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CHAPTER 1. SOME GENERAL DEFINITIONS



Chapter 2

Markov Chains and Queues in
Discrete Time

2.1 Definition

Let X, with n € N, denote random variables on a discrete sgac&he sequence
X = (X, : n € Ny) is called astochastic chain If P is a probability measur&
such that

P (X1 =7|Xo =10, ., Xp =1p) =P (Xpy1 = j| X0 = i) (2.2)

forallig,...,i,,j € Fandn € Ny, thenthe sequenc® shall be called Markov
chain on E. The probability measur@ is called the distribution oft’, andF is
called thestate spaceof X'.

If the conditional probabilitie® (X, = j|X,, = i,) are independent of the time
indexn € Ny, then we call the Markov chai®’ homogeneousnd denote

Dij == P (XnJrl = ]|Xn = Z)

forall ¢, 7 € E. The probabilityp;; is calledtransition probability from state; to
statej. The matrixP := (p;;), ;. shall be calledransition matrix of the chain

X. Condition (2.1) is referred to as théarkov property .
Example 2.1 If (X,, : n € Ny) are random variables on a discrete spacevhich

are stochastically independent and identically distedugshortly: iid), then the
chainX = (X,, : n € Ny) is a homogeneous Markov chain.

3
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Example 2.2 Discrete Random Walk

SetE := Z and let(S, : n € N) be a sequence of iid random variables with values
in Z and distributionr. DefineX, := 0 andX,, := »";_, S foralln € N. Then
the chain¥ = (X,, : n € Ny) is a homogeneous Markov chain with transition
probabilitiesp;; = m;_;. This chain is calledliscrete random walk

Example 2.3 Bernoulli process
SetFE := Nj and choose any parametex p < 1. The definitionsX, := 0 as

well as
{p, j=i+1
Pij = .
1 - p, J=1
for i € Ny determine a homogeneous Markov chain= (X, : n € Np). ltis
calledBernoulli processwith parametep.

So far, al examples have been chosen as to be homogeneouslldweng theo-
rem shows that there is a good reason for this:

Theorem 2.4Be X = (X,, : n € Ny) a Markov chain on a discrete state space
E. Then there is a homogeneous Markov chdin= (X, : n € Ny) on the state
spaceFE x Ny such thatX,, = pri(X)) for all n € Ny, with pr; denoting the
projection to the first dimension.

Proof: Let X be a Markov chain with transition probabilities
Pnjij -—= ]P)(Xn—i—l = j|Xn = Z)

which may depend on the time instant Define the two—dimensional random
variablesX := (X,,n) for all n € Ny and denote the resulting distribution of
the chain’ = (X : n € Ny) by . By definition we obtainX,, = pry(X/,) for
all n € Nj.

FurtherP’(X{ = (i, k)) = dro - P(X, = ) holds for alli € F, and all transition
probabilities

PGy = P (X = (0, D X5 = (4, k) = O1kr1 - Prij

can be expressed without a time index. Hence the Markov ckiais homoge-
neous.

O

Because of this result, we will from now on treat only homogmus Markov
chains and omit the adjective "homogeneous".
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Let P denote the transition matrix of a Markov chain BnThen as an immediate
consequence of its definition we obtain € [0, 1| foralli,j € E andzjeE Pij =

1 foralli € E. A matrix P with these properties is calledstochastic matrix
on E. In the following we shall demonstrate that, given an ihigisstribution, a
Markov chain is uniquely determined by its transition matithus any stochastic
matrix defines a family of Markov chains.

Theorem 2.5 Let X denote a homogeneous Markov chain@mwith transition
matrix P. Then the relation

P (Xn—i—l =J1,--- aXn—i—m = ]m|Xn = Z) =Digji - Pjm_1,9m
holds for alln € Ng, m € N, andi, j1,...,jm € E.

Proof: This is easily shown by induction an. Form = 1 the statement holds
by definition of P. Form > 1 we can write

]P)(Xn—i-l =155 Xngm = ]m|Xn = Z)
P(Xns1 =715 Xowm = Jm, Xn = 1)
P (X, =)
B P(Xns1 =715 Xotm = Jm, X = 1)
a ]P<Xn+1 =J1 s Xngme1 = Jm-1, Xn = Z)
]P<Xn+1 =J1 s Xngdme1 = Jm—1, Xn = Z)

X

P(X, =i
=P (Xnim = JmnlXn =4, X01 =71, -, Xogpm—1 = Jm-1)
X Dijy -+ Djmriom1
= Pjm1,gm " Pigi - Pim2,jm1

because of the induction hypothesis and the Markov property

O

Let 7 be a probability distribution o with P(X, = i) = m; forall i € E. Then
theorem 2.5 immediately yields

P (Xo =Jo. X1 =J1,-- -, X = jm) = Ty " Pjo,j1 -+ * Pim—1,jm (2.2)

for allm € N andj,...,j» € E. The chain with this distributiof® is denoted
by X™ and called ther—version of X’. The probability measure is calledinitial
distribution for X'.
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Theorem 2.5 and the extension theorem by Tulcea (see appgrjishow that
a Markov chain is uniquely determined by its transition nxaaind its initial dis-
tribution. Whenever the initial distributiom is not important or understood from
the context, we will simply writeY instead ofY™. However, in an exact manner
the notationY denotes the family of all the versiods™ of X', indexed by their
initial distributionr.

Theorem 2.6 Let X denote a homogeneous Markov chain with transition matrix
P. Then the relation

holds for allm,n € Ny andi, j € E, with P (4, ) denoting the(i, 7)th entry of
themth power of the matrix°. In particular, P° equals the identity matrix.

Proof: This follows by induction onn. Form = 1 the statement holds by
definition of P. Form > 1 we can write

]P)(Xn-i—m = ja Xy = Z)
P(X, — i)

= Z P (Xn+m = J, Xontm—1 =k, X = Z)
P(Xnim1 =k, X, =1)

P( X = j| X, = i) =

keE
% ]:P) (Xn+m,1 — k, Xn = 'l)
P(X, =)
= S TP (Xosm = 1 Xutmet = by Xo = i) - P™7 (i, )
keE
= pij - PN k) = P, )
keE

because of the induction hypothesis and the Markov property

O

Thus the probabilities for transitionsin steps are given by theth power of the
transition matrixP. The ruleP™*™ = P™P" for the multiplication of matrices
and theorem 2.6 lead to the decompositions

P(Xin = j|Xo =) = Y P(X, = k| Xo = i) - P(X,, = j| Xo = k)

keE

which are known as th€Ehapman—-Kolmogorov equations
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For later purposes we will need a relation closely relatetthéoMarkov property,
which is called thestrong Markov property . Let 7 denote a random variable
with values inN, U {oo}, such that the condition

P(r < n|X) =P(r < n|Xo,...,X,) (2.3)

holds for alln € Ny. Such a random variable is called a (discret®)pping
time for X'. The defining condition means that the probability for thergfr <
n} depends only on the evolution of the chain until timeln other words, the
determination of a stopping time does not require any kndgdeof the future.
Now the strong Markov property is stated in

Theorem 2.7 Let X denote a Markov chain and a stopping time forX with
P(r < o0) = 1. Then the relation

IP)(XTer = .]‘XO = i07 s 7XT = ZT) = ]P)(Xm = .]‘XO = ZT)
holds for allm € N andiy,...,i,,j € E.

Proof: The fact that the stopping timeis finite and may assume only countably
many values can be exploited in the transformation

P(Xrm = jIXo =0, ..., X7 = i)

= P(r=n,Xrip = jlXo =i0,.... X; = i)
n=0

=Y P(Xop =jlr=n,Xo =40, ..., X: = i)
n=0
XP(TIH‘XOI’io,...7XT:Z.T)

which yields the statement, ass finite with probability one.
0
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2.2 Classification of States

Let X denote a Markov chain with state spaEeand transition matrix°. We
call a statej € E accessiblerom a statei € E if there is a numbem € N

with P(X,, = j| Xy = i) > 0. This relation shall be denoted by— ;. If for

two states, j € F, the relations — j andj — i hold, then; andj are said to
communicate in notationi < 7.

Theorem 2.8 The relation<» of communication between states is an equivalence
relation.

Proof: Because ofP’ = I, communication is reflexive. Symmetry holds by
definition. Thus it remains to show transitivity. For thissame <« j andj < k

for three states, j, £ € E. This means that there are numbersn € Ny with
P™(i,7) > 0and P"(j,k) > 0. Hence, by the Chapman—Kolmogorov equation,
we obtain

P(Xpin = k| Xo =) = > P(X,, = h|Xo = i) - P(X,, = k| X, = h)
heE
> P(X = j[Xo =1) - P(Xy, = k[ X =j) >0

which proves — k. The remaining proof ok — i is completely analogous.

O

Because of this result and the countability, we can dividediate spacé& of a
Markov chain into a partition of countably many equivalentasses with respect
to the communication of states. Any such equivalence claal Ise calledcom-
munication class A communication clas€' C FE that does not allow access to
states outside itself, i.e. for which the implication

i—j, ieC = jecC

holds, is callectlosed If a closed equivalence class consists only of one state,
then this state shall be calleabsorbing. If a Markov chain has only one com-
munication class, i.e. if all states are communicatingj ihes calledirreducible.
Otherwise it is callededucible.

Example 2.9 Let X denote a discrete random walk (see example 2.2) with the
specificationt; = p andw_; = 1 — p for some parametdr < p < 1. ThenX’ is
irreducible.
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Example 2.10 The Bernoulli process (see example 2.3) with non—triviahpze-
ter0 < p < listothe highest degree reducible. Every state N, forms an own
communication class. None of these is closed, thus thenecabsorbing states.

Theorem 2.11 Be X a Markov chain with state spade and transition matrixP.
LetC' = {c, :n € I} C Ewith] C N be a closed communication class. Define
the matrixP’ by its entrieg; := p,, ., for all i, j € I. ThenP' is stochastic.

Proof: By definition,p;; € [0,1] for all4,j € I. Since C is closeds, , = 0 for
alli € I andk ¢ C. This implies

Zp;j - chivcj =1- chi,k =1

jel jeI k¢C

forall i € I, asP is stochastic.

U

Thus the restriction of a Markov chaiti with state spacé’ to the states of one of
its closed communication class€sdefines a new Markov chain with state space
C. If the states are relabeled according to their affiliatioratcommunication
class, the transition matrix o€ can be displayed in a block matrix form as

Q Q1 Q@ Q3 Qu
0 P O 0 0 ..
p=10 0 B~ 0 0 ... (2.4)

0O 0 0 P O

with P, being stochastic matrices on the closed communicatiose$ds,. The
first row contains the transition probabilities startingnfr communication classes
that are not closed.

Let X denote a Markov chain with state spake In the rest of this section we
shall investigate distribution and expectation of thedaihg random variables:
Define; as the stopping time of tHést visit to the statg € E, i.e.

7; =min{n € N: X, = j}
Denote the distribution of; by
Fk(’l,j) = P(Tj = I{Z|X0 = Z)

foralli,j € Eandk € N.
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Lemma 2.12 The conditional distribution of the first visit to the statec F,
given an initial stateX, = i, can be determined iteratively by

Fk(iJ) = b . h=1
> oz DinFrea(h,j), k>2

foralli,j € F.

Proof: Fork = 1, the definition yields
Fi(i,5) = P(r; = 1|Xo = i) = P(X1 = j|Xo = 1) = pj
forallz,j € E. Fork > 2, conditioning uponX; yields

Fk(iJ) :P<X1 #ju--kafl ?éjan IJ|X0 = Z)

= P(X; = h|Xo =)
Py
XP(Xo#j,.. ., Xpc1 £ 5, Xi = j|Xo =14, X1 = h)

= Zpih'P(Xl FJyos Xpm2 # J, Xim1 = j|Xo = h)
h#j

due to the Markov property.
O
Now define

fi =Pl < oo|Xo =1i) = > Fili, j) (2.5)
k=1

for all i, € FE, which represents the probability of ever visiting statafter
beginning in staté. Summing up over alk € N in the formula of Lemma 2.12
leads to

fij = pi + sz‘hfhj (2.6)

h#j

foralli,j € E. The proof is left as an exercise.
DefineV; as the random variable of thetal number of visits to the statg € E.
Expression (2.6) is useful for computing the distributidn\g:
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Theorem 2.13 Let X denote a Markov chain with state spake The total num-
ber of visits to a stat¢ € F under the condition that the chain starts in stats
given by

P(N; =m|Xo=j) = fI (1= fi;)

= Jij
and fori # j
1 — fij, m =0
fij }?_1(1 - fi), m=>1
Thus the distribution ofV; is modified geometric.
)

L (k+1)
= 1; and T

Proof: Definer;1 := min{n > rj(k) : X, =g} forall k € N,
with the convention thanin §) = co. Note thatr") = co implies7\” = oo for all
[ > k.

Then the sequeno(ej(k) : k € N) is a sequence of stopping times. The event
{N; = m} is the same as the intersection of the ern;@ < oo} for k =

1,..., Mand{r™™ = oo}, with M = mif i # jandM = m—1if i = j. Now

this event can be further described by the intersectiorméﬂents{r}k“)—Tj(k) <

o} fork=0,....M —1 and{rj(MH) - TJ(M) = oo}, with M as above and the
conventionr” := 0.

The subeven{r](k“) — T}k) < oo} has probabilityf;; for £ = 0 and because
of the strong Markov property (see theorem 2.7) probabjfjtyfor £ > 0. The
probability for {TJ(MH) - rj(M) = oo} isl— fi; for M = 0 and1 — f;; for
M > 0. Once more the strong Markov property is the reason for iaddpnce of
the subevents. Now multiplication of the probabilitiesde#o the formulae in the
statement.

