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Definition

Define T0 := 0 and let (Tn : n ∈ N) denote a sequence of positive
real–valued random variables with Tn+1 > Tn for all n ∈ N0
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is called a pure jump process.
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Define T0 := 0 and let (Tn : n ∈ N) denote a sequence of positive
real–valued random variables with Tn+1 > Tn for all n ∈ N0 and
Tn → ∞ as n → ∞. Further, let E denote a countable state space
and (Xn : n ∈ N0) a sequence of E–valued random variables. A
process Y = (Yt : t ∈ R

+
0 ) in continuous time with

Yt := Xn for Tn ≤ t < Tn+1

is called a pure jump process. The variable Hn := Tn+1 − Tn

(resp. Xn) is called the nth holding time (resp. the nth state) of
the process Y. If further X = (Xn : n ∈ N0) is a Markov chain
with transition matrix P = (pij)i ,j∈E and the variables Hn are
independent and distributed exponentially with parameter λXn

only
depending on the state Xn, then Y is called homogeneous Markov

process with discrete state space E .
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The chain X is called the embedded Markov chain of Y. As a
technical assumption we always agree upon the condition
λ̂ := sup{λi : i ∈ E} < ∞,

L. Breuer Chapter 3: Homogeneous Markov Processes on Discrete State



Further definitions

The chain X is called the embedded Markov chain of Y. As a
technical assumption we always agree upon the condition
λ̂ := sup{λi : i ∈ E} < ∞, i.e. the parameters for the exponential
holding times shall be bounded.
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Example: Poisson process

Define Xn := n deterministically.
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Define Xn := n deterministically. Then X = (Xn : n ∈ N0) is a
Markov chain with state space E = N0 and transition probabilities
pn,n+1 = 1 for all n ∈ N0.

L. Breuer Chapter 3: Homogeneous Markov Processes on Discrete State
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exponentially with identical parameter λ > 0.
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with state space N0.

L. Breuer Chapter 3: Homogeneous Markov Processes on Discrete State



Example: Poisson process

Define Xn := n deterministically. Then X = (Xn : n ∈ N0) is a
Markov chain with state space E = N0 and transition probabilities
pn,n+1 = 1 for all n ∈ N0. Let the holding times Hn be distributed
exponentially with identical parameter λ > 0. Then the resulting
process Y as defined in the above definition is a Markov process
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Example: Poisson process

Define Xn := n deterministically. Then X = (Xn : n ∈ N0) is a
Markov chain with state space E = N0 and transition probabilities
pn,n+1 = 1 for all n ∈ N0. Let the holding times Hn be distributed
exponentially with identical parameter λ > 0. Then the resulting
process Y as defined in the above definition is a Markov process
with state space N0. It is called Poisson process with intensity

(also: rate or parameter) λ.
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Lemma 3.2: Memoryless property

Let H denote a random variable having an exponential distribution
with parameter λ.
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Let H denote a random variable having an exponential distribution
with parameter λ. Then the memoryless property

P(H > t + s|H > s) = P(H > t)

holds

L. Breuer Chapter 3: Homogeneous Markov Processes on Discrete State



Lemma 3.2: Memoryless property

Let H denote a random variable having an exponential distribution
with parameter λ. Then the memoryless property

P(H > t + s|H > s) = P(H > t)

holds for all time durations s, t > 0.

L. Breuer Chapter 3: Homogeneous Markov Processes on Discrete State



Lemma 3.2: Memoryless property

Let H denote a random variable having an exponential distribution
with parameter λ. Then the memoryless property

P(H > t + s|H > s) = P(H > t)

holds for all time durations s, t > 0.

Proof:

P(H > t + s|H > s) =
P(H > t + s,H > s)

P(H > s)
=

P(H > t + s)

P(H > s)
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Lemma 3.2: Memoryless property

Let H denote a random variable having an exponential distribution
with parameter λ. Then the memoryless property

P(H > t + s|H > s) = P(H > t)

holds for all time durations s, t > 0.

