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Transience, Recurrence etc.

From now on we shall convene on the technical assumption

λ̌ := inf{λi : i ∈ E} > 0

which holds for all applications that we will examine. Then a
Markov process Y is called irreducible, transient, recurrent or
positive recurrent if its embedded Markov chain X is.
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Stationary Distributions

An initial distribution π is called stationary

if the process Yπ is
stationary, i.e. if

P(Y π
t1 = j1, . . . ,Y

π
tn = jn) = P(Y π

t1+s = j1, . . . ,Y
π
tn+s = jn)

for all n ∈ N, 0 ≤ t1 < . . . < tn, and states j1, . . . , jn ∈ E , and
s ≥ 0.
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Theorem 3.9

A distribution π on E is stationary if and only if πG = 0 holds.

Proof:
First we obtain

πP(t) = πeG ·t =
∞∑
n=0

tn

n!
πGn = πI +

∞∑
n=1

tn

n!
πGn = π + 0 = π

for all t ≥ 0, with 0 denoting the zero measure on E .
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Proof of theorem 3.9 (contd.)

With this, theorem 3.8 yields

P(Y π
t1 = j1, . . . ,Y

π
tn = jn)

=
∑
i∈E

πiPi ,j1(t1)Pj1,j2(t2 − t1) . . .Pjn−1,jn(tn − tn−1)

= πj1Pj1,j2(t2 − t1) . . .Pjn−1,jn(tn − tn−1)

=
∑
i∈E

πiPi ,j1(t1 + s)Pj1,j2(t2 − t1) . . .Pjn−1,jn(tn − tn−1)

= P(Y π
t1+s = j1, . . . ,Y

π
tn+s = jn)

for all times t1 < . . . < tn with n ∈ N, and states j1, . . . , jn ∈ E .
Hence the process Yπ is stationary.
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Proof of theorem 3.9 (contd.)

On the other hand, if π is a stationary distribution,

then we
necessarily obtain

πP(t) = πeG ·t = π

for all t ≥ 0.As above, this means

∞∑
n=1

tn

n!
πGn = 0

for all t ≥ 0, which yields

πG = 0

because of the uniqueness of the zero power series.
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Balance equations

The equation πG = 0 is equivalent to an equation system∑
i 6=j

πigij = −πjgjj ⇐⇒
∑
i 6=j

πigij = πj
∑
i 6=j

gji

for all j ∈ E .

We call the value πigij stochastic flow from state i
to state j in equilibrium. Then the above equations mean that the
accrued stochastic flow into any state j equals the flow out of this
state. The above equations are called the (global) balance
equations.
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Example: Poisson process

The generator of the Poisson process with parameter λ is given by

G =


−λ λ 0 0 . . .

0 −λ λ 0
. . .

0 0 −λ λ
. . .

...
. . .

. . .
. . .

. . .



This process has no stationary distribution, which can be seen as
follows. The balance equations for the Poisson process are given by

π0λ = 0 and πiλ = πi−1λ

for all i ≥ 1. These are solvable only by πi = 0 for all i ∈ E , which
means that there is no stationary distribution π.
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Theorem 3.11

Let Y be a Markov process with embedded Markov chain X .

Let
X be irreducible and positive recurrent. Further assume that
λ̌ := inf{λi : i ∈ E} > 0. Then there is a unique stationary
distribution for Y.

Proof:
According to theorems 2.25 and 2.18, the transition matrix P of X
admits a unique stationary distribution ν with νP = ν. The
generator G is defined by

G = Λ(P − I )

with

Λ = diag(λi : i ∈ E )
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Proof of theorem 3.11 (contd.)

