Chapter 3: Homogeneous Markov Processes on Discrete State Spaces

> L. Breuer University of Kent, UK

November 7, 2013

 $\check{\lambda} := \inf\{\lambda_i : i \in E\} > 0$

▲圖▶ ▲屋▶ ▲屋▶ ---

 $\check{\lambda} := \inf\{\lambda_i : i \in E\} > 0$

which holds for all applications that we will examine.

・ 同 ト ・ ヨ ト ・ ヨ ト

 $\check{\lambda} := \inf\{\lambda_i : i \in E\} > 0$

which holds for all applications that we will examine. Then a Markov process ${\cal Y}$ is called **irreducible**, **transient**, **recurrent** or **positive recurrent**

伺い イヨト イヨト

 $\check{\lambda} := \inf\{\lambda_i : i \in E\} > 0$

which holds for all applications that we will examine. Then a Markov process \mathcal{Y} is called **irreducible**, **transient**, **recurrent** or **positive recurrent** if its embedded Markov chain \mathcal{X} is.

伺下 イヨト イヨト

An initial distribution π is called ${\bf stationary}$

(1日) (日) (日)

æ

An initial distribution π is called **stationary** if the process \mathcal{Y}^{π} is stationary,

(1日) (日) (日)

An initial distribution π is called **stationary** if the process \mathcal{Y}^{π} is stationary, i.e. if

$$\mathbb{P}(Y_{t_1}^{\pi} = j_1, \dots, Y_{t_n}^{\pi} = j_n) = \mathbb{P}(Y_{t_1+s}^{\pi} = j_1, \dots, Y_{t_n+s}^{\pi} = j_n)$$

for all $n \in \mathbb{N}$, $0 \le t_1 < \ldots < t_n$, and states $j_1, \ldots, j_n \in E$, and $s \ge 0$.

A distribution π on E is stationary if and only if $\pi G = 0$ holds.

イロン イロン イヨン イヨン 三日

A distribution π on E is stationary if and only if $\pi G = 0$ holds.

Proof: First we obtain

$$\pi P(t) = \pi e^{G \cdot t} = \sum_{n=0}^{\infty} \frac{t^n}{n!} \pi G^n = \pi I + \sum_{n=1}^{\infty} \frac{t^n}{n!} \pi G^n = \pi + \mathbf{0} = \pi$$

for all $t \ge 0$, with **0** denoting the zero measure on *E*.

(日) (同) (E) (E) (E)

With this, theorem 3.8 yields

$$\mathbb{P}(Y_{t_1}^{\pi} = j_1, \dots, Y_{t_n}^{\pi} = j_n)$$

= $\sum_{i \in E} \pi_i P_{i,j_1}(t_1) P_{j_1,j_2}(t_2 - t_1) \dots P_{j_{n-1},j_n}(t_n - t_{n-1})$

- 4 回 ト - 4 回 ト - 4 回 ト

With this, theorem 3.8 yields

$$\mathbb{P}(Y_{t_1}^{\pi} = j_1, \dots, Y_{t_n}^{\pi} = j_n)$$

= $\sum_{i \in E} \pi_i P_{i,j_1}(t_1) P_{j_1,j_2}(t_2 - t_1) \dots P_{j_{n-1},j_n}(t_n - t_{n-1})$

$$= \pi_{j_1} P_{j_1, j_2}(t_2 - t_1) \dots P_{j_{n-1}, j_n}(t_n - t_{n-1})$$

- 4 回 ト - 4 回 ト - 4 回 ト

With this, theorem 3.8 yields

$$\mathbb{P}(Y_{t_1}^{\pi} = j_1, \dots, Y_{t_n}^{\pi} = j_n)$$

$$= \sum_{i \in E} \pi_i P_{i,j_1}(t_1) P_{j_1,j_2}(t_2 - t_1) \dots P_{j_{n-1},j_n}(t_n - t_{n-1})$$

$$= \pi_{j_1} P_{j_1,j_2}(t_2 - t_1) \dots P_{j_{n-1},j_n}(t_n - t_{n-1})$$

$$= \sum \pi_i P_{i,j_1}(t_1 + s) P_{j_1,j_2}(t_2 - t_1) \dots P_{j_{n-1},j_{n-1}}(t_{n-1})$$

$$= \sum_{i \in E} \pi_i r_{i,j_1}(\iota_1 + s) r_{j_1,j_2}(\iota_2 - \iota_1) \dots r_{j_{n-1},j_n}(\iota_n - \iota_{n-1})$$