Proof:

P(H > t + s|H > s) =
P(H > t + s,H > s)

P(H > s)
=

P(H > t + s)

P(H > s)

=
e−λ·(t+s)

e−λ·s
= e−λ·t = P(H > t)
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Theorem 3.3: Markov property

Let Y denote a Markov process with discrete state space E .
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Theorem 3.3: Markov property

Let Y denote a Markov process with discrete state space E . Then
the Markov property

P(Yt = j |Yu : u ≤ s) = P(Yt = j |Ys)

holds for all times s < t and states j ∈ E .
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the Markov property

P(Yt = j |Yu : u ≤ s) = P(Yt = j |Ys)

holds for all times s < t and states j ∈ E .

Proof:
This is due to the memoryless property of the holding times
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Theorem 3.3: Markov property

Let Y denote a Markov process with discrete state space E . Then
the Markov property

P(Yt = j |Yu : u ≤ s) = P(Yt = j |Ys)

holds for all times s < t and states j ∈ E .

Proof:
This is due to the memoryless property of the holding times and
the Markov property of the embedded chain X .
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Transition probabilities

The conditional probabilities

Pij(s, t) := P(Yt = j |Ys = i)

shall be called the transition probabilities from time s to time t.
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The conditional probabilities

Pij(s, t) := P(Yt = j |Ys = i)

shall be called the transition probabilities from time s to time t.
The memoryless property of the holding times and the
homogeneity of the embedded Markov chain X yield
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Transition probabilities

The conditional probabilities

Pij(s, t) := P(Yt = j |Ys = i)

shall be called the transition probabilities from time s to time t.
The memoryless property of the holding times and the
homogeneity of the embedded Markov chain X yield

Pij(s, t) = Pij(0, t − s)

for all i , j ∈ E and s < t, which we call homogeneity of Y. For
every t ≥ 0, define the transition probability matrix P(t) in time
t by its entries

Pij(t) := P(Yt = j |Y0 = i)

for all i , j ∈ E .
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Chapman–Kolmogorov equations

P(s + t) = P(s)P(t) for all time durations s, t ≥ 0
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Chapman–Kolmogorov equations

P(s + t) = P(s)P(t) for all time durations s, t ≥ 0

Proof:

Pij(s+t) = P(Ys+t = j |Y0 = i) =
∑

k∈E

P(Ys+t = j ,Ys = k |Y0 = i)
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Chapman–Kolmogorov equations

P(s + t) = P(s)P(t) for all time durations s, t ≥ 0

Proof:

Pij(s+t) = P(Ys+t = j |Y0 = i) =
∑

k∈E

P(Ys+t = j ,Ys = k |Y0 = i)

=
∑

k∈E

P(Ys+t = j ,Ys = k ,Y0 = i)

P(Ys = k ,Y0 = i)

P(Ys = k ,Y0 = i)

P(Y0 = i)
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Chapman–Kolmogorov equations

P(s + t) = P(s)P(t) for all time durations s, t ≥ 0

Proof:

Pij(s+t) = P(Ys+t = j |Y0 = i) =
∑

k∈E

P(Ys+t = j ,Ys = k |Y0 = i)

=
∑

k∈E

P(Ys+t = j ,Ys = k ,Y0 = i)

P(Ys = k ,Y0 = i)

P(Ys = k ,Y0 = i)

P(Y0 = i)

=
∑

k∈E

P(Ys+t = j |Ys = k) P(Ys = k |Y0 = i)
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Chapman–Kolmogorov equations

P(s + t) = P(s)P(t) for all time durations s, t ≥ 0

Proof:

Pij(s+t) = P(Ys+t = j |Y0 = i) =
∑

k∈E

P(Ys+t = j ,Ys = k |Y0 = i)

=
∑

k∈E

P(Ys+t = j ,Ys = k ,Y0 = i)