Hence the measure

µ := νΛ−1

is stationary for Y. Since λ̌ > 0, the measure µ is finite, with total
mass bounded by λ̌−1 <∞. Now the normalization

πj :=
µj∑
i∈E µi

=
νj/λj∑
i∈E νi/λi

for all j ∈ E yields a stationary distribution for Y. This is unique
because ν is unique.
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Skip-free Markov processes

We define a skip–free Markov process by

gij = 0 for all states i , j ∈ E ⊂ N0 with |i − j | > 1

Denote the remaining infinitesimal transition rates by

λi := gi ,i+1 and µi := gi ,i−1

for all possible values of i . The rates λi and µi are called arrival
rates and departure rates, respectively. The state transition
graph of such a process assumes the form

L. Breuer Chapter 3: Homogeneous Markov Processes on Discrete State Spaces



Skip-free Markov processes

We define a skip–free Markov process by

gij = 0 for all states i , j ∈ E ⊂ N0 with |i − j | > 1

Denote the remaining infinitesimal transition rates by

λi := gi ,i+1 and µi := gi ,i−1

for all possible values of i .

The rates λi and µi are called arrival
rates and departure rates, respectively. The state transition
graph of such a process assumes the form

L. Breuer Chapter 3: Homogeneous Markov Processes on Discrete State Spaces



Skip-free Markov processes

We define a skip–free Markov process by

gij = 0 for all states i , j ∈ E ⊂ N0 with |i − j | > 1

Denote the remaining infinitesimal transition rates by

λi := gi ,i+1 and µi := gi ,i−1

for all possible values of i . The rates λi and µi are called arrival
rates and departure rates, respectively.

The state transition
graph of such a process assumes the form

L. Breuer Chapter 3: Homogeneous Markov Processes on Discrete State Spaces



Skip-free Markov processes

We define a skip–free Markov process by

gij = 0 for all states i , j ∈ E ⊂ N0 with |i − j | > 1

Denote the remaining infinitesimal transition rates by

λi := gi ,i+1 and µi := gi ,i−1

for all possible values of i . The rates λi and µi are called arrival
rates and departure rates, respectively. The state transition
graph of such a process assumes the form

L. Breuer Chapter 3: Homogeneous Markov Processes on Discrete State Spaces



Skip-free Markov processes

Its balance equations are given by

λ0π0 = µ1π1

and

(λi + µi )πi = λi−1πi−1 + µi+1πi+1

for all i ∈ N. By induction on i it is shown that these are
equivalent to the equation system

λi−1πi−1 = µiπi

for all i ∈ N.

L. Breuer Chapter 3: Homogeneous Markov Processes on Discrete State Spaces



Skip-free Markov processes

Its balance equations are given by

λ0π0 = µ1π1

and

(λi + µi )πi = λi−1πi−1 + µi+1πi+1

for all i ∈ N.

By induction on i it is shown that these are
equivalent to the equation system

λi−1πi−1 = µiπi

for all i ∈ N.

L. Breuer Chapter 3: Homogeneous Markov Processes on Discrete State Spaces



Skip-free Markov processes

Its balance equations are given by

λ0π0 = µ1π1

and

(λi + µi )πi = λi−1πi−1 + µi+1πi+1

for all i ∈ N. By induction on i it is shown that these are
equivalent to the equation system

λi−1πi−1 = µiπi

for all i ∈ N.

L. Breuer Chapter 3: Homogeneous Markov Processes on Discrete State Spaces



Skip-free Markov processes

This system is solved by successive elimination

with a solution of
the form

πi = π0

i−1∏
j=0

λj
µj+1

= π0
λ0λ1 · · ·λi−1
µ1µ2 · · ·µi

for all i ≥ 1. The solution π is a probability distribution if and only
if it can be normalized, i.e. if

∑
n∈E πn = 1. This condition implies

1 =
∑
n∈E

π0

n−1∏
j=0

λj
µj+1

= π0
∑
n∈E

n−1∏
j=0

λj
µj+1

with the empty product being defined as one. This means that

π0 =

∑
n∈E

n−1∏
j=0

λj
µj+1

−1
and thus π is a probability distribution if and only if the series in
the brackets converges.
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Competing exponentials

Let X ∼ Exp(λ) and Y ∼ Exp(µ) denote two independent random
variables.

Then

min(X ,Y ) ∼ Exp(λ+ µ)

P(X < Y ) =
λ

λ+ µ

P(X = Y ) = 0
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Proof - 1

Let Z := min(X ,Y ).