- 4 回 2 - 4 □ 2 - 4 □

With this, theorem 3.8 yields

$$\begin{split} &\mathbb{P}(Y_{t_1}^{\pi} = j_1, \dots, Y_{t_n}^{\pi} = j_n) \\ &= \sum_{i \in E} \pi_i P_{i,j_1}(t_1) P_{j_1,j_2}(t_2 - t_1) \dots P_{j_{n-1},j_n}(t_n - t_{n-1}) \\ &= \pi_{j_1} P_{j_1,j_2}(t_2 - t_1) \dots P_{j_{n-1},j_n}(t_n - t_{n-1}) \\ &= \sum_{i \in E} \pi_i P_{i,j_1}(t_1 + s) P_{j_1,j_2}(t_2 - t_1) \dots P_{j_{n-1},j_n}(t_n - t_{n-1}) \\ &= \mathbb{P}(Y_{t_1+s}^{\pi} = j_1, \dots, Y_{t_n+s}^{\pi} = j_n) \end{split}$$

for all times $t_1 < \ldots < t_n$ with $n \in \mathbb{N}$, and states $j_1, \ldots, j_n \in E$.

(日) (同) (E) (E) (E)

With this, theorem 3.8 yields

$$\begin{split} &\mathbb{P}(Y_{t_1}^{\pi} = j_1, \dots, Y_{t_n}^{\pi} = j_n) \\ &= \sum_{i \in E} \pi_i P_{i,j_1}(t_1) P_{j_1,j_2}(t_2 - t_1) \dots P_{j_{n-1},j_n}(t_n - t_{n-1}) \\ &= \pi_{j_1} P_{j_1,j_2}(t_2 - t_1) \dots P_{j_{n-1},j_n}(t_n - t_{n-1}) \\ &= \sum_{i \in E} \pi_i P_{i,j_1}(t_1 + s) P_{j_1,j_2}(t_2 - t_1) \dots P_{j_{n-1},j_n}(t_n - t_{n-1}) \\ &= \mathbb{P}(Y_{t_1+s}^{\pi} = j_1, \dots, Y_{t_n+s}^{\pi} = j_n) \end{split}$$

for all times $t_1 < \ldots < t_n$ with $n \in \mathbb{N}$, and states $j_1, \ldots, j_n \in E$. Hence the process \mathcal{Y}^{π} is stationary.

On the other hand, if π is a stationary distribution,

▲圖▶ ★ 国▶ ★ 国▶

æ

On the other hand, if $\boldsymbol{\pi}$ is a stationary distribution, then we necessarily obtain

$$\pi P(t) = \pi e^{G \cdot t} = \pi$$

for all $t \ge 0$.

・ 回 ト ・ ヨ ト ・ ヨ ト

On the other hand, if $\boldsymbol{\pi}$ is a stationary distribution, then we necessarily obtain

$$\pi P(t) = \pi e^{G \cdot t} = \pi$$

for all $t \ge 0.$ As above, this means

$$\sum_{n=1}^{\infty} \frac{t^n}{n!} \pi G^n = \mathbf{0}$$

for all $t \geq 0$,

同 ト く ヨ ト く ヨ ト

On the other hand, if π is a stationary distribution, then we necessarily obtain

$$\pi P(t) = \pi e^{G \cdot t} = \pi$$

for all $t \ge 0.$ As above, this means

$$\sum_{n=1}^{\infty} \frac{t^n}{n!} \pi G^n = \mathbf{0}$$

for all $t \ge 0$, which yields

$$\pi G = \mathbf{0}$$

伺 と く き と く き と

On the other hand, if π is a stationary distribution, then we necessarily obtain

$$\pi P(t) = \pi e^{G \cdot t} = \pi$$

for all $t \ge 0.$ As above, this means

$$\sum_{n=1}^{\infty} \frac{t^n}{n!} \pi G^n = \mathbf{0}$$

for all $t \ge 0$, which yields

$$\pi G = \mathbf{0}$$

because of the uniqueness of the zero power series.

向下 イヨト イヨト

$$\sum_{i\neq j} \pi_i g_{ij} = -\pi_j g_{jj} \iff \sum_{i\neq j} \pi_i g_{ij} = \pi_j \sum_{i\neq j} g_{ji}$$

for all $j \in E$.

