Chapter 4: Renewal Processes

L. Breuer University of Kent, UK

November 14, 2010

∢ ≣⇒

Be $(X_n : n \in \mathbb{N}_0)$ a sequence of independent positive random variables,

イロン イヨン イヨン -

3

Be $(X_n : n \in \mathbb{N}_0)$ a sequence of independent positive random variables, and assume that $(X_n : n \in \mathbb{N})$ are identically distributed.

• E • • E •

Be $(X_n : n \in \mathbb{N}_0)$ a sequence of independent positive random variables, and assume that $(X_n : n \in \mathbb{N})$ are identically distributed. Define the sequence $S = (S_n : n \in \mathbb{N})$ by $S_1 := X_0$

Be $(X_n : n \in \mathbb{N}_0)$ a sequence of independent positive random variables, and assume that $(X_n : n \in \mathbb{N})$ are identically distributed. Define the sequence $S = (S_n : n \in \mathbb{N})$ by $S_1 := X_0$ and $S_{n+1} := S_n + X_n$ for all $n \in \mathbb{N}$.

回 と く ヨ と く ヨ と …

Be $(X_n : n \in \mathbb{N}_0)$ a sequence of independent positive random variables, and assume that $(X_n : n \in \mathbb{N})$ are identically distributed. Define the sequence $S = (S_n : n \in \mathbb{N})$ by $S_1 := X_0$ and $S_{n+1} := S_n + X_n$ for all $n \in \mathbb{N}$. The random variable S_n is called the *n*th **renewal time**,

白 ト イヨ ト イヨ ト

Be $(X_n : n \in \mathbb{N}_0)$ a sequence of independent positive random variables, and assume that $(X_n : n \in \mathbb{N})$ are identically distributed. Define the sequence $S = (S_n : n \in \mathbb{N})$ by $S_1 := X_0$ and $S_{n+1} := S_n + X_n$ for all $n \in \mathbb{N}$. The random variable S_n is called the *n*th **renewal time**, while the time duration X_n is called the *n*th **renewal interval**.

御 と くほ と くほ と … ほ

Be $(X_n : n \in \mathbb{N}_0)$ a sequence of independent positive random variables, and assume that $(X_n : n \in \mathbb{N})$ are identically distributed. Define the sequence $S = (S_n : n \in \mathbb{N})$ by $S_1 := X_0$ and $S_{n+1} := S_n + X_n$ for all $n \in \mathbb{N}$. The random variable S_n is called the *n*th **renewal time**, while the time duration X_n is called the *n*th **renewal interval**. Further define the random variable of the number of renewals until time *t* by

$$N_t := \max\{n \in \mathbb{N} : S_n \le t\}$$

for all $t \ge 0$

白 ト イヨト イヨト

Be $(X_n : n \in \mathbb{N}_0)$ a sequence of independent positive random variables, and assume that $(X_n : n \in \mathbb{N})$ are identically distributed. Define the sequence $S = (S_n : n \in \mathbb{N})$ by $S_1 := X_0$ and $S_{n+1} := S_n + X_n$ for all $n \in \mathbb{N}$. The random variable S_n is called the *n*th **renewal time**, while the time duration X_n is called the *n*th **renewal interval**. Further define the random variable of the number of renewals until time *t* by

$$N_t := \max\{n \in \mathbb{N} : S_n \leq t\}$$

for all $t \ge 0$ with the convention $\max \emptyset = 0$.

御 と くほ と くほ と … ほ

Be $(X_n : n \in \mathbb{N}_0)$ a sequence of independent positive random variables, and assume that $(X_n : n \in \mathbb{N})$ are identically distributed. Define the sequence $S = (S_n : n \in \mathbb{N})$ by $S_1 := X_0$ and $S_{n+1} := S_n + X_n$ for all $n \in \mathbb{N}$. The random variable S_n is called the *n*th **renewal time**, while the time duration X_n is called the *n*th **renewal interval**. Further define the random variable of the number of renewals until time *t* by

$$N_t := \max\{n \in \mathbb{N} : S_n \le t\}$$

for all $t \ge 0$ with the convention $\max \emptyset = 0$. Then the continuous time process $\mathcal{N} = (N_t : t \in \mathbb{R}^+_0)$ is called a **renewal process**.

(ロ) (同) (E) (E) (E)

The random variable X_0 is called the **delay** of \mathcal{N} .

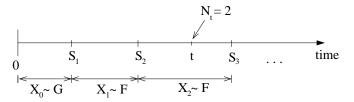
æ

The random variable X_0 is called the **delay** of \mathcal{N} . If X_0 and X_1 have the same distribution, then \mathcal{N} is called an **ordinary renewal process**.

- 4 回 2 - 4 三 2 - 4 三 2 - 4

æ

The random variable X_0 is called the **delay** of \mathcal{N} . If X_0 and X_1 have the same distribution, then \mathcal{N} is called an **ordinary renewal process**.



