6=j

P(X1 = h|X0 = i)

× P(X2 6= j, . . . , Xk−1 6= j,Xk = j|X0 = i, X1 = h)

=
∑

h 6=j

pih · P(X1 6= j, . . . , Xk−2 6= j,Xk−1 = j|X0 = h)

due to the Markov property.
�

Now define

fij := P(τj < ∞|X0 = i) =

∞∑

k=1

Fk(i, j) (2.5)

for all i, j ∈ E, which represents the probability of ever visiting statej after
beginning in statei. Summing up over allk ∈ N in the formula of Lemma 2.12
leads to

fij = pij +
∑

h 6=j

pihfhj (2.6)

for all i, j ∈ E. The proof is left as an exercise.
DefineNj as the random variable of thetotal number of visits to the statej ∈ E.
Expression (2.6) is useful for computing the distribution of Nj :
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Theorem 2.13 LetX denote a Markov chain with state spaceE. The total num-
ber of visits to a statej ∈ E under the condition that the chain starts in statei is
given by

P(Nj = m|X0 = j) = fm−1
jj (1− fjj)

and fori 6= j

P(Nj = m|X0 = i) =

{
1− fij , m = 0

fijf
m−1
jj (1− fjj), m ≥ 1

Thus the distribution ofNj is modified geometric.

Proof: Defineτ (1)j := τj andτ (k+1)
j := min{n > τ

(k)
j : Xn = j} for all k ∈ N,

with the convention thatmin ∅ = ∞. Note thatτ (k)j = ∞ impliesτ (l)j = ∞ for all
l > k.
Then the sequence(τ (k)j : k ∈ N) is a sequence of stopping times. The event

{Nj = m} is the same as the intersection of the events{τ (k)j < ∞} for k =

1, . . . ,M and{τ (M+1)
j = ∞}, withM = m if i 6= j andM = m−1 if i = j. Now

this event can be further described by the intersection of the events{τ (k+1)
j −τ

(k)
j <

∞} for k = 0, . . . ,M − 1 and{τ (M+1)
j − τ

(M)
j = ∞}, with M as above and the

conventionτ (0)j := 0.

The subevent{τ (k+1)
j − τ

(k)
j < ∞} has probabilityfij for k = 0 and because

of the strong Markov property (see theorem 2.7) probabilityfjj for k > 0. The
probability for {τ (M+1)

j − τ
(M)
j = ∞} is 1 − fij for M = 0 and 1 − fjj for

M > 0. Once more the strong Markov property is the reason for independence of
the subevents. Now multiplication of the probabilities leads to the formulae in the
statement.
�

Summing over allm in the above theorem leads to

Corollary 2.14 For all j ∈ E, the zero–one law

P(Nj < ∞|X0 = j) =

{
1, fjj < 1

0, fjj = 1

holds, i.e. depending onfjj there are almost certainly infinitely many visits to a
statej ∈ E.
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This result gives rise to the following definitions: A statej ∈ E is calledre-
current if fjj = 1 and transient otherwise. Let us further define thepotential
matrix R = (rij)i,j∈E of the Markov chain by its entries

rij := E(Nj |X0 = i)

for all i, j ∈ E. Thus an entryrij gives the expected number of visits to the state
j ∈ E under the condition that the chain starts in statei ∈ E. As such,rij can be
computed by

rij =

∞∑

n=0

P n(i, j) (2.7)

for all i, j ∈ E. The results in theorem 2.13 and corollary 2.14 yield

Corollary 2.15 For all i, j ∈ E the relations

rjj = (1− fjj)
−1 and rij = fijrjj

hold, with the conventions0−1 := ∞ and0 · ∞ := 0 included. In particular, the
expected numberrjj of visits to the statej ∈ E is finite ifj is transient and infinite
if j is recurrent.

Theorem 2.16 Recurrence and transience of states are class properties with re-
spect to the relation↔. Furthermore, a recurrent communication class is always
closed.

Proof: Assume thati ∈ E is transient andi ↔ j. Then there are numbers
m,n ∈ N with 0 < Pm(i, j) ≤ 1 and0 < P n(j, i) ≤ 1. The inequalities

∞∑

k=0

P k(i, i) ≥
∞∑

h=0

Pm+h+n(i, i) ≥ Pm(i, j)P n(j, i)

∞∑

k=0

P k(j, j)

now imply rjj < ∞ because of representation (2.7). According to corollary 2.15
this means thatj is transient, too.
If j is recurrent, then the same inequalities lead to

rii ≥ Pm(i, j)P n(j, i)rjj = ∞

which signifies thati is recurrent, too. Since the above arguments are symmetric
in i andj, the proof of the first statement is complete.
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For the second statement assume thati ∈ E belongs to a communication class
C ⊂ E andpij > 0 for some statej ∈ E \ C. Then

fii = pii +
∑

h 6=i

pihfhi ≤ 1− pij < 1

according to formula (2.6), sincefji = 0 (otherwisei ↔ j). Thusi is transient,
which proves the second statement.
�

Theorem 2.17 If the statej ∈ E is transient, thenlimn→∞ P n(i, j) = 0, regard-
less of the initial statei ∈ E.

Proof: If the statej is transient, then the first equation in corollary 2.15 yields
rjj < ∞. The second equation in the same corollary now impliesrij < ∞, which
by the representation (2.7) completes the proof.
�

2.3 Stationary Distributions

Let X denote a Markov chain with state spaceE and π a measure onE. If
P(Xn = i) = P(X0 = i) = πi for all n ∈ N and i ∈ E, thenX π is called
stationary, andπ is called astationary measurefor X . If furthermoreπ is a
probability measure, then it is calledstationary distribution for X .

Theorem 2.18 Let X denote a Markov chain with state spaceE and transition
matrixP . Further, letπ denote a probability distribution onE with πP = π, i.e.

πi =
∑

j∈E

πjpji and
∑

j∈E

πj = 1

for all i ∈ E. Thenπ is a stationary distribution forX. If π is a stationary
distribution forX , thenπP = π holds.

Proof: Let P(X0 = i) = πi for all i ∈ E. ThenP(Xn = i) = P(X0 = i) for all
n ∈ N andi ∈ E follows by induction onn. The casen = 1 holds by assumption,
and the induction step follows by induction hypothesis and the Markov property.
The last statement is obvious.
�

The following examples show some features of stationary distributions:
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Example 2.19 Let the transition matrix of a Markov chainX be given by

P =




0.8 0.2 0 0
0.2 0.8 0 0
0 0 0.4 0.6
0 0 0.6 0.4




Thenπ = (0.5, 0.5, 0, 0), π′ = (0, 0, 0.5, 0.5) as well as any linear combination of
them are stationary distributions forX . This shows that a stationary distribution
does not need to be unique.

Example 2.20 Bernoulli process (see example 2.1)
The transition matrix of a Bernoulli process has the structure

P =




1− p p 0 0 . . .

0 1− p p 0
. . .

0 0 1− p p
. . .

...
. . . . . . . . . . . .




HenceπP = π implies first

π0 · (1− p) = π0 ⇒ π0 = 0

since0 < p < 1. Assume thatπn = 0 for anyn ∈ N0. This and the condition
πP = π further imply forπn+1

πn · p+ πn+1 · (1− p) = πn+1 ⇒ πn+1 = 0

which completes an induction argument provingπn = 0 for all n ∈ N0. Hence
the Bernoulli process does not have a stationary distribution.

Example 2.21 The solution ofπP = π and
∑

j∈E πj = 1 is unique for

P =

(
1− p p
p 1− p

)

with 0 < p < 1. Thus there are transition matrices which have exactly one
stationary distribution.
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The question of existence and uniqueness of a stationary distribution is one of the
most important problems in the theory of Markov chains. A simple answer can be
given in the transient case (cf. example 2.20):

Theorem 2.22 A transient Markov chain (i.e. a Markov chain with transientstates
only) has no stationary distribution.

Proof: Assume thatπP = π holds for some distributionπ and take any enumer-
ationE = (sn : n ∈ N) of the state spaceE. Choose any indexm ∈ N with
πsm > 0. Since

∑∞
n=1 πsn = 1 is bounded, there is an indexM > m such that∑∞

n=M πsn < πsm . Setε := πsm −∑∞
n=M πsn . According to theorem 2.17, there

is an indexN ∈ N such thatP n(si, sm) < ε for all i ≤ M andn ≥ N . Then the
stationarity ofπ implies

πsm =
∞∑

i=1

πsiP
N(si, sm) =

M−1∑

i=1

πsiP
N(si, sm) +

∞∑

i=M

πsiP
N(si, sm)

< ε+
∞∑

i=M

πsi = πsm

which is a contradiction.
�

For the recurrent case, a finer distinction will be necessary. While the expected
total numberrjj of visits to a recurrent statej ∈ E is always infinite (see corollary
2.15), there are differences in the rate of visits to a recurrent state. In order to
describe these, defineNi(n) as the number of visits to statei until timen. Further
define for a recurrent statei ∈ E the mean time

mi := E(τi|X0 = i)

until the first visit toi (after time zero) under the condition that the chain starts in
i. By definitionmi > 0 for all i ∈ E. The elementary renewal theorem (which
will be proven later as theorem 4.12) states that

lim
n→∞

E(Ni(n)|X0 = j)

n
=

1

mi
(2.8)

for all recurrenti ∈ E and independently ofj ∈ E providedj ↔ i, with the
convention of1/∞ := 0. Thus the asymptotic rate of visits to a recurrent state
is determined by the mean recurrence time of this state. Thisgives reason to the
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following definition: A recurrent statei ∈ E with mi = E(τi|X0 = i) < ∞ will
be calledpositive recurrent, otherwisei is callednull recurrent . The distinction
between positive and null recurrence is supported by the equivalence relation↔,
as shown in

Theorem 2.23 Positive recurrence and null recurrence are class properties with
respect to the relation of communication between states.

Proof: Assume thati ↔ j for two statesi, j ∈ E andi is null recurrent. Thus
there are numbersm,n ∈ N with P n(i, j) > 0 andPm(j, i) > 0. Because of the
representationE(Ni(k)|X0 = i) =

∑k
l=0 P

l(i, i), we obtain

0 = lim
k→∞

∑k
l=0 P

l(i, i)

k

≥ lim
k→∞

∑k−m−n
l=0 P l(j, j)

k
· P n(i, j)Pm(j, i)

= lim
k→∞

k −m− n

k
·
∑k−m−n

l=0 P l(j, j)

k −m− n
· P n(i, j)Pm(j, i)

= lim
k→∞

∑k
l=0 P

l(j, j)

k
· P n(i, j)Pm(j, i)

=
P n(i, j)Pm(j, i)

mj

and thusmj = ∞, which signifies the null recurrence ofj.
�

Thus we can call a communication class positive recurrent ornull recurrent. In
the former case, a construction of a stationary distribution is given in

Theorem 2.24 Let i ∈ E be positive recurrent and define the mean first visit time
mi := E(τi|X0 = i). Then a stationary distributionπ is given by

πj := m−1
i ·

∞∑

n=0

P(Xn = j, τi > n|X0 = i)

for all j ∈ E. In particular,πi = m−1
i andπk = 0 for all statesk outside of the

communication class belonging toi.
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Proof: First of all,π is a probability measure since

∑

j∈E

∞∑

n=0

P(Xn = j, τi > n|X0 = i) =

∞∑

n=0

∑

j∈E

P(Xn = j, τi > n|X0 = i)

=

∞∑

n=0

P(τi > n|X0 = i) = mi

The particular statements in the theorem are obvious from theorem 2.16 and the
definition ofπ. The stationarity ofπ is shown as follows. First we obtain

πj = m−1
i ·

∞∑

n=0

P(Xn = j, τi > n|X0 = i)

= m−1
i ·

∞∑

n=1

P(Xn = j, τi ≥ n|X0 = i)

= m−1
i ·

∞∑

n=1

P(Xn = j, τi > n− 1|X0 = i)

sinceX0 = Xτi = i in the conditioning set{X0 = i}. Because of

P(Xn = j, τi > n− 1|X0 = i)

=
P(Xn = j, τi > n− 1, X0 = i)

P(X0 = i)

=
∑

k∈E

P(Xn = j,Xn−1 = k, τi > n− 1, X0 = i)

P(X0 = i)

=
∑

k∈E

P(Xn = j,Xn−1 = k, τi > n− 1, X0 = i)

P(Xn−1 = k, τi > n− 1, X0 = i)

× P(Xn−1 = k, τi > n− 1, X0 = i)

P(X0 = i)

=
∑

k∈E

pkjP(Xn−1 = k, τi > n− 1|X0 = i)

we can transform further

πj = m−1
i ·

∞∑

n=1

∑

k∈E

pkjP(Xn−1 = k, τi > n− 1|X0 = i)
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=
∑

k∈E

pkj ·m−1
i

∞∑

n=0

P(Xn = k, τi > n|X0 = i) =
∑

k∈E

πkpkj

which completes the proof.
�

Theorem 2.25 Let X denote an irreducible, positive recurrent Markov chain.
ThenX has a unique stationary distribution.

Proof: Existence has been shown in theorem 2.24. Uniqueness of the stationary
distribution can be seen as follows. Letπ denote the stationary distribution as
constructed in theorem 2.24 andi the positive recurrent state that served as recur-
rence point forπ. Further, letν denote any stationary distribution forX . Then
there is a statej ∈ E with νj > 0 and a numberm ∈ N with Pm(j, i) > 0, since
X is irreducible. Consequently we obtain

νi =
∑

k∈E

νkP
m(k, i) ≥ νjP

m(j, i) > 0

Hence we can multiplyν by a skalar factorc such thatc · νi = πi = 1/mi. Denote
ν̃ := c · ν.
Let P̃ denote the transition matrixP without theith column, i.e. we define the
(j, k)th entry of P̃ by p̃jk = pjk if k 6= i and zero otherwise. Denote further
the Dirac measure oni by δi, i.e. δij = 1 if i = j and zero otherwise. Then the
stationary distributionπ can be represented byπ = m−1

i · δi∑∞
n=0 P̃

n.
We first claim thatmiν̃ = δi + miν̃P̃ . This is clear for the entrỹνi and easily
seen for̃νj with j 6= i because in this case(ν̃P̃ )j = c · (νP )j = ν̃j . Now we can
proceed with the same argument to see that

miν̃ = δi + (δi +miν̃P̃ )P̃ = δi + δiP̃ +miν̃P̃
2 = . . .