・ 回 と ・ ヨ と ・ ヨ と …

$$\sum_{i\neq j} \pi_i g_{ij} = -\pi_j g_{jj} \quad \Longleftrightarrow \quad \sum_{i\neq j} \pi_i g_{ij} = \pi_j \sum_{i\neq j} g_{ji}$$

for all $j \in E$. We call the value $\pi_i g_{ij}$ stochastic flow from state i to state j in equilibrium.

伺下 イヨト イヨト

$$\sum_{i\neq j} \pi_i g_{ij} = -\pi_j g_{jj} \quad \Longleftrightarrow \quad \sum_{i\neq j} \pi_i g_{ij} = \pi_j \sum_{i\neq j} g_{ji}$$

for all $j \in E$. We call the value $\pi_i g_{ij}$ **stochastic flow** from state *i* to state *j* in equilibrium. Then the above equations mean that the accrued stochastic flow into any state *j* equals the flow out of this state.

伺下 イヨト イヨト

$$\sum_{i \neq j} \pi_i g_{ij} = -\pi_j g_{jj} \iff \sum_{i \neq j} \pi_i g_{ij} = \pi_j \sum_{i \neq j} g_{ji}$$

for all $j \in E$. We call the value $\pi_i g_{ij}$ stochastic flow from state i to state j in equilibrium. Then the above equations mean that the accrued stochastic flow into any state j equals the flow out of this state. The above equations are called the (global) balance equations.

$$G = \begin{pmatrix} -\lambda & \lambda & 0 & 0 & \dots \\ 0 & -\lambda & \lambda & 0 & \ddots \\ 0 & 0 & -\lambda & \lambda & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots \end{pmatrix}$$

伺下 イヨト イヨト

$$G = \begin{pmatrix} -\lambda & \lambda & 0 & 0 & \dots \\ 0 & -\lambda & \lambda & 0 & \ddots \\ 0 & 0 & -\lambda & \lambda & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots \end{pmatrix}$$

This process has no stationary distribution, which can be seen as follows.

伺 とう きょう とう とう

$$G = \begin{pmatrix} -\lambda & \lambda & 0 & 0 & \dots \\ 0 & -\lambda & \lambda & 0 & \ddots \\ 0 & 0 & -\lambda & \lambda & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots \end{pmatrix}$$

This process has no stationary distribution, which can be seen as follows. The balance equations for the Poisson process are given by

$$\pi_0 \lambda = 0$$
 and $\pi_i \lambda = \pi_{i-1} \lambda$

for all $i \geq 1$.

伺 とう ヨン うちょう

$$G = \begin{pmatrix} -\lambda & \lambda & 0 & 0 & \dots \\ 0 & -\lambda & \lambda & 0 & \ddots \\ 0 & 0 & -\lambda & \lambda & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots \end{pmatrix}$$

This process has no stationary distribution, which can be seen as follows. The balance equations for the Poisson process are given by

$$\pi_0 \lambda = 0$$
 and $\pi_i \lambda = \pi_{i-1} \lambda$

for all $i \ge 1$. These are solvable only by $\pi_i = 0$ for all $i \in E$,

・ 同 ト ・ ヨ ト ・ ヨ ト …

$$G = \begin{pmatrix} -\lambda & \lambda & 0 & 0 & \dots \\ 0 & -\lambda & \lambda & 0 & \ddots \\ 0 & 0 & -\lambda & \lambda & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots \end{pmatrix}$$

This process has no stationary distribution, which can be seen as follows. The balance equations for the Poisson process are given by

$$\pi_0 \lambda = 0$$
 and $\pi_i \lambda = \pi_{i-1} \lambda$

for all $i \ge 1$. These are solvable only by $\pi_i = 0$ for all $i \in E$, which means that there is no stationary distribution π .

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Let ${\mathcal Y}$ be a Markov process with embedded Markov chain ${\mathcal X}.$

Let $\mathcal Y$ be a Markov process with embedded Markov chain $\mathcal X$. Let $\mathcal X$ be irreducible and positive recurrent.