프 🖌 🛪 프 🕨

We will always assume that $\mathbb{P}(X_1 = 0) = 0$.

★ E > < E >

A ■

We will always assume that $\mathbb{P}(X_1=0)=0$. If $m:=\mathbb{E}(X_1)<\infty$,

★ 문 → ★ 문 →

A ■

We will always assume that $\mathbb{P}(X_1 = 0) = 0$. If $m := \mathbb{E}(X_1) < \infty$, then the strong law of large numbers implies that $S_n/n \to m$ with probability one as $n \to \infty$.

白 と く ヨ と く ヨ と

We will always assume that $\mathbb{P}(X_1 = 0) = 0$. If $m := \mathbb{E}(X_1) < \infty$, then the strong law of large numbers implies that $S_n/n \to m$ with probability one as $n \to \infty$. Hence $S_n < t$ cannot hold for infinitely many n

回 と く ヨ と く ヨ と …

伺 と く き と く き とう

 $G(x) := \mathbb{P}(X_0 \le x)$ and $F(x) := \mathbb{P}(X_1 \le x)$ for all $x \in \mathbb{R}^+_0$.

伺下 イヨト イヨト

 $G(x) := \mathbb{P}(X_0 \le x)$ and $F(x) := \mathbb{P}(X_1 \le x)$ for all $x \in \mathbb{R}_0^+$. \mathcal{N} is a counting process,

伺下 イヨト イヨト

 $G(x) := \mathbb{P}(X_0 \le x)$ and $F(x) := \mathbb{P}(X_1 \le x)$ for all $x \in \mathbb{R}_0^+$. \mathcal{N} is a **counting process**, i.e. $N_t \in \mathbb{N}_0$ for all $t \ge 0$

伺下 イヨト イヨト

 $G(x) := \mathbb{P}(X_0 \le x)$ and $F(x) := \mathbb{P}(X_1 \le x)$ for all $x \in \mathbb{R}_0^+$. \mathcal{N} is a **counting process**, i.e. $N_t \in \mathbb{N}_0$ for all $t \ge 0$ and $N_s \le N_t$ for all $s \le t$.

御 と く ヨ と く ヨ と …

A Poisson process with intensity λ is an ordinary renewal process with $F(x) = G(x) = 1 - e^{-\lambda x}$,

(* E) * E *

A Poisson process with intensity λ is an ordinary renewal process with $F(x) = G(x) = 1 - e^{-\lambda x}$, i.e. the renewal intervals have an exponential distribution.

A Poisson process with intensity λ is an ordinary renewal process with $F(x) = G(x) = 1 - e^{-\lambda x}$, i.e. the renewal intervals have an exponential distribution. Thus a renewal process can be seen as a generalization of the Poisson process with respect to the distribution of the renewal intervals.

Let \mathcal{Z} be a homogeneous Markov chain with discrete state space E.

< 注 → < 注 →

Let \mathcal{Z} be a homogeneous Markov chain with discrete state space E. Assume that $i, j \in E$ and $\mathbb{P}(Z_0 = i) = 1$.

《글》 《글》

Let \mathcal{Z} be a homogeneous Markov chain with discrete state space E. Assume that $i, j \in E$ and $\mathbb{P}(Z_0 = i) = 1$. Let

$$N_j(n) := \sum_{k=0}^n \mathbb{1}_{\{Z_k=j\}}$$

denote the number of visits to state j after n steps.

御 と く ヨ と く ヨ と …

Let \mathcal{Z} be a homogeneous Markov chain with discrete state space E. Assume that $i, j \in E$ and $\mathbb{P}(Z_0 = i) = 1$. Let

$$N_j(n) := \sum_{k=0}^n \mathbb{1}_{\{Z_k=j\}}$$

denote the number of visits to state j after n steps. Then $N_t := N_j([t])$ with

 $[t] := \max\{n \in \mathbb{N}_0 : n \le t\}$

個 と く ヨ と く ヨ と …

Let \mathcal{Z} be a homogeneous Markov chain with discrete state space E. Assume that $i, j \in E$ and $\mathbb{P}(Z_0 = i) = 1$. Let

$$N_j(n) := \sum_{k=0}^n \mathbb{1}_{\{Z_k=j\}}$$

denote the number of visits to state j after n steps. Then $N_t := N_j([t])$ with

 $[t] := \max\{n \in \mathbb{N}_0 : n \le t\}$

defines a renewal process with delay τ_i

Let \mathcal{Z} be a homogeneous Markov chain with discrete state space E. Assume that $i, j \in E$ and $\mathbb{P}(Z_0 = i) = 1$. Let

$$N_j(n) := \sum_{k=0}^n \mathbb{1}_{\{Z_k=j\}}$$

denote the number of visits to state j after n steps. Then $N_t := N_j([t])$ with

 $[t] := \max\{n \in \mathbb{N}_0 : n \le t\}$

defines a renewal process with delay τ_j and renewal intervals

$$X_n = \tau_j^{(n+1)} - \tau_j^{(n)}$$

for $n \in \mathbb{N}$.