P(Ys = k ,Y0 = i)

P(Ys = k ,Y0 = i)

P(Y0 = i)

=
∑

k∈E

P(Ys+t = j |Ys = k) P(Ys = k |Y0 = i)

=
∑

k∈E

Pkj(t) Pik(s)
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Generator matrix

This is defined as the matrix G = (gij )i ,j∈E on E
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Generator matrix

This is defined as the matrix G = (gij )i ,j∈E on E with entries

gij :=

{

−λi · (1− pii ), i = j

λi · pij , i 6= j

for all states i , j ∈ E .
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Generator matrix

This is defined as the matrix G = (gij )i ,j∈E on E with entries

gij :=

{

−λi · (1− pii ), i = j

λi · pij , i 6= j

for all states i , j ∈ E . In particular, the relation

gii = −λi · (1− pii ) = −λi ·
∑

j 6=i

pij = −
∑

j 6=i

λipij = −
∑

j 6=i

gij

holds for all i ∈ E .

L. Breuer Chapter 3: Homogeneous Markov Processes on Discrete State



Generator matrix

This is defined as the matrix G = (gij )i ,j∈E on E with entries

gij :=

{

−λi · (1− pii ), i = j

λi · pij , i 6= j

for all states i , j ∈ E . In particular, the relation

gii = −λi · (1− pii ) = −λi ·
∑

j 6=i

pij = −
∑

j 6=i

λipij = −
∑

j 6=i

gij

holds for all i ∈ E . Unless stated otherwise, we shall always
assume pii = 0 for all i ∈ E .

L. Breuer Chapter 3: Homogeneous Markov Processes on Discrete State



Transition graph

Write

��
��

i -

r

��
��

j

for gij = r > 0 and j 6= i .
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Transition graph

Write

��
��

i -

r

��
��

j

for gij = r > 0 and j 6= i . The value r = gij is called the
infinitesimal transition rate from state i to state j .
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Example 3.5: Poisson process

The transition graph of the Poisson process with intensity λ is
given by

��
��

0 -

λ

��
��

1 -

λ

��
��

2 - . . .
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Theorem 3.6: Kolmogorov differential equations

The transition probabilities Pij(t) of a Markov process satisfy the
systems

dPij(t)

dt
=
∑

k∈E

Pik(t)gkj =
∑

k∈E

gikPkj (t)

of differential equations.
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Theorem 3.6: Kolmogorov differential equations

The transition probabilities Pij(t) of a Markov process satisfy the
systems

dPij(t)

dt
=
∑

k∈E

Pik(t)gkj =
∑

k∈E

gikPkj (t)

of differential equations. These are called the Kolmogorov

forward and backward equations.
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Theorem 3.6: Kolmogorov differential equations

The transition probabilities Pij(t) of a Markov process satisfy the
systems

dPij(t)

dt
=
∑

k∈E

Pik(t)gkj =
∑

k∈E

gikPkj (t)

of differential equations. These are called the Kolmogorov

forward and backward equations.

Proof: Conditioning on the time s of the first jump from state i

yields

L. Breuer Chapter 3: Homogeneous Markov Processes on Discrete State



Theorem 3.6: Kolmogorov differential equations

The transition probabilities Pij(t) of a Markov process satisfy the
systems

dPij(t)

dt
=
∑

k∈E

Pik(t)gkj =
∑

k∈E

gikPkj (t)

of differential equations. These are called the Kolmogorov

forward and backward equations.

Proof: Conditioning on the time s of the first jump from state i

yields

Pij(t) = e−λi ·t · δij +

∫ t

0
e−λi ·sλi

∑

k∈E

pikPkj(t − s) ds
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Proof of theorem 3.6 (contd.)

We obtain further

Pij(t) = e−λi ·t ·

(

δij +

∫ t

0
e+λi ·uλi

∑

k∈E

pikPkj(u) du

)

by substituting u = t − s in the integral.
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Proof of theorem 3.6 (contd.)