(日) (同) (E) (E) (E)

Let \mathcal{Y} be a Markov process with embedded Markov chain \mathcal{X} . Let \mathcal{X} be irreducible and positive recurrent. Further assume that $\check{\lambda} := \inf\{\lambda_i : i \in E\} > 0.$

(本部) (本語) (本語) (語)

Let \mathcal{Y} be a Markov process with embedded Markov chain \mathcal{X} . Let \mathcal{X} be irreducible and positive recurrent. Further assume that $\check{\lambda} := \inf\{\lambda_i : i \in E\} > 0$. Then there is a unique stationary distribution for \mathcal{Y} .

★御▶ ★理▶ ★理▶ → 理

Let \mathcal{Y} be a Markov process with embedded Markov chain \mathcal{X} . Let \mathcal{X} be irreducible and positive recurrent. Further assume that $\check{\lambda} := \inf\{\lambda_i : i \in E\} > 0$. Then there is a unique stationary distribution for \mathcal{Y} .

Proof:

According to theorems 2.25 and 2.18, the transition matrix P of \mathcal{X} admits a unique stationary distribution ν with $\nu P = \nu$.

伺い イヨト イヨト ニヨ

Let \mathcal{Y} be a Markov process with embedded Markov chain \mathcal{X} . Let \mathcal{X} be irreducible and positive recurrent. Further assume that $\check{\lambda} := \inf\{\lambda_i : i \in E\} > 0$. Then there is a unique stationary distribution for \mathcal{Y} .

Proof:

According to theorems 2.25 and 2.18, the transition matrix P of \mathcal{X} admits a unique stationary distribution ν with $\nu P = \nu$. The generator G is defined by

$$G = \Lambda(P - I)$$

・吊り ・ヨト ・ヨト ・ヨ

Let \mathcal{Y} be a Markov process with embedded Markov chain \mathcal{X} . Let \mathcal{X} be irreducible and positive recurrent. Further assume that $\check{\lambda} := \inf\{\lambda_i : i \in E\} > 0$. Then there is a unique stationary distribution for \mathcal{Y} .

Proof:

According to theorems 2.25 and 2.18, the transition matrix P of \mathcal{X} admits a unique stationary distribution ν with $\nu P = \nu$. The generator G is defined by

$$G = \Lambda(P - I)$$

with

$$\Lambda = diag(\lambda_i : i \in E)$$

・吊り ・ヨン ・ヨン ・ヨ
$$\mu := \nu \Lambda^{-1}$$

・ロト ・回ト ・ヨト ・ヨト

æ

$$\mu := \nu \Lambda^{-1}$$

is stationary for \mathcal{Y} .

æ

$$\mu := \nu \Lambda^{-1}$$

is stationary for \mathcal{Y} . Since $\check{\lambda} > 0$, the measure μ is finite,

伺 とう きょう とう とう

$$\mu := \nu \Lambda^{-1}$$

is stationary for \mathcal{Y} . Since $\check{\lambda} > 0$, the measure μ is finite, with total mass bounded by $\check{\lambda}^{-1} < \infty$.

伺 と く き と く き と

$$\mu := \nu \Lambda^{-1}$$

is stationary for \mathcal{Y} . Since $\check{\lambda} > 0$, the measure μ is finite, with total mass bounded by $\check{\lambda}^{-1} < \infty$. Now the normalization

$$\pi_j := \frac{\mu_j}{\sum_{i \in E} \mu_i} = \frac{\nu_j / \lambda_j}{\sum_{i \in E} \nu_i / \lambda_i}$$

for all $j \in E$

向下 イヨト イヨト

$$\mu := \nu \Lambda^{-1}$$

is stationary for \mathcal{Y} . Since $\check{\lambda} > 0$, the measure μ is finite, with total mass bounded by $\check{\lambda}^{-1} < \infty$. Now the normalization

$$\pi_j := \frac{\mu_j}{\sum_{i \in E} \mu_i} = \frac{\nu_j / \lambda_j}{\sum_{i \in E} \nu_i / \lambda_i}$$

for all $j \in E$ yields a stationary distribution for \mathcal{Y} .

伺下 イヨト イヨト

$$\mu := \nu \Lambda^{-1}$$

is stationary for \mathcal{Y} . Since $\check{\lambda} > 0$, the measure μ is finite, with total mass bounded by $\check{\lambda}^{-1} < \infty$. Now the normalization

$$\pi_j := \frac{\mu_j}{\sum_{i \in E} \mu_i} = \frac{\nu_j / \lambda_j}{\sum_{i \in E} \nu_i / \lambda_i}$$

for all $j \in E$ yields a stationary distribution for \mathcal{Y} . This is unique because ν is unique.