= δi
∞∑

n=0

P̃ n = miπ

Henceν̃ already is a probability measure and the skalar factor must bec = 1. This
yieldsν = ν̃ = π and thus the statement.
�

Remark 2.26 At a closer look the assumption of irreducibility may be relaxed
to some extend. For example, if there is exactly one closed positive recurrent
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communication class and a set of transient and inaccessiblestates (i.e. statesj for
which there is no statei with i → j), then the above statement still holds although
X is not irreducible.

A first consequence of the uniqueness is the following simpler representation of
the stationary distribution:

Theorem 2.27 Let X denote an irreducible, positive recurrent Markov chain.
Then the stationary distributionπ ofX is given by

πj = m−1
j =

1

E(τj |X0 = j)

for all j ∈ E.

Proof: Since all states inE are positive recurrent, the construction in theorem
2.24 can be pursued for any inital statej. This yieldsπj = m−1

j for all j ∈ E.
The statement now follows from the uniqueness of the stationary distribution.
�

Corollary 2.28 For an irreducible, positive recurrent Markov chain, the station-
ary probabilityπj of a statej coincides with its asymptotic rate of recurrence,
i.e.

lim
n→∞

E(Nj(n)|X0 = i)

n
= πj

for all j ∈ E and independently ofi ∈ E. Further, if an asymptotic distribution
p = limn→∞ P(Xn = .) does exist, then it coincides with the stationary distribu-
tion. In particular, it is independent of the initial distribution ofX .

Proof: The first statement immediately follows from equation (2.8). For the sec-
ond statement, it suffices to employE(Nj(n)|X0 = i) =

∑n
l=0 P

l(i, j). If an
asymptotic distributionp does exist, then for any initial distributionν we obtain

pj = lim
n→∞

(νP n)j =
∑

i∈E

νi lim
n→∞

P n(i, j)

=
∑

i∈E

νi lim
n→∞

∑n
l=0 P

l(i, j)

n
=
∑

i∈E

νiπj

= πj

independently ofν.
�
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2.4 Restricted Markov Chains

Now let F ⊂ E denote any subset of the state spaceE. DefineτF (k) to be the
stopping time of thekth visit ofX to the setF , i.e.

τF (k + 1) := min{n > τF (k) : Xn ∈ F}

with τF (0) := 0. If X is recurrent, then the strong Markov property (theorem 2.7)
ensures that the chainX F = (XF

n : n ∈ N) with XF
n := XτF (n) is a recurrent

Markov chain, too. It is called the Markov chain restricted toF . In case of positive
recurrence, we can obtain the stationary distribution ofX F from the stationary
distribution ofX in a simple manner:

Theorem 2.29 If the Markov chainX is positive recurrent, then the stationary
distribution ofX F is given by

πF
j =

πj∑
k∈F πk

for all j ∈ F .

Proof: Choose any statei ∈ F and recall from theorem 2.24 the expression

πj := m−1
i ·

∞∑

n=0

P(Xn = j, τi > n|X0 = i)

which holds for allj ∈ F . For πF
j we can perform the same construction with

respect to the chainX F . By the definition ofX F it is clear that the number of
visits to the statej between two consecutive visits toi is the same for the chains
X andX F . Hence the sum expression forπF

j , which is the expectation of that
number of visits, remains the same as forπj. The other factorm−1

i in the formula
above is independent ofj and serves only as a normalization constant, i.e. in order
to secure that

∑
j∈E πj = 1. Hence for a construction ofπF

j with respect toX F

this needs to be replaced by(mi ·
∑

k∈F πk)
−1, which then yields the statement.

�

Theorem 2.30 Let X = (Xn : n ∈ N0) denote an irreducible and positive re-
current Markov chain with discrete state spaceE. Further letF ⊂ E denote any
subset ofE, andX F the Markov chain restricted toF . Denote

τF := min{n ∈ N : Xn ∈ F}
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Then a measureν on E is stationary forX if and only if ν ′ = (νi : i ∈ F ) is
stationary forX F and

νj =
∑

k∈F

νk

∞∑

n=0

P(Xn = j, τF > n|X0 = k) (2.9)

for all j ∈ E \ F .

Proof: Due to theorem 2.29 it suffices to prove equation (2.9) forj ∈ E \ F .
Choose any statei ∈ F and define

τi := min{n ∈ N : Xn = i}
According to theorem 2.24 the stationary measurev for X is given by

νj = νi ·
∞∑

n=0

P(Xn = j, τi > n|X0 = i) = νi · Ei

(
τi−1∑

n=0

1Xn=j

)

for j ∈ E \F , whereEi denotes the conditional expectation givenX0 = i. Define
further

τFi := min{n ∈ N : XF
n = i}

Because of the strong Markov property we can proceed as

νj = νi · Ei




τFi −1∑

n=0

EXF
n

τF−1∑

m=0

1Xm=j




= νi ·
∑

k∈F

Ei




τFi −1∑

n=0

1XF
n =k


 · Ek

(
τF−1∑

m=0

1Xm=j

)

Regarding the restricted Markov chainX F , theorem 2.24 states that

Ei




τFi −1∑

n=0

1XF
n =k


 =

∞∑

n=0

P(XF
n = k, τFi > n|XF

0 = i) =
νk
νi

for all k ∈ F . Hence we obtain

νj =
∑

k∈F

νk

∞∑

n=0

P(Xn = j, τF > n|X0 = k)

which was to be proven.
�
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2.5 Conditions for Positive Recurrence

In the third part of this course we will need some results on the behaviour of a
Markov chain on a finite subset of its state space. As a first fundamental result we
state

Theorem 2.31 An irreducible Markov chain with finite state spaceF is positive
recurrent.

Proof: For all n ∈ N and i ∈ F we have
∑

j∈E P n(i, j) = 1. Hence it is not
possible thatlimn→∞ P n(i, j) = 0 for all j ∈ F . Thus there is one stateh ∈ F
such thatrhh =

∑∞
n=0 P

n(h, h) = ∞, which means by corollary 2.15 thath is
recurrent and by irreducibility that the chain is recurrent.
If the chain were null recurrent, then according to the relation in (2.8)

lim
n→∞

1

n

n∑

k=1

P k(i, j) = 0

would hold for allj ∈ F , independently ofi because of irreducibility. But this
would imply thatlimn→∞ P n(i, j) = 0 for all j ∈ F , which contradicts our first
observation in this proof. Hence the chain must be positive recurrent.
�

For irreducible Markov chains the conditionE(τi|X0 = i) < ∞ implies positive
recurrence of statei and hence positive recurrence of the whole chain. Writing
τF for the time of the first visit to the setF , we now can state the following
generalization of this condition:

Theorem 2.32 LetX denote an irreducible Markov chain with state spaceE and
beF ⊂ E a finite subset ofE. The chainX is positive recurrent if and only if
E(τF |X0 = i) < ∞ for all i ∈ F .

Proof: If X is positive recurrent, thenE(τF |X0 = i) ≤ E(τi|X0 = i) < ∞ for all
i ∈ F , by the definition of positive recurrence.
Now assume thatE(τF |X0 = i) < ∞ for all i ∈ F . Define the stopping times
σ(i) := min{k ∈ N : XF

k = i} and random variablesYk := τF (k) − τF (k −
1). SinceF is finite, m := maxj∈F E(τF |X0 = j) < ∞. We shall denote the
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conditional expectation givenX0 = i by Ei. For i ∈ F we now obtain

E(τi|X0 = i) = Ei




σ(i)∑

k=1

Yk


 =

∞∑

k=1

Ei

(
E(Yk|XτF (k−1)) · 1k≤σ(i)

)

≤ m ·
∞∑

k=1

P(σ(i) ≥ k|X0 = i) = m · E(σ(i)|X0 = i)

SinceF is finite,X F is positive recurrent by theorem 2.31. Hence we know that
E(σ(i)|X0 = i) < ∞, and thusE(τi|X0 = i) < ∞ which shows thatX is positive
recurrent.
�

An often difficult problem is to determine whether a given Markov chain is posi-
tive recurrent or not. Concerning this, we now introduce oneof the most important
criteria for the existence of stationary distributions of Markov chains occuring in
queueing theory. It is known asFoster’s criterion.

Theorem 2.33 Let X denote an irreducible Markov chain with countable state
spaceE and transition matrixP . Further letF denote a finite subset ofE. If
there is a functionh : E → R with inf{h(i) : i ∈ E} > −∞, such that the
conditions

∑

k∈E

pikh(k) < ∞ and
∑

k∈E

pjkh(k) ≤ h(j)− ε

hold for someε > 0 and all i ∈ F andj ∈ E \ F , thenX is positive recurrent.

Proof: Without loss of generality we can assumeh(i) ≥ 0 for all i ∈ E, since
otherwise we only need to increaseh by a suitable constant. Define the stopping
timeτF := min{n ∈ N0 : Xn ∈ F}. First we observe that

E(h(Xn+1) · 1τF>n+1|X0, . . . , Xn) ≤ E(h(Xn+1) · 1τF>n|X0, . . . , Xn)

= 1τF>n ·
∑

k∈E

pXn,kh(k)

≤ 1τF>n · (h(Xn)− ε)

= h(Xn) · 1τF>n − ε · 1τF>n
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holds for alln ∈ N0, where the first equality is due to (5.3). We now proceed with

0 ≤ E(h(Xn+1) · 1τF>n+1|X0 = i)

= E(E(h(Xn+1) · 1τF>n+1|X0, . . . , Xn)|X0 = i)

≤ E(h(Xn) · 1τF>n|X0 = i)− εP(τF > n|X0 = i)

≤ . . .

≤ E(h(X0) · 1τF>0|X0 = i)− ε

n∑

k=0

·P(τF > k|X0 = i)

which holds for alli ∈ E \ F andn ∈ N0. Forn → ∞ this implies

E(τF |X0 = i) =
∞∑

k=0

P(τF > k|X0 = i) ≤ h(i)/ε < ∞

for i ∈ E \ F . Now the mean return time to the state setF is bounded by

E(τF |X0 = i) =
∑

j∈F

pij +
∑

j∈E\F

pijE(τF + 1|X0 = j)

≤ 1 + ε−1
∑

j∈E

pijh(j) < ∞

for all i ∈ F , which completes the proof.
�

2.6 The M/M/1 queue in discrete time

Choose any parameters0 < p, q < 1. Let the arrival process be distributed as a
Bernoulli process with parameterp and the service times(Sn : n ∈ N0) be iid
according to the geometric distribution with parameterq.
The geometric service time distribution and the Bernoulli arrival process have
been chosen because this simplifies the formulation of the system process in terms
of a Markov model due to the followingmemoryless property:

Theorem 2.34 LetS be distributed geometrically with parameterq, i.e. letP(S =
k) = (1 − q)k−1q for all k ∈ N. ThenP(S = k|S > k − 1) = q holds for the
conditional distribution, independently ofk. Likewise, ifZn is the nth inter–
arrival time of a Bernoulli process with parameterp, then the relationP(Zn =
k|Zn > k − 1) = p holds, independently ofk andn.
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Proof: First the proof for the geometric distribution: For allk ∈ N, the argument

P(S = k|S > k − 1) =
P(S = k, S > k − 1)

P(S > k − 1)
=

P(S = k)

P(S > k − 1)

=
(1− q)k−1q

(1− q)k−1
= q

holds, which shows the first statement. For a Bernoulli process, thenth inter–
arrival timeZn = Tn − Tn−1 is distributed geometrically with parameterp, due to
the strong Markov property. This completes the proof for thesecond statement.
�

Thus the memoryless property states that no matter how long aservice time or an
inter–arrival time has already passed, the probability of aservice completion or
an arrival at the next time instant is always the same. Hence the system process
Q = (Qn : n ∈ N0) of the M/M/1 queue in discrete time with arrival processT
and service timesSn can be formulated easily as a homogeneous Markov chain.
It has state spaceE = N0 and transition probabilitiesp01 := p, p00 := 1− p, and

pij :=





p(1− q), j = i+ 1

pq + (1− p)(1− q), j = i

q(1− p), j = i− 1

for i ≥ 1. Because of the simple state space, the transition matrix can be displayed
in the form of a triagonal matrix

P =




1− p p 0 . . .

q(1− p) pq + (1− p)(1− q) p(1− q)
. . .

0 q(1− p) pq + (1− p)(1− q)
. . .

...
. .. . . . . . .