Let $\mathcal{N} = (N_t : t \ge 0)$ denote a renewal process with renewal intervals having mean length $m < \infty$.

個 と く ヨ と く ヨ と

Let $\mathcal{N} = (N_t : t \ge 0)$ denote a renewal process with renewal intervals having mean length $m < \infty$. Then

$$\lim_{t\to\infty}\frac{N_t}{t}=\frac{1}{m}$$

holds with probability one.

• E • • E •

Let $\mathcal{N} = (N_t : t \ge 0)$ denote a renewal process with renewal intervals having mean length $m < \infty$. Then

$$\lim_{t\to\infty}\frac{N_t}{t}=\frac{1}{m}$$

holds with probability one. The number 1/m is called the **rate** of the renewal process.

★ 문 ► ★ 문 ►

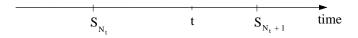
Let $\mathcal{N} = (N_t : t \ge 0)$ denote a renewal process with renewal intervals having mean length $m < \infty$. Then

$$\lim_{t\to\infty}\frac{N_t}{t}=\frac{1}{m}$$

holds with probability one. The number 1/m is called the **rate** of the renewal process. It describes the asymptotic rate at which renewals occur.

Proof of theorem 6.4

By definition of N_t , the inequalities $S_{N_t} \leq t < S_{N_t+1}$ hold with probability one for all times t.

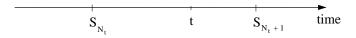


Dividing these by N_t and using the strong law of large numbers, we obtain (with probability one)

$$m = \lim_{n \to \infty} \frac{S_n}{n} = \lim_{t \to \infty} \frac{S_{N_t}}{N_t} \le \lim_{t \to \infty} \frac{t}{N_t}$$

Proof of theorem 6.4

By definition of N_t , the inequalities $S_{N_t} \leq t < S_{N_t+1}$ hold with probability one for all times t.

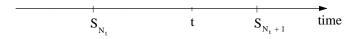


Dividing these by N_t and using the strong law of large numbers, we obtain (with probability one)

$$m = \lim_{n \to \infty} \frac{S_n}{n} = \lim_{t \to \infty} \frac{S_{N_t}}{N_t} \le \lim_{t \to \infty} \frac{t}{N_t}$$
$$\le \lim_{t \to \infty} \left(\frac{S_{N_t+1}}{N_t+1} \cdot \frac{N_t+1}{N_t} \right)$$

Proof of theorem 6.4

By definition of N_t , the inequalities $S_{N_t} \leq t < S_{N_t+1}$ hold with probability one for all times t.



Dividing these by N_t and using the strong law of large numbers, we obtain (with probability one)

$$m = \lim_{n \to \infty} \frac{S_n}{n} = \lim_{t \to \infty} \frac{S_{N_t}}{N_t} \le \lim_{t \to \infty} \frac{t}{N_t}$$
$$\le \lim_{t \to \infty} \left(\frac{S_{N_t+1}}{N_t + 1} \cdot \frac{N_t + 1}{N_t} \right)$$
$$= \lim_{n \to \infty} \frac{S_{n+1}}{n+1} \cdot \lim_{n \to \infty} \frac{n+1}{n} = m \cdot 1$$

Regarding a Poisson process $\mathcal{N} = (N_t : t \ge 0)$ with intensity $\lambda > 0$,

(1日) (日) (日)

$$\mathbb{P}(N_t = n) = \frac{(\lambda t)^n}{n!} e^{-\lambda t}$$

for all $t \geq 0$ and $n \in \mathbb{N}_0$.

回 と く ヨ と く ヨ と

$$\mathbb{P}(N_t = n) = \frac{(\lambda t)^n}{n!} e^{-\lambda t}$$

for all $t \ge 0$ and $n \in \mathbb{N}_0$. The expectation of N_t is given by $\mathbb{E}(N_t) = \lambda \cdot t$.

$$\mathbb{P}(N_t = n) = \frac{(\lambda t)^n}{n!} e^{-\lambda t}$$

for all $t \ge 0$ and $n \in \mathbb{N}_0$. The expectation of N_t is given by $\mathbb{E}(N_t) = \lambda \cdot t$.

Thus a Poisson process with intensity λ has at time t a Poisson distribution with parameter $\lambda \cdot t$.

向下 イヨト イヨト

$$\mathbb{P}(N_t = n) = \frac{(\lambda t)^n}{n!} e^{-\lambda t}$$

for all $t \ge 0$ and $n \in \mathbb{N}_0$. The expectation of N_t is given by $\mathbb{E}(N_t) = \lambda \cdot t$.