O

Summing over alln in the above theorem leads to

Corollary 2.14 For all j € E, the zero—one law

L f; <1

holds, i.e. depending o), there are almost certainly infinitely many visits to a
statej € F.

P(N; < oolXo =j) = {
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This result gives rise to the following definitions: A stgtec F is calledre-
current if f;; = 1 andtransient otherwise. Let us further define tip@tential
matrix R = (r;;); jer Of the Markov chain by its entries

forall 7,7 € E. Thus an entry;; gives the expected number of visits to the state
J € E under the condition that the chain starts in stateE. As such,;; can be
computed by

=> P"(i,j) (2.7)
n=0
foralli,j € E. The results in theorem 2.13 and corollary 2.14 yield

Corollary 2.15 For all i, j € E the relations
rij=(1—fiy)™  and 1y = fyry,

hold, with the convention& ™! := oo and0 - oo := 0 included. In particular, the
expected numbet;; of visits to the statg € E is finite if j is transient and infinite
if j is recurrent.

Theorem 2.16 Recurrence and transience of states are class propertidsre4
spect to the relatior~. Furthermore, a recurrent communication class is always
closed.

Proof: Assume that € F is transient and < j. Then there are numbers
m,n € Nwith0 < P™(i,5) < 1and0 < P"(j,7) < 1. The inequalities

ZPkZZZi m+h+nl2>PmZ] ]’ Zpkjj
k=0 h=0

now imply r;; < oo because of representation (2.7). According to corollaiy 2.
this means that is transient, too.
If 5 is recurrent, then the same inequalities lead to

T > P"(i, 5)P"(j, 1 )TJJ =0

which signifies that is recurrent, too. Since the above arguments are symmetric
in ¢ andj, the proof of the first statement is complete.
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For the second statement assume that £ belongs to a communication class
C C E andp;; > 0 for some statg € £\ C. Then

Jis = pii + Zpihfhi <Il-py<l
hoti

according to formula (2.6), sincg; = 0 (otherwise: <+ j). Thus: is transient,
which proves the second statement.
O

Theorem 2.17 If the statej € F is transient, thedim,, ., P"(i,j) = 0, regard-
less of the initial state ¢ E.

Proof: If the statej is transient, then the first equation in corollary 2.15 yseld
r;; < oo. The second equation in the same corollary now implies: oo, which
by the representation (2.7) completes the proof.

O

2.3 Stationary Distributions

Let X denote a Markov chain with state spaEeand = a measure ork. If
P(X, =1i) = P(Xy =i = mforalln € Nand: € FE, thenX™ is called
stationary, andr is called astationary measurefor X'. If furthermorer is a
probability measure, then it is callsthtionary distribution for X'.

Theorem 2.18 Let X denote a Markov chain with state spageand transition
matrix P. Further, letr denote a probability distribution o&’ with 7P = 7, i.e.

Wi:Zﬂ'jpjz‘ and Zﬂ'j:l

jEE jJEE

for all i € E. Thenr is a stationary distribution forX. If 7 is a stationary
distribution for X, thenmt P = 7 holds.

Proof: LetP(Xy =i) = m; foralli € E. ThenP(X,, = i) = P(X, = i) for all
n € N andi € E follows by induction om. The case: = 1 holds by assumption,
and the induction step follows by induction hypothesis dred¥larkov property.
The last statement is obvious.

O

The following examples show some features of stationatyidigions:
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Example 2.19 Let the transition matrix of a Markov chaiti be given by

08 02 0 O
02 08 0 O
0 0 04 06
0 0 06 04

P =

Thenr = (0.5,0.5,0,0), 7" = (0,0,0.5,0.5) as well as any linear combination of
them are stationary distributions f@f. This shows that a stationary distribution
does not need to be unique.

Example 2.20 Bernoulli process (see example 2.1)
The transition matrix of a Bernoulli process has the stmgctu

1—p p 0 0

0 1—-p »p 0
0 0 1—-p p

P =

Hencer P = 7 implies first
- (l—=p)=m = m=0

since0 < p < 1. Assume thatr, = 0 for anyn € Ny. This and the condition
7w P = 7 further imply form,,,,

T Pt Mg (L=p) =T = M1 =0

which completes an induction argument proving= 0 for all n € Ny. Hence
the Bernoulli process does not have a stationary distohuti

Example 2.21 The solution ofr P = 7 and}_;_,, 7; = 1 is unique for

(510
p 1—p

with 0 < p < 1. Thus there are transition matrices which have exactly one
stationary distribution.
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The question of existence and uniqueness of a stationanpdion is one of the
most important problems in the theory of Markov chains. Aggranswer can be
given in the transient case (cf. example 2.20):

Theorem 2.22 A transient Markov chain (i.e. a Markov chain with transistdtes
only) has no stationary distribution.

Proof: Assume thair P = 7 holds for some distribution and take any enumer-
ation E = (s, : n € N) of the state spac&. Choose any index: € N with
ms,, > 0. Sinced  °  m, = 1is bounded, there is an indé¥ > m such that
Yoo s < Ts,,. Sete :=m, — > < 7 . According to theorem 2.17, there
is an indexV € N such thatP™(s;, s,,) < ¢ forall i < M andn > N. Then the
stationarity ofr implies

M-1

Ty = iﬂ-siPN(Sia Sm) = Z WsiPN(SZ‘, Sm) + i WsiPN(Si, Sm)
=1 i=1 i=M

o
< e+ g Mg, = Ts,,
i=M

which is a contradiction.

O

For the recurrent case, a finer distinction will be necessWfiiile the expected
total number-;; of visits to a recurrent statec £ is always infinite (see corollary
2.15), there are differences in the rate of visits to a rexurstate. In order to
describe these, defing;(n) as the number of visits to statentil timen. Further
define for a recurrent state= E the mean time

m; = E(r;| Xo = 1)

until the first visit to: (after time zero) under the condition that the chain starts i
i. By definitionm; > 0 for all i € E. The elementary renewal theorem (which
will be proven later as theorem 4.12) states that
E(N;(n)|Xo =7 1
tim DMK =5) 1 (2.8)

n—o00 n mz’

for all recurrent; € E and independently of € E provided; < i, with the
convention ofl /oo := 0. Thus the asymptotic rate of visits to a recurrent state
is determined by the mean recurrence time of this state. gihes reason to the
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following definition: A recurrent state € E with m; = E(7;| Xy = i) < oo will
be calledoositive recurrent, otherwise is callednull recurrent . The distinction
between positive and null recurrence is supported by thevalgance relation—,
as shown in

Theorem 2.23 Positive recurrence and null recurrence are class progrivith
respect to the relation of communication between states.

Proof: Assume that < j for two states, ; € E and: is null recurrent. Thus
there are numbers, n € N with P"(i,j) > 0 andP™(j,7) > 0. Because of the
representatiofi( N; (k)| Xo = i) = Zf:o P(i,4), we obtain

k L/ -
0 = lim —Zz:op D)
k—oo ]{j
0" P, )
> lim == = P (i, )P ()
k—oo k’
Ck=m=n TP s s
k Ly -
P
= Jim =0V e
k—oo ]{}
_ P )P0
m;

and thusn; = oo, which signifies the null recurrence pf

O

Thus we can call a communication class positive recurremudirrecurrent. In
the former case, a construction of a stationary distrilousayiven in

Theorem 2.24 Leti € FE be positive recurrent and define the mean first visit time
m; = E(r;| X, = 7). Then a stationary distribution is given by

m=m; - ZP(Xn =Jj, 7 >n|Xo =1)
n=0

forall j € E. In particular, 7; = m;l andm;, = 0 for all statesk outside of the
communication class belongingio
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Proof: First of all, 7 is a probability measure since

Zi]}”(){n:j,n > n|Xo = 9) :iZP(Xn:j,n > n|Xo =1)

jEE n=0 n=0 jeFE

= ZP(TZ > H‘XQ = ’l) =1m,;

n=0

The patrticular statements in the theorem are obvious fraaarém 2.16 and the
definition of r. The stationarity ofr is shown as follows. First we obtain

T =m;" - ZP(Xn = j, 7 > n|Xo =1)
n=0

=t SR = G > X =)
n=1

=m; 'Y P(X, =j,7>n—1|Xo =)
n=1

sinceX, = X,, =i in the conditioning se{ X, = i}. Because of

]P(Xn:j,Ti >TL—]_|X0:Z)
]P)(Xn:j,ﬂ >7’L—1,X0:i)

P(X, = 1)
B P(anj,anlzk,Ti>77,—1,X02’i)
B P(X, = 1)

_Z]P)(Xn:jaXn—lzk:aTi >7’L—1,X0:Z)
n P(Xn,1 Ik,Ti >77,—1,X02’i)

keE
PXna =k >n—1,X =)
P(X, = i)
= Zpij(an =k, 7, >n— 1|X0 = z)
keE

we can transform further

T =m; " - ZZijP(Xn—l =k, >n—1[Xo=1)

n=1 keFr
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— Zpkj -my ! Z]P’(Xn =k, >nlXg=1) = Zﬁkpkj
=0

keE n keE

which completes the proof.
U

Theorem 2.25Let X denote an irreducible, positive recurrent Markov chain.
ThenX has a unique stationary distribution.

Proof: Existence has been shown in theorem 2.24. Uniqueness ofaiensiry
distribution can be seen as follows. Letdenote the stationary distribution as
constructed in theorem 2.24 anthe positive recurrent state that served as recur-
rence point forr. Further, letv denote any stationary distribution féf. Then
there is a stat¢ € £ with »; > 0 and a numbem € N with P™(j,7) > 0, since

X isirreducible. Consequently we obtain

v = Zykpm(k:,i) > v P™(j,4) >0

keE

Hence we can multiply by a skalar factoe such that - v; = m; = 1/m;. Denote
V.=cC-V.

Let P denote the transition matri® without theith column, i.e. we define the
(4, k)th entry of P by Djr = pjk if k # i and zero otherwise. Denote further
the Dirac measure onhby &', i.e.d! = 1if i = j and zero otherwise. Then the
stationary distributionr can be represented ly= m; Loy Yoo P,

We first claim thatn,7 = 6* + m;vP. This is clear for the entry; and easily
seen fory; with j # i because in this cageP); = ¢ - (vP); = ;. Now we can
proceed with the same argument to see that

mi = &' + (8" + m;pP)P = 6" + 0'P + m;vP? = . ..
n=0

Hencer already is a probability measure and the skalar factor meustb1. This
yieldsv = v = 7w and thus the statement.
O

Remark 2.26 At a closer look the assumption of irreducibility may be xeld
to some extend. For example, if there is exactly one closesitip®e recurrent



2.3. STATIONARY DISTRIBUTIONS 19

communication class and a set of transient and inaccesséiks (i.e. statesfor
which there is no statewith i — j), then the above statement still holds although
X is notirreducible.

A first consequence of the uniqueness is the following simgpresentation of
the stationary distribution:

Theorem 2.27 Let X denote an irreducible, positive recurrent Markov chain.
Then the stationary distribution of X" is given by

1
=mils =
P T EmI% =)

forall j € F.

Proof. Since all states iry are positive recurrent, the construction in theorem
2.24 can be pursued for any inital stgteThis yieldsr; = m;l forall j € E.
The statement now follows from the uniqueness of the statiodistribution.

O

Corollary 2.28 For an irreducible, positive recurrent Markov chain, thasbn-
ary probability 7r; of a statej coincides with its asymptotic rate of recurrence,
ie.
i BOGOIXo=1) _
n—o00 n
for all j € F and independently afe E. Further, if an asymptotic distribution
p = lim, ., P(X,, = .) does exist, then it coincides with the stationary distribu-

tion. In particular, it is independent of the initial disbution of X'

Proof: The first statement immediately follows from equation (2B)r the sec-
ond statement, it suffices to empl&(N;(n)| X, = i) = >.,-, P'(i,5). If an
asymptotic distributiom does exist, then for any initial distributionwe obtain

p; = lim (vP"); = Z z Jgn;o P"(i,7)

n—oo
i€E
=3 v lim 2z P 5) =S v
- 7 - 1y
‘ n—o0 n ‘
i€ER i€ER

independently of.
U
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2.4 Restricted Markov Chains

Now let F C FE denote any subset of the state spatceDefinerr(k) to be the
stopping time of theth visit of X to the setF, i.e.

Tr(k 4+ 1) == min{n > 7p(k) : X,, € F'}

with 7(0) := 0. If X is recurrent, then the strong Markov property (theorem 2.7)
ensures that the chaiti” = (X! : n € N) with X" := X, is a recurrent
Markov chain, too. Itis called the Markov chain restrictedt In case of positive
recurrence, we can obtain the stationary distributiodtdf from the stationary
distribution of X" in a simple manner:

Theorem 2.29 If the Markov chainX’ is positive recurrent, then the stationary
distribution of ¥ is given by

ﬂ'.
"

a ZkeFﬂk
forall j € F.

Proof: Choose any statec ' and recall from theorem 2.24 the expression
m=m; ZIP’(Xn =j, 1 > n|Xog =1)
n=0

which holds for allj € F. Forz; we can perform the same construction with
respect to the chai’?’. By the definition of X" it is clear that the number of
visits to the statg between two consecutive visits tas the same for the chains
X and X*. Hence the sum expression fmf, which is the expectation of that
number of visits, remains the same as+#gr The other factor; ' in the formula
above is independent gfand serves only as a normalization constant, i.e. in order
to secure thap~,_, 7; = 1. Hence for a construction of]” with respect tot”

this needs to be replaced bwy:; - 3, - m) ', which then yields the statement.