Sincep, q > 0, the chainQ is irreducible. Ifp < q, thenh(n) := n defines a
function which satisfies the conditions for Foster’s criterion, as

∞∑

k=0

pikh(k) = q(1− p) · (i− 1) + (qp+ (1− q)(1− p)) · i

+ p(1− q) · (i+ 1)

= i− q(1− p) + p(1− q) = i− q + p ≤ i− ε
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for all i ∈ N, with ε = q − p > 0, and
∑∞

k=0 p0k · h(k) = p < ∞ show. The
ratio p/q is called theload of the queue. Thus the system processQ is positive
recurrent if the queue load is less than one.
In order to derive a stationary distribution forQ, we first introduce notationsp′ :=
p(1 − q) andq′ := q(1 − p). Then we translate the conditionπP = π into the
equations

π0 = π0(1− p) + π1q
′ (2.10)

π1 = π0p+ π1(1− p− q′) + π2q
′ (2.11)

πn = πn−1p
′ + πn(1− (p′ + q′)) + πn+1q

′ (2.12)

for all n ≥ 2. For the solution, we guess the geometric form

πn+1 = πn · r

for all n ≥ 1, with r > 0. Thus equation (2.12) becomes

0 = πnp
′ − πnr(p

′ + q′) + πnr
2q′ = πn

(
p′ − r(p′ + q′) + r2q′

)

for all n ≥ 1, which leads for non–trivialπ 6= 0 to the rootsr = 1 andr = p′/q′

of the quadratic term.
In the first caser = 1, we obtainπn+1 = πn for all n ≥ 1. This implies∑

j∈E πj = ∞ and thus cannot lead to a stationary distribution. Hence in the
caser = 1 the geometric approach is not successful.
The second rootr = p′/q′ allows solutions for the other equations (2.10) and
(2.11) too. This can be checked as follows: First, the relation

π1 = π0
p

q′
= π0

ρ

1− p

is a requirement from equation (2.10). Then the second equation (2.11) yields

π2 =
1

q′
(π1(p

′ + q′)− π0p) =
1

q′

(
p

q′
(p′ + q′)− p

)
π0

= π0
p

q′

(
p′ + q′

q′
− 1

)
= π1

p′

q′

in accordance with our geometric approach. Now normalization ofπ leads to

1 =

∞∑

n=0

πn = π0

(
1 +

p

q′

∞∑

n=1

(
p′

q′

)n−1
)
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from which we obtain

π0 =

(
1 +

p

q′

∞∑

n=1

(
p′

q′

)n−1
)−1

=

(
1 +

p

q′(1− p′/q′)

)−1

=

(
1 +

p

q′ − p′

)−1

= (q′ − p′)(q′ − p′ + p)−1 =
q − p

q

= 1− ρ

with ρ := p/q, because ofq′ − p′ = q− p. Hence the approachπn+1 = πn · r with
r = p′/q′ leads to a solution ofπP = π.
Note thatr < 1 if and only if p < q. Further, the mean inter–arrival time is
E(T1) = 1/p and the mean service time isE(S1) = 1/q. Thus the geometric
approach is successful if the so–calledstability condition

ρ =
p

q
=

E(S1)

E(T1)
< 1

holds. This condition simply postulates that the mean service time be shorter than
the mean inter–arrival time. In this case, the stationary distributionπ of Q has the
form

π0 = 1− ρ and πn = (1− ρ)
ρ

1− p
rn−1

for all n ≥ 1. It thus is a modified geometric distribution with parameterr =
p′/q′ < 1.

Notes

Markov chains originate from a series of papers written by A.Markov at the be-
ginning of the 20th century. His first application is given here as exercise 2.37.
However, methods and terminology at that time were very different from today’s
presentations.
The literature on Markov chains is perhaps the most extensive in the field of
stochastic processes. This is not surprising, as Markov chains form a simple and
useful starting point for the introduction of other processes.
Textbook presentations are given in Feller [8], Breiman [1], Karlin and Taylor
[14], or Çinlar [4], to name but a few. The treatment in Ross [18] contains the
useful concept of time–reversible Markov chains. An exhaustive introduction to
Markov chains on general state spaces and conditions for their positive recurrence
is given in Meyn and Tweedie [16].
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Exercise 2.35Let (Xn : n ∈ N0) be a family of iid random variables with dis-
crete state space. Show thatX = (Xn : n ∈ N0) is a homogeneous Markov
chain.

Exercise 2.36Let (Xn : n ∈ N0) be iid random variables onN0 with probabilities
ai := P(Xn = i) for all n, i ∈ N0. The eventXn > max(X0, . . . , Xn−1) for n ≥ 1
is called a record at timen. DefineTi as the time of theith record, i.e.T0 := 0
andTi+1 := min{n ∈ N : Xn > XTi

} for all i ∈ N0. Denote theith record value
byRi := XTi

. Show that(Ri : i ∈ N0) and((Ri, Ti) : i ∈ N0) are Markov chains
by determining their transition probabilities.

Exercise 2.37Diffusion model by Bernoulli and Laplace
The following is a stochastic model for the flow of two incompressible fluids
between two containers: Two boxes containm balls each. Of these2m balls, b
are black and the others are white. The system is said to be in statei if the first box
containsi black balls. A state transition is performed by choosing oneball out of
each box at random (meaning here that each ball is chosen withequal probability)
and then interchanging the two. Derive a Markov chain model for the system and
determine the transition probabilities.

Exercise 2.38Let X denote a Markov chain withm < ∞ states. Show that if
statej is accessible from statei, then it is accessible in at mostm− 1 transitions.

Exercise 2.39Let p = (pn : n ∈ N0) be a discrete probability distribution and
define

P =




p0 p1 p2 . . .

p0 p1
. . .

p0
. . .
. . .




with all non–specified entries being zero. LetX denote a Markov chain with
state spaceN0 and transition matrixP . Derive an expression (in terms of discrete
convolutions) for the transition probabilitiesP(Xn+m = j|Xn = i) with n,m ∈
N0 andi, j ∈ N0. Apply the result to the special case of a Bernoulli process (see
example 2.3).

Exercise 2.40Prove equation (2.6).
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Exercise 2.41Prove the equationP n(i, j) =
∑n

k=1 Fk(i, j)P
n−k(j, j) for all n ∈

N andi, j ∈ E.

Exercise 2.42Let X denote a Markov chain with state spaceE = {1, . . . , 10}
and transition matrix

P =




1/2 0 1/2 0 0 0 0 0 0 0
0 1/3 0 0 0 0 2/3 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1/3 1/3 0 0 0 1/3 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1/4 0 3/4 0
0 0 1/4 1/4 0 0 0 1/4 0 1/4
0 1 0 0 0 0 0 0 0 0
0 1/3 0 0 1/3 0 0 0 0 1/3




Reorder the states according to their communication classes and determine the
resulting form of the transition matrix as in representation (2.4). Determine further
a transition graph, in which

��
��

i -

��
��
j

means thatfij > 0.

Exercise 2.43Prove equation (2.7).
Hint: Derive a representation ofNj in terms of the random variables

An :=

{
1, Xn = j

0, Xn 6= j

Exercise 2.44Prove corollary 2.15.

Exercise 2.45Prove remark 2.26.

Exercise 2.46A server’s up time isk time units with probabilitypk = 2−k,
k ∈ N. After failure the server is immediately replaced by an identical new one.
The up time of the new server is of course independent of the behaviour of all
preceding servers.
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LetXn denote the remaining up time of the server at timen ∈ N0. Determine the
transition probabilities for the Markov chainX = (Xn : n ∈ N0) and determine
the stationary distribution ofX .

Exercise 2.47Let P denote the transition matrix of an irreducible Markov chain
X with discrete state spaceE = F ∪ F c, whereF c = E \ F . Write P in block
notation as

P =

(
PFF PFF c

PF cF PF cF c

)

Show that the Markov chainX F restricted to the state spaceF has transition
matrix

P F = PFF + PFF c(I − PF cF c)−1PF cF

with I denoting the identity matrix onF c.

Exercise 2.48Let X denote a Markov chain with state spaceE = {0, . . . , m}
and transition matrix

P =




p00 p01
p10 p11 p12

p21 p22 p23
. . . . . . . . .

pm,m−1 pmm




wherepij > 0 for |i − j| = 1. Show that the stationary distributionπ of X is
uniquely determined by

πn = π0 ·
n∏

i=1

pi−1,i

pi,i−1

and π0 =

(
m∑

j=0

j∏

i=1

pi−1,i

pi,i−1

)−1

for all n = 1, . . . , m.
Use this result to determine the stationary distribution ofthe Bernoulli–Laplace
diffusion model withb = m (see exercise 2.37).

Exercise 2.49Show that the second condition in theorem 2.33 can be substituted
by the condition

∑

j∈E

pijh(j) ≤ h(i)− 1 for all i ∈ E \ F .
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Exercise 2.50Show the following complement to theorem 2.33: LetP denote the
transition matrix of a positive recurrent Markov chain withdiscrete state spaceE.
Then there is a functionh : E → R and a finite subsetF ⊂ E such that

∑

j∈E

pijh(j) < ∞ for all i ∈ F , and

∑

j∈E

pijh(j) ≤ h(i)− 1 for all i ∈ E \ F .

Hint: Consider the conditional expectation of the remaining time until returning
to a fixed setF of states.

Exercise 2.51For the discrete, non–negative random walk with transitionmatrix

P =




p00 p01
p10 0 p12

p10 0 p12
. . . . . . . . .




determine the criterion of positive recurrence according to theorem 2.33.
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Chapter 3

Homogeneous Markov Processes
on Discrete State Spaces

In the present chapter we will transfer the discrete time results of the previous
chapter to Markov processes in continuous time.

3.1 Definition

DefineT0 := 0 and let(Tn : n ∈ N) denote a sequence of positive real–valued
random variables withTn+1 > Tn for all n ∈ N0 andTn → ∞ asn → ∞.
Further, letE denote a countable state space and(Xn : n ∈ N0) a sequence of
E–valued random variables. A processY = (Yt : t ∈ R

+
0 ) in continuous time

with
Yt := Xn for Tn ≤ t < Tn+1

is called apure jump process. The variableHn := Tn+1 − Tn (resp. Xn) is
called thenth holding time (resp. thenth state) of the processY . If further
X = (Xn : n ∈ N0) is a Markov chain with transition matrixP = (pij)i,j∈E and
the variablesHn are independent and distributed exponentially with parameter
λXn

only depending on the stateXn, thenY is called homogeneousMarkov pro-
cesswith discretestate spaceE. The chainX is called theembedded Markov
chain of Y . As a technical assumption we always agree upon the condition
λ̂ := sup{λi : i ∈ E} < ∞, i.e. the parameters for the exponential holding
times shall be bounded.
An immediate consequence of the definition is that the paths of a Markov process
are step functions. The lengths of the holding times are almost certainly strictly

33
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positive, since exponential distributions are zero with probability zero.

Example 3.1 Poisson process
DefineXn := n deterministically. ThenX = (Xn : n ∈ N0) is a Markov chain
with state spaceE = N0 and transition probabilitiespn,n+1 = 1 for all n ∈ N0.
Let the holding timesHn be distributed exponentially with identical parameter
λ > 0. Then the resulting processY as defined in the above definition is a Markov
process with state spaceN0. It is calledPoisson processwith intensity (also: rate
or parameter)λ.

Next we want to prove a property similar to the Markov property for Markov
chains in discrete time. To this aim, we need to show thememoryless property
for the exponential distribution, which is the analogue to the memoryless property
for geometric distributions in discrete time.

Lemma 3.2 LetH denote a random variable having an exponential distribution
with parameterλ. Then the memoryless property

P(H > t + s|H > s) = P(H > t)

holds for all time durationss, t > 0.

Proof: We immediately check

P(H > t+ s|H > s) =
P(H > t + s,H > s)

P(H > s)
=

P(H > t+ s)

P(H > s)

=
e−λ·(t+s)

e−λ·s
= e−λ·t = P(H > t)

which holds for alls, t > 0.
�

Theorem 3.3 LetY denote a Markov process with discrete state spaceE. Then
theMarkov property

P(Yt = j|Yu : u ≤ s) = P(Yt = j|Ys)

holds for all timess < t and statesj ∈ E.

Proof: Denote the state at times by Ys = i. Because of the memoryless property
of the exponential holding times, the remaining time in state i is distributed expo-
nentially with parameterλi, no matter how long the preceeding holding time has
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been. After the holding time in the present state elapses, the process changes to
another statej according to the homogeneous Markov chainX . Hence the prob-
ability for the next state beingj is given bypij, independently of any state of the
process before times. Now another exponential holding time begins, and thus the
past before times will not have any influence on the future of the processY .
�

Analogous to the discrete time case, for any two time instancess < t the condi-
tional probabilitiesP(Yt = j|Ys = i) shall be called thetransition probabilities
from time s to time t. We will now derive a recursion formula for the transi-
tion probabilities of a Markov process by conditioning on the number of jumps
between times and timet:

Theorem 3.4 The transition probabilities of a Markov processY are given by

P(Yt = j|Ys = i) =
∞∑

n=0

P
(n)
ij (s, t)

for all timess < t and statesi, j ∈ E, with

P
(0)
ij (s, t) = δij · e−λi·(t−s)

and recursively

P
(n+1)
ij (s, t) =

∫ t

s

e−λi·uλi

∑

k∈E

pikP
(n)
kj (u, t) du

for all n ∈ N0.

Proof: The above representation follows immediately by conditioning on the
number of jumps in]s, t]. The expressionsP (n)

ij (s, t) represent the conditional
probabilities thatYt = j and there aren jumps in]s, t] given thatYs = i. In the
recursion formula the integral comprises all timesu of a possible first jump along
with the Lebesgue densitye−λi·uλi of this event, after which the probability ofn
remaining jumps reaching statej at timet is given by

∑
k∈E pikP

(n)
kj (u, t).

�

For every two time instancess < t, define thetransition probability matrix
P (s, t) from times to timet by its entries

Pij(s, t) := P(Yt = j|Ys = i)
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Using the recursion formula, it is shown by induction onn that the conditional
probabilitiesP (n)

ij (s, t) are homogeneous in time, i.e. they satisfy

P
(n)
ij (s, t) = P

(n)
ij (0, t− s)

for all s < t. Thus we can from now on restrict the analysis to the transition
probability matrices

P (t) := P (0, t)

with t ≥ 0. With this notation the Markov property yields theChapman–
Kolmogorov equations

P (s+ t) = P (s)P (t)

for all time durationss, t ≥ 0. Thus the family{P (t) : t ≥ 0} of transition
probability matrices forms a semi–group under the composition of matrix mul-
tiplication. In particular, we obtain for the neutral element of this semi–group
P (0) = IE := (δij)i,j∈E with δij = 1 for i = j and zero otherwise.
In order to derive a simpler expression for the transition probability matrices, we
need to introduce another concept, which will be called thegenerator matrix.
This is defined as the matrixG = (gij)i,j∈E onE with entries

gij :=

{
−λi · (1− pii), i = j

λi · pij, i 6= j

for all statesi, j ∈ E. In particular, the relation

gii = −
∑

j 6=i

gij (3.1)

holds for alli ∈ E.
The (i, j)th entry of the generatorG is called theinfinitesimal transition rate
from statei to statej. Using these, we can illustrate the dynamics of a Markov
process in a directed graph where the nodes represent the states and an edge

��
��

i -

r

��
��
j

means thatgij = r > 0. Such a graph is called astate transition graph of the
Markov process. With the conventionpii = 0 the state transition graph uniquely
determines the Markov process.
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��
��
0 -

λ

��
��
1 -

λ

��
��
2 - . . .