Thus a Poisson process with intensity λ has at time t a Poisson distribution with parameter $\lambda \cdot t$. Moreover, the intensity λ is also the rate of the Poisson process,

向下 イヨト イヨト

$$\mathbb{P}(N_t = n) = \frac{(\lambda t)^n}{n!} e^{-\lambda t}$$

for all $t \ge 0$ and $n \in \mathbb{N}_0$. The expectation of N_t is given by $\mathbb{E}(N_t) = \lambda \cdot t$.

Thus a Poisson process with intensity λ has at time t a Poisson distribution with parameter $\lambda \cdot t$. Moreover, the intensity λ is also the rate of the Poisson process, since a mean renewal interval has length $1/\lambda$.

伺い イヨト イヨト

$$\mathbb{P}(N_t = n) = \frac{(\lambda t)^n}{n!} e^{-\lambda t}$$

for all $t \ge 0$ and $n \in \mathbb{N}_0$. The expectation of N_t is given by $\mathbb{E}(N_t) = \lambda \cdot t$.

Thus a Poisson process with intensity λ has at time t a Poisson distribution with parameter $\lambda \cdot t$. Moreover, the intensity λ is also the rate of the Poisson process, since a mean renewal interval has length $1/\lambda$. Now theorem 6.4 states that a consistent statistical estimator for the intensity λ is given by $\hat{\lambda} = N(t)/t$.

伺 と く き と く き とう

For a renewal process \mathcal{N} with delay X_0 and renewal intervals $(X_n : n \in \mathbb{N})$,

イロト イヨト イヨト イヨト

3

For a renewal process \mathcal{N} with delay X_0 and renewal intervals $(X_n : n \in \mathbb{N})$, the random variable N_t is a stopping time for the sequence $(X_n : n \in \mathbb{N}_0)$.

★ E ► < E ►</p>

For a renewal process \mathcal{N} with delay X_0 and renewal intervals $(X_n : n \in \mathbb{N})$, the random variable N_t is a stopping time for the sequence $(X_n : n \in \mathbb{N}_0)$.

Proof:

This follows from the observation that $N_t = k$ is equivalent to

$$\sum_{n=0}^{k-1} X_n \le t < \sum_{n=0}^k X_n$$

< 3 > 4 3 > 4

For a renewal process \mathcal{N} with delay X_0 and renewal intervals $(X_n : n \in \mathbb{N})$, the random variable N_t is a stopping time for the sequence $(X_n : n \in \mathbb{N}_0)$.

Proof:

This follows from the observation that $N_t = k$ is equivalent to

$$\sum_{n=0}^{k-1} X_n \le t < \sum_{n=0}^k X_n$$

which implies that the event $N_t \leq k$ depends only on X_0, \ldots, X_k .

□→ ★ 三→ ★ 三→

Be $\mathcal{X} = (X_n : n \in \mathbb{N}_0)$ a sequence of stochastically independent positive random variables

通 とくほとくほとう

Be $\mathcal{X} = (X_n : n \in \mathbb{N}_0)$ a sequence of stochastically independent positive random variables with the same expectation $\mathbb{E}(X_n) = m$ for all $n \in \mathbb{N}$.

回 と く ヨ と く ヨ と

Be $\mathcal{X} = (X_n : n \in \mathbb{N}_0)$ a sequence of stochastically independent positive random variables with the same expectation $\mathbb{E}(X_n) = m$ for all $n \in \mathbb{N}$. The expectations $\mathbb{E}(X_0)$ and $\mathbb{E}(X_1)$ shall be finite.

回 と く ヨ と く ヨ と

Be $\mathcal{X} = (X_n : n \in \mathbb{N}_0)$ a sequence of stochastically independent positive random variables with the same expectation $\mathbb{E}(X_n) = m$ for all $n \in \mathbb{N}$. The expectations $\mathbb{E}(X_0)$ and $\mathbb{E}(X_1)$ shall be finite. Further be *S* a stopping time of the sequence \mathcal{X} with $\mathbb{E}(S) < \infty$.

個人 くほん くまん

Be $\mathcal{X} = (X_n : n \in \mathbb{N}_0)$ a sequence of stochastically independent positive random variables with the same expectation $\mathbb{E}(X_n) = m$ for all $n \in \mathbb{N}$. The expectations $\mathbb{E}(X_0)$ and $\mathbb{E}(X_1)$ shall be finite. Further be *S* a stopping time of the sequence \mathcal{X} with $\mathbb{E}(S) < \infty$. Then

$$\mathbb{E}\left(\sum_{n=0}^{S} X_n\right) = \mathbb{E}(X_0) + \mathbb{E}(S) \cdot m$$

御 と く き と く き とう

For all $n \in \mathbb{N}_0$ define the random variables $I_n := 1$ on the set $\{S \ge n\}$ and $I_n := 0$ else.