O

Theorem 2.30Let X = (X,, : n € Ny) denote an irreducible and positive re-
current Markov chain with discrete state spaEe Further letF' C E denote any
subset oft, and X' *" the Markov chain restricted t&'. Denote

r :=min{n € N: X,, € F'}
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Then a measure on E is stationary forX if and only if v/ = (v; : i € F) is
stationary forx'* and

vj = Zl/k ZIP’(Xn =j,7r > n|Xo = k) (2.9)

keF n=0
forall j € E\ F.

Proof: Due to theorem 2.29 it suffices to prove equation (2.9)jfar E \ F.
Choose any statec I’ and define

7, ~=min{n € N: X,, =i}
According to theorem 2.24 the stationary measufer X’ is given by

Vj:Vi'Z]P( n=17"T>nlXo=1) =1, (len_]>
n=0

for j € E'\ F, whereE,; denotes the conditional expectation givEn= i. Define
further

= min{n e N: X} =i}
Because of the strong Markov property we can proceed as

T_l Tr—1

=V Z EXF Z ]-Xm =j
T; F_1 Tp—1
:Vi'ZEi leF k 'Ek (Z 1ij>
m=0

keF

Regarding the restricted Markov chatif’, theorem 2.24 states that

F
7 —1

n=0 n=0

Vi

for all £ € F'. Hence we obtain
vj = ZVkZIP’(Xn =j,7r > n|Xo = k)
keF n=0

which was to be proven.
O
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2.5 Conditions for Positive Recurrence

In the third part of this course we will need some results anlibhaviour of a
Markov chain on a finite subset of its state space. As a firgtdorental result we
state

Theorem 2.31 An irreducible Markov chain with finite state spageis positive
recurrent.

Proof: Foralln € Nandi € F' we have)_;_, P"(i,j) = 1. Hence itis not
possible thatim,, .., P"(i,j) = 0 for all j € F. Thus there is one statec F’

such that,, = >~ 2, P"(h,h) = oo, which means by corollary 2.15 thatis

recurrent and by irreducibility that the chain is recurrent

If the chain were null recurrent, then according to the refain (2.8)

N T
Jm 7 2 PHA) =0

would hold for all; € F, independently ot because of irreducibility. But this
would imply thatlim,,,., P"(¢,j) = 0 for all j € F', which contradicts our first
observation in this proof. Hence the chain must be posigeemrent.

O

For irreducible Markov chains the conditidi{r;| X, = i) < oo implies positive
recurrence of stateéand hence positive recurrence of the whole chain. Writing
7 for the time of the first visit to the seff, we now can state the following
generalization of this condition:

Theorem 2.32 Let X’ denote an irreducible Markov chain with state spdcand
be F' C E a finite subset of). The chainX is positive recurrent if and only if
E(rp|Xo =1) < ooforall i € F.

Proof: If X is positive recurrent, theB(77| X, = i) < E(7;|Xo = i) < oo for all

i € F, by the definition of positive recurrence.

Now assume thaE (7| Xy = i) < oo for all i € F. Define the stopping times
o(i) == min{k € N : X}' = ¢} and random variable¥; := (k) — 7r(k —
1). SinceF is finite, m := max;cp E(7p|Xo = j) < oo. We shall denote the
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conditional expectation giveN, = i by E;. Fori € F' we now obtain

o (i) 00
E(ri|Xo=1) =E: | Y Vi | =D Ei (Bl Xrpeo1) * Li<ots)
k=1 k=1
<m P(o(i) > k| Xo =i) = m - E(o(i)| Xy = 1)
k=1

SinceF is finite, X7 is positive recurrent by theorem 2.31. Hence we know that
E(o(i)|Xo = 1) < 00, and thu€t(r;| Xy = i) < oo which shows that’ is positive
recurrent.

O

An often difficult problem is to determine whether a given ktar chain is posi-
tive recurrent or not. Concerning this, we now introduceafrtbe most important
criteria for the existence of stationary distributions o&idov chains occuring in
queueing theory. It is known d&oster’s criterion.

Theorem 2.33 Let X denote an irreducible Markov chain with countable state
spaceF and transition matrixP. Further let F' denote a finite subset @f. If
there is a functiom : £ — R with inf{h(i) : i € E} > —o0, such that the
conditions

> puh(k) <oo and Y pih(k) < h(j) —e

keE keE
hold for some > 0and all: € F andj € E'\ F, thenX is positive recurrent.

Proof: Without loss of generality we can assurg) > 0 for all i € E, since
otherwise we only need to increakdy a suitable constant. Define the stopping
time7r := min{n € Ny : X, € F'}. First we observe that

E(A(Xs1) - Loponsr| Xor - s Xu) < E(A(Xni1) - Lopon| Xor -, Xo)
= Llrpsn Zan,kh(k)

keE
S 1TF>n . (h(Xn) - 5)
= h<Xn> . 1Tp>n — €& 17'1r:>n
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holds for alln € Ny, where the first equality is due to (5.3). We now proceed with

0< E(h(XnJrl) ) 1TF>n+1|X0 = Z)
= E(E(Xn+1) - Lpsnt1]Xo, - -+, Xi)| Xo =)
< E(h(X,) - Lrpsa| Xo = i) — eB(7p > n|Xo = i)
< E(h(Xo) - LrpsolXo = i) — Y P(rr > k| Xo = i)
which holds for al € E'\ F andn € Ny. Forn — oo this implies
E(7p|Xo = i) :Z]P Tr > k| Xo =1) < h(i)/e < o0
k=0

fori € E'\ F. Now the mean return time to the state 8&s bounded by

E(rp|Xo = 1) = sz‘j + Z piiE(Tr + 1| Xo = j)

jEF JEE\F
< 1+ 671 szjh(j) < X0
JEE

for all - € F', which completes the proof.
O

2.6 The M/M/1 queue in discrete time

Choose any parametelis< p,q < 1. Let the arrival process be distributed as a
Bernoulli process with parametgrand the service timegs,, : n € Ny) be iid
according to the geometric distribution with parameter

The geometric service time distribution and the Bernoutlival process have
been chosen because this simplifies the formulation of tsiesyprocess in terms
of a Markov model due to the followingnemoryless property.

Theorem 2.34 Let S be distributed geometrically with parametgti.e. letP(S =
k) = (1 —q)gforall k € N. ThenP(S = k|S > k — 1) = ¢ holds for the
conditional distribution, independently & Likewise, ifZ, is the nth inter—
arrival time of a Bernoulli process with parametgy then the relatioriP(Z,, =
k|Z, > k — 1) = p holds, independently éfandn.
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Proof: First the proof for the geometric distribution: For &lE N, the argument

P(S—k|S>k—1)= DE=kS>k=-1) _BE=H

P(S>k—-1)  PS>k-1)
_(1-9"'q _
(1—q)*!

holds, which shows the first statement. For a Bernoulli pgecé¢henth inter—
arrival time~Z,, = T,, — T,,_ is distributed geometrically with parametgrdue to

the strong Markov property. This completes the proof fordbeond statement.

O

Thus the memoryless property states that no matter how Igegvéce time or an
inter—arrival time has already passed, the probability séavice completion or

an arrival at the next time instant is always the same. Hemeesystem process

Q = (@, : n € Ny) of the M/M/1 queue in discrete time with arrival procéBs
and service times,, can be formulated easily as a homogeneous Markov chain.
It has state spackE = N, and transition probabilitiegy; := p, poo := 1 — p, and

p(1—q), Jj=1i+1
pij=pg+(1—-p(l—gq), j=i

for: > 1. Because of the simple state space, the transition matrikeaisplayed
in the form of a triagonal matrix

1—p P 0
q(1—=p) pg+ (1 -p)(1—q) p(1—q)
0 q(1 —p) pq+(1—p)(1—q)

pP=

Sincep, ¢ > 0, the chainQ is irreducible. Ifp < ¢, thenh(n) := n defines a
function which satisfies the conditions for Foster’s crdar as

ipzkh(k) =q1—p)-(i—1)+(gp+(1—q)(1—p))-i

+p(1—q)-(i+1)
=i—q(l—p)+p(l—q¢)=i—q+p<i—c¢
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foralli € N, withe = ¢ —p > 0, and>_;2, por - (k) = p < oo show. The
ratio p/q is called theload of the queue. Thus the system procésss positive
recurrent if the queue load is less than one.

In order to derive a stationary distribution f@y, we first introduce notations :=

p(1 — ¢q) andq’ := ¢(1 — p). Then we translate the conditiarP = = into the
equations

o — 7T(](1 —p) —+ 7T1q/ (210)
m =mp+m(l—p—q)+md (2.11)
Tn = Tpnal + (1= (' +¢)) + Tniad (2.12)

for all n > 2. For the solution, we guess the geometric form
T4l = T+ T
foralln > 1, withr > 0. Thus equation (2.12) becomes
0=mp — mur(p +¢) + mr?d =m0, (' — (0" + ¢) +7°¢)

for all n > 1, which leads for non—triviat # 0 to the roots- = 1 andr = p'/¢

of the quadratic term.

In the first caser = 1, we obtainr,,; = =, for all n > 1. This implies
>_ier™ = oo and thus cannot lead to a stationary distribution. Hencéién t
caser = 1 the geometric approach is not successful.

The second root = p’/q" allows solutions for the other equations (2.10) and
(2.11) too. This can be checked as follows: First, the refati

P
L—p
is a requirement from equation (2.10). Then the second eougt.11) yields

Y
7T1—7T0—/—7T0
q
1 1 /(p
m:?(m(p’+q’)—ﬂop):?( (p’HJ’)—p) To

q
p (P +d P
=M ) =m
q q q

in accordance with our geometric approach. Now normabradi = leads to

) o] n—1
1:Z7rn:7r0<1+£/2(£;) )
n=0 q n=1 q
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from which we obtain

™= <1+§§2<§)M) (vt

n

—1
p 1_q—p
=(1+ ) = (¢ =p)d =1 +p) 127

qg—p

with p := p/q, because of' — p’ = ¢ — p. Hence the approact),.; = =, - r with
r =p'/q' leads to a solution of P = 7.
Note thatr < 1 if and only if p < ¢. Further, the mean inter—arrival time is
E(Ty) = 1/p and the mean service time&S;) = 1/¢q. Thus the geometric
approach is successful if the so—calidbility condition
E(S

g E(Iy)
holds. This condition simply postulates that the mean sertime be shorter than
the mean inter—arrival time. In this case, the stationastrithution7 of Q has the
form

P Tn—l
L—p
for all n > 1. It thus is a modified geometric distribution with parametes
P/qd < 1.

m=1—0p and 7w,=(1-p)

Notes

Markov chains originate from a series of papers written byfarkov at the be-
ginning of the 20th century. His first application is giverrd@s exercise 2.37.
However, methods and terminology at that time were venetbffit from today’s
presentations.

The literature on Markov chains is perhaps the most extensiihe field of
stochastic processes. This is not surprising, as Markowstiarm a simple and
useful starting point for the introduction of other proass

Textbook presentations are given in Feller [8], Breiman Karlin and Taylor
[14], or Cinlar [4], to name but a few. The treatment in Ros3] [dontains the
useful concept of time—reversible Markov chains. An exhaesntroduction to
Markov chains on general state spaces and conditions foptbgtive recurrence
is given in Meyn and Tweedie [16].
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Exercise 2.35Let (X,, : n € Ny) be a family of iid random variables with dis-
crete state space. Show tht= (X, : n € Ny) is a homogeneous Markov
chain.

Exercise 2.36Let(X,, : n € Ny) be iid random variables dN, with probabilities
a; :=P(X, =1i)foralln,i € Ny. The eventX,, > max(Xy,..., X, 1)forn >1
is called a record at time. DefineT; as the time of théth record, i.ely := 0
andT;,, := min{n € N: X,, > X} for all i € N,. Denote theth record value
by R; :== X7.. Show that R; : i € Ny) and((R;,T;) : i € Ny) are Markov chains
by determining their transition probabilities.

Exercise 2.37Diffusion model by Bernoulli and Laplace

The following is a stochastic model for the flow of two incoregsible fluids
between two containers: Two boxes contairballs each. Of thesgm balls, b
are black and the others are white. The system is said to lbaten & the first box
containsi black balls. A state transition is performed by choosing loaléout of
each box at random (meaning here that each ball is choserguthl probability)
and then interchanging the two. Derive a Markov chain moaieiife system and
determine the transition probabilities.

Exercise 2.38Let X denote a Markov chain withh < oo states. Show that if
statej is accessible from staiethen it is accessible in at most — 1 transitions.

Exercise 2.39Let p = (p, : n € Ny) be a discrete probability distribution and
define
Po P1 P2

Po D1
Do

with all non—specified entries being zero. L¥tdenote a Markov chain with
state spac®, and transition matriX°. Derive an expression (in terms of discrete
convolutions) for the transition probabiliti@s X, ., = 7|X,, = i) withn,m €

Ny andi, j € Ny. Apply the result to the special case of a Bernoulli procsse (
example 2.3).

Exercise 2.40Prove equation (2.6).
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Exercise 2.41Prove the equatio®™ (i, j) = >_,_, Fi.(i,j)P"*(j,7) foralln €
Nandi,j € E.

Exercise 2.42Let X denote a Markov chain with state spaEe= {1,...,10}
and transition matrix

/2 0 12 0 0 0 0 0 0 0
0 1/3 0 0 0 02/3 0 0 0
1 0 0 0 0 0 0 0 0 0
o 0 0 0 1 0 0 0 0 0
p_| 0 0 0 133O 0 0 13 0
o 0 0 0 0 1 0 0 0 0
0 0 0 0 0 01/4 0 3/4 0
0O 0 1/41/4 0 0 0 1/4 0 1/4
o 1 0 0 0 0 0 0 0 0
0 1/3 0 0 1/30 0 0 0 1/3

Reorder the states according to their communication cdagsd determine the
resulting form of the transition matrix as in representa{@.4). Determine further
a transition graph, in which

Exercise 2.43Prove equation (2.7).
Hint: Derive a representation df; in terms of the random variables

means thaf;; > 0.