Figure 3.1: Poisson process

Example 3.5 The state transition graph of the Poisson process with intensity λ
(see example 3.1) is given by

Theorem 3.6 The transition probabilitiesPij(t) of a Markov process satisfy the
systems

dPij(t)

dt
=
∑

k∈E

Pik(t)gkj =
∑

k∈E

gikPkj(t)

of differential equations. These are called theKolmogorov forward and back-
ward equations.

Proof: From the representation in theorem 3.4, it follows by induction on the
number of jumps that all restricted probabilitiesP (n)(t) are Lebesgue integrable
with respect tot over finite intervals. Since the sum of allP (n)

ij (t) is a probabil-
ity and thus bounded, we conclude by majorized convergence that alsoP (t) is
Lebesgue integrable with respect tot over finite intervals.
Now we can state the recursion

Pij(t) = e−λi·t · δij +
∫ t

0

e−λi·sλi

∑

k∈E

pikPkj(t− s) ds

which results from conditioning on the times of the first jump from statei. We
obtain further

Pij(t) = e−λi·t ·
(
δij +

∫ t

0

e+λi·uλi

∑

k∈E

pikPkj(u) du

)

by substitutingu = t − s in the integral. Since
∑

k∈E pik = 1 is bounded, we
conclude thatP (t) is continuous int. Further, we can differentiateP (t) as given
in the recursion and obtain

dPij(t)

dt
= −λie

−λi·t ·
(
δij +

∫ t

0

f(u) du

)
+ e−λi·t · f(t)
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with f denoting the integrand function. This means nothing else than

dPij(t)

dt
= −λiPij(t) + λi

∑

k∈E

pikPkj(t)

= −λi(1− pii) · Pii(t) +
∑

k 6=i

gikPkj(t)

and thus proves the backward equations. For the forward equations, one only
needs to use the Chapman–Kolmogorov equations and apply thebackward equa-
tions in

dPij(t)

dt
= lim

h→0

Pij(t+ h)− Pij(t)

h
= lim

h→0

∑

k∈E

Pik(t)
Pkj(h)− δkj

h

=
∑

k∈E

Pik(t) lim
h→0

Pkj(h)− Pkj(0)

h
=
∑

k∈E

Pik(t)gkj

which holds for alli, j ∈ E.
�

Theorem 3.7 The transition probability matrices can be expressed in terms of the
generator by

P (t) = eG·t :=
∞∑

n=0

tn

n!
Gn

for all t ≥ 0, withGn denoting thenth power of the matrixG.

Proof: First we validate the solution by

d

dt
eG·t =

d

dt

∞∑

n=0

tn

n!
Gn =

∞∑

n=1

Gn d

dt

tn

n!
=

∞∑

n=1

Gn tn−1

(n− 1)!
= GeG·t

which holds for allt ≥ 0. Furthermore, it is obvious that

GeG·t = G

∞∑

n=0

tn

n!
Gn =

(
∞∑

n=0

tn

n!
Gn

)
G = eG·tG

and thusP (t) = eG·t is a solution of Kolmogorov’s forward and backward equa-
tions.
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Now we show uniqueness of the solution. LetP̃ (t) denote another solution of the
forward equations. The differential equations with initial condition translate into
the integral equations

P (t) = IE +

∫ t

0

P (u)G du and P̃ (t) = IE +

∫ t

0

P̃ (u)G du

Define a norm for matricesM = (mij)i,j∈E onE by

‖M‖ := sup

{
∑

j∈E

|mij | : i ∈ E

}

Then‖G‖ ≤ 2 · λ̂ and‖AB‖ ≤ ‖A‖ · ‖B‖ for any two matricesA andB onE.
Further we obtain

∥∥∥P (t)− P̃ (t)
∥∥∥ =

∥∥∥∥
∫ t

0

P (u)− P̃ (u) du G

∥∥∥∥

≤
∫ t

0

∥∥∥P (u)− P̃ (u)
∥∥∥ du · ‖G‖ (3.2)

≤ ∆t · t · ‖G‖ (3.3)

with ∆t := sup{‖P (u)− P̃ (u)‖ : u ≤ t}, which is finite, since for allu ≥ 0 we
know that‖P (u)‖ = ‖P̃ (u)‖ = 1. Plugging the result (3.3) into the right hand of
the bound (3.2) again (with time u instead of t), we obtain

∥∥∥P (t)− P̃ (t)
∥∥∥ ≤

∫ t

0

∆t · u · ‖G‖ du · ‖G‖ = ∆t ·
t2

2
· ‖G‖2

Likewise,n–fold repetition of this step achieves the bound

∥∥∥P (t)− P̃ (t)
∥∥∥ ≤ ∆t ·

tn

n!
· ‖G‖n ≤ ∆t ·

(2λ̂ · t)n
n!

which in the limit n → ∞ yields 0 ≤
∥∥∥P (t)− P̃ (t)

∥∥∥ ≤ 0 and consequently

P (t) = P̃ (t). As t has been chosen arbitrarily, the statement is proven.
�

Hence the generator of a Markov process uniquely determinesall its transition
matrices. This can also be seen from the definition, if we agree (without loss of
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generality) upon the conventionpii = 0 for all ∈ E. Then the parameters for the
definition of the Markov process can be recovered by

λi = −gii and pij =
gij
−gii

for all i 6= j ∈ E.
However, as in the discrete time case of Markov chains, Markov processes are not
completely determined by their transition probability matrices only. The missing
link to a complete characterization again is given by theinitial distribution π with
πi = P(Y0 = X0 = i) for all i ∈ E. Then we can express allfinite–dimensional
marginal distributions as in

Theorem 3.8 For a Markov processY with initial distribution π and time in-
stances0 < t1 < . . . < tn, n ∈ N, the equation

P(Yt1 = j1, . . . , Ytn = jn)

=
∑

i∈E

πiPi,j1(t1)Pj1,j2(t2 − t1) . . . Pjn−1,jn(tn − tn−1)

holds for allj1, . . . , jn ∈ E.

The proof is left as an exercise. Thus a Markov processY with transition proba-
bility matrices(P (t) : t ≥ 0) admits a variety of versions depending on the initial
distributionπ. Any suchversionshall be denoted byYπ.

3.2 Stationary Distribution

From now on we shall convene on the technical assumption

λ̌ := inf{λi : i ∈ E} > 0

which holds for all queueing systems that we will examine. Then a Markov pro-
cess is calledirreducible , transient, recurrent or positive recurrent if the defin-
ing Markov chain is.
An initial distributionπ is calledstationary if the processYπ is stationary, i.e. if

P(Y π
t1
= j1, . . . , Y

π
tn = jn) = P(Y π

t1+s = j1, . . . , Y
π
tn+s = jn)

for all n ∈ N, 0 ≤ t1 < . . . < tn, and statesj1, . . . , jn ∈ E, ands ≥ 0.
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Theorem 3.9 A distributionπ onE is stationary if and only ifπG = 0 holds.

Proof: First we obtain

πP (t) = πeG·t =

∞∑

n=0

tn

n!
πGn = πIE +

∞∑

n=1

tn

n!
πGn = π + 0 = π

for all t ≥ 0, with 0 denoting the zero measure onE. With this, theorem 3.8
yields

P(Y π
t1 = j1, . . . , Y

π
tn = jn)

=
∑

i∈E

πiPi,j1(t1)Pj1,j2(t2 − t1) . . . Pjn−1,jn(tn − tn−1)

= πj1Pj1,j2(t2 − t1) . . . Pjn−1,jn(tn − tn−1)

=
∑

i∈E

πiPi,j1(t1 + s)Pj1,j2(t2 − t1) . . . Pjn−1,jn(tn − tn−1)

= P(Y π
t1+s = j1, . . . , Y

π
tn+s = jn)

for all timest1 < . . . < tn with n ∈ N, and statesj1, . . . , jn ∈ E. Hence the
processYπ is stationary.
On the other hand, ifπ is a stationary distribution, then we necessarily obtain
πP (t) = πeG·t = π for all t ≥ 0. As above, this means

∑∞
n=1

tn

n!
πGn = 0 for all

t ≥ 0, which yieldsπG = 0 because of the uniqueness of the zero power series.
�

By definition of the generatorG and equation (3.1), the equationπG = 0 is
equivalent to an equation system

∑

i 6=j

πigij = −πjgjj ⇐⇒
∑

i 6=j

πigij = πj

∑

i 6=j

gji (3.4)

for all j ∈ E. This system can be intepreted as follows. We call the valueπigij
stochastic flowfrom statei to statej in equilibrium. Then the above equations
mean that the accrued stochastic flow into any statej equals the flow out of this
state. Equations (3.4) are called the (global)balance equations.

Example 3.10 The generator of the Poisson process with parameterλ (see exam-



42 CHAPTER 3. MARKOV PROCESSES ON DISCRETE STATE SPACES

ple 3.1) is given by

G =




−λ λ 0 0 . . .

0 −λ λ 0
. . .

0 0 −λ λ
. . .

...
. . . . . . . . . . . .




This process has no stationary distribution, which can be seen as follows. The
balance equations for the Poisson process are given by

π0λ = 0 and πiλ = πi−1λ

for all i ≥ 1. It is immediately evident that these are solvable only byπi = 0 for
all i ∈ E, which means that there is no stationary distributionπ.

The question of existence and uniqueness of a stationary distribution forY can be
reduced to the same question forX , which we have examined in the preceding
chapter:

Theorem 3.11 Let the underlying Markov chainX in the definition of the Markov
processY be irreducible and positive recurrent. Further assume thatλ̌ := inf{λi :
i ∈ E} > 0. Then there is a unique stationary distribution forY .

Proof: According to theorems 2.25 and 2.18, the transition matrixP of X admits
a unique stationary distributionν with νP = ν. The generatorG is defined by
G = Λ(P − IE), with Λ = diag(λi : i ∈ E). Hence the measureµ := νΛ−1 is
stationary forY . Sinceλ̌ > 0, the measureµ is finite, with total mass bounded by
λ̌−1 < ∞. Now the normalization

πj :=
µj∑
i∈E µi

=
νj/λj∑
i∈E νi/λi

(3.5)

for all j ∈ E yields a stationary distribution forY . This is unique becauseν is
unique and the construction ofπ from ν is reversible.
�

Finally we give two important results for the asymptotic behaviour of a Markov
process. We call a Markov processregular if it satisfies the conditions given in
the preceding theorem. IfY is a regular Markov process, then the limit

lim
t→∞

P(Yt = j) = πj (3.6)
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of the marginal distribution at timet tends to the stationary distribution ast tends
to infinity. Further the limit

lim
t→∞

Pij(t) = πj (3.7)

holds for alli, j ∈ E and is independent ofi.

Notes

An early text book on Markov processes with discrete state space is Chung [5].
Other classical text book presentation are Karlin and Taylor [14], Breiman [1],
or Çinlar [4]. An exposition on non–homogeneous Markov processes on discrete
state spaces can be found under the name Markov jump processes in Gikhman and
Skorokhod [12, 11].

Exercise 3.12Consider a population of male and female species. There is an
infinitesimal rateλ > 0 that any male and female produce a single offspring,
which will be female with probabilityp. Determine a Markov process which
models the numbersFt andMt of female and male species at any timet.

Exercise 3.13Let X andY denote two independent random variables which are
distributed exponentially with parametersλ andµ, respectively. Prove the follow-
ing properties:
(a)X 6= Y almost certainly.
(b) The random variableZ := min{X, Y } is distributed exponentially with pa-
rameterλ+ µ.
(c) P(X < Y ) = λ/(λ+ µ)

Exercise 3.14Let Y (1) andY (2) denote independent Poisson processes with in-
tensitiesλ1 andλ2, respectively. Show that the processY = (Yt : t ∈ R

+
0 ) defined

by Yt = Y
(1)
t + Y

(2)
t for all t ≥ 0 is a Poisson process with intensityλ = λ1 + λ2.

The processY is called thesuperpositionof Y (1) andY (2).

Exercise 3.15Prove theorem 3.8.

Exercise 3.16Determine the finite–dimensional marginal distributions for a Pois-
son process with parameterλ.

Exercise 3.17LetY denote a Poisson process with parameterλ. Given that there
is exactly one arrival in the interval[0, t], show that the exact time of the arrival
within [0, t] is uniformly distributed.
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Exercise 3.18Verify the Chapman–Kolmogorov equations for a Poisson process.

3.3 Skip–Free Markov Processes and Markovian Queues

The methods of analyzing Markov processes are already sufficient for the treat-
ment of quite a variety of queueing systems. These are commonly known as
elementary orMarkovian queues. The most classical of them shall be examined
in this chapter.

3.3.1 The M/M/1 Queue

The M/M/1 queue in continuous time is defined by the followingcharacteristics:
The arrival process is a Poisson process with some rateλ > 0. The service times
are iid and distributed exponentially with service rateµ > 0. There is one server
and the service discipline is first come first served.

��������

Poisson(λ ) Exp(µ )

Figure 3.2: M/M/1 queue

For the Poisson process, the inter–arrival times are distributed exponentially with
parameterλ. Since the exponential distribution is memoryless, the system process
Q = (Qt : t ∈ R

+
0 ) can be modelled by a Markov process with state spaceE = N0

and generator

G =




−λ λ 0 0 . . .

µ −λ− µ λ 0
. . .

0 µ −λ− µ λ
. . .

...
. . . . . . . . . . . .




Here, the first line represents the possible transitions if the system is empty. In this
case there can only occur single arrivals according to the Poisson process with rate
λ. If the system is not empty, there are two possibilities: Either an arrival occurs
(with rateλ) or a service is completed (with rateµ). Contrary to the M/M/1 queue
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in discrete time, arrivals and service completions cannot occur at the same time.
This follows from the memoryless property of the exponential distribution and
exercise 3.13. The parameter of the holding time for the states of a non–empty
system is explained by exercise 3.13.
Clearly, the structure of the matrixG shows that the processQ is irreducible and
hence there is at most one stationary distributionπ for Q. According to theorem
3.9, this must satisfyπG = 0, which translates into the system

π0λ = π1µ (3.8)

πn(λ+ µ) = πn−1λ+ πn+1µ for all n ≥ 1 (3.9)
∞∑

n=0

πn = 1 (3.10)

of equations, where the latter is simply the normalization of the distributionπ.
The first two equations are the globalbalance equationsand can be illustrated by
the following scheme:

λ

µ

λ

µ

1 2 3 ... m

λ λ λ

µ µ µ

...