・聞き ・ ほき・ ・ ほう

3

For all $n \in \mathbb{N}_0$ define the random variables $I_n := 1$ on the set $\{S \ge n\}$ and $I_n := 0$ else. Then

$$\sum_{n=0}^{S} X_n = \sum_{n=0}^{\infty} I_n X_n$$

<ロ> (四) (四) (三) (三) (三)

For all $n \in \mathbb{N}_0$ define the random variables $I_n := 1$ on the set $\{S \ge n\}$ and $I_n := 0$ else. Then

$$\sum_{n=0}^{S} X_n = \sum_{n=0}^{\infty} I_n X_n$$

and hence

$$\mathbb{E}\left(\sum_{n=0}^{S} X_{n}\right) = \mathbb{E}\left(\sum_{n=0}^{\infty} I_{n} X_{n}\right) = \sum_{n=0}^{\infty} \mathbb{E}(I_{n} X_{n})$$

by monotone convergence,

★ E ► < E ►</p>

For all $n \in \mathbb{N}_0$ define the random variables $I_n := 1$ on the set $\{S \ge n\}$ and $I_n := 0$ else. Then

$$\sum_{n=0}^{S} X_n = \sum_{n=0}^{\infty} I_n X_n$$

and hence

$$\mathbb{E}\left(\sum_{n=0}^{S} X_n\right) = \mathbb{E}\left(\sum_{n=0}^{\infty} I_n X_n\right) = \sum_{n=0}^{\infty} \mathbb{E}(I_n X_n)$$

by monotone convergence, as I_n and X_n are non-negative.

- A B A A B A -

For all $n \in \mathbb{N}_0$ define the random variables $I_n := 1$ on the set $\{S \ge n\}$ and $I_n := 0$ else. Then

$$\sum_{n=0}^{S} X_n = \sum_{n=0}^{\infty} I_n X_n$$

and hence

$$\mathbb{E}\left(\sum_{n=0}^{S} X_n\right) = \mathbb{E}\left(\sum_{n=0}^{\infty} I_n X_n\right) = \sum_{n=0}^{\infty} \mathbb{E}(I_n X_n)$$

by monotone convergence, as I_n and X_n are non-negative. S being a stopping time for \mathcal{X} , we obtain by definition $\mathbb{P}(S \ge 0) = 1$,

A > < 3 > < 3 > -

For all $n \in \mathbb{N}_0$ define the random variables $I_n := 1$ on the set $\{S \ge n\}$ and $I_n := 0$ else. Then

$$\sum_{n=0}^{S} X_n = \sum_{n=0}^{\infty} I_n X_n$$

and hence

$$\mathbb{E}\left(\sum_{n=0}^{S} X_n\right) = \mathbb{E}\left(\sum_{n=0}^{\infty} I_n X_n\right) = \sum_{n=0}^{\infty} \mathbb{E}(I_n X_n)$$

by monotone convergence, as I_n and X_n are non-negative. S being a stopping time for \mathcal{X} , we obtain by definition $\mathbb{P}(S \ge 0) = 1$, and further

$$\mathbb{P}(S \ge n | \mathcal{X}) = 1 - \mathbb{P}(S \le n - 1 | \mathcal{X}) = 1 - \mathbb{P}(S \le n - 1 | X_0, \dots, X_{n-1})$$

for all $n \in \mathbb{N}$.

伺下 イヨト イヨト

Since the X_n are independent, I_n and X_n are independent,

回 と く ヨ と く ヨ と

個 と く ヨ と く ヨ と

$$\mathbb{E}(I_nX_n) = \mathbb{E}(I_n) \cdot \mathbb{E}(X_n) = \mathbb{P}(S \ge n) \cdot m$$

for all $n \in \mathbb{N}$.

回 と く ヨ と く ヨ と

$$\mathbb{E}(I_nX_n) = \mathbb{E}(I_n) \cdot \mathbb{E}(X_n) = \mathbb{P}(S \ge n) \cdot m$$

for all $n \in \mathbb{N}$. Now the relation $\sum_{n=1}^{\infty} \mathbb{P}(S \ge n) = \mathbb{E}(S)$

同 と く ヨ と く ヨ と

$$\mathbb{E}(I_nX_n) = \mathbb{E}(I_n) \cdot \mathbb{E}(X_n) = \mathbb{P}(S \ge n) \cdot m$$

for all $n \in \mathbb{N}$. Now the relation $\sum_{n=1}^{\infty} \mathbb{P}(S \ge n) = \mathbb{E}(S)$ yields

$$\mathbb{E}\left(\sum_{n=0}^{S} X_n\right) = \sum_{n=0}^{\infty} \mathbb{E}(I_n X_n) = \mathbb{E}(X_0) + \sum_{n=1}^{\infty} \mathbb{P}(S \ge n) \cdot m$$

伺下 イヨト イヨト

$$\mathbb{E}(I_nX_n) = \mathbb{E}(I_n) \cdot \mathbb{E}(X_n) = \mathbb{P}(S \ge n) \cdot m$$

for all $n \in \mathbb{N}$. Now the relation $\sum_{n=1}^{\infty} \mathbb{P}(S \ge n) = \mathbb{E}(S)$ yields

$$\mathbb{E}\left(\sum_{n=0}^{S} X_n\right) = \sum_{n=0}^{\infty} \mathbb{E}(I_n X_n) = \mathbb{E}(X_0) + \sum_{n=1}^{\infty} \mathbb{P}(S \ge n) \cdot m$$

$$= \mathbb{E}(X_0) + \mathbb{E}(S) \cdot m$$

伺下 イヨト イヨト

Be \mathcal{N} a renewal process with renewal intervals $(X_n : n \in \mathbb{N})$ and mean renewal time $\mathbb{E}(X_1) = m > 0$.