1. X, =9
A, = ’ n=J
0, X,#J

Exercise 2.44Prove corollary 2.15.
Exercise 2.45Prove remark 2.26.

Exercise 2.46A server's up time isk time units with probabilityp, = 27,

k € N. After failure the server is immediately replaced by an td=i new one.
The up time of the new server is of course independent of thewbeur of all
preceding servers.
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Let X,, denote the remaining up time of the server at time N,. Determine the
transition probabilities for the Markov chaiti = (X, : n € Ny) and determine
the stationary distribution ot’.

Exercise 2.47Let P denote the transition matrix of an irreducible Markov chain
X with discrete state spadé = F' U F°, whereF° = E \ F. Write P in block

notation as
P _ PFF PFFC
PFCF PFCFC

Show that the Markov chaiit'? restricted to the state spade has transition
matrix
PF — PFF+PFFC(-[ - PFch)_lpch

with I denoting the identity matrix of™.

Exercise 2.48Let X denote a Markov chain with state spate= {0,...,m}
and transition matrix

Poo Po1
Pio P11 P12
P = P21 D22 P23

Pmm—1 Pmm

wherep;; > 0 for |i — j| = 1. Show that the stationary distributionof X is
uniquely determined by

. -1
T = T - H Di—1,i and o = <Z ﬁ pz:l,i)
=0 i

i Pii—1 1 Pii—1

foralln=1,...,m.
Use this result to determine the stationary distributionhef Bernoulli-Laplace
diffusion model withb = m (see exercise 2.37).

Exercise 2.49Show that the second condition in theorem 2.33 can be sutestit
by the condition

> pih(j) <h(i)—1  forallie E\F.

jEE
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Exercise 2.50Show the following complement to theorem 2.33: [Eadenote the
transition matrix of a positive recurrent Markov chain witiscrete state spade.
Then there is a functioh : £ — R and a finite subset’ C E such that

sz‘jh(j) < 00 forall: € F', and
JjeE

> pih(j) <h(i)—1  forallie E\ F.

jJEE

Hint: Consider the conditional expectation of the remagniime until returning
to a fixed setf” of states.

Exercise 2.51For the discrete, non—negative random walk with transinatrix

Poo Po1
p 0 p
p_ 10 12

pio 0 pio

determine the criterion of positive recurrence accordmthéorem 2.33.
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Chapter 3

Homogeneous Markov Processes
on Discrete State Spaces

In the present chapter we will transfer the discrete timaltef the previous
chapter to Markov processes in continuous time.

3.1 Definition

DefineT; := 0 and let(7}, : n € N) denote a sequence of positive real-valued
random variables witlf},.; > T, for alln € Ny and7,, — oo asn — oo.
Further, letE denote a countable state space aNg : n € N;) a sequence of
E-valued random variables. A proce¥s= (Y; : t € R{) in continuous time
with

Y, =X, for T, <t<T,

is called apure jump process The variableH,, := T,,, — T,, (resp. X,,) is
called thenth holding time (resp. thenth state) of the process). If further

X = (X, : n € Ny) is a Markov chain with transition matri® = (p;;); jex and
the variablesH,, are independent and distributed exponentially with patame
Ax, only depending on the stafé,, then) is called homogeneowgarkov pro-
cesswith discretestate spacel. The chaint is called theembedded Markov
chain of ). As a technical assumption we always agree upon the conditio
A= sup{\; : i € E} < oo, i.e. the parameters for the exponential holding
times shall be bounded.

An immediate consequence of the definition is that the pdthdvarkov process
are step functions. The lengths of the holding times are stioertainly strictly

33
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positive, since exponential distributions are zero withlability zero.

Example 3.1 Poisson process

Define X,, := n deterministically. Themt = (X,, : n € Ny) is a Markov chain
with state spacé’ = N, and transition probabilities, ,.; = 1 for all n € Ny.
Let the holding timesH,, be distributed exponentially with identical parameter
A > 0. Then the resulting proce3sas defined in the above definition is a Markov
process with state spab®. It is calledPoisson processvith intensity (also: rate

or parameter).

Next we want to prove a property similar to the Markov propddr Markov
chains in discrete time. To this aim, we need to showntieenoryless property
for the exponential distribution, which is the analogudinemoryless property
for geometric distributions in discrete time.

Lemma 3.2 Let H denote a random variable having an exponential distributio
with parameter\. Then the memoryless property

P(H>t+s|H>s)=P(H >t)
holds for all time durations, t > 0.
Proof: We immediately check

P(H>t+s,H>s) PH>t+s)
P(H>t+s|H>s)= P > 5) = P > s)
e*)\-(tﬁ’s)

=—— =M =PH>1)
e S

which holds for alls, ¢t > 0.
[

Theorem 3.3 Let ) denote a Markov process with discrete state sp@c& hen
theMarkov property

P(Yy = jYy s u < s) = P(Y, = j|Y;)
holds for all timess < t and stateg € F.

Proof. Denote the state at timeby Y, = i. Because of the memoryless property
of the exponential holding times, the remaining time inestas$ distributed expo-
nentially with parametek;, no matter how long the preceeding holding time has
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been. After the holding time in the present state elapsespithcess changes to
another statg according to the homogeneous Markov ch&inHence the prob-
ability for the next state beingis given byp;;, independently of any state of the
process before time Now another exponential holding time begins, and thus the
past before time will not have any influence on the future of the procgss

O

Analogous to the discrete time case, for any two time inganc< ¢t the condi-
tional probabilitiesP(Y; = j|Y; = i) shall be called théransition probabilities
from time s to timet. We will now derive a recursion formula for the transi-
tion probabilities of a Markov process by conditioning oe thumber of jumps
between time and timet:

Theorem 3.4 The transition probabilities of a Markov proce¥sare given by

oo

P(Y, = j|Y, =i) =Y P (s,1)

n=0

for all timess < ¢ and states, j € E, with
PP (s,t) = 055 - e

and recursively

t
PZ.(]?““)(S,t) = / e NN, Zpikpé?)(u,t) du

s keE
forall n € N,.

Proof: The above representation follows immediately by conditigron the
number of jumps ins,t]. The expression?i(]m(s,t) represent the conditional
probabilities thaty; = j and there are jumps in]s, t] given thatY; = 4. In the
recursion formula the integral comprises all timesf a possible first jump along
with the Lebesgue density %)\, of this event, after which the probability of
remaining jumps reaching statet timet is given by} ", _. pikP,E?) (u,t).

O

For every two time instances < t, define thetransition probability matrix
P(s,t) from times to timet by its entries

Py(s.1) == B(Y; = jlY = )
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Using the recursion formula, it is shown by induction orthat the conditional
- (n) L . .
probabilitiesP;;” (s, t) are homogeneous in time, i.e. they satisfy
(n) _ p)
Pij (s,t) = Pij (0,t—s)
for all s < t. Thus we can from now on restrict the analysis to the traositi

probability matrices
P(t) := P(0,t)

with ¢ > 0. With this notation the Markov property yields tl&hapman—
Kolmogorov equations
P(s+t)=P(s)P(t)

for all time durationss,t > 0. Thus the family{P(¢) : ¢ > 0} of transition
probability matrices forms a semi—group under the comrsbf matrix mul-
tiplication. In particular, we obtain for the neutral elem@f this semi—group
P(0) = I == (8;5)ijer With §;; = 1 for i = j and zero otherwise.

In order to derive a simpler expression for the transiticsbpbility matrices, we
need to introduce another concept, which will be calledgbeerator matrix.
This is defined as the matriX = (g,;); jcr On £ with entries

i = i (L=pu), i=j
! Ai * Dijs i # ]

for all states, j € E. In particular, the relation

9ii = — Zgij (3.1)
j#i
holds for alli € E.
The (i, j)th entry of the generataf is called theinfinitesimal transition rate
from statei to statej. Using these, we can illustrate the dynamics of a Markov
process in a directed graph where the nodes represent tee atal an edge

means thay;; = » > 0. Such a graph is calledstate transition graph of the

Markov process. With the conventigry = 0 the state transition graph uniquely
determines the Markov process.
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Figure 3.1: Poisson process

Example 3.5 The state transition graph of the Poisson process with sitien
(see example 3.1) is given by

Theorem 3.6 The transition probabilities’;;(¢) of a Markov process satisfy the

systems
AP (t)
T]t = sz‘k(t)gkj = Zgikpkj<t)

keE keE

of differential equations. These are called tkelmogorov forward and back-
ward equations

Proof: From the representation in theorem 3.4, it follows by indwcton the
number of jumps that all restricted probabiliti#é? (¢) are Lebesgue integrable
with respect ta over finite intervals. Since the sum of &I’ff) (t) is a probabil-
ity and thus bounded, we conclude by majorized convergdmetealsoP(t) is
Lebesgue integrable with respectttover finite intervals.
Now we can state the recursion
t
Py(t) = e -6y +/ e N piPiy(t — s) ds

0 kCE

which results from conditioning on the timeof the first jump from stateé. We
obtain further

t
Pyj(t) = e <5ij +/ NNy pi P (u) dU>

0 keE

by substitutingu = ¢ — s in the integral. Sinc&_, . psx = 1 is bounded, we
conclude thaiP(¢) is continuous irt. Further, we can differentiatB(t) as given
in the recursion and obtain

dPy(t)

—a e M ((517' +/0 fw) du) +e N f(t)
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with f denoting the integrand function. This means nothing elae th

dP;;(t
% = —NPy(t) + X Y pinPiy (1)
ke
(1= pa) - Pa(t) + > ginPes(t)

ki

and thus proves the backward equations. For the forwardtiegsaone only
needs to use the Chapman—Kolmogorov equations and appbathkevard equa-
tions in

APy(t) o Pyl ) = Pylt) | Piy(h) = b
R 3
kEE
P P
= > Pl tim DO 52y,
keE keE

which holds for alli, j € E.
O

Theorem 3.7 The transition probability matrices can be expressed imteof the
generator by

_ Gt ._ " n
n=0
for all ¢ > 0, with G™ denoting the:th power of the matrix.

Proof: First we validate the solution by

o0

ieG't d Z Z ar= dt" Z ar ! — Gl
dt dtn! —~ (n—1)

which holds for allt > 0. Furthermore, it is obvious that

o0

Gt — 1" n __ " n _ Gt
Ge —GZ%HG—<ZHG G=e""G

n=0

and thusP(t) = % is a solution of Kolmogorov's forward and backward equa-
tions.
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Now we show uniqueness of the solution. I&) denote another solution of the
forward equations. The differential equations with iditandition translate into
the integral equations

P(t)=1p+ /tP(u)G du and P(t)=1Igp+ /t P(u)G du

Define a norm for matriced/ = (m;;); jex ON E by
|M|| := sup {Z |mij;| i € E}
JjeEE

Then||G|| < 2- X and||AB| < ||A]| - ||B|| for any two matricesd andB on E.
Further we obtain

|pt) - 20| = /Ot P(u) — P(u) du GH
<[ P - B - (3.2)
<A -t-]Cl (3.3)

with A; := sup{||P(u) — P(u)|| : u < t}, which is finite, since for all: > 0 we
know that|| P(u)|| = ||P(u)|| = 1. Plugging the result (3.3) into the right hand of
the bound (3.2) again (with time u instead of t), we obtain

2

[Py - P < / A 1G] du- |G = A 5 - la)?

Likewise,n—fold repetition of this step achieves the bound

~

(22X - )"
n!

|Pt) - Po))| < - 55 -l < A

which in the limitn — oo yields0 < HP(t) - ﬁ(t)” < 0 and consequently

P(t) = P(t). Ast has been chosen arbitrarily, the statement is proven.

U

Hence the generator of a Markov process uniquely deternahets transition
matrices. This can also be seen from the definition, if wea@nathout loss of
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generality) upon the conventign; = 0 for all € E. Then the parameters for the

definition of the Markov process can be recovered by
Ai = —Gii and  p; = i
—9Yii

foralli # j € E.

However, as in the discrete time case of Markov chains, Mapkocesses are not
completely determined by their transition probability n@s only. The missing
link to a complete characterization again is given byitigal distribution 7 with

m = P(Yy = X, = i) forall i € E. Then we can express dilhite—dimensional
marginal distributions as in

Theorem 3.8 For a Markov processy with initial distribution = and time in-
stanced) < t; < ... < t,, n € N, the equation

]P)(Y;fl :jla"'vy;fn :jn)
= WP (t) Py g(ta — 1) .. Py (b — taoy)

1€l
holds for allj4, ..., j, € E.

The proof is left as an exercise. Thus a Markov proggssth transition proba-
bility matrices(P(¢) : ¢ > 0) admits a variety of versions depending on the initial
distribution7. Any suchversionshall be denoted by~.

3.2 Stationary Distribution
From now on we shall convene on the technical assumption
Ni=inf{)\;:i € E} >0

which holds for all queueing systems that we will examineedla Markov pro-
cess s calledreducible, transient, recurrent or positive recurrent if the defin-
ing Markov chain is.

An initial distribution is calledstationary if the process)™ is stationary, i.e. if

]P)(YZ :jlv"WY;: :,]n) :P(YZJrs :.jlr"vY;f:Jrs :,]n)

foralln e N,0<t¢; <...<t,,and stateg,, ..., j, € F, ands > 0.
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Theorem 3.9 A distributiont on E'is stationary if and only itrG = 0 holds.