(4月) (4日) (4日) 日

We define a skip-free Markov process by

 $g_{ij}=0$ for all states $i,j\in E\subset \mathbb{N}_0$ with |i-j|>1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久で

We define a skip-free Markov process by

 $g_{ij}=0$ for all states $i,j\in E\subset \mathbb{N}_0$ with |i-j|>1

Denote the remaining infinitesimal transition rates by

 $\lambda_i := g_{i,i+1}$ and $\mu_i := g_{i,i-1}$

for all possible values of *i*.

We define a skip-free Markov process by

 $g_{ij}=0$ for all states $i,j\in E\subset \mathbb{N}_0$ with |i-j|>1

Denote the remaining infinitesimal transition rates by

 $\lambda_i := g_{i,i+1}$ and $\mu_i := g_{i,i-1}$

for all possible values of *i*. The rates λ_i and μ_i are called **arrival** rates and **departure rates**, respectively.

We define a skip-free Markov process by

 $g_{ij}=0$ for all states $i,j\in E\subset \mathbb{N}_0$ with |i-j|>1

Denote the remaining infinitesimal transition rates by

 $\lambda_i := g_{i,i+1}$ and $\mu_i := g_{i,i-1}$

for all possible values of *i*. The rates λ_i and μ_i are called **arrival rates** and **departure rates**, respectively. The state transition graph of such a process assumes the form

Its balance equations are given by

 $\lambda_0 \pi_0 = \mu_1 \pi_1$

・日・ ・ ヨ・ ・ ヨ・

Its balance equations are given by

$$\lambda_0 \pi_0 = \mu_1 \pi_1$$

and

$$(\lambda_i + \mu_i)\pi_i = \lambda_{i-1}\pi_{i-1} + \mu_{i+1}\pi_{i+1}$$

for all $i \in \mathbb{N}$.

・日・ ・ヨ・ ・ヨ・

Its balance equations are given by

$$\lambda_0 \pi_0 = \mu_1 \pi_1$$

and

$$(\lambda_i + \mu_i)\pi_i = \lambda_{i-1}\pi_{i-1} + \mu_{i+1}\pi_{i+1}$$

for all $i \in \mathbb{N}$. By induction on i it is shown that these are equivalent to the equation system

$$\lambda_{i-1}\pi_{i-1} = \mu_i\pi_i$$

for all $i \in \mathbb{N}$.

伺 とう きょう とう とう

This system is solved by successive elimination

回 と く ヨ と く ヨ と

This system is solved by successive elimination with a solution of the form

$$\pi_i = \pi_0 \prod_{j=0}^{i-1} \frac{\lambda_j}{\mu_{j+1}} = \pi_0 \frac{\lambda_0 \lambda_1 \cdots \lambda_{i-1}}{\mu_1 \mu_2 \cdots \mu_i}$$

for all $i \geq 1$.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

This system is solved by successive elimination with a solution of the form

$$\pi_i = \pi_0 \prod_{j=0}^{i-1} \frac{\lambda_j}{\mu_{j+1}} = \pi_0 \frac{\lambda_0 \lambda_1 \cdots \lambda_{i-1}}{\mu_1 \mu_2 \cdots \mu_i}$$

for all $i \ge 1$. The solution π is a probability distribution if and only if it can be normalized,

伺下 イヨト イヨト

This system is solved by successive elimination with a solution of the form

$$\pi_i = \pi_0 \prod_{j=0}^{i-1} \frac{\lambda_j}{\mu_{j+1}} = \pi_0 \frac{\lambda_0 \lambda_1 \cdots \lambda_{i-1}}{\mu_1 \mu_2 \cdots \mu_i}$$

for all $i \ge 1$. The solution π is a probability distribution if and only if it can be normalized, i.e. if $\sum_{n \in E} \pi_n = 1$.

伺下 イヨト イヨト

This system is solved by successive elimination with a solution of the form

$$\pi_i = \pi_0 \prod_{j=0}^{i-1} \frac{\lambda_j}{\mu_{j+1}} = \pi_0 \frac{\lambda_0 \lambda_1 \cdots \lambda_{i-1}}{\mu_1 \mu_2 \cdots \mu_i}$$

for all $i \ge 1$. The solution π is a probability distribution if and only if it can be normalized, i.e. if $\sum_{n \in E} \pi_n = 1$. This condition implies

$$1 = \sum_{n \in E} \pi_0 \prod_{j=0}^{n-1} \frac{\lambda_j}{\mu_{j+1}} = \pi_0 \sum_{n \in E} \prod_{j=0}^{n-1} \frac{\lambda_j}{\mu_{j+1}}$$

with the empty product being defined as one.