- < ≣ > -

Be \mathcal{N} a renewal process with renewal intervals $(X_n : n \in \mathbb{N})$ and mean renewal time $\mathbb{E}(X_1) = m > 0$. Assume further that the mean delay is finite, i.e. $\mathbb{E}(X_0) < \infty$.

Be \mathcal{N} a renewal process with renewal intervals $(X_n : n \in \mathbb{N})$ and mean renewal time $\mathbb{E}(X_1) = m > 0$. Assume further that the mean delay is finite, i.e. $\mathbb{E}(X_0) < \infty$. Then for the counting function N_t the limit

$$\lim_{t\to\infty}\frac{\mathbb{E}(N_t)}{t}=\frac{1}{m}$$

holds,

(B) (B)

Be \mathcal{N} a renewal process with renewal intervals $(X_n : n \in \mathbb{N})$ and mean renewal time $\mathbb{E}(X_1) = m > 0$. Assume further that the mean delay is finite, i.e. $\mathbb{E}(X_0) < \infty$. Then for the counting function N_t the limit

$$\lim_{t\to\infty}\frac{\mathbb{E}(N_t)}{t}=\frac{1}{m}$$

holds, with the convention $1/\infty := 0$.

Proof of theorem 6.12

For every $t \ge 0$, the bound $t < \sum_{n=0}^{N_t} X_n$ holds almost surely.

御 と く ヨ と く ヨ と

Proof of theorem 6.12

For every $t \ge 0$, the bound $t < \sum_{n=0}^{N_t} X_n$ holds almost surely. By Wald's lemma, this implies

$$t < \mathbb{E}\left(\sum_{n=0}^{N_t} X_n\right) = \mathbb{E}(X_0) + \mathbb{E}(N_t) \cdot m$$

For every $t \ge 0$, the bound $t < \sum_{n=0}^{N_t} X_n$ holds almost surely. By Wald's lemma, this implies

$$t < \mathbb{E}\left(\sum_{n=0}^{N_t} X_n\right) = \mathbb{E}(X_0) + \mathbb{E}(N_t) \cdot m$$

and hence for $m < \infty$

$$\frac{1}{m} - \frac{\mathbb{E}(X_0)}{m \cdot t} < \frac{\mathbb{E}(N_t)}{t}$$

for all $t \geq 0$.

For every $t \ge 0$, the bound $t < \sum_{n=0}^{N_t} X_n$ holds almost surely. By Wald's lemma, this implies

$$t < \mathbb{E}\left(\sum_{n=0}^{N_t} X_n\right) = \mathbb{E}(X_0) + \mathbb{E}(N_t) \cdot m$$

and hence for $m < \infty$

$$\frac{1}{m} - \frac{\mathbb{E}(X_0)}{m \cdot t} < \frac{\mathbb{E}(N_t)}{t}$$

for all $t \geq 0$. For $\mathbb{E}(X_0) < \infty$ and $t \to \infty$,

For every $t \ge 0$, the bound $t < \sum_{n=0}^{N_t} X_n$ holds almost surely. By Wald's lemma, this implies

$$t < \mathbb{E}\left(\sum_{n=0}^{N_t} X_n\right) = \mathbb{E}(X_0) + \mathbb{E}(N_t) \cdot m$$

and hence for $m < \infty$

$$\frac{1}{m} - \frac{\mathbb{E}(X_0)}{m \cdot t} < \frac{\mathbb{E}(N_t)}{t}$$

for all $t\geq 0$. For $\mathbb{E}(X_0)<\infty$ and $t\to\infty$, this yields the bound

$$\liminf_{t\to\infty}\frac{\mathbb{E}(N_t)}{t}\geq\frac{1}{m}$$

For every $t \ge 0$, the bound $t < \sum_{n=0}^{N_t} X_n$ holds almost surely. By Wald's lemma, this implies

$$t < \mathbb{E}\left(\sum_{n=0}^{N_t} X_n\right) = \mathbb{E}(X_0) + \mathbb{E}(N_t) \cdot m$$

and hence for $m < \infty$

$$\frac{1}{m} - \frac{\mathbb{E}(X_0)}{m \cdot t} < \frac{\mathbb{E}(N_t)}{t}$$

for all $t\geq 0$. For $\mathbb{E}(X_0)<\infty$ and $t\to\infty$, this yields the bound

$$\liminf_{t\to\infty}\frac{\mathbb{E}(N_t)}{t}\geq\frac{1}{m}$$

which trivially holds for the case $m = \infty$.