Figure 3.3: Transition rates for the M/M/1 queue

This gives the rates of jumps between the states of the system. If we encircle any
one state, then the sum of the rates belonging to the arcs reaching into this state
must equal the sum of the rates which belong to the arcs that goout of this state.
If this is the case, then we say that the system is in balance. The conditions for
this are given in equations (3.8) and (3.9).
The solution of the above system of equations can be obtainedby the following
considerations: The first equation yields

π1 = π0
λ

µ
=: π0ρ

with ρ := λ/µ. By induction onn we obtain from the second equation

πn+1 =
1

µ
(πn(λ+ µ)− πn−1λ) = πn

λ

µ
+ πn − πn−1

λ

µ

= πnρ
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for all n ∈ N, where the last equality holds by induction hypothesis. Thus the
geometric approachπn = π0ρ

n for all n ∈ N0 solves the first two equations. The
last equation now yields

1 =
∞∑

n=0

πn = π0

∞∑

n=0

ρn =
1

1− ρ
π0

if and only if ρ < 1, which meansλ < µ. Hence there is a stationary distribution
of the system, given by

πn = (1− ρ)ρn

for all n ∈ N0, if and only if the so–called queueload ρ = λ/µ remains smaller
than one.
In this case several performance measures of the queueing system can be derived
immediately. All of them are computed by means of the stationary distribution.
Thus they hold only for the system being in equilibrium, which is attained asymp-
totically.
For instance, the probability that the system is empty is given byπ0 = 1− ρ. The
mean and the variance of the numberN of users in the system are given as

E(N) =

∞∑

n=1

nπn = (1− ρ)

∞∑

n=1

nρn =
ρ

1− ρ

andVar(N) = ρ/(1 − ρ)2. The probabilityRK that there are at leastK users in
the system is

RK =

∞∑

n=K

πn = (1− ρ)

∞∑

n=K

ρn = ρK

As expected, these equations show that with increasing loadρ → 1 the mean num-
ber of users in the system grows and the probability of an idlesystem decreases.

3.3.2 Skip–Free Markov Processes

There are many variations of the M/M/1 queue which can be analyzed by the same
method. In order to show this we first put the analysis presented in the preceding
section in a more general context. This will be applicable toa large variety of
queueing models.
The Markov process which models the M/M/1 queue has the decisive property
that transitions are allowed to neighbouring states only, i.e. gij = 0 for states
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i, j ∈ N0 with |i − j| > 1. The result is a very simple state transition graph of
a linear form and correspondingly a set of balance equations, given by (3.8) and
(3.9), which can be solved easily. We can retain the same method of analysis if
we relax the special assumption thatgi,i+1 andgi,i−1 be independent ofi.
Thus we define askip–free Markov processby the property that its generator
G = (gij)i,j∈E satisfiesgij = 0 for all statesi, j ∈ E ⊂ N0 with |i − j| > 1.
For queueing systems this means that there are only single arrivals or departures.
Thus every Markovian queueing system with single arrivals and departures can be
modelled by a skip–free Markov process.
Denote the remaining infinitesimal transition rates by

λi := gi,i+1 and µi := gi,i−1

for all possible values ofi. The ratesλi andµi are calledarrival rate s andde-
parture rates, respectively. The state transition graph of such a process assumes
the form

0 1 2 . . .

λ λ λ

µ µ µ

0 1 2

321

Figure 3.4: A skip–free Markov process

Its balance equations are given byλ0π0 = µ1π1 and

(λi + µi)πi = λi−1πi−1 + µi+1πi+1

for all i ∈ N. By induction oni it is easily shown that these are equivalent to the
equation system

λi−1πi−1 = µiπi (3.11)

for all i ∈ N. This system is solved by successive elimination with a solution of
the form

πi = π0

i−1∏

j=0

λj

µj+1
= π0

λ0λ1 · · ·λi−1

µ1µ2 · · ·µi
(3.12)
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for all i ≥ 1. The solutionπ is a probability distribution if and only if it can be
normalized, i.e. if

∑
n∈E πn = 1. This condition implies

1 =
∑

n∈E

π0

n−1∏

j=0

λj

µj+1

= π0

∑

n∈E

n−1∏

j=0

λj

µj+1

with the empty product being defined as one. This means that

π0 =

(
∑

n∈E

n−1∏

j=0

λj

µj+1

)−1

(3.13)

and thusπ is a probability distribution if and only if the series in thebrackets
converges. In this case, the stationary distribution of a skip–free Markov process
is given by (3.13) and (3.12).

3.3.3 The M/M/∞ Queue

The first application of the analysis of the last section to a queueing system shall
be the M/M/∞ queue. This is a queue without queueing: There are infinitelymany
servers such that every incoming user finds an idle server immediately. Arrivals
are governed by a Poisson process with intensityλ > 0, and the service times are
exponentially distributed with rateµ > 0, equal for each server. Due to lemma
3.13, the system process is Markovian. Furthermore, there are only single arrivals
and departures. Hence the M/M/∞ queue can be modelled by a skip–free Markov
process.
Since the arrival process is independent of the rest of the queue, the arrival rates
of the respective skip–free Markov process are constant. Inthe notation of section
3.3.2 we can thus specifyλn = λ for all n ∈ N0. Departures occur upon service
completions. According to lemma 3.13 and due to the memoryless property of the
exponential distribution (see lemma 3.2), the departure rates are given byµn =
n · µ for all n ∈ N.
Defineρ := λ/µ. Then the series in (3.13) assumes the value

∞∑

n=0

n−1∏

j=0

λj

µj+1
=

∞∑

n=0

ρn

n!
= eρ

and thus converges regardless of the value ofρ. This means that the M/M/∞
queue always has a stationary distribution, which is not surprising as infinitely
many servers cannot be exhausted, whatever the arrival intensity amounts to.
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Due to formulae (3.13) and (3.12), we obtain the stationary distributionπ as given
by π0 = e−ρ and

πn = e−ρ · ρ
n

n!

for all n ∈ N, which is a Poisson distribution with parameterρ. Hence the mean
and the variance of the numberN of users in the stationary system are given by
E(N) = Var(N) = ρ.
Since there is no queueing in the M/M/∞ system, all waiting times are zero and
the mean sojourn time in the system equals1/µ. This means that all users pass-
ing through such a system are independently kept there for anexponentially dis-
tributed time. In the context of queueing networks, the M/M/∞ queue is therefore
often called an (independent)delay system.

3.3.4 The M/M/k Queue

The M/M/k queue is provided withk identical servers which can serve users in
parallel. Users arrive according to a Poisson process with intensityλ > 0, and
the service time distribution is exponential with parameter µ > 0 at all servers.
Whenever a user arrives and finds all servers busy (i.e. at least k users in the
system) he queues up in the waiting room. From there the next waiting user is
served in the order of a FIFO discipline as soon as one of the servers becomes idle.
An arriving user finding less thank users already in the system (i.e. there are idle
servers at the time of arrival) chooses any server and startsservice immediately.
For this type of queue the dynamics is a mixture between the M/M/∞ queue and
the M/M/1 queue. Up to the value ofk users in the system, the service (and thus
the departure) rate increases likeµn = n · µ for 1 ≤ n ≤ k. Starting fromk users
in the system there are no servers anymore to keep up with newly arriving users,
and the departure rate remainsµn = k · µ for all n ≥ k + 1. The independence of
the arrival process yields constant arrival ratesλn = λ for all n ∈ N0.
Again we defineρ := λ/µ. The series in (3.13) specifies to

∞∑

n=0

n−1∏

j=0

λj

µj+1

=
k−1∑

n=0

ρn

n!
+

ρk

k!

∞∑

n=0

(ρ
k

)n

which is finite if and only ifρ < k. In this case the stationary distributionπ is
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queuearrival process departure
 process

 servers

λ

µ

µ

Figure 3.5: M/M/k queue

given by formulae (3.13) and (3.12) as

π0 =

(
k−1∑

n=0

ρn

n!
+

ρk

(k − 1)! · (k − ρ)

)−1

and

πn = π0 ·
ρn

n!
, 1 ≤ n ≤ k

πn = πk ·
(ρ
k

)n−k

, n > k

Here we see the M/M/∞ form for n ≤ k and the M/M/1 form beginning with
n ≥ k, whereπk substitutes the base value that is played byπ0 for the pure
M/M/1 queue.
The fact that the M/M/k queue behaves for more thank users in the system like
an M/M/1 queue with loadρ/k is further illustrated by the following observation.
Let N denote the number of users in the system that is in equilibrium. Consider
the conditional probabilitypn := P(N = n|N ≥ k) for n ≥ k. This is computed
as

pn =
πn∑∞
i=k πi

= πk

(ρ
k

)n−k
/

πk

∞∑

i=k

(ρ
k

)i−k

=
(ρ
k

)n−k (
1− ρ

k

)
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Sincen− k is the numberNq of users waiting in the queue, the conditional distri-
bution ofNq given that all servers are busy has exactly the same (geometric) form
as the stationary distribution for the M/M/1 system process.
The probabilityP{N ≥ k} of the conditioning event that in equilibrium all servers
are busy is given by

∞∑

n=k

πn =

(
1 + (k − 1)! · (k − ρ) ·

k−1∑

n=0

ρn−k

n!

)−1

(3.14)

This is the probability that a newly arriving user must wait before he is served.
The above formula for it is calledErlang’s delay formula.

3.3.5 The M/M/k/k Queue

In stochastic modelling there always is a trade–off betweenthe adaptation of the
model to reality and its simplicity, i.e. its analytic tractability. We have seen that
the nicest solutions could be derived for the M/M/1 queue (a geometric distribu-
tion) and the M/M/∞ queue (a Poisson distribution). The solution for the M/M/k
queue, which is more realistic for most practical applications, is also more in-
volved. For all these models we kept the often unrealistic assumption of an infi-
nite waiting room. The models in this and the following sections stem from more
realistic specifications. Historically, they belong to thefirst applications which
founded the field of queueing theory.
In the times of A.K. Erlang, at the beginning of the 20th century, telephone calls
had to be connected by an operator. The telephone companies installed call centers
where a numberk of operators served call requests which arrived from a large
number of subscribers. Whenever all operators are busy withserving call requests
and a new subscriber calls to get a line, this subscriber willbe rejected.
If we model the arriving requests by a Poisson process and theduration of the
operators’ services by an exponential distribution, then we get an M/M/k/k queue
as a model for this application. The subscribers with their call requests are the
users and the operators are the servers. There arek servers and as many places in
the system, i.e. there is no additional waiting room.
Let the intensity of the Poisson arrival process and the rateof the exponential
service times be denoted byλ > 0 andµ > 0, respectively. Again we can use
a skip–free Markov process to analyze this system. In this notation, we obtain
λn = λ for all n = 0, . . . , k − 1 andµn = n · µ for n = 1, . . . , k. The values of
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λn andµn are zero for all other indicesn. Defineρ := λ/µ. The series in (3.13)
is in this case

∑

n∈E

n−1∏

j=0

λj

µj+1
=

k∑

n=0

ρn

n!

which is finite, regardless of the value forρ. Hence a stationary distributionπ
always exists and is given by

π0 =

(
k∑

n=0

ρn

n!

)−1

and πn = π0 ·
ρn

n!

for all n = 1, . . . , k. The main performance measure for this application is the
probability that all operators are busy and the company is unable to accept new
call requests. This is given by

πk =
ρk

k!

(
k∑

n=0

ρn

n!

)−1

which of course is valid only under the stationary regime, i.e. in equilibrium. This
expression is known asErlang’s loss formula.
Note that the expression ofπ0 for the M/M/∞ queue is the limit of the respective
expression for the M/M/k/k model ask tends to infinity. Even further, the station-
ary distribution for the M/M/k/k queue converges to the stationary distribution of
the M/M/∞ for increasingk.

3.3.6 The M/M/k/k+c/N Queue

A simplifying assumption in the previous model has been the constant arrival
ratesλn = λ. This implies that even for a high number of users in the queuethe
intensity of new arrivals does not diminish. While this is a reasonable assumption
for an application to call centers, where the number of operators (and thus the
maximal number of users in the system) is only marginal compared to the number
of all subscribers, there are other applications for which such an assumption would
not be realistic.
Consider a closed computer network withk servers andN terminals. Every ter-
minal sends a job to one of the servers after some exponentially distributed think
time. If a server is available, i.e. idle, then this job is served, demanding an expo-
nential service time. A terminal that has a job in a server maynot send another job
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λ

 servers

µ

µ

queue

λ

 terminals

Figure 3.6: A closed computer network

request during the service time. Whenever a terminal sends ajob request and all
servers are busy at that time, then the job is put into a queue.This queue has max-
imal capacityc, i.e. if a terminal sends a job request and the queue is already filled
with c jobs, then this new job request is rejected and the terminal starts another
think time.
This application can be modelled by an M/M/k/k+c/N queue if we interpret the
users in the system as the job requests that are in service or waiting. Denote the
parameters of the exponential think time and service time distributions byλ > 0
andµ > 0, respectively. Without loss of generality we may assume that k+c ≤ N .
Then the queue in consideration is a skip–free Markov process with arrival rates
λn = (N − n) · λ for n = 0, . . . , k+ c− 1 and departure ratesµn = min(n, k) ·µ
for n = 1, . . . , k+ c. As always, defineρ := λ/µ. The series in (3.13) amounts to

∑

n∈E

n−1∏

j=0

λj

µj+1
=

k∑

n=0

(
N

n

)
· ρn +

k+c∑

n=k+1

N ! · ρn
(N − n)! · k! · kn−k

(3.15)

and thus is finite for every value ofρ. The stationary distributionπ is given by

π0 =

(
k∑

n=0

(
N

n

)
· ρn +

k+c∑

n=k+1

N ! · ρn
(N − n)! · k! · kn−k

)−1
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and

πn = π0 ·
(
N

n

)
· ρn, 1 ≤ n ≤ k

πn = π0 ·
N ! · ρn

(N − n)! · k! · kn−k
, k + 1 ≤ n ≤ k + c

There are several interesting special cases. Forc = 0 there is no room for a
queue of waiting jobs. Then the stationary distribution simplifies to a binomial
distribution with parameters(N, p), wherep = ρ/(1 + ρ), which is truncated to
the statesn = 0, . . . , k. Such a distribution is called anEngset distribution.
Forc = N −k the queue has an important application in reliability theory. This is
known as themachine repair problem. In a production site there areN machines
which are prone to failure. Each of them breaks down after a working time which
is exponentially distributed with parameterλ. There arek repairmen that take
care of the broken machines sequentially. The repair times are exponential with
parameterµ. Then the system process of theM/M/k/N/N queue yields the
number of broken machines.