向下 イヨト イヨト

This system is solved by successive elimination with a solution of the form

$$\pi_i = \pi_0 \prod_{j=0}^{i-1} \frac{\lambda_j}{\mu_{j+1}} = \pi_0 \frac{\lambda_0 \lambda_1 \cdots \lambda_{i-1}}{\mu_1 \mu_2 \cdots \mu_i}$$

for all $i \ge 1$. The solution π is a probability distribution if and only if it can be normalized, i.e. if $\sum_{n \in E} \pi_n = 1$. This condition implies

$$1 = \sum_{n \in E} \pi_0 \prod_{j=0}^{n-1} \frac{\lambda_j}{\mu_{j+1}} = \pi_0 \sum_{n \in E} \prod_{j=0}^{n-1} \frac{\lambda_j}{\mu_{j+1}}$$

with the empty product being defined as one. This means that

$$\pi_0 = \left(\sum_{n \in E} \prod_{j=0}^{n-1} \frac{\lambda_j}{\mu_{j+1}}\right)^{-1}$$

伺い イヨト イヨト ニヨ

This system is solved by successive elimination with a solution of the form

$$\pi_i = \pi_0 \prod_{j=0}^{i-1} \frac{\lambda_j}{\mu_{j+1}} = \pi_0 \frac{\lambda_0 \lambda_1 \cdots \lambda_{i-1}}{\mu_1 \mu_2 \cdots \mu_i}$$

for all $i \ge 1$. The solution π is a probability distribution if and only if it can be normalized, i.e. if $\sum_{n \in E} \pi_n = 1$. This condition implies

$$1 = \sum_{n \in E} \pi_0 \prod_{j=0}^{n-1} \frac{\lambda_j}{\mu_{j+1}} = \pi_0 \sum_{n \in E} \prod_{j=0}^{n-1} \frac{\lambda_j}{\mu_{j+1}}$$

with the empty product being defined as one. This means that

$$\pi_0 = \left(\sum_{n \in E} \prod_{j=0}^{n-1} \frac{\lambda_j}{\mu_{j+1}}\right)^{-1}$$

and thus π is a probability distribution if and only if the series in the brackets converges. Let $X \sim Exp(\lambda)$ and $Y \sim Exp(\mu)$ denote two independent random variables.

・回・ ・ヨ・ ・ヨ・

Let $X \sim Exp(\lambda)$ and $Y \sim Exp(\mu)$ denote two independent random variables. Then

 $\min(X, Y) \sim Exp(\lambda + \mu)$

米部 シネヨシネヨシ 三日

Let $X \sim Exp(\lambda)$ and $Y \sim Exp(\mu)$ denote two independent random variables. Then

 $\min(X, Y) \sim Exp(\lambda + \mu)$

$$\mathbb{P}(X < Y) = rac{\lambda}{\lambda + \mu}$$

(本部) (本語) (本語) (語)

Let $X \sim Exp(\lambda)$ and $Y \sim Exp(\mu)$ denote two independent random variables. Then

 $\min(X, Y) \sim Exp(\lambda + \mu)$

$$\mathbb{P}(X < Y) = rac{\lambda}{\lambda + \mu}$$

$$\mathbb{P}(X=Y)=0$$

(本部) (本語) (本語) (語)

Let $Z := \min(X, Y)$.