Now it remains to show that

```
\limsup_{t\to\infty}\mathbb{E}(N_t)/t\leq 1/m
```

< 注 → < 注 →

A ■

Now it remains to show that

```
\limsup_{t\to\infty}\mathbb{E}(N_t)/t\leq 1/m
```

To this aim we consider the truncated renewal process,

< ∃ >

Now it remains to show that

```
\limsup_{t\to\infty}\mathbb{E}(N_t)/t\leq 1/m
```

To this aim we consider the truncated renewal process, denoted by $\tilde{\mathcal{N}},$

Now it remains to show that

 $\limsup_{t\to\infty}\mathbb{E}(N_t)/t\leq 1/m$

To this aim we consider the truncated renewal process, denoted by $\tilde{\mathcal{N}}$, with the same delay $\tilde{X}_0 = X_0$

Now it remains to show that

```
\limsup_{t\to\infty}\mathbb{E}(N_t)/t\leq 1/m
```

To this aim we consider the truncated renewal process, denoted by $\tilde{\mathcal{N}}$, with the same delay $\tilde{X}_0 = X_0$ but renewal intervals

$$\tilde{X}_n = \min(X_n, M)$$

for all $n \in \mathbb{N}$,

Now it remains to show that

```
\limsup_{t\to\infty}\mathbb{E}(N_t)/t\leq 1/m
```

To this aim we consider the truncated renewal process, denoted by $\tilde{\mathcal{N}}$, with the same delay $\tilde{X}_0 = X_0$ but renewal intervals

$$\tilde{X}_n = \min(X_n, M)$$

for all $n \in \mathbb{N}$, with M being a fixed constant.

Now it remains to show that

$$\limsup_{t\to\infty}\mathbb{E}(N_t)/t\leq 1/m$$

To this aim we consider the truncated renewal process, denoted by $\tilde{\mathcal{N}}$, with the same delay $\tilde{X}_0 = X_0$ but renewal intervals

$$\tilde{X}_n = \min(X_n, M)$$

for all $n \in \mathbb{N}$, with M being a fixed constant. Denote further $ilde{m} = \mathbb{E}(ilde{X}_1).$

Now it remains to show that

$$\limsup_{t\to\infty}\mathbb{E}(N_t)/t\leq 1/m$$

To this aim we consider the truncated renewal process, denoted by $\tilde{\mathcal{N}}$, with the same delay $\tilde{X}_0 = X_0$ but renewal intervals

$$\tilde{X}_n = \min(X_n, M)$$

for all $n \in \mathbb{N}$, with M being a fixed constant. Denote further $\tilde{m} = \mathbb{E}(\tilde{X}_1)$. Because of $\tilde{X}_n \leq M$

Now it remains to show that

$$\limsup_{t\to\infty}\mathbb{E}(N_t)/t\leq 1/m$$

To this aim we consider the truncated renewal process, denoted by $\tilde{\mathcal{N}}$, with the same delay $\tilde{X}_0 = X_0$ but renewal intervals

$$\tilde{X}_n = \min(X_n, M)$$

for all $n \in \mathbb{N}$, with M being a fixed constant. Denote further $\tilde{m} = \mathbb{E}(\tilde{X}_1)$. Because of $\tilde{X}_n \leq M$ the bound

$$\sum_{n=0}^{\tilde{N}_t} \tilde{X}_n \leq t + M$$

holds almost certainly for all $t \ge 0$.

Taking expectations and applying Wald's lemma, we obtain

$$\mathbb{E}(X_0) + \mathbb{E}(\tilde{N}_t) \cdot \tilde{m} = \mathbb{E}\left(\sum_{n=0}^{\tilde{N}_t} \tilde{X}_n\right) \leq t + M$$

∢ ≣ ≯

Taking expectations and applying Wald's lemma, we obtain

$$\mathbb{E}(X_0) + \mathbb{E}(\tilde{N}_t) \cdot \tilde{m} = \mathbb{E}\left(\sum_{n=0}^{\tilde{N}_t} \tilde{X}_n\right) \leq t + M$$

For $\mathbb{E}(X_0) < \infty$ and $t \to \infty$, this yields

$$\limsup_{t\to\infty}\frac{\mathbb{E}(\tilde{N}_t)}{t}\leq\frac{1}{\tilde{m}}$$

《글》 《글》

Taking expectations and applying Wald's lemma, we obtain

$$\mathbb{E}(X_0) + \mathbb{E}(\tilde{N}_t) \cdot \tilde{m} = \mathbb{E}\left(\sum_{n=0}^{\tilde{N}_t} \tilde{X}_n\right) \leq t + M$$