Notes

The models presented in this chapter are the oldest within queueing theory. Ap-
plications to telephone networks date back to the beginningof the 20th century,
notably Erlang [7] and Engset [6].
Skip–free Markov processes have been extensively used for populations models.
Therefore the name birth–and–death processes is very popular for them, withλi

andµi denoting the transition rates for a birth and a death, respectively, if the
population hasi members. However, the authors think that such a name is inap-
propriate for queueing models and thus prefer the more technical term skip–free.
For more Markovian queueing models see Kleinrock [15]. An analysis of non–
homogeneous (namely periodic) Markovian queues is given inBreuer [2, 3].

Exercise 3.19Verify the formulaVar(N) = ρ/(1 − ρ)2 for the stationary vari-
ance of the number of users in the M/M/1 queue.

Exercise 3.20Show that the equation system (3.11) is equivalent to the balance
equations for a skip–free Markov process. Prove the form (3.12) of its solution.

Exercise 3.21Prove Erlang’s delay formula (3.14).
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Exercise 3.22Compare the stationary mean number of users in the system for
the following three queueing systems: (a) an M/M/1 queue with arrival intensity
λ and service rateµ, (b) an M/M/2 system with arrival intensityλ and service rate
µ/2, and (c) two independent M/M/1 queues with arrival intensity λ/2 to each of
them and equal service rateµ. Explain the differences.

Exercise 3.23Explain equation (3.15).

Exercise 3.24Show that the stationary distribution for anM/M/k/k/N queue
is an Engset distribution.

Exercise 3.25Analyze the M/M/1/c queue with arrival intensityλ and service
rateµ. This always has a stationary distributionπ. Show that in the limitc →
∞, there are two possibilities: Eitherρ < 1 andπ converges to the stationary
distribution of the M/M/1 queue, orρ ≥ 1 andπ converges to the zero measure.

Exercise 3.26Examine the M/M/1 queue with users who are discouraged by long
queue lengths. This can be modelled by arrival ratesλn = λ/(n + 1) for all
n ∈ N0. Show that the stationary distribution is Poisson.
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Chapter 4

Renewal Theory

4.1 Renewal Processes

Be (Xn : n ∈ N0) a sequence of independent positive random variables, and
assume that(Xn : n ∈ N) are identically distributed. Define the sequenceS =
(Sn : n ∈ N) by S1 := X0 andSn+1 := Sn + Xn for all n ∈ N. The random
variableSn, with n ∈ N, is called thenth renewal time, while the time duration
Xn is called thenth renewal interval. Further define the random variable of the
number of renewals until timet by

Nt := max{n ∈ N : Sn ≤ t}

for all t ≥ 0 with the conventionmax ∅ = 0. Then the continuous time process
N = (Nt : t ∈ R

+
0 ) is called arenewal process. The random variableX0 is

called thedelay of N . If X0 andX1 have the same distribution, thenN is called
anordinary renewal process.
We will always assume thatP(X1 = 0) = 0 andm := E(X1) < ∞ is finite.
The strong law of large numbers implies thatSn/n → m with probability one as
n → ∞. HenceSn < t cannot hold for infinitely manyn and thusNt is finite
with probability one. By standard notation we will write

G(x) := P(X0 ≤ x) and F (x) := P(X1 ≤ x)

for all x ∈ R
+
0 .

Example 4.1 A light bulb has been installed at time zero. After a durationX0, it
will go out of order. We assume that it will be immediately replaced by a new light

57
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bulb at timeS1 = X0. Assume that the new light bulb is of a type identical to the
old one. Then the durationX1 until it goes out of order is distributed identically to
X0. Of course, the life times of the light bulbs are independentfrom one another.
Keeping up this rechangement policy over time, the numberNt of used light bulbs
until time t forms an ordinary renewal process.

Remark 4.2 A Poisson process with intensityλ (see example 3.1) is an ordinary
renewal process withF (x) = G(x) = 1− e−λx, i.e. the renewal intervals have an
exponential distribution. Thus a renewal process can be seen as a generalization
of the Poisson process with respect to the distribution of the renewal intervals.

In order to derive an expression for the distribution and theexpectation ofNt at
any timet, we need to introduce the concept ofconvolutions of a non–negative
function and a distribution function. LetF denote a distribution function onR+

0

andg : R+
0 → R

+
0 a Lebesgue–measurable function which is bounded on all finite

intervals[0, t] with t ≥ 0. Then the function defined by

F ∗ g(t) :=
∫ t

0

g(t− u) dF (u)

for all t ∈ R is called the convolution ofF andg. In particular, the definition of
a convolution applies ifg is a distribution function. As an exercise the reader can
prove

Theorem 4.3 For any distribution functionsF and G as well as non–negative
Lebesgue–measurable functions(gn : n ∈ N) on R

+
0 , the following properties

hold:
(1) The convolutionF ∗G is a distribution function onR+

0 .
(2) F ∗G = G ∗ F
(3) F ∗∑∞

n=1 gn =
∑∞

n=1 F ∗ gn
(4) The Dirac measureδ0 on 0 with distribution functionI0, which is defined
by I0(t) := 1 for all t ≥ 0 and I0(t) := 0 otherwise, is neutral in regard to
convolutions, i.e.I0 ∗G = G for all distribution functionsG.
(5) If the random variablesX andY are independent and distributed according
toF andG, respectively, thenP(X + Y ≤ t) = F ∗G(t) for all t ≥ 0.
(6) F ∗ (G ∗ g) = (F ∗G) ∗ g

Let F denote any distribution function for a real–valued random variable. Define
theconvolutional powers byF ∗1 := F and recursivelyF ∗n+1 := F ∗n ∗ F for all



4.1. RENEWAL PROCESSES 59

n ∈ N. Because of property (4) in the above theorem, we defineF ∗0 := I0 for
every distribution functionF .
Now denote the distribution function of the random variableX1 (and hence of all
Xn with n ≥ 1) andX0 by F andG, respectively. Since the random variables
(Xn : n ∈ N) are iid, part (5) of the above theorem yields for alln ∈ N0 the
relationP(Nt ≥ n) = P(Sn ≤ t) = G ∗ F ∗n−1(t) and thus we obtainP(Nt =
0) = 1−G(t) and

P(Nt = n) = P(Sn ≤ t)− P(Sn+1 ≤ t) = G ∗ F ∗n−1(t)−G ∗ F ∗n(t)

for n ≥ 1. The expectation ofNt is given by

E(Nt) =

∞∑

n=1

P(Nt ≥ n) =

∞∑

n=1

P(Sn ≤ t) = G ∗
∞∑

n=0

F ∗n(t) (4.1)

for all t ≥ 0 (for the first equality see Exercise 4.19). The rate of growthof a
renewal process is described by

Theorem 4.4 Let N = (Nt : t ≥ 0) denote a renewal process with renewal
intervals having mean lengthm < ∞. Then

lim
t→∞

Nt

t
=

1

m

holds with probability one.

Proof: By definition ofNt, the inequalitiesSNt
≤ t ≤ SNt+1 hold with proba-

bility one for all timest. Dividing these byNt and using the strong law of large
numbers, we obtain

m = lim
n→∞

Sn

n
= lim

t→∞

SNt

Nt

≤ lim
t→∞

t

Nt

≤ lim
t→∞

(
SNt+1

Nt + 1
· Nt + 1

Nt

)
= lim

n→∞

Sn+1

n+ 1
· lim
n→∞

n + 1

n
= m · 1

which proves the statement.
�

Because of this theorem, the inverse1/m of the mean length of a renewal interval
is called therate of the renewal process. It describes the asymptotic rate at which
renewals occur.
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Example 4.5 Regarding a Poisson processN = (Nt : t ≥ 0) with intensity
λ > 0, it can be shown that

P(Nt = n) =
(λt)n

n!
e−λt (4.2)

for all t ≥ 0 andn ∈ N0. The expectation ofNt is given byE(Nt) = λ · t.
Thus a Poisson process with intensityλ has at timet a Poisson distribution with
parameterλ · t. Moreover, the intensityλ is also the rate of the Poisson process,
since a mean renewal interval has length1/λ.
Given an observed stream of events (e.g. job requests at a server) over some time
interval of lengtht, we can count the numberN(t) of events that have occurred
in this interval. If we want to model such event streams by a Poisson process,
then we need to find a statistical estimator for the intensityλ. Now theorem 4.4
states that the fractionN(t)/t comes close toλ for large interval lengthst. Thus
a consistent statistical estimator for the intensityλ is given byλ̂ = N(t)/t.

Example 4.6 There is a discrete–time analogue of the Poisson process, which
is calledBernoulli process. This is an ordinary renewal process with renewal
intervals that have a geometric distribution. Given a parameterp ∈]0, 1[, the length
of the renewal intervals is distributed asP(X1 = n) = p · (1− p)n−1 for n ∈ N.

4.2 Renewal Function and Renewal Equations

The function defined byR(t) :=
∑∞

n=1 F
∗n(t) for all t ≥ 0 is called there-

newal function of the processN . The renewal function will play a central role in
renewal theory. First we need to show that it remains finite:

Theorem 4.7 If F (0) < 1, thenR(t) =
∑∞

n=1 F
∗n(t) < ∞ for all t ≥ 0.

Proof: SinceF (0) < 1 andF is continuous to the right, there is a numberα > 0
such thatF (α) < 1. Fix any t ≥ 0 and choosek ∈ N such thatk · α > t.
ThenF ∗k(t) ≤ 1 − (1 − F (α))k =: 1 − β with 0 < β < 1. Thence we obtain
the boundF ∗mk(t) ≤ (1 − β)m for anym ∈ N. SinceF (0−) = 0, we can use
F ∗n(t) ≥ F ∗h(t) for all n < h ∈ N. Putting these bounds together, we obtain

R(t) =

∞∑

n=1

F ∗n(t) ≤ k ·
∞∑

m=0

F ∗mk(t) ≤ k ·
∞∑

m=0

(1− β)m =
k

β
< ∞
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sinceβ > 0.
�

Theorem 4.8 An ordinary renewal process is uniquely determined by its renewal
function.

Proof: First we take the Laplace–Stieltjes transform (LST, see appendix 5.3) on
both sides of the equationR(t) =

∑∞
n=1 F

∗n(t). This yields

R̃(s) =

∞∑

n=1

F̃ ∗n(s) = F̃ (s) ·
∞∑

n=0

(F̃ (s))n =
F̃ (s)

1− F̃ (s)
(4.3)

for s > 0, or

F̃ (s) =
R̃(s)

1 + R̃(s)

and thus determines the LST̃F (s) of F uniquely in terms ofR̃(s). Now unique-
ness of the LST yields the statement.
�

For an ordinary renewal process we can derive an implicit integral equation for the
renewal function, which is known as a renewal equation. Notethat for an ordinary
renewal processE(Nt) = R(t) for all timest (see (4.1) withG = F ). Hence the
functionR is increasing. If we condition upon the lengthx of the first renewal
intervalX0, we obtain

E(Nt) =

∫ ∞

0

E(Nt|X0 = x) dF (x)

SinceE(Nt|X0 = x) = 1+R(t− x) for t ≥ x andE(Nt|X0 = x) = 0 for t < x,
we can simplify this equation to

R(t) =

∫ t

0

(1 +R(t− x)) dF (x) = F (t) +

∫ t

0

R(t− x) dF (x)

for all t ≥ 0. A renewal equationis the generalized form

g(t) = h(t) +

∫ t

0

g(t− x) dF (x), t ≥ 0 (4.4)

where a functionh on [0,∞[ and a distribution functionF on [0,∞[ are given and
the functiong on [0,∞[ is unknown. The solution is given in
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Theorem 4.9 The unique solutiong to equation (4.4) is given by

g(t) =

∫ t

0

h(t− x) dR(t) + h(t)

whereR(t) =
∑∞

n=1 F
∗n(t) denotes the renewal function forF .

Proof: Equation (4.4) can be written asg = h + g ∗ F . Because of the definition
R =

∑∞
n=1 F

∗n we obtain

F ∗ (R ∗ h+ h) = F ∗ h+
∞∑

n=1

F ∗n+1 ∗ h =
∞∑

n=1

F ∗n ∗ h = R ∗ h

which shows thatg = R ∗ h+ h is indeed a solution of (4.4).
Let g′ denote another solution and define the function

δ := g′ −R ∗ h− h

Then (4.4) impliesδ = F ∗ δ and thusδ = F ∗n ∗ δ for all n ∈ N. SinceR(t) < ∞
for any fixedt ≥ 0, we infer thatF ∗n → 0 asn → ∞. Henceδ(t) = 0 for all
t ≥ 0, which completes the proof.
�

4.3 Renewal Theorems

In order to present the most powerful results of renewal theory, it will be useful
to introduce stopping times and Wald’s lemma. Recall from (2.3) that a random
variableS with values inN0 ∪ {∞} is called a stopping time for the sequence
X = (X0 : n ∈ N0) if

P(S ≤ n|X ) = P(S ≤ n|X0, . . . , Xn) (4.5)

holds for alln ∈ N0.