◆□ > ◆□ > ◆臣 > ◆臣 > ○ ● ○ ○ ○ ○

Let $Z := \min(X, Y)$. Then

 $Z > t \iff X > t$ and Y > t

Let $Z := \min(X, Y)$. Then

$$Z > t \iff X > t$$
 and $Y > t$

Independence of X and Y yields

$$\mathbb{P}(Z > t) = \mathbb{P}(X > t) \cdot \mathbb{P}(Y > t)$$

(ロ) (同) (E) (E) (E)

Let $Z := \min(X, Y)$. Then

$$Z > t \iff X > t$$
 and $Y > t$

Independence of X and Y yields

$$\mathbb{P}(Z > t) = \mathbb{P}(X > t) \cdot \mathbb{P}(Y > t)$$

and thus

$$\mathbb{P}(\min(X,Y)>t)=e^{-\lambda t}e^{-\mu t}=e^{-(\lambda+\mu)t}$$
 for all $t\geq 0.$

<ロ> (四) (四) (注) (注) (三)

Conditioning on $X \in dt$ yields

$$\mathbb{P}(X < Y) = \int_0^\infty \lambda e^{-\lambda t} \mathbb{P}(Y > t) dt$$

イロン イボン イヨン イヨン 三日

Conditioning on $X \in dt$ yields

$$\mathbb{P}(X < Y) = \int_0^\infty \lambda e^{-\lambda t} \mathbb{P}(Y > t) dt$$

$$=\lambda\int_0^\infty e^{-\lambda t}e^{-\mu t}dt=rac{\lambda}{\lambda+\mu}$$

イロン イボン イヨン イヨン 三日

Conditioning on $X \in dt$ yields

$$\mathbb{P}(X < Y) = \int_0^\infty \lambda e^{-\lambda t} \mathbb{P}(Y > t) dt$$

$$h=\lambda\int_0^\infty e^{-\lambda t}e^{-\mu t}dt=rac{\lambda}{\lambda+\mu}$$

Finally,

$$\mathbb{P}(X=Y) = \lim_{h\to 0} \int_0^\infty \lambda e^{-\lambda t} \mathbb{P}(Y \in [t, t+h]) dt$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Conditioning on $X \in dt$ yields

$$\mathbb{P}(X < Y) = \int_0^\infty \lambda e^{-\lambda t} \mathbb{P}(Y > t) dt$$

$$=\lambda\int_0^\infty e^{-\lambda t}e^{-\mu t}dt=rac{\lambda}{\lambda+\mu}$$

Finally,

$$\mathbb{P}(X = Y) = \lim_{h \to 0} \int_0^\infty \lambda e^{-\lambda t} \mathbb{P}(Y \in [t, t+h]) dt$$

$$= \int_0^\infty \lambda e^{-\lambda t} \lim_{h \to 0} \left(e^{-\mu t} - e^{-\mu(t+h)} \right) dt = 0$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Arrivals: Poisson process with rate $\lambda > 0$

・回 ・ ・ ヨ ・ ・ ヨ ・

Arrivals: Poisson process with rate $\lambda > 0$

Service times: iid, exponentially distributed with rate $\mu > 0$

・同下 ・ヨト ・ヨト

Arrivals: Poisson process with rate $\lambda > 0$

Service times: iid, exponentially distributed with rate $\mu > 0$

1 server

・同下 ・ヨト ・ヨト
Arrivals: Poisson process with rate $\lambda > 0$

Service times: iid, exponentially distributed with rate $\mu > 0$

1 server

The arrival process and the service times are independent.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Arrivals: Poisson process with rate $\lambda > 0$

Service times: iid, exponentially distributed with rate $\mu > 0$

1 server

The arrival process and the service times are independent.

Let Y_t denote the number of users in the system at time t.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Arrivals: Poisson process with rate $\lambda > 0$

Service times: iid, exponentially distributed with rate $\mu > 0$

1 server

The arrival process and the service times are independent.

Let Y_t denote the number of users in the system at time t.

State space $E = \mathbb{N}_0$

(日本) (日本) (日本)

Holding time in state 0:

・ 回 と く ヨ と く ヨ と

э

Holding time in state 0: $H_0 \sim Exp(\lambda)$

(1日) (日) (日)

3

Holding time in state 0: $H_0 \sim Exp(\lambda)$

 $p_{01} = 1$

(ロ) (同) (E) (E) (E)

Holding time in state 0: $H_0 \sim Exp(\lambda)$

 $p_{01} = 1$

Holding time in state $i \ge 1$:

▲□→ ▲ 国 → ▲ 国 →

3

Holding time in state 0: $H_0 \sim Exp(\lambda)$

 $p_{01} = 1$

Holding time in state $i \ge 1$: $H_i = \min(A, S)$, where $A \sim Exp(\lambda)$ and $S \sim Exp(\mu)$

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Holding time in state 0: $H_0 \sim Exp(\lambda)$

 $p_{01} = 1$

Holding time in state $i \ge 1$: $H_i = \min(A, S)$, where $A \sim Exp(\lambda)$ and $S \sim Exp(\mu)$

Hence, $H_i \sim Exp(\lambda + \mu)$ for $i \geq 1$.