Proof: First we obtain

o0 o0

n tn

P(t)=nmeSt =Y —nG"=nxI —7rG" = 0=
TP(t) = me nz:zonlﬁ 7TE+n:1n!7T T+ T
for all ¢ > 0, with 0 denoting the zero measure @ With this, theorem 3.8
yields

= Py (t) Py o (te — 1) - Py (b — )
1€ER

= Pgp(te —t1) .. By (bn — ta1)

=Y WPt + 8Pyt — 1) . Py (b — o)
1€ER

= P(YZH - j17 v 7Y;f:+5 = ]n)

for all timest; < ... < t, withn € N, and stateg,,...,j, € E. Hence the
process)” is stationary.

On the other hand, ifr is a stationary distribution, then we necessarily obtain
TP(t) = me%! = nforallt > 0. As above, this mears..- | L,7G" = 0 for all

t > 0, which yieldsrG = 0 because of the uniqueness of the zero power series.
O

By definition of the generatofz and equation (3.1), the equatiart; = 0 is
equivalent to an equation system

Zﬂ'l’gzj = —T;9Gj; o Zﬂ-igij =T Zgjz (34)
i#] i#] i#]

forall j € E. This system can be intepreted as follows. We call the valyg
stochastic flowfrom state; to state;j in equilibrium. Then the above equations
mean that the accrued stochastic flow into any staquals the flow out of this
state. Equations (3.4) are called the (glolmalance equations

Example 3.10 The generator of the Poisson process with parameteee exam-
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ple 3.1) is given by

A A 0 O
0O =X X 0
G —

0 0 =X A

This process has no stationary distribution, which can le@ s follows. The
balance equations for the Poisson process are given by

oA = 0 and A = M1\

forall < > 1. It is immediately evident that these are solvable onlyrhy- 0 for
all i € F, which means that there is no stationary distribution

The question of existence and uniqueness of a stationanbdison for )’ can be
reduced to the same question & which we have examined in the preceding
chapter:

Theorem 3.11 Let the underlying Markov chaift’ in the definition of the Markov
process) be irreducible and positive recurrent. Further assume that inf{ )\, :
i € E} > 0. Then there is a unique stationary distribution for

Proof: According to theorems 2.25 and 2.18, the transition matrof X admits
a unique stationary distributionwith P = v. The generatot is defined by
G = A(P — Ig), with A = diag()\; : i € F). Hence the measuge:= vA~'is
stationary for). Since\ > 0, the measurg is finite, with total mass bounded by
A1 < 0o. Now the normalization

14 vi/Aj (
- 3.5)
ZieE 2% ZiEE Vi i

for all j € F yields a stationary distribution fQY. This is unique becauseis
unique and the construction effrom v is reversible.

O

Finally we give two important results for the asymptotic &elour of a Markov
process. We call a Markov proceegyular if it satisfies the conditions given in
the preceding theorem. }f is a regular Markov process, then the limit

7Tj =

lim P(Y; = j) = (3.6)

t—o00
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of the marginal distribution at timetends to the stationary distribution aégends
to infinity. Further the limit
—00

holds for alli, j € F and is independent of

Notes

An early text book on Markov processes with discrete statéesps Chung [5].
Other classical text book presentation are Karlin and Tajld], Breiman [1],
or Cinlar [4]. An exposition on non—homogeneous Markov psses on discrete
state spaces can be found under the name Markov jump precessi&khman and
Skorokhod [12, 11].

Exercise 3.12Consider a population of male and female species. There is an
infinitesimal rateA > 0 that any male and female produce a single offspring,
which will be female with probabilityp. Determine a Markov process which
models the numbers; and M; of female and male species at any time

Exercise 3.13Let X andY denote two independent random variables which are
distributed exponentially with parameterandy., respectively. Prove the follow-
ing properties:

() X # Y almost certainly.

(b) The random variabl¢ := min{X, Y} is distributed exponentially with pa-
rameter\ + .

@PX <Y)=A(A+n)

Exercise 3.14Let YV andY® denote independent Poisson processes with in-
tensities\; and\,, respectively. Show that the procéss= (Y; : t € R} ) defined
byY; = Yt(l) + Yt(z) forall ¢t > 0is a Poisson process with intensky= \; + \,.

The procesy is called thesuperpositionof Y and)®.

Exercise 3.15Prove theorem 3.8.

Exercise 3.16 Determine the finite—dimensional marginal distributicorsd Pois-
son process with parameter

Exercise 3.17Let) denote a Poisson process with paramgtegiven that there
is exactly one arrival in the intervél, t|, show that the exact time of the arrival
within [0, ¢] is uniformly distributed.
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Exercise 3.18 Verify the Chapman—Kolmogorov equations for a Poissongssc

3.3 Skip—Free Markov Processes and Markovian Queues

The methods of analyzing Markov processes are already isulffifor the treat-
ment of quite a variety of queueing systems. These are comynkoiown as
elementary oMarkovian queues The most classical of them shall be examined
in this chapter.

3.3.1 The M/M/1 Queue

The M/M/1 queue in continuous time is defined by the followalgracteristics:
The arrival process is a Poisson process with some\ratd). The service times
are iid and distributed exponentially with service rate- 0. There is one server
and the service discipline is first come first served.

Poissonjk) Exp(u)

Figure 3.2: M/M/1 queue

For the Poisson process, the inter—arrival times are biggd exponentially with
parameten. Since the exponential distribution is memoryless, théesggprocess
Q = (Q; : t € RY) can be modelled by a Markov process with state spaeeN,
and generator

“A A 0 0
“A— A 0
o p

0 I —“A—u A

Here, the first line represents the possible transitiomgisystem is empty. In this
case there can only occur single arrivals according to tiesBo process with rate
A. If the system is not empty, there are two possibilitiesh&itan arrival occurs
(with rate\) or a service is completed (with rat¢. Contrary to the M/M/1 queue
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in discrete time, arrivals and service completions cangotipat the same time.
This follows from the memoryless property of the expondrdiatribution and

exercise 3.13. The parameter of the holding time for theestat a non—empty
system is explained by exercise 3.13.

Clearly, the structure of the matriX shows that the proces3 is irreducible and

hence there is at most one stationary distributidor Q. According to theorem
3.9, this must satisfyG = 0, which translates into the system

ToA = T1jd (3.8)

Tn(A+ 1) = T A+ T forall n>1 (3.9)

d m=1 (3.10)
n=0

of equations, where the latter is simply the normalizatibthe distributions.
The first two equations are the glolilance equationsand can be illustrated by
the following scheme:

/\\/\\/\\/\/\

OB ONSO ©

\/\/\/\/\/

Figure 3.3: Transition rates for the M/M/1 queue

This gives the rates of jumps between the states of the sy$t&e encircle any
one state, then the sum of the rates belonging to the arcBingainto this state
must equal the sum of the rates which belong to the arcs thatigof this state.
If this is the case, then we say that the system is in balanhe.c®onditions for
this are given in equations (3.8) and (3.9).

The solution of the above system of equations can be obtépede following

considerations: The first equation yields

A
™ = To— =:!Top
ol
with p := A/u. By induction onn we obtain from the second equation

1 A A
Tp+1 = _(ﬂ-n()\ + ,u) - 71-n—l)\) =Mp— + Ty — Mp—1—
7 " "

:7‘[‘np
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for all n € N, where the last equality holds by induction hypothesis. sTtie
geometric approach, = myp" for all n € N, solves the first two equations. The
last equation now yields

1:Zﬂn:ﬁ02p”: 11/)%
n=0 n=0

if and only if p < 1, which means\ < p. Hence there is a stationary distribution
of the system, given by

T = (1= p)p"
for all n € Ny, if and only if the so—called quedead p = \/u remains smaller
than one.
In this case several performance measures of the queuestensgan be derived
immediately. All of them are computed by means of the statigmlistribution.
Thus they hold only for the system being in equilibrium, whig attained asymp-
totically.
For instance, the probability that the system is empty isglyr, = 1 — p. The
mean and the variance of the numbBéof users in the system are given as

E(N)zzmn:u—mznp":ﬁ
n=1 n=1

andVar(N) = p/(1 — p)%. The probabilityR that there are at leasf users in

the system is
Rg=)Y m=(0-p) Y pr=p"
n=K n=K

As expected, these equations show that with increasingdead the mean num-
ber of users in the system grows and the probability of andgétem decreases.

3.3.2 Skip—Free Markov Processes

There are many variations of the M/M/1 queue which can beyaedlby the same
method. In order to show this we first put the analysis preskmt the preceding
section in a more general context. This will be applicabla targe variety of
queueing models.

The Markov process which models the M/M/1 queue has the ideqgsoperty

that transitions are allowed to neighbouring states ondy,gi; = 0 for states



3.3. SKIP-FREE MARKOV PROCESSES AND MARKOVIAN QUEUE$7

i,j € Ngwith |¢ — j| > 1. The result is a very simple state transition graph of
a linear form and correspondingly a set of balance equatginen by (3.8) and
(3.9), which can be solved easily. We can retain the sameadeathanalysis if
we relax the special assumption that,, andg, ;_; be independent of

Thus we define akip—free Markov processhy the property that its generator
G = (9ij)ijer satisfiesg;; = 0 for all statesi, j € E C Ny with |i — j| > 1.
For queueing systems this means that there are only singlalaror departures.
Thus every Markovian queueing system with single arrivats@epartures can be
modelled by a skip—free Markov process.

Denote the remaining infinitesimal transition rates by

Ai 1= Giit1 and Wi = Gii-1

for all possible values of. The rates\; andy, are calledarrival rate s andde-
parture rates, respectively. The state transition graph of such a psoagsumes
the form

)\0 )\1 )\2
OEROERCES
w\/

ul IJ'Z p‘S

Figure 3.4: A skip—free Markov process

Its balance equations are given kyry = ;7 and
(Ni =+ )T = N1y + i1 i

for all i € N. By induction or it is easily shown that these are equivalent to the
equation system
)\1;171'2‘,1 = ;T (311)

for all i € N. This system is solved by successive elimination with atsmiuwf
the form

1—1
Aj AoAL - A
T, = To H ) = 0 071 ! (312)
=0 Ha+1 Mo - -
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for all > 1. The solutionr is a probability distribution if and only if it can be
normalized, i.e. iy _, 7, = 1. This condition implies

TN | R ) )

nel  jeo Hit1 nek j=0

Hj+1

with the empty product being defined as one. This means that

Ty = (3.13)
- (2T

and thusr is a probability distribution if and only if the series in theackets
converges. In this case, the stationary distribution ofip-gkee Markov process
is given by (3.13) and (3.12).

3.3.3 The M/M/>c Queue

The first application of the analysis of the last section taauging system shall
be the M/Mbo queue. Thisis a queue without queueing: There are infirmbalgry
servers such that every incoming user finds an idle serveeniately. Arrivals
are governed by a Poisson process with intensity 0, and the service times are
exponentially distributed with rate > 0, equal for each server. Due to lemma
3.13, the system process is Markovian. Furthermore, thrererdy single arrivals
and departures. Hence the M/dd/queue can be modelled by a skip—free Markov
process.

Since the arrival process is independent of the rest of teeguhe arrival rates
of the respective skip—free Markov process are constatihelnotation of section
3.3.2 we can thus specify, = A for all n € N,. Departures occur upon service
completions. According to lemma 3.13 and due to the memssydeoperty of the
exponential distribution (see lemma 3.2), the departuiesrare given by, =

n - uforalln € N.

Definep := \/u. Then the series in (3.13) assumes the value

co n—1 0o
ZH = p—,=€”

and thus converges regardless of the value.oﬂ'his means that the M/Mb
queue always has a stationary distribution, which is noprising as infinitely
many servers cannot be exhausted, whatever the arrivakitg@mounts to.
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Due to formulae (3.13) and (3.12), we obtain the stationastyidutionr as given
by 7o = e~” and

for all n € N, which is a Poisson distribution with parameterHence the mean
and the variance of the numbar of users in the stationary system are given by
E(N) =Var(N) = p.

Since there is no queueing in the M/dd/system, all waiting times are zero and
the mean sojourn time in the system equals. This means that all users pass-
ing through such a system are independently kept there fexponentially dis-
tributed time. In the context of queueing networks, the MiMjueue is therefore
often called an (independertglay system

3.3.4 The M/M/k Queue

The M/M/k queue is provided witlk identical servers which can serve users in
parallel. Users arrive according to a Poisson process witnsity A > 0, and
the service time distribution is exponential with paramete> 0 at all servers.
Whenever a user arrives and finds all servers busy (i.e. at keasers in the
system) he queues up in the waiting room. From there the naiting user is
served in the order of a FIFO discipline as soon as one of tiverssbecomes idle.
An arriving user finding less thanusers already in the system (i.e. there are idle
servers at the time of arrival) chooses any server and s@ntice immediately.

For this type of queue the dynamics is a mixture between thd/M/ queue and
the M/M/1 queue. Up to the value éfusers in the system, the service (and thus
the departure) rate increases ljkg=n - for 1 < n < k. Starting fromk users

in the system there are no servers anymore to keep up witlyraeywing users,
and the departure rate remajas= k - i for alln > k£ + 1. The independence of
the arrival process yields constant arrival ratgs= \ for all n € Nj.

Again we defing := \/u. The series in (3.13) specifies to

oo n—1

ZH

RIS (5}

which is finite if and only ifp < k. In this case the stationary distributianis
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departure
process

arrival process queue

0
T —>
0

Servers

Figure 3.5: M/M/k queue

given by formulae (3.13) and (3.12) as

and

Here we see the M/Mb form for n < k and the M/M/1 form beginning with
n > k, wherer, substitutes the base value that is playedngyfor the pure
M/M/1 queue.