Then

Z > t ⇐⇒ X > t and Y > t

Independence of X and Y yields

P(Z > t) = P(X > t) · P(Y > t)

and thus

P(min(X ,Y ) > t) = e−λte−µt = e−(λ+µ)t

for all t ≥ 0.
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Proof - 2

Conditioning on X ∈ dt yields

P(X < Y ) =

∫ ∞
0

λe−λt P(Y > t) dt

= λ

∫ ∞
0

e−λte−µtdt =
λ

λ+ µ

Finally,

P(X = Y ) = lim
h→0

∫ ∞
0

λe−λt P(Y ∈ [t, t + h]) dt

=

∫ ∞
0

λe−λt lim
h→0

(
e−µt − e−µ(t+h)

)
dt = 0
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Example: M/M/1 queue

Arrivals: Poisson process with rate λ > 0

Service times: iid, exponentially distributed with rate µ > 0

1 server

The arrival process and the service times are independent.

Let Yt denote the number of users in the system at time t.

State space E = N0

L. Breuer Chapter 3: Homogeneous Markov Processes on Discrete State Spaces



Example: M/M/1 queue

Arrivals: Poisson process with rate λ > 0

Service times: iid, exponentially distributed with rate µ > 0

1 server

The arrival process and the service times are independent.

Let Yt denote the number of users in the system at time t.

State space E = N0

L. Breuer Chapter 3: Homogeneous Markov Processes on Discrete State Spaces



Example: M/M/1 queue

Arrivals: Poisson process with rate λ > 0

Service times: iid, exponentially distributed with rate µ > 0

1 server

The arrival process and the service times are independent.

Let Yt denote the number of users in the system at time t.

State space E = N0

L. Breuer Chapter 3: Homogeneous Markov Processes on Discrete State Spaces



Example: M/M/1 queue

Arrivals: Poisson process with rate λ > 0

Service times: iid, exponentially distributed with rate µ > 0

1 server

The arrival process and the service times are independent.

Let Yt denote the number of users in the system at time t.

State space E = N0

L. Breuer Chapter 3: Homogeneous Markov Processes on Discrete State Spaces



Example: M/M/1 queue

Arrivals: Poisson process with rate λ > 0

Service times: iid, exponentially distributed with rate µ > 0

1 server

The arrival process and the service times are independent.

Let Yt denote the number of users in the system at time t.

State space E = N0

L. Breuer Chapter 3: Homogeneous Markov Processes on Discrete State Spaces



Example: M/M/1 queue

Arrivals: Poisson process with rate λ > 0

Service times: iid, exponentially distributed with rate µ > 0

1 server

The arrival process and the service times are independent.

Let Yt denote the number of users in the system at time t.

State space E = N0

L. Breuer Chapter 3: Homogeneous Markov Processes on Discrete State Spaces



The M/M/1 queue as a Markov process

Holding time in state 0:

H0 ∼ Exp(λ)

p01 = 1

Holding time in state i ≥ 1:
Hi = min(A,S), where A ∼ Exp(λ) and S ∼ Exp(µ)

Hence, Hi ∼ Exp(λ+ µ) for i ≥ 1.

Further

pij =

{
P(A < S) = λ

λ+µ , j = i + 1

P(S < A) = µ
λ+µ , j = i − 1

for i ≥ 1.
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The generator matrix

g01 = λ · p01 = λ

and for i ≥ 1

gij =

{
(λ+ µ) · λ

λ+µ = λ, j = i + 1

(λ+ µ) · µ
λ+µ = µ, j = i − 1

Hence,

G =


−λ λ 0 0 . . .

µ −λ− µ λ 0
. . .

0 µ −λ− µ λ
. . .

...
. . .

. . .
. . .

. . .


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Stationary distribution

Y = (Yt : t ≥ 0) is a skip-free Markov process on E = N0 with
arrival rates λi = λ and departure rates µi = µ.

Thus the stationary distribution π is given by

π0 =

∑
n∈E

n−1∏
j=0

λj
µj+1

−1 =

( ∞∑
n=0

ρn

)−1
= (1− ρ)

if ρ := λ/µ < 1 and

πi = π0ρ
i

for i ≥ 1. For ρ ≥ 1 there is no stationary distribution.
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