(4月) (4日) (4日) 日

Holding time in state 0: $H_0 \sim Exp(\lambda)$

 $p_{01} = 1$

Holding time in state $i \ge 1$: $H_i = \min(A, S)$, where $A \sim Exp(\lambda)$ and $S \sim Exp(\mu)$

Hence, $H_i \sim Exp(\lambda + \mu)$ for $i \geq 1$.

Further

$$p_{ij} = egin{cases} \mathbb{P}(A < S) = rac{\lambda}{\lambda + \mu}, & j = i + 1 \ \mathbb{P}(S < A) = rac{\mu}{\lambda + \mu}, & j = i - 1 \end{cases}$$

for $i \geq 1$.

・吊り ・ヨト ・ヨト ・ヨ

$$g_{01} = \lambda \cdot p_{01} = \lambda$$

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

Э

$$g_{01} = \lambda \cdot p_{01} = \lambda$$
 and for $i \ge 1$

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

Э

$$g_{01} = \lambda \cdot p_{01} = \lambda$$
 and for $i \ge 1$
 $g_{ij} = \begin{cases} (\lambda + \mu) \cdot \frac{\lambda}{\lambda + \mu} = \lambda, & j = i + 1\\ (\lambda + \mu) \cdot \frac{\mu}{\lambda + \mu} = \mu, & j = i - 1 \end{cases}$

< □ > < □ > < □ > < □ > < □ > < Ξ > < Ξ > □ Ξ

$$g_{01} = \lambda \cdot p_{01} = \lambda \text{ and for } i \ge 1$$
$$g_{ij} = \begin{cases} (\lambda + \mu) \cdot \frac{\lambda}{\lambda + \mu} = \lambda, & j = i + 1\\ (\lambda + \mu) \cdot \frac{\mu}{\lambda + \mu} = \mu, & j = i - 1 \end{cases}$$

Hence,

$$G = \begin{pmatrix} -\lambda & \lambda & 0 & 0 & \dots \\ \mu & -\lambda - \mu & \lambda & 0 & \ddots \\ 0 & \mu & -\lambda - \mu & \lambda & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots \end{pmatrix}$$

Stationary distribution

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

Э

Stationary distribution

 $\mathcal{Y} = (Y_t : t \ge 0)$ is a skip-free Markov process on $E = \mathbb{N}_0$

(本部) (本語) (本語) (語)

 $\mathcal{Y} = (Y_t : t \ge 0)$ is a skip-free Markov process on $E = \mathbb{N}_0$ with arrival rates $\lambda_i = \lambda$

(本部) (本語) (本語) (語)

(本部) (本語) (本語) (語)

Thus the stationary distribution π is given by

$$\pi_0 = \left(\sum_{n \in E} \prod_{j=0}^{n-1} \frac{\lambda_j}{\mu_{j+1}}\right)^{-1} = \left(\sum_{n=0}^{\infty} \rho^n\right)^{-1} = (1-\rho)$$

 $\text{if }\rho:=\lambda/\mu<1$

▲□→ ▲目→ ▲目→ 三日

Thus the stationary distribution π is given by

$$\pi_0 = \left(\sum_{n \in E} \prod_{j=0}^{n-1} \frac{\lambda_j}{\mu_{j+1}}\right)^{-1} = \left(\sum_{n=0}^{\infty} \rho^n\right)^{-1} = (1-\rho)$$

 $\text{if }\rho:=\lambda/\mu<1\text{ and }$

$$\pi_i = \pi_0 \rho^i$$

for $i \geq 1$.

▲□→ ▲目→ ▲目→ 三日

Thus the stationary distribution π is given by

$$\pi_0 = \left(\sum_{n \in E} \prod_{j=0}^{n-1} \frac{\lambda_j}{\mu_{j+1}}\right)^{-1} = \left(\sum_{n=0}^{\infty} \rho^n\right)^{-1} = (1-\rho)$$

 $\text{if }\rho:=\lambda/\mu<1\text{ and }$

$$\pi_i = \pi_0 \rho^i$$

for $i \ge 1$. For $\rho \ge 1$ there is no stationary distribution.

マロト イヨト イヨト ニヨ