The fact that the M/M/k queue behaves for more thamsers in the system like
an M/M/1 queue with loag/k is further illustrated by the following observation.
Let N denote the number of users in the system that is in equitiriGonsider
the conditional probability,, := P(N = n|N > k) for n > k. This is computed

as
e sE (O @) (0-)
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Sincen — k is the numbetV, of users waiting in the queue, the conditional distri-
bution of N, given that all servers are busy has exactly the same (geiojrfetm

as the stationary distribution for the M/M/1 system process

The probabilityP{ N > k} of the conditioning event that in equilibrium all servers
are busy is given by

0o k=1 o, -1
an=<1+(k—1)!.(k—p). P ) (3.14)

This is the probability that a newly arriving user must waefdre he is served.
The above formula for it is calleBrlang’s delay formula.

3.3.5 The M/M/k/k Queue

In stochastic modelling there always is a trade—off betwberadaptation of the
model to reality and its simplicity, i.e. its analytic trability. We have seen that
the nicest solutions could be derived for the M/M/1 queuegangetric distribu-
tion) and the M/Mébo queue (a Poisson distribution). The solution for the M/M/k
gueue, which is more realistic for most practical applmagi, is also more in-
volved. For all these models we kept the often unrealisstiagption of an infi-
nite waiting room. The models in this and the following secs stem from more
realistic specifications. Historically, they belong to fivst applications which
founded the field of queueing theory.

In the times of A.K. Erlang, at the beginning of the 20th cepttelephone calls
had to be connected by an operator. The telephone compasialed call centers
where a numbek of operators served call requests which arrived from a large
number of subscribers. Whenever all operators are busyseithing call requests
and a new subscriber calls to get a line, this subscribelbiliejected.

If we model the arriving requests by a Poisson process andutetion of the
operators’ services by an exponential distribution, therget an M/M/k/k queue
as a model for this application. The subscribers with thell iequests are the
users and the operators are the servers. Therke sgevers and as many places in
the system, i.e. there is no additional waiting room.

Let the intensity of the Poisson arrival process and the ohtthe exponential
service times be denoted by > 0 andu > 0, respectively. Again we can use
a skip—free Markov process to analyze this system. In thiatiom, we obtain
A, =Aforalln=0,...,k—1andu, =n-puforn=1,..., k. The values of
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A, andy, are zero for all other indices. Definep := A\/u. The series in (3.13)
IS in this case

which is finite, regardless of the value fpr Hence a stationary distribution
always exists and is given by

k n -1 T
7T0:< p_'> and ﬂn:ﬂo-p—'
n! n!

n=0

foralln = 1,..., k. The main performance measure for this application is the
probability that all operators are busy and the company &bleto accept new
call requests. This is given by

A

which of course is valid only under the stationary reginee,in equilibrium. This
expression is known dsrlang’s loss formula.

Note that the expression af, for the M/M/oc queue is the limit of the respective
expression for the M/M/k/k model dstends to infinity. Even further, the station-
ary distribution for the M/M/k/k queue converges to theistaary distribution of
the M/M/oo for increasingk.

3.3.6 The M/M/k/k+c/N Queue

A simplifying assumption in the previous model has been thestant arrival
rates),, = \. This implies that even for a high number of users in the qubee
intensity of new arrivals does not diminish. While this issasonable assumption
for an application to call centers, where the number of dpesgand thus the
maximal number of users in the system) is only marginal cosgpto the number
of all subscribers, there are other applications for whiathsan assumption would
not be realistic.

Consider a closed computer network witlservers andvV terminals. Every ter-
minal sends a job to one of the servers after some expongrdistributed think
time. If a server is available, i.e. idle, then this job isveel, demanding an expo-
nential service time. A terminal that has a job in a server n@ysend another job
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Figure 3.6: A closed computer network

request during the service time. Whenever a terminal seius equest and all
servers are busy at that time, then the job is put into a quEus.queue has max-
imal capacity, i.e. if a terminal sends a job request and the queue is 3iifemdi
with ¢ jobs, then this new job request is rejected and the termtadissanother
think time.

This application can be modelled by an M/M/k/k+c/N queue & interpret the
users in the system as the job requests that are in servicaitingv Denote the
parameters of the exponential think time and service tim@idutions byA > 0
andu > 0, respectively. Without loss of generality we may assumeitha < N.
Then the queue in consideration is a skip—free Markov pougth arrival rates
An=(N—=n)-Aforn=0,...,k+c—1and departure ratgs, = min(n, k) -
forn=1,..., k+c. As always, defin@ := \/u. The series in (3.13) amounts to

Zﬁ i( ) P+ ki T (3.15)

nek j=0 'LLJ“ n=0 n= k+1

and thus is finite for every value pf The stationary distribution is given by

B0 E )

n=0 n= k—i—l
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and

N
7TnI7T0'< )-p”, 1<n<k

n
N p"
(N —n)!- k- kn—k’

T, = T - kEk+1<n<k+c

There are several interesting special cases. cFer 0 there is no room for a
queue of waiting jobs. Then the stationary distributiondifres to a binomial
distribution with parametergV, p), wherep = p/(1 + p), which is truncated to
the states = 0, . . ., k. Such a distribution is called d&ngset distribution.

Forc = N — k the queue has an important application in reliability tlyedihis is
known as thenachine repair problem. In a production site there ané machines
which are prone to failure. Each of them breaks down after kiwg time which
is exponentially distributed with paramet&r There arek repairmen that take
care of the broken machines sequentially. The repair timegx@gonential with
parameters. Then the system process of thé/N /k/N/N queue yields the
number of broken machines.

Notes

The models presented in this chapter are the oldest witreagjag theory. Ap-
plications to telephone networks date back to the beginafrige 20th century,
notably Erlang [7] and Engset [6].

Skip—free Markov processes have been extensively usedfarlg@tions models.
Therefore the name birth—and—death processes is verygdpulthem, with);

and y; denoting the transition rates for a birth and a death, reéspdg if the
population hag members. However, the authors think that such a name is inap-
propriate for queueing models and thus prefer the more teahterm skip—free.

For more Markovian queueing models see Kleinrock [15]. Aalgsis of non—
homogeneous (namely periodic) Markovian queues is giv&8reaer [2, 3].

Exercise 3.19Verify the formulaVar(N) = p/(1 — p)? for the stationary vari-
ance of the number of users in the M/M/1 queue.

Exercise 3.20Show that the equation system (3.11) is equivalent to thanical
equations for a skip—free Markov process. Prove the ford2(3of its solution.

Exercise 3.21Prove Erlang’s delay formula (3.14).
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Exercise 3.22Compare the stationary mean number of users in the system for
the following three queueing systems: (a) an M/M/1 queud waitival intensity

A and service ratg, (b) an M/M/2 system with arrival intensity and service rate
1/2, and (c) two independent M/M/1 queues with arrival intensit2 to each of
them and equal service rate Explain the differences.

Exercise 3.23Explain equation (3.15).

Exercise 3.24Show that the stationary distribution for @d/AM /k/k/N queue
is an Engset distribution.

Exercise 3.25Analyze the M/M/1/c queue with arrival intensity and service
rate . This always has a stationary distribution Show that in the limit —
oo, there are two possibilities: Either < 1 andn converges to the stationary
distribution of the M/M/1 queue, g8 > 1 andx converges to the zero measure.

Exercise 3.26 Examine the M/M/1 queue with users who are discouraged lay lon
queue lengths. This can be modelled by arrival rates= \/(n + 1) for all
n € Ny. Show that the stationary distribution is Poisson.
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Chapter 4

Renewal Theory

4.1 Renewal Processes

Be (X,, : n € Ny) a sequence of independent positive random variables, and
assume thatX, : n € N) are identically distributed. Define the sequeite-

(S, :nmeN)by S, .= XpandS,.; := S, + X, forall n € N. The random
variableS,,, with n € N, is called thenth renewal time, while the time duration

X,, is called thenth renewal interval. Further define the random variable of the
number of renewals until timeby

Ny :=max{n e N: S5, <t}

for all t > 0 with the conventionmax () = 0. Then the continuous time process
N = (N; : t € RY) is called arenewal process The random variable, is
called thedelay of NV. If X, and X, have the same distribution, thé\i is called
anordinary renewal process

We will always assume thd@(X; = 0) = 0 andm := E(X;) < oo is finite.
The strong law of large numbers implies ti#&t/n — m with probability one as
n — oo. HenceS, < t cannot hold for infinitely many. and thushp; is finite
with probability one. By standard notation we will write

G(z) =P(Xo < x) and F(x) =P(X; <=x)
forallz € R{.

Example 4.1 A light bulb has been installed at time zero. After a durathgy it
will go out of order. We assume that it will be immediatelyleeged by a new light

57
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bulb at timeS; = X,. Assume that the new light bulb is of a type identical to the
old one. Then the duratiol; until it goes out of order is distributed identically to
Xy. Of course, the life times of the light bulbs are independieh one another.
Keeping up this rechangement policy over time, the numfaf used light bulbs
until time ¢ forms an ordinary renewal process.

Remark 4.2 A Poisson process with intensity(see example 3.1) is an ordinary
renewal process with'(z) = G(z) = 1 — e~?, i.e. the renewal intervals have an
exponential distribution. Thus a renewal process can be ag@ generalization
of the Poisson process with respect to the distribution®fé&mewal intervals.

In order to derive an expression for the distribution andetkgectation ofV; at
any timet, we need to introduce the conceptaumnvolutions of a non—negative
function and a distribution function. L&t denote a distribution function dR;
andg : Ry — R{ a Lebesgue—measurable function which is bounded on a# finit
intervals|0, t] with ¢ > 0. Then the function defined by

Fxg(t) = /Otg(t—u) dF(u)

for all t € R is called the convolution of” andg. In particular, the definition of
a convolution applies i§ is a distribution function. As an exercise the reader can
prove

Theorem 4.3 For any distribution functiong” and G as well as non—negative
Lebesgue-measurable functiofss : n € N) onR{, the following properties
hold:

(1) The convolutior” x G is a distribution function o .

2QF+«G=GxF

@) F 30 9n=2 0 F*gn

(4) The Dirac measuré, on 0 with distribution function/,, which is defined
by Iy(t) := 1 forall ¢t > 0 and [y(t) := 0 otherwise, is neutral in regard to
convolutions, i.ely * G = G for all distribution functions.

(5) If the random variables andY are independent and distributed according
to F andG, respectively, the?(X +Y <t) = F « G(t) forall t > 0.

B)F *x(Gxg)=(F+G)xg

Let F' denote any distribution function for a real-valued rand@mable. Define
theconvolutional powers by F*! := F and recursively** ! := [** x F for all
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n € N. Because of property (4) in the above theorem, we défitfe:= I, for
every distribution functiorf'.

Now denote the distribution function of the random variaklle(and hence of all
X, with n > 1) and X, by F' andG, respectively. Since the random variables
(X, : n € N) are iid, part (5) of the above theorem yields foralle N, the
relationP(N; > n) = P(S, < t) = G * F*"~1(t) and thus we obtaifP(N; =
0)=1-G(t)and

P(N; =n) =P(S, <t) = P(S,y1 < t) =G x F*"7H(t) — G+ F*"'(t)

for n > 1. The expectation oV, is given by

E(N;) = ip(zvt >n) = ip(sn <) =G+ i ) (41)

for all t > 0 (for the first equality see Exercise 4.19). The rate of groofth
renewal process is described by

Theorem 4.4Let N = (N, : t > 0) denote a renewal process with renewal
intervals having mean length < co. Then

holds with probability one.

Proof: By definition of V;, the inequalitiesSy, < t < Sy,;1 hold with proba-
bility one for all timest. Dividing these by, and using the strong law of large
numbers, we obtain

m = lim — = lim
n—oo N t—o00 Nt
< 1i t
e N,

Sn+1 Ne+1 Spy1 .. n+1
. - lim

<1 — ;

which proves the statement.

U

Because of this theorem, the inveisen of the mean length of a renewal interval
is called therate of the renewal process. It describes the asymptotic ratéigtw
renewals occur.

=m-1
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Example 4.5 Regarding a Poisson proces§ = (N; : t > 0) with intensity
A > 0, it can be shown that

P(N;, =n) = (ATZ) e M (4.2)
forallt > 0 andn € Ny. The expectation oV, is given byE(N;) = \ - .
Thus a Poisson process with intensityas at time a Poisson distribution with
parameten - t. Moreover, the intensity is also the rate of the Poisson process,
since a mean renewal interval has length.
Given an observed stream of events (e.g. job requests atersever some time
interval of lengtht, we can count the numbe¥ (¢) of events that have occurred
in this interval. If we want to model such event streams by B$em process,
then we need to find a statistical estimator for the intensitiNow theorem 4.4
states that the fractiolV(¢) /¢ comes close ta for large interval lengths. Thus
a consistent statistical estimator for the intengiig given by = N(t)/t.

Example 4.6 There is a discrete—time analogue of the Poisson processhwh
is calledBernoulli process This is an ordinary renewal process with renewal
intervals that have a geometric distribution. Given a patam )0, 1], the length

of the renewal intervals is distributed B6X, =n) = p- (1 —p)"~* forn € N.

4.2 Renewal Function and Renewal Equations

The function defined by?(¢) := > 02 F*"(¢t) for all t > 0 is called there-
newal function of the procesg\/. The renewal function will play a central role in
renewal theory. First we need to show that it remains finite:

Theorem 4.7 If F(0) < 1,thenR(t) => 7, F*"(t) < oo forall t > 0.