For $\mathbb{E}(X_0) < \infty$ and $t \to \infty$, this yields

$$\limsup_{t\to\infty}\frac{\mathbb{E}(\tilde{N}_t)}{t}\leq\frac{1}{\tilde{m}}$$

Since $\tilde{X}_n \leq X_n$ for all $n \in \mathbb{N}$,

Taking expectations and applying Wald's lemma, we obtain

$$\mathbb{E}(X_0) + \mathbb{E}(\tilde{N}_t) \cdot \tilde{m} = \mathbb{E}\left(\sum_{n=0}^{\tilde{N}_t} \tilde{X}_n\right) \leq t + M$$

For $\mathbb{E}(X_0) < \infty$ and $t \to \infty$, this yields

$$\limsup_{t\to\infty}\frac{\mathbb{E}(\tilde{N}_t)}{t}\leq\frac{1}{\tilde{m}}$$

Since $\tilde{X}_n \leq X_n$ for all $n \in \mathbb{N}$, we know that $\tilde{N}_t \geq N_t$ for all $t \geq 0$.

Taking expectations and applying Wald's lemma, we obtain

$$\mathbb{E}(X_0) + \mathbb{E}(\tilde{N}_t) \cdot \tilde{m} = \mathbb{E}\left(\sum_{n=0}^{\tilde{N}_t} \tilde{X}_n\right) \leq t + M$$

For $\mathbb{E}(X_0) < \infty$ and $t \to \infty$, this yields

$$\limsup_{t\to\infty}\frac{\mathbb{E}(\tilde{N}_t)}{t}\leq\frac{1}{\tilde{m}}$$

Since $\tilde{X}_n \leq X_n$ for all $n \in \mathbb{N}$, we know that $\tilde{N}_t \geq N_t$ for all $t \geq 0$. Thus we obtain further

$$\limsup_{t\to\infty}\frac{\mathbb{E}(N_t)}{t}\leq\frac{1}{\tilde{m}}$$

for any constant M.

Taking expectations and applying Wald's lemma, we obtain

$$\mathbb{E}(X_0) + \mathbb{E}(\tilde{N}_t) \cdot \tilde{m} = \mathbb{E}\left(\sum_{n=0}^{\tilde{N}_t} \tilde{X}_n\right) \leq t + M$$

For $\mathbb{E}(X_0) < \infty$ and $t \to \infty$, this yields

$$\limsup_{t\to\infty}\frac{\mathbb{E}(\tilde{N}_t)}{t}\leq\frac{1}{\tilde{m}}$$

Since $\tilde{X}_n \leq X_n$ for all $n \in \mathbb{N}$, we know that $\tilde{N}_t \geq N_t$ for all $t \geq 0$. Thus we obtain further

$$\limsup_{t\to\infty}\frac{\mathbb{E}(N_t)}{t}\leq\frac{1}{\tilde{m}}$$

for any constant *M*. Now the result follows for $M \rightarrow \infty$.

Remark on the proof

One might be tempted to think that theorem 6.12 is trivially implied by the elementary renewal theorem.

< ∃⇒

Remark on the proof

One might be tempted to think that theorem 6.12 is trivially implied by the elementary renewal theorem. However, the following example shows that a limit with probability one in general does not imply a limit in expectation.

Let U denote a random variable which is uniformly distributed on the interval]0, 1[.

Let *U* denote a random variable which is uniformly distributed on the interval]0, 1[. Further define the random variables $(V_n : n \in \mathbb{N})$ by

$$V_n := \begin{cases} 0, & U > 1/n \\ n, & U \le 1/n \end{cases}$$

< 注→ < 注→ -

Let *U* denote a random variable which is uniformly distributed on the interval]0, 1[. Further define the random variables $(V_n : n \in \mathbb{N})$ by

$$V_n := \begin{cases} 0, & U > 1/n \\ n, & U \le 1/n \end{cases}$$

Since U > 0 with probability one,

Let *U* denote a random variable which is uniformly distributed on the interval]0, 1[. Further define the random variables $(V_n : n \in \mathbb{N})$ by

$$V_n := \begin{cases} 0, & U > 1/n \\ n, & U \le 1/n \end{cases}$$

Since U > 0 with probability one, we obtain the limit

$$V_n \to 0, \qquad n \to \infty$$

with probability one.

· 문 · · · · 문 · · ·

On the other hand, the expectation for V_n is given by

$$\mathbb{E}(V_n) = n \cdot \mathbb{P}(U \le 1/n) = n \cdot \frac{1}{n} = 1$$

for all $n \in \mathbb{N}$

★ 문 → ★ 문 →

On the other hand, the expectation for V_n is given by

$$\mathbb{E}(V_n) = n \cdot \mathbb{P}(U \le 1/n) = n \cdot \frac{1}{n} = 1$$

for all $n \in \mathbb{N}$ and thus $\mathbb{E}(V_n) \to 1$ as $n \to \infty$.

回 と く ヨ と く ヨ と