Lemma 4.10 For a renewal processN with delayX0 and renewal intervals(Xn :
n ∈ N), the random variableNt is a stopping time for the sequence(Xn : n ∈
N0).
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Proof: This follows from the observation thatNt = k is equivalent to

k−1∑

n=0

Xn ≤ t <

k∑

n=0

Xn

which implies that the eventNt ≤ k depends only onX0, . . . , Xk.
�

Lemma 4.11 Wald’s Lemma
BeX = (Xn : n ∈ N0) a sequence of stochastically independent positive random
variables with the same expectationE(Xn) = m for all n ∈ N. The expectations
E(X0) andE(X1) shall be finite. Further beS a stopping time of the sequenceX
with E(S) < ∞. Then

E

(
S∑

n=0

Xn

)
= E(X0) + E(S) ·m

Proof: For all n ∈ N0 define the random variablesIn := 1 on the set{S ≥ n}
andIn := 0 else. Then

∑S
n=0Xn =

∑∞
n=0 InXn and hence

E

(
S∑

n=0

Xn

)
= E

(
∞∑

n=0

InXn

)
=

∞∑

n=0

E(InXn)

by monotone convergence, asIn andXn are non–negative.S being a stopping
time forX , we obtain by definitionP(S ≥ 0) = 1, and further

P(S ≥ n|X ) = 1− P(S ≤ n− 1|X ) = 1− P(S ≤ n− 1|X0, . . . , Xn−1)

for all n ∈ N. Since theXn are independent,In andXn are independent, too,
which impliesE(I0X0) = E(X0) and

E(InXn) = E(In) · E(Xn) = P(S ≥ n) ·m
for all n ∈ N. Now the relation

∑∞
n=1 P(S ≥ n) = E(S) yields

E

(
S∑

n=0

Xn

)
=

∞∑

n=0

E(InXn) = E(X0) +

∞∑

n=1

P(S ≥ n) ·m

= E(X0) + E(S) ·m

�



64 CHAPTER 4. RENEWAL THEORY

Theorem 4.12 Elementary Renewal Theorem
BeN a renewal process with renewal intervals(Xn : n ∈ N) and mean renewal
timeE(X1) = m > 0. Assume further that the mean delay is finite, i.e.E(X0) <
∞. Then for the counting functionNt the limit

lim
t→∞

E(Nt)

t
=

1

m

holds, with the convention1/∞ := 0.

Proof: For everyt ≥ 0, the boundt <
∑Nt

n=0Xn holds almost surely. By Wald’s
lemma, this implies

t < E

(
Nt∑

n=0

Xn

)
= E(X0) + E(Nt) ·m

and thence form < ∞
1

m
− E(X0)

m · t <
E(Nt)

t

for all t ≥ 0. ForE(X0) < ∞ andt → ∞, this yields the bound

lim inf
t→∞

E(Nt)

t
≥ 1

m

which trivially holds for the casem = ∞.
Now it remains to show thatlim supt→∞ E(Nt)/t ≤ 1/m. To this aim we consider
the truncated renewal process, denoted byÑ , with the same delaỹX0 = X0 but
renewal intervals̃Xn = min(Xn,M) for all n ∈ N, withM being a fixed constant.
Denote further̃m = E(X̃1).

Because ofX̃n ≤ M the bound
∑Ñt

n=0 X̃n ≤ t +M holds almost certainly for all
t ≥ 0. Taking expectations and applying Wald’s lemma, we obtain

E(X0) + E(Ñt) · m̃ = E




Ñt∑

n=0

X̃n


 ≤ t+M

ForE(X0) < ∞ andt → ∞, this yields

lim sup
t→∞

E(Ñt)

t
≤ 1

m̃
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SinceX̃n ≤ Xn for all n ∈ N, we know thatÑt ≥ Nt for all t ≥ 0. Thus we
obtain further

lim sup
t→∞

E(Nt)

t
≤ 1

m̃

for any constantM . Now the result follows forM → ∞.
�

Remark 4.13 In view of theorem 4.4 one might be tempted to think that this
trivially implied the statement of the above theorem 4.12. However, the following
example shows that a limit with probability one in general does not imply a limit
in expectation.
Let U denote a random variable which is uniformly distributed on the interval
]0, 1[. Further define the random variables(Vn : n ∈ N) by

Vn :=

{
0, U > 1/n

n, U ≤ 1/n

SinceU > 0 with probability one, we obtain the limit

Vn → 0, n → ∞

with probability one. On the other hand, the expectation forVn is given by

E(Vn) = n · P(U ≤ 1/n) = n · 1
n
= 1

for all n ∈ N and thusE(Vn) → 1 asn → ∞.

4.4 Residual Life Times and Stationary Renewal Pro-
cesses

Choose any timet ≥ 0. Denote the duration fromt until the next arrival by
Bt := SNt+1 − t and call it theresidual life time (or theexcess life) at t. Further
we defineAt := t − SNt

and callAt the ageat t. These definitions imply the
equality{At > x} = {Bt−x > x} for all x < t.
For astationary renewal processwe would postulate that the distribution of the
counts in an interval[s, s + t] be independent ofs and thus equal the distribution
of Nt. If this holds for a processN , then we also say thatN hasstationary
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increments. This implies in particular that the distribution of the residual life
time must be independent oft, i.e. it coincides with the distribution ofB0 and
hence ofX0. We first guess that it satisfies

P(X0 ≤ x) =
1

m

∫ x

0

(1− F (y)) dy (4.6)

for all x ≥ 0, whereF denotes the distribution function ofX1 and furtherm =
E(X1) < ∞. Indeed we can show

Theorem 4.14 For a renewal processN defined by (4.6) the following properties
hold:
(1)E(Nt) = t/m for all t ≥ 0
(2) P(Bt ≤ x) = m−1

∫ x

0
(1− F (y)) dy for all t ≥ 0

(3)N has stationary increments.

Proof: (1) The distributionG of X0 has a densityg(t) = 1
m
(1− F (t)) Hence the

Laplace–Stieltjes transform (LST) ofG is

G̃(s) =

∫ ∞

0

e−st 1

m
(1− F (t)) dt =

1

m

(∫ ∞

0

e−st dt−
∫ ∞

0

e−stF (t) dt

)

=
1

m

(
1

s
− 1

s

∫ ∞

0

e−st dF (t)

)
=

1− F̃ (s)

sm

with F̃ (s) denoting the LST ofF . According to (4.1) we have the representation
E(Nt) = G ∗∑∞

n=0 F
∗n(t) for all t ≥ 0. Hence the LST ofM(t) := E(Nt) is

given by

M̃(s) =
G̃(s)

1− F̃ (s)
=

1

sm

for all s > 0, and thus coincides with the LST of the measuredx/m. Since the
LST uniquely determines a function on[0,∞[, this proves the first statement.
(2) The joint distributions

P(Bt > x,Nt = 0) = 1−G(t+ x)

P(Bt > x,Nt = n) =

∫ ∞

0

P(Bt > x,Nt = n|Sn = y) dG ∗ F ∗n−1(y)

=

∫ t

0

(1− F (t+ x− y)) dG ∗ F ∗n−1(y)
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for n ≥ 1 are immediate from the definition. AbbreviatingF c(x) := 1 − F (x),
Gc(x) := 1−G(x), and denotingM(t) := E(Nt), we can write

P(Bt > x) =
∞∑

n=0

P(Bt > x,Nt = n)

= Gc(t+ x) +
∞∑

n=1

∫ t

0

F c(t + x− y) dG ∗ F ∗n−1(y)

= Gc(t+ x) +

∫ t

0

F c(t+ x− y) d

(
∞∑

n=1

G ∗ F ∗n−1

)
(y)

= Gc(t+ x) +

∫ t

0

F c(t+ x− y) dM(y)

Using statement (1) and the definition ofG, we obtain

P(Bt > x) = 1− 1

m

∫ t+x

0

(1− F (y)) dy +
1

m

∫ t

0

(1− F (t+ x− y)) dy

= 1− 1

m

∫ x

0

(1− F (y)) dy

which proves the second statement.
(3) The differenceNt+s −Ns simply counts the numberN ′

t of events in timet of
the renewal processN ′ with the same distributionF of X1 but a delayX ′

0 ∼ Bs.
Now statement (2) shows thatX0 ∼ Bs = B0. Hence we obtainN ′

t = Nt =
Nt+s −Ns in distribution, which was to be proven.
�

Because of the results above a renewal process which satisfies condition (4.6) is
calledstationary renewal process. As one would expect, also the mean residual
life time E(Bt) of a stationary renewal process coincides with the limit of the
mean residual life time of an ordinary renewal process:

Lemma 4.15 For a non–negative random variableX thenth moment can be ex-
pressed by

E(Xn) =

∫ ∞

0

P(X > x) · nxn−1 dx

Proof: This follows simply by writing

E(Xn) =

∫ ∞

0

P(Xn > z) dz =

∫ ∞

0

P(X > n
√
z) dz
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and substitutingx = n
√
z with nxn−1 dx = dz.

�

Theorem 4.16 For a stationary renewal process withE(X2
1 ) < ∞ the mean

residual life time is given by

E(Bt) =
E(X2

1 )

2m

independently oft ≥ 0.

Proof: Using part (2) of theorem 4.14, we obtain

E(Bt) =

∫ ∞

0

P(Bt > y) dy =
1

m

∫ ∞

y=0

∫ ∞

x=y

(1− F (x)) dx dy

=
1

m

∫ ∞

x=0

∫ x

y=0

(1− F (x)) dy dx =
1

m

∫ ∞

x=0

P(X1 > x) · x dx

and the statement follows from lemma 4.15.
�

Example 4.17 Waiting time at a bus stop
Consider a bus stop where buses are scheduled to arrive in intervals of length
T . However, due to traffic variations the real inter–arrival times are uniformly
distributed within intervals[T − a, T + a] with somea > 0. Now suppose
that somebody arrives at the bus stop ”at random”, i.e. without knowing the bus
schedule. Then we can model the mean waiting time for the nextbus by the
mean residual life timeE(Bt) in a stationary renewal process with distribution
X1 ∼ U(T − a, T + a). We obtain

E(X2
1 ) =

1

2a

∫ T+a

T−a

x2 dx =
1

2a
· 1
3

(
6T 2a + 2a3

)
= T 2 +

a2

3

and by theorem 4.16

E(Bt) =
T 2 + a2

3

2 · T =
T

2
+

a2

6 · T
Thus the mean waiting time for random inter–arrival times (meaninga > 0) is
longer than it would be for deterministic ones (namelyT/2). This phenomenon is
called thewaiting time paradox.
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Notes

A classical presentation of renewal theory is chapter 11 in Feller [9]. The pre-
sentation in this chapter is largely adapted to Ross [17, 18]as well as Karlin and
Taylor [14].

Exercise 4.18Prove theorem 4.3.

Exercise 4.19In the proof for Wald’s lemma 4.11 we have used the relation
E(S) =

∑∞
n=0 P(S > n). For a positive continuous distribution functionF ,

the equivalent isE(F ) =
∫∞

0
(1− F (y)) dy. Give a proof for these equations.

Exercise 4.20Show for a Poisson processN with intensityλ > 0 that

P(Nt = k) =
(λt)k

k!
e−λt

for all t ≥ 0 andk ∈ N0, andE(Nt) = λ · t.

Exercise 4.21A plumber receives orders at time intervals which are distributed
exponentially with parameterλ. As soon as he has received an order he goes to
work, which takes an exponentially distributed time with parameterµ. During
work he cannot receive any orders. Assume that at time zero the plumber is work-
ing. Give a model of the plumber receiving orders in terms of arenewal process
and determine the density of the renewal intervals’ distribution.

Exercise 4.22An intelligence agency eavesdrops on telephone calls automati-
cally. If there occurs a suspicious sequence of words, a closer investigation is
initiated. The probabilitiy for such a sequence is one in a thousand for every call.
The length of a call is distributed exponentially with a meanof 20 seconds. How
long is the expected amount of time before a closer investigation begins? Use
Wald’s lemma.

Exercise 4.23Let N = (Nt : t ≥ 0) denote an ordinary renewal process with
X1 ∼ F . Show that the current life timeXNt

satisfies

P(XNt
> x) ≥ 1− F (x)

for all x ≥ 0.
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Exercise 4.24Show that the ageAt of a stationary renewal process is distributed
as

P(At ≤ x) =
1

m

∫ x

0

(1− F (y)) dy

independently oft ≥ 0.



Chapter 5

Appendix

5.1 Conditional Expectations and Probabilities

Let (Ω,A, P ) denote a probability space and(S,B) a measurable space. Aran-
dom variable is a measurable mappingX : Ω → S, which means thatX−1(B) ∈
A for all B ∈ B. In other words,X is a random variable if and only ifX−1(B) ⊂
A. In stochastic models, a random variable usually gives information on a certain
phenomenon, e.g. the number of users in a queue at some specific time.
Consider any real–valued random variableX : (Ω,A) → (R,B), B denoting the
Borel σ–algebra onR, which is integrable or non–negative. While the random
variableX itself yields the full information, a rather small piece of information
onX is given by itsexpectation

E(X) :=

∫

Ω

X dP

The conditional expectation is a concept that yields a degree of information which
lies between the full informationX and its expectationE(X).
To motivate the definition, we first observe that the distributionPX = P ◦X−1 of
X is a measure on the sub–σ–algebraX−1(B) of A, i.e. in order to compute

P (X ∈ B) = PX(B) =

∫

X−1(B)

dP

we need to evaluate the measureP on sets

A := X−1(B) ∈ X−1(B) ⊂ A

71
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On the other hand, the expectationE(X) is an evaluation ofP on the setΩ =
X−1(S) only. Thus we can say that the expectation employsP only on the trivial
σ–algebra{∅,Ω}, whileX itself employsP on theσ–algebraX−1(B) generated
byX.
Now we take any sub–σ–algebraC ⊂ A. According to the Radon–Nikodym
theorem there is a random variableX0 : Ω → S with X−1(B) = C and

∫

C

X0dP =

∫

C

XdP (5.1)

for all C ∈ C. This we call theconditional expectationof X underC and write

E(X|C) := X0

A conditional expectation isP–almost certainly uniquely determined by (5.1).
Typical special cases and examples are

Example 5.1 For C = {∅,Ω}, the conditional expectation equals the expecta-
tion, i.e.E(X|C) = E(X). For anyσ–algebraC with X−1(B) ⊂ C we obtain
E(X|C) = X.