Proof: SinceF’(0) < 1 andF is continuous to the right, there is a number- 0
such thatF'(a) < 1. Fix anyt > 0 and choosé € N such thatk - o > t.
ThenF* (1) <1 — (1 - F(a))* =1 1 — g with0 < 8 < 1. Thence we obtain
the boundF* ™ (t) < (1 — g)™ for anym € N. SinceF(0—) = 0, we can use
F(t) > F*'(t) foralln < h € N. Putting these bounds together, we obtain

(e}

R(t) =) F™t)<k-> F"™t)<k-> (1-p)"= % <00

n=1
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sinces > 0.
O

Theorem 4.8 An ordinary renewal process is uniquely determined by ieveal
function.

Proof: First we take the Laplace—Stieltjes transform (LST, seeagix 5.3) on
both sides of the equatiaR(¢) = Y~ >, F**(¢). This yields

Ris) = S Fon(s) = Fls) - 3 (Fls))" = % (4.3)
fors > 0, or B
F(s) = 1]%&
+ R(s)

and thus determines the LS(s) of £ uniquely in terms ofR(s). Now unique-

ness of the LST yields the statement.

O

For an ordinary renewal process we can derive an impli@gral equation for the
renewal function, which is known as a renewal equation. Nwéefor an ordinary
renewal procesg(V,) = R(t) for all timest (see (4.1) withG = F’). Hence the
function R is increasing. If we condition upon the lengthof the first renewal
interval X), we obtain

E(N;) = /0 TN Xo = ) dF(2)

SinceE(Ny| Xy =2) =1+ R(t —x) fort > x andE(N;| Xy = z) = 0for¢ < x,
we can simplify this equation to

R(t) = /t(l + R(t —z)) dF(z) = F(t) + /t R(t — z) dF(x)
0 0
for all ¢ > 0. A renewal equationis the generalized form
g(t) = h(t) +/ g(t —z) dF(x), t>0 (4.4)
0

where a functiork on [0, co[ and a distribution functiot’ on [0, co[ are given and
the functiong on [0, oo is unknown. The solution is given in
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Theorem 4.9 The unique solutiop to equation (4.4) is given by

g(t) = /Ot h(t — x) dR(t) + h(t)

whereR(t) = > > | F*"(t) denotes the renewal function fér.

Proof: Equation (4.4) can be written gs= h + g * F'. Because of the definition
R =), F* we obtain

Fx(Rxh+h)=Fx«h+Y F"'sh=> F"xh=Rxh

n=1 n=1

which shows thaty = R % h + h is indeed a solution of (4.4).
Let ¢’ denote another solution and define the function

d:=g —Rxh—h

Then (4.4) implie® = F x 6 and thus) = F*" x§ for all n € N. SinceR(t) < oo
for any fixedt > 0, we infer thatF*” — 0 asn — oo. Henced(t) = 0 for all
t > 0, which completes the proof.

O

4.3 Renewal Theorems

In order to present the most powerful results of renewalrhabwill be useful

to introduce stopping times and Wald's lemma. Recall from8)#hat a random
variable S with values inN, U {oco} is called a stopping time for the sequence
X =(Xo:neNy)if

P(S < n|X) =P(S < n|X,, ..., X,) (4.5)
holds for alln € Nj.

Lemma 4.10 For a renewal process/ with delay X, and renewal interval§X,, :
n € N), the random variabléV, is a stopping time for the sequencE,, : n €
Np).
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Proof: This follows from the observation thaf, = £ is equivalent to

n<t< X,

Mw

i
o

which implies that the evenY; < k depends onIy oXo, ..., X;.
O

Lemma 4.11 Wald’'s Lemma

BeX = (X, : n € Ny) a sequence of stochastically independent positive random
variables with the same expectatifi.X,,) = m for all n € N. The expectations
E(X,) andE(X,) shall be finite. Further b& a stopping time of the sequenge
with E(S) < co. Then

(ZX ) E(X,) +E(S) - m

Proof: For alln € N, define the random variabldg := 1 on the sef{S > n}
andl, := 0 else. Therp>_, X, = >°>° I, X, and hence

S 00 [
E (Z Xn) =K <Z ]an) => E(I,X,)
n=0 n=0 n=0
by monotone convergence, asand X,, are non—negativeS being a stopping
time for X', we obtain by definitiol?(S > 0) = 1, and further
PS>nX)=1-PS<n—-1X)=1-P(S <n—-1/Xy,..., X 1)

for all n € N. Since theX,, are independent,, and X,, are independent, too,
which impliesE(/,Xy) = E(X,) and

E(I,X,) =E(l,) -E(X,) =P(S>n)-m
for alln € N. Now the relatior) >~ , P(S > n) = E(S) yields

S [e9) 00
E (Z Xn> = E(I,X,) =E(Xo)+ Y P(S>n)-m

n=0 n=1
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Theorem 4.12 Elementary Renewal Theorem

Be N a renewal process with renewal intervdl¥,, : n € N) and mean renewal
timeE(X;) = m > 0. Assume further that the mean delay is finite,lLeX,) <
oo. Then for the counting functioN; the limit

i BV _ 1
t—oo T m

holds, with the conventioh/oo := 0.

Proof. For everyt > 0, the bound < Zf;o X,, holds almost surely. By Wald’s
lemma, this implies

t<E<ZX> E(Xo) +E(N,) - m

and thence fom < oo
1 _E(Xo) _E(M)

m m-1 t
forallt > 0. ForE(X,) < oo andt — oo, this yields the bound

E(N,
lim inf (M) >

1
t—00 t m

which trivially holds for the case: = cc.

Now it remains to show thatm sup,_, ., E(N;)/t < 1/m. To this aim we consider
the truncated renewal process, denoted\bywith the same delayx, = X, but
renewal intervals,, = min(X,,, M) foralln € N, with M being a fixed constant.
Denote furthern = E(X)).

Because ofX,, < M the bounaznﬁi0 X,, < t+ M holds almost certainly for all
t > 0. Taking expectations and applying Wald’s lemma, we obtain

E(Xo) +E(N)-m=E (Y X, | <t+M

) 1
lim sup —
t—o00 t m
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SinceX, < X, for all n € N, we know thatN, > N, for all ¢ > 0. Thus we

obtain further

. E(N) _ 1

lim sup < —
t—o0 m

for any constanfi/. Now the result follows fol\/ — oc.
O

Remark 4.13 In view of theorem 4.4 one might be tempted to think that this
trivially implied the statement of the above theorem 4.18widver, the following
example shows that a limit with probability one in generatsloot imply a limit

in expectation.

Let U denote a random variable which is uniformly distributed ba interval

10, 1[. Further define the random variabl@s, : n € N) by

Vo 0, U>1/n
" n, U<1/n

SinceU > 0 with probability one, we obtain the limit
V, —0, n — oo

with probability one. On the other hand, the expectatiorifois given by

EV,)=n-PU<1/n)=n-—=1

S|

forall n € N and thusE(V,,) — 1 asn — oc.

4.4 Residual Life Times and Stationary Renewal Pro-
cesses

Choose any tim¢ > 0. Denote the duration from until the next arrival by
B, := Sn,+1 — t and call it theresidual life time (or theexcess lif¢ att. Further
we defined; := t — Sy, and callA; theageat¢. These definitions imply the
equality{A; > 2} = {B;_, >z} forall z < t.

For astationary renewal processwve would postulate that the distribution of the
counts in an intervdls, s + t] be independent of and thus equal the distribution
of N,. If this holds for a procesd/, then we also say that’ hasstationary
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increments This implies in particular that the distribution of the idksl life
time must be independent of i.e. it coincides with the distribution aB, and
hence ofX,. We first guess that it satisfies

PO <) = [ (1= (o)) dy (46)

for all x > 0, whereF denotes the distribution function 6f; and furtherm =
E(X;) < co. Indeed we can show

Theorem 4.14 For a renewal procesa/ defined by (4.6) the following properties
hold:

(V) E(N;) =t/m forallt >0

QP(B <z)=m™" [[(1—F(y))dy forallt>0

(3) NV has stationary increments.

Proof: (1) The distribution= of X, has a density(t) = (1 — F(¢)) Hence the
Laplace-Stieltjes transform (LST) 6f is

G(s) = /OOO e“%(l _P()) di = % (/OOO e gt — /OOO () dt)

(5 50

with F(s) denoting the LST of". According to (4.1) we have the representation
E(N;) = G~ F*(t) forallt > 0. Hence the LST of\/(t) := E(V,) is
given by

(s =SB _ L

C1—F(s) sm

for all s > 0, and thus coincides with the LST of the measdrgm. Since the
LST uniquely determines a function @h oo[, this proves the first statement.
(2) The joint distributions

P(B, >z, N, = 0) =1 — G(t + x)

P(B; >z, N, =n) = / P(B; > x, N; = n|S, = y) dG * F*""!(y)
0

_ /Ot<1 —F(t+ 2 —y)) dG x F™(y)
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for n > 1 are immediate from the definition. Abbreviatidgf(z) := 1 — F(z),
G°(z) :=1— G(z), and denoting// (¢) := E(N;), we can write

P(B,>z) =Y P(B, > N, =n)

n=0

o ot
:Gc(t+x)+2/ Fe(t +x —y) dG x F*"(y)
n=1"0
0

:Gc(t+x)+/tFC(t+x—y)d<§:G*F*"_1) (v)

:Gc(t+x)+/0tFC(t+$—y) dM (y)

Using statement (1) and the definition@f we obtain

P(B, > ) =1 0 m(l—F(y))dw%/o<1—F<t+x—y>>dy
—1- [ a Py

which proves the second statement.

(3) The differenceV,, s — N, simply counts the numbéy; of events in timeg of

the renewal proces§” with the same distributio®” of X; but a delayX| ~ B.
Now statement (2) shows thaf, ~ B, = By,. Hence we obtainV, = N, =
Ny s — Ny in distribution, which was to be proven.

O

Because of the results above a renewal process which satisinglition (4.6) is
calledstationary renewal process As one would expect, also the mean residual
life time E(B,) of a stationary renewal process coincides with the limithef t
mean residual life time of an ordinary renewal process:

Lemma 4.15 For a non—negative random variablé thenth moment can be ex-
pressed by

E(X") = / P(X > ) -na" ' dx
0

Proof: This follows simply by writing

E(X™) :/OOO]P(X" > 2) dz:/OOO]P’(X > {/z) dz
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and substituting = {/z with nz"~! dz = dz.
U

Theorem 4.16 For a stationary renewal process wiffi(X?) < oo the mean
residual life time is given by

E(X?)
2m

E(B;) =

independently of > 0.
Proof: Using part (2) of theorem 4.14, we obtain

/ P(B; > y) d :—/ / (1 - F(z))dzdy
y=0Jaz=y
= / / (1-F dydx——/ P(X; >zx)- -z dx
m Jz=0Jy=0

and the statement follows from lemma 4.15.
O

E(By)

Example 4.17 Waiting time at a bus stop

Consider a bus stop where buses are scheduled to arriveenvaig of length
T. However, due to traffic variations the real inter—arrivedgs are uniformly
distributed within interval§7 — a,T + a] with somea > 0. Now suppose
that somebody arrives at the bus stop "at random”, i.e. witkoowing the bus
schedule. Then we can model the mean waiting time for the nextby the
mean residual life timé(B,) in a stationary renewal process with distribution
Xy ~U(T = a,T + a). We obtain

1 T+a 1
E(X?) = / v dr = —

2 2 a_2
(6T%a 4 20%) = "+ 3

OO|>—‘

2a 2a

and by theorem 4.16

2+ T

2.T 2 6-T

Thus the mean waiting time for random inter—arrival timeg@mnga > 0) is
longer than it would be for deterministic ones (namgj2). This phenomenon is
called thewaiting time paradox.

E(B;) =
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Notes

A classical presentation of renewal theory is chapter 11eiteF[9]. The pre-
sentation in this chapter is largely adapted to Ross [17a%8)ell as Karlin and
Taylor [14].

Exercise 4.18Prove theorem 4.3.
Exercise 4.19In the proof for Wald’'s lemma 4.11 we have used the relation
E(S) = > 2 ,P(S > n). For a positive continuous distribution functidn,

the equivalentig(F) = [;~(1 — F(y)) dy. Give a proof for these equations.

Exercise 4.20Show for a Poisson proceds with intensity A > 0 that

k
P(N; = k) = (Aki) e

forallt > 0 andk € Ny, andE(N,) = A - ¢.

Exercise 4.21A plumber receives orders at time intervals which are diated
exponentially with parameteY. As soon as he has received an order he goes to
work, which takes an exponentially distributed time withrgraeteru. During
work he cannot receive any orders. Assume that at time zerpltimber is work-

ing. Give a model of the plumber receiving orders in terms tfreewal process
and determine the density of the renewal intervals’ digtrdn.

Exercise 4.22An intelligence agency eavesdrops on telephone calls attom
cally. If there occurs a suspicious sequence of words, aclosestigation is
initiated. The probabilitiy for such a sequence is one incaufand for every call.
The length of a call is distributed exponentially with a me&20 seconds. How
long is the expected amount of time before a closer invesbigdegins? Use
Wald’s lemma.

Exercise 4.23Let N = (N, : t > 0) denote an ordinary renewal process with
X1 ~ F. Show that the current life tim& ,, satisfies

P(Xy, >x) > 1— F(x)

forall x > 0.
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Exercise 4.24 Show that the agd, of a stationary renewal process is distributed
as

P(A < z) = %/Om(l = F(y)) dy

independently of > 0.



Chapter 5

Appendix

5.1 Conditional Expectations and Probabilities

Let (Q2,.A, P) denote a probability space aff, 5) a measurable space. rAn-
dom variable is a measurable mappidg : Q — S, which means thak —!(B) e
Afor all B € B. In other words X is a random variable if and only £ ~*(B) C

A. In stochastic models, a random variable usually givegimétion on a certain
phenomenon, e.g. the number of users in a queue at some Gpiew]

Consider any real-valued random variallle (2, 4) — (R, B), B denoting the
Borel o—algebra orR, which is integrable or non—negative. While the random
variable X itself yields the full information, a rather small piece ofarmation

on X is given by itsexpectation

E(X) ::/QXdP

The conditional expectation is a concept that yields a agegfeformation which
lies between the full informatioX” and its expectatiot(.X).

To motivate the definition, we first observe that the distitiuP* = Po X! of
X is a measure on the sub-algebraX —!(B) of A4, i.e. in order to compute

P(X € B) = PX(B) = /X_l(B) dP

we need to evaluate the measiit®n sets

A=X"YB) eX (B CA

71
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On the other hand, the expectatiBX) is an evaluation of° on the sef) =
X~1(S) only. Thus we can say that the expectation emplBymly on the trivial
o—algebra{), Q}, while X itself employsP on thes—algebraX —!(B) generated
by X.

Now we take any sulr—algebraC C A. According to the Radon—Nikodym
theorem there is a random variab{g : @ — S with X~!(B) = C and

/C XodP = /C XdpP (5.1)

for all C' € C. This we call theconditional expectationof X underC and write
E(X|C) := X,

A conditional expectation ig>—almost certainly uniquely determined by (5.1).
Typical special cases and examples are

Example 5.1 For C = {0, Q}, the conditional expectation equals the expecta-
tion, i.e. E(X|C) = E(X). For anys—algebraC with X~!(B) C C we obtain
E(X|C) = X.

Example 5.2 Let I denote any index set an@; : ¢ € I) a family of random
variables. For the—algebreC = o(|J,.,; Y, '(B)) generated byY; : i € I), we
write

E(X|Y;:i1€1):=E(X|C)

By definition we obtain for a—algebraC C A, random variablex andY’, and
real numbersr andg

E(aX + BY|C) = aE(X|C) + BE(Y]|C)
Foro—algebra®¥; C C; C A we obtain
E(E(X|C2)[|C1) = E(E(X]C1)[C2) = E(X|Cy) (5.2)

Let C; andC, denote subs—algebras of4, C := o(C; U (), and X an integrable
random variable. 1&(X ~1(B) U C;) andC, are independent, then

E(X|C) = E(X]C)
If X andY” are integrable random variables aid!(B) c C, then
E(XY|C) = X -E(Y|C) (5.3)
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Conditional probabilities are special cases of conditierpectations. Define the
indicator function of a measurable set € A by

1, z€ A
1 = ’
a(®) {0, r¢ A
Such a function is a random variable, since
1,(B) ={0,4,4°,Q} Cc A

with A¢ := Q\ A denoting the complement of the sét LetC denote a subs—
algebra ofA. The conditional expectation @f; is calledconditional probability
of A. We write

P(A|C) :=E(14|C)

Immediate properties of conditional probabilities are
0 < P(A|C) <1, P(D|C) = 0, P(QIC) =1

A C Ay = P(A,|C) < P(A)C)

all of which hold P—almost certainly. For a sequencé,, : n € N) of disjoint
measurable sets, i.g, € Aforalln € NandA4; N A; = () for i # j, we obtain

P (G A, c) - iP(Anw)

P—-almost certainly. LeX : (£2,.4) — (R, B) denote a non—negative or integrable
random variable and” : (2, A) — (€, A’) a random variable. Then there is a
measurable functiop : (€', A") — (R, B) with

E(X|Y)=goY

This is PY—almost certainly determined by

/ gdPY = / X dP
! Yfl(A/)

forall A’ € A’. Then we can define the conditional probability)ofgivenY = y
asg(y). We write

E(X|Y =y) = g(y)
forally € (V.
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5.2 Extension Theorems

Throughout this book, our basic stochastic tools are egbguences of random
variables (such as Markov chains or Markov renewal chaingven uncount-
able families of random variables (such as Markov processaswal processes,
or semi-regenerative processes). It is essential for odletadhat these random
variables are dependent, and in fact we define them in terrosrafitional prob-
abilities, i.e. via their dependence structure.

It is then an immediate question whether a probability mesBlexists that sat-
isfies all the postulates in the definition of a stochastiazisaqge or process. This
question is vital as it concerns the very existence of thistewe are using.

5.2.1 Stochastic chains

Let (S, B) denote a measurable spages probability measure off, B), and P,
n € N, stochastikernels on (S, B). The latter means that for every € N,
P, : S x B —[0,1] is a function that satisfies

(K1) For everyz € S, P,(z,.) is a probability measure arb, ).

(K2) For everyA € B, the functionP,(., A) is B—measurable.

Define S as the set of all sequences= (z, : n € Ny) with z,, € S for all
n € Np. A subset ofS> having the form

n(A) ={x € 5% : (vpy,...,2p,) € A}

.....

withk € N,n; < ... < n; € Ny, andA € B*, is calledcylinder (with coordi-
natesnq,...,n; and based). The setC of all cylinders inS> forms an algebra
of sets. Defind3>™ := ¢(C) as the minimab—algebra containing.

Now we can state the extension theorem for sequences ofravaliables, which
is proven in Gikhman and Skorokhod [10], section II.4.

Theorem 5.3 There is a probability measui® on (5>, B>) satisfying

]P)(Co ..... k(AO X ... X Ak)) = / d,u(fl'o) / Pl(l‘o,dl’l) .
Ao A1
/ Pkfl(xkf%dxkfl) Pk(xkflaAk) (5-4)
Ag—1

forall £ € Ny, Ag,..., Ay € B. The measur® is uniquely determined by the
system (5.4) of equations.
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The first part of the theorem above justifies our definitionMafkov chains and
Markov renewal chains. The second part states in partithiédra Markov chain

is uniquely determined by its initial distribution and itansition matrix.

Based on this result, we may definestachastic chainwith state spac& as a
sequence X, : n € Ny) of S—valued random variables which are distributed
according to a probability measuPeon (5>, B>).

5.2.2 Stochastic processes

Let S denote a Polish (i.e. a complete separable metric) spadel3 ane Borel
o—algebra onS. Define() as the set of all functiong : R — S. In order to
construct an appropriate-algebra orf2, we again start from the cylinder sets

Ctl ----- tk(A) = {f €Q: (f(tl)a'--vf(tk)) € A}

forke N, t; < ... <t, € Rf,andA € B*. Denote the set of all cylinders in
Q2 by C. Again,C forms an algebra of sets and we can defihe= ¢(C) as the
minimal c—algebra containing.

_____ 4 1k € Nty,... .t € R} denote a family of probability

distributions with
(Cl) Forallk € N, ty,...,t, € R}, andA € B*

(C2) For allk € N and permutations : {1,...,k} — {1,...,k}

Hr(ty,..., tk)(W(A)) = [ty ..ty (A)
Then the familyM is calledcompatible.

Remark 5.4 Condition (C1) ensures that the distributions are consistéth
each other, while condition (C2) is merely notational.

The following extension theorem by Kolmogorov is proven iki@nan and Sko-
rokhod [12], section 3.2.

Theorem 5.5 Let {y, .4 : k € N t1,....t, € R} } denote a compatible family
of probability measures. Then there is a probability meaguon (€2, .A) with

PAfeQ:(fta), -, [(tr) € A}) = pay...0(A) (5.5)

forall k € N, ¢1,...,t, € Rf, andA € B*. The measur® is uniquely deter-
mined by the system (5.5) of equations.
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Based on this, we definestochastic processvith Polish state spacg as a fam-

ily X = (X; : t € R}) of S—valued random variables which are distributed
according to a probability measufeon (€2,.4). An elementy € Q) is an arbi-
trary functionw : Rj — S. Itis also called gath of X. If we want to state
that the support dP consists of a special class of functions (say right—cowtirsu
ones), then we say that is a stochastic process with right—continuous paths. The
above familyM of probability measures is called the seffinite—dimensional
marginal distributions for X.

Due to theorem 5.5 a Markov process is uniquely defined bynitgal distri-
bution and the family of transition probabilities, sinceyrdetermine all finite—
dimensional marginal distributions. Further our condinrs of Markov pro-
cesses, renewal processes, and semi—-Markov processgsgmpatible sets of
finite—dimensional marginal distributions, hence by tie@ob.5 a probability mea-
surelP for the respective process.

5.3 Transforms

In several parts of the present book, it is essential to avgu&ansforms of dis-
tributions. The necessary background for these shall beepted shortly in this
section. For discrete distributions &f we will introduce z—transforms, while
for distributions oriR{ the Laplace—Stieltjes transform will be useful.

5.3.1 z-transforms

Let X denote a&Ny—valued random variable with distributioh= (a,, : n € Ny),
i.e.P(X =n) = a, foralln € Ny. Then the power series

A*(z) == ianz" (5.6)
n=0

converges absolutely far € C with |z| < 1 and is analytic in this region. We
note thatd*(z) = E(zX). If A(z) is a given power series for a distributi¢m, :
n € Np), then the probabilities,, can be derived as

an = L d A(z)

on! dzn

2=0
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for all n € Ny. Thus the mapping between discrete distributionsNgrand the
power series i1i5.6) is bijective, and we may call*(z) the (uniquely determined)
z—transform of X (also: of the distributior).

Example 5.6 For a Dirac distribution ok € N, with

1, n=k
a, =
0, n#k
we obtainA*(z) = z*.

Example 5.7 Let A denote the geometric distribution with some parameter
10,1], i.e.
= (1—p)p"

for all n € Ny. Thez—transform ofA is given by

AY( (I1—p Zp 1—pz

forall |z| < 1.

A very useful feature is the behaviour of thetransform with respect to the con-
volution of two distributions. LetA = (a,, : n € Ng) andB = (b, : n € Ny)
denote two distributions oN,. The convolutiorC' = A x B of A andB is defined
as the distributio = (¢, : n € Ny) with

n
= E arbp—k
k=0

for all n € Ny. For thez—transform ofC' we obtain

(o 0] o n o o
C*(z) = E cp2"t = g E pbp_12" = E Rz g by 2"
n= n=0 k=0 n=0 n=~k

forall |z| < 1.
This means that the-transform of a convolutiod « B equals the product*(z) -
B*(z) of the z—transform ofA and B. In terms of random variables we have
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the following representation: LeX andY denote two independeii,—valued
random variables. Then the-transform of the sunX + Y equals the product of
the z—transforms ofX andY, i.e.

E () =K (%) - E (=)

forall |z| < 1.

5.3.2 Laplace-Stieltjes transforms

Let X denote arRj—valued random variable with distribution functiéh The
Laplace—Stieltjes transform (LST) of X (or: of F) is defined by

F*(s) := /000 e *dF(t) =E (e=*)

for all s € C with Re(s) > 0. The LST uniquely determines its underlying
distribution.

Example 5.8 Let X be exponentially distributed with parameferi.e. X has the
distribution functionF'(t) = 1 — e~* with Lebesgue density(t) = Ae~*". Then

F* — fst)\ f)\tdt:

for Re(s) > 0.

Example 5.9 For the Dirac distribution, onx € R} we obtain
o . 0, t<
dr(s) = / e *tdF(t) with F(t) = v
0 1, t Z X

and hence
5i(s) = e
for Re(s) > 0.

Like the z—transform, the LST is very useful for dealing with convalus. Let
X andY denote two independefj —valued random variables. Then the LST of
the sumX + Y equals the product of the LSTs af andY’, i.e.

E (e—s(X—i—Y)) — (e—sX) .E (e—sY)

for all s € C with Re(s) > 0.
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Notes

For more onz—transforms see e.g. Juri [13], or the collection of resaltslein-
rock [15], appendix |. For Laplace—Stieltjes transformes sleapter XIll in Feller
[9] or again Kleinrock [15], appendix I.

5.4 Gershgorin’s circle theorem

An important theorem to find bounds for the eigenvalues of &irnhas been
developed by Gershgorin in 1938. For ease of reference lit shgresented in
this section. Letd = (a;;): < denote a square matrix of dimensionwith
entriesa;; € C. The following theorem is calleGershgorin’s circle theorem

Theorem 5.10 All eigenvalues of the matriX lie in the unionC' := (J;", C; of

the circles
C; = {zeC:\z—aiil SZ\CLM}

ki

Proof: Let ) denote an eigenvector to the eigenvaljeof A, i.e. Az =
Az, This implies

m

Z aikx,(:) = )\ngy) (5.7)
k=1
for all i < m. Since an eigenvector is determined only up to a scalar phick-
tive, we can assume without loss of generality that therecmaponent

r;” = max ’x(.")’ =1
0 1<j<m

of the vectorz®). Now (5.7) yields fori = 4, the relation
Z aio,kxl(cy) = <)‘l/ - a’ioﬂ'o) SCZ(-;/) = )‘V — Qi ig
ko

which implies by the triangle inequality

|AV - aio,i()| S Z |a"i(),l<;| : ‘1‘;(:) S Z |ai0,k‘|

kio k£io

Since every eigenvalue satisfies at least one such inegulétproof is complete.
O
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Corollary 5.11 If A is diagonally dominated, i.e. if
|aii| > Z | ik
ki
holds for all1 < i < m, then the matrix4 is invertible.

Proof: The strict inequality of the assumption implies thgt= 0 for all i < m.
Applying theorem 5.10 yields a restriction

Al > fais| = las = Al > Jai| = aw| > 0
k+#i
for every eigenvalue of A. Therefore the matri¥l has no eigenvalue zero and

thus is invertible.
O
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