Example 5.2 Let I denote any index set and(Yi : i ∈ I) a family of random
variables. For theσ–algebraC = σ(

⋃
i∈I Y

−1
i (B)) generated by(Yi : i ∈ I), we

write
E(X|Yi : i ∈ I) := E(X|C)

By definition we obtain for aσ–algebraC ⊂ A, random variablesX andY , and
real numbersα andβ

E(αX + βY |C) = αE(X|C) + βE(Y |C)

Forσ–algebrasC1 ⊂ C2 ⊂ A we obtain

E(E(X|C2)|C1) = E(E(X|C1)|C2) = E(X|C1) (5.2)

Let C1 andC2 denote sub–σ–algebras ofA, C := σ(C1 ∪ C2), andX an integrable
random variable. Ifσ(X−1(B) ∪ C1) andC2 are independent, then

E(X|C) = E(X|C1)

If X andY are integrable random variables andX−1(B) ⊂ C, then

E(XY |C) = X · E(Y |C) (5.3)
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Conditional probabilities are special cases of conditional expectations. Define the
indicator function of a measurable setA ∈ A by

1A(x) :=

{
1, x ∈ A

0, x /∈ A

Such a function is a random variable, since

1−1
A (B) = {∅, A, Ac,Ω} ⊂ A

with Ac := Ω \ A denoting the complement of the setA. Let C denote a sub–σ–
algebra ofA. The conditional expectation of1A is calledconditional probability
of A. We write

P (A|C) := E(1A|C)
Immediate properties of conditional probabilities are

0 ≤ P (A|C) ≤ 1, P (∅|C) = 0, P (Ω|C) = 1

A1 ⊂ A2 =⇒ P (A1|C) ≤ P (A2|C)
all of which holdP–almost certainly. For a sequence(An : n ∈ N) of disjoint
measurable sets, i.e.An ∈ A for all n ∈ N andAi ∩Aj = ∅ for i 6= j, we obtain

P

(
∞⋃

n=1

An

∣∣∣∣∣ C
)

=
∞∑

n=1

P (An|C)

P–almost certainly. LetX : (Ω,A) → (R,B) denote a non–negative or integrable
random variable andY : (Ω,A) → (Ω′,A′) a random variable. Then there is a
measurable functiong : (Ω′,A′) → (R,B) with

E(X|Y ) = g ◦ Y

This isP Y –almost certainly determined by
∫

A′

g dP Y =

∫

Y −1(A′)

X dP

for all A′ ∈ A′. Then we can define the conditional probability ofX givenY = y
asg(y). We write

E(X|Y = y) := g(y)

for all y ∈ Ω′.
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5.2 Extension Theorems

Throughout this book, our basic stochastic tools are eithersequences of random
variables (such as Markov chains or Markov renewal chains) or even uncount-
able families of random variables (such as Markov processes, renewal processes,
or semi–regenerative processes). It is essential for our models that these random
variables are dependent, and in fact we define them in terms ofconditional prob-
abilities, i.e. via their dependence structure.
It is then an immediate question whether a probability measureP exists that sat-
isfies all the postulates in the definition of a stochastic sequence or process. This
question is vital as it concerns the very existence of the tools we are using.

5.2.1 Stochastic chains

Let (S,B) denote a measurable space,µ a probability measure on(S,B), andPn,
n ∈ N, stochastickernels on (S,B). The latter means that for everyn ∈ N,
Pn : S × B → [0, 1] is a function that satisfies
(K1) For everyx ∈ S, Pn(x, .) is a probability measure on(S,B).
(K2) For everyA ∈ B, the functionPn(., A) isB–measurable.
DefineS∞ as the set of all sequencesx = (xn : n ∈ N0) with xn ∈ S for all
n ∈ N0. A subset ofS∞ having the form

Cn1,...,nk
(A) = {x ∈ S∞ : (xn1

, . . . , xnk
) ∈ A}

with k ∈ N, n1 < . . . < nk ∈ N0, andA ∈ Bk, is calledcylinder (with coordi-
natesn1, . . . , nk and baseA). The setC of all cylinders inS∞ forms an algebra
of sets. DefineB∞ := σ(C) as the minimalσ–algebra containingC.
Now we can state the extension theorem for sequences of random variables, which
is proven in Gikhman and Skorokhod [10], section II.4.

Theorem 5.3 There is a probability measureP on (S∞,B∞) satisfying

P(C0,...,k(A0 × . . .× Ak)) =

∫

A0

dµ(x0)

∫

A1

P1(x0, dx1) . . .

. . .

∫

Ak−1

Pk−1(xk−2, dxk−1) Pk(xk−1, Ak) (5.4)

for all k ∈ N0, A0, . . . , Ak ∈ B. The measureP is uniquely determined by the
system (5.4) of equations.
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The first part of the theorem above justifies our definitions ofMarkov chains and
Markov renewal chains. The second part states in particularthat a Markov chain
is uniquely determined by its initial distribution and its transition matrix.
Based on this result, we may define astochastic chainwith state spaceS as a
sequence(Xn : n ∈ N0) of S–valued random variables which are distributed
according to a probability measureP on (S∞,B∞).

5.2.2 Stochastic processes

Let S denote a Polish (i.e. a complete separable metric) space, and B the Borel
σ–algebra onS. DefineΩ as the set of all functionsf : R+

0 → S. In order to
construct an appropriateσ–algebra onΩ, we again start from the cylinder sets

Ct1,...,tk(A) = {f ∈ Ω : (f(t1), . . . , f(tk)) ∈ A}
for k ∈ N, t1 < . . . < tk ∈ R

+
0 , andA ∈ Bk. Denote the set of all cylinders in

Ω by C. Again,C forms an algebra of sets and we can defineA := σ(C) as the
minimalσ–algebra containingC.
Let M = {µt1,...,tk : k ∈ N, t1, . . . , tk ∈ R

+
0 } denote a family of probability

distributions with
(C1) For allk ∈ N, t1, . . . , tk ∈ R

+
0 , andA ∈ Bk

µt1,...,tk,tk+1
(A× S) = µt1,...,tk(A)

(C2) For allk ∈ N and permutationsπ : {1, . . . , k} → {1, . . . , k}
µπ(t1,...,tk)(π(A)) = µt1,...,tk(A)

Then the familyM is calledcompatible.

Remark 5.4 Condition (C1) ensures that the distributions are consistent with
each other, while condition (C2) is merely notational.

The following extension theorem by Kolmogorov is proven in Gikhman and Sko-
rokhod [12], section 3.2.

Theorem 5.5 Let {µt1,...,tk : k ∈ N, t1, . . . , tk ∈ R
+
0 } denote a compatible family

of probability measures. Then there is a probability measureP on (Ω,A) with

P({f ∈ Ω : (f(t1), . . . , f(tk)) ∈ A}) = µt1,...,tk(A) (5.5)

for all k ∈ N, t1, . . . , tk ∈ R
+
0 , andA ∈ Bk. The measureP is uniquely deter-

mined by the system (5.5) of equations.
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Based on this, we define astochastic processwith Polish state spaceS as a fam-
ily X = (Xt : t ∈ R

+
0 ) of S–valued random variables which are distributed

according to a probability measureP on (Ω,A). An elementω ∈ Ω is an arbi-
trary functionω : R+

0 → S. It is also called apath of X. If we want to state
that the support ofP consists of a special class of functions (say right–continuous
ones), then we say thatX is a stochastic process with right–continuous paths. The
above familyM of probability measures is called the set offinite–dimensional
marginal distributions for X.
Due to theorem 5.5 a Markov process is uniquely defined by its initial distri-
bution and the family of transition probabilities, since they determine all finite–
dimensional marginal distributions. Further our constructions of Markov pro-
cesses, renewal processes, and semi–Markov processes yield compatible sets of
finite–dimensional marginal distributions, hence by theorem 5.5 a probability mea-
sureP for the respective process.

5.3 Transforms

In several parts of the present book, it is essential to arguevia transforms of dis-
tributions. The necessary background for these shall be presented shortly in this
section. For discrete distributions onN0 we will introducez–transforms, while
for distributions onR+

0 the Laplace–Stieltjes transform will be useful.

5.3.1 z–transforms

Let X denote aN0–valued random variable with distributionA = (an : n ∈ N0),
i.e.P(X = n) = an for all n ∈ N0. Then the power series

A∗(z) :=

∞∑

n=0

anz
n (5.6)

converges absolutely forz ∈ C with |z| ≤ 1 and is analytic in this region. We
note thatA∗(z) = E(zX). If A(z) is a given power series for a distribution(an :
n ∈ N0), then the probabilitiesan can be derived as

an =
1

n!

dn

dzn
A(z)

∣∣∣∣
z=0
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for all n ∈ N0. Thus the mapping between discrete distributions onN0 and the
power series in(5.6) is bijective, and we may callA∗(z) the (uniquely determined)
z–transform of X (also: of the distributionA).

Example 5.6 For a Dirac distribution onk ∈ N0 with

an =

{
1, n = k

0, n 6= k

we obtainA∗(z) = zk.

Example 5.7 Let A denote the geometric distribution with some parameterp ∈
]0, 1[, i.e.

an = (1− p)pn

for all n ∈ N0. Thez–transform ofA is given by

A∗(z) = (1− p)

∞∑

n=0

pnzn =
1− p

1− pz

for all |z| ≤ 1.

A very useful feature is the behaviour of thez–transform with respect to the con-
volution of two distributions. LetA = (an : n ∈ N0) andB = (bn : n ∈ N0)
denote two distributions onN0. The convolutionC = A∗B of A andB is defined
as the distributionC = (cn : n ∈ N0) with

cn =
n∑

k=0

akbn−k

for all n ∈ N0. For thez–transform ofC we obtain

C∗(z) =

∞∑

n=0

cnz
n =

∞∑

n=0

n∑

k=0

akbn−kz
n =

∞∑

n=0

akz
k

∞∑

n=k

bn−kz
n−k

= A∗(z) · B∗(z)

for all |z| ≤ 1.
This means that thez–transform of a convolutionA∗B equals the productA∗(z) ·
B∗(z) of the z–transform ofA andB. In terms of random variables we have
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the following representation: LetX andY denote two independentN0–valued
random variables. Then thez–transform of the sumX + Y equals the product of
thez–transforms ofX andY , i.e.

E
(
zX+Y

)
= E

(
zX
)
· E
(
zY
)

for all |z| ≤ 1.

5.3.2 Laplace–Stieltjes transforms

Let X denote anR+
0 –valued random variable with distribution functionF . The

Laplace–Stieltjes transform(LST) ofX (or: of F ) is defined by

F ∗(s) :=

∫ ∞

0

e−stdF (t) = E
(
e−sX

)

for all s ∈ C with Re(s) ≥ 0. The LST uniquely determines its underlying
distribution.

Example 5.8 LetX be exponentially distributed with parameterλ, i.e.X has the
distribution functionF (t) = 1− e−λt with Lebesgue densityf(t) = λe−λt. Then

F ∗(s) =

∫ ∞

0

e−stλe−λt dt =
λ

s+ λ

for Re(s) ≥ 0.

Example 5.9 For the Dirac distributionδx onx ∈ R
+
0 we obtain

δ∗x(s) =

∫ ∞

0

e−stdF (t) with F (t) =

{
0, t < x

1, t ≥ x

and hence
δ∗x(s) = e−sx

for Re(s) ≥ 0.

Like thez–transform, the LST is very useful for dealing with convolutions. Let
X andY denote two independentR+

0 –valued random variables. Then the LST of
the sumX + Y equals the product of the LSTs ofX andY , i.e.

E
(
e−s(X+Y )

)
= E

(
e−sX

)
· E
(
e−sY

)

for all s ∈ C with Re(s) ≥ 0.
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Notes

For more onz–transforms see e.g. Juri [13], or the collection of resultsin Klein-
rock [15], appendix I. For Laplace–Stieltjes transforms see chapter XIII in Feller
[9] or again Kleinrock [15], appendix I.

5.4 Gershgorin’s circle theorem

An important theorem to find bounds for the eigenvalues of a matrix has been
developed by Gershgorin in 1938. For ease of reference it shall be presented in
this section. LetA = (aij)i,j≤m denote a square matrix of dimensionm with
entriesaij ∈ C. The following theorem is calledGershgorin’s circle theorem.

Theorem 5.10 All eigenvalues of the matrixA lie in the unionC :=
⋃m

i=1Ci of
the circles

Ci =

{
z ∈ C : |z − aii| ≤

∑

k 6=i

|aik|
}

Proof: Let x(ν) denote an eigenvector to the eigenvalueλν of A, i.e. Ax(ν) =
λνx

(ν). This implies
m∑

k=1

aikx
(ν)
k = λνx

(ν)
i (5.7)

for all i ≤ m. Since an eigenvector is determined only up to a scalar multiplica-
tive, we can assume without loss of generality that there is acomponent

x
(ν)
i0

= max
1≤j≤m

∣∣∣x(ν)
j

∣∣∣ = 1

of the vectorx(ν). Now (5.7) yields fori = i0 the relation
∑

k 6=i0

ai0,kx
(ν)
k = (λν − ai0,i0) x

(ν)
i0

= λν − ai0,i0

which implies by the triangle inequality

|λν − ai0,i0| ≤
∑

k 6=i0

|ai0,k| ·
∣∣∣x(ν)

k

∣∣∣ ≤
∑

k 6=i0

|ai0,k|

Since every eigenvalue satisfies at least one such inequality, the proof is complete.
�
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Corollary 5.11 If A is diagonally dominated, i.e. if

|aii| >
∑

k 6=i

|aik|

holds for all1 ≤ i ≤ m, then the matrixA is invertible.

Proof: The strict inequality of the assumption implies thataii 6= 0 for all i ≤ m.
Applying theorem 5.10 yields a restriction

|λ| ≥ |aii| − |aii − λ| ≥ |aii| −
∑

k 6=i

|aik| > 0

for every eigenvalueλ of A. Therefore the matrixA has no eigenvalue zero and
thus is invertible.
�
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