We obtain further

Pij(t) = e−λi ·t ·

(

δij +

∫ t

0
e+λi ·uλi

∑

k∈E

pikPkj(u) du

)

by substituting u = t − s in the integral. We can differentiate P(t)
as

dPij(t)

dt
= −λie

−λi ·t ·

(

δij +

∫ t

0
f (u) du

)

+ e−λi ·t · f (t)

with f denoting the integrand function.
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Proof of theorem 3.6 (contd.)

Thus

dPij(t)

dt
= −λiPij(t) + λi

∑

k∈E

pikPkj (t)
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Proof of theorem 3.6 (contd.)

Thus

dPij(t)

dt
= −λiPij(t) + λi

∑

k∈E

pikPkj (t)

= −λi(1− pii) · Pii (t) +
∑

k 6=i

gikPkj(t)

which proves the backward equation.
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Proof of theorem 3.6 (contd.)

Thus

dPij(t)

dt
= −λiPij(t) + λi

∑

k∈E

pikPkj (t)

= −λi(1− pii) · Pii (t) +
∑

k 6=i

gikPkj(t)

which proves the backward equation. For the forward equations,
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Proof of theorem 3.6 (contd.)

Thus

dPij(t)

dt
= −λiPij(t) + λi

∑

k∈E

pikPkj (t)

= −λi(1− pii) · Pii (t) +
∑

k 6=i

gikPkj(t)

which proves the backward equation. For the forward equations,
one only needs to use the Chapman–Kolmogorov equations and
apply the backward equations in
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Proof of theorem 3.6 (contd.)

Thus

dPij(t)

dt
= −λiPij(t) + λi

∑

k∈E

pikPkj (t)

= −λi(1− pii) · Pii (t) +
∑

k 6=i

gikPkj(t)

which proves the backward equation. For the forward equations,
one only needs to use the Chapman–Kolmogorov equations and
apply the backward equations in

dPij(t)

dt
= lim

h→0

Pij(t + h)− Pij(t)

h
= lim

h→0

∑

k∈E

Pik(t)
Pkj (h)− δkj

h
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Proof of theorem 3.6 (contd.)

Thus

dPij(t)

dt
= −λiPij(t) + λi

∑

k∈E

pikPkj (t)

= −λi(1− pii) · Pii (t) +
∑

k 6=i

gikPkj(t)

which proves the backward equation. For the forward equations,
one only needs to use the Chapman–Kolmogorov equations and
apply the backward equations in

dPij(t)

dt
= lim

h→0

Pij(t + h)− Pij(t)

h
= lim

h→0

∑

k∈E

Pik(t)
Pkj (h)− δkj

h

=
∑

k∈E

Pik(t) lim
h→0

Pkj(h)− Pkj(0)

h
=
∑

k∈E

Pik(t)gkj
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Theorem 3.7

The transition probability matrices can be expressed in terms of
the generator by

P(t) = eG ·t :=

∞
∑

n=0

tn

n!
G n

for all t ≥ 0, with G n denoting the nth power of the matrix G .
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P(t) = eG ·t :=
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n=0

tn

n!
G n

for all t ≥ 0, with G n denoting the nth power of the matrix G .

Proof:
We validate the solution by
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Theorem 3.7

The transition probability matrices can be expressed in terms of
the generator by

P(t) = eG ·t :=

∞
∑

n=0

tn

n!
G n

for all t ≥ 0, with G n denoting the nth power of the matrix G .

Proof:
We validate the solution by

d

dt
eG ·t =

d

dt

∞
∑

n=0

tn

n!
G n =

∞
∑

n=1

G n d

dt

tn

n!
=

∞
∑

n=1

G n tn−1

(n − 1)!
= GeG ·t
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Proof of theorem 3.7 (contd.)

Furthermore, it is obvious that

GeG ·t = G

∞
∑

n=0

tn

n!
G n =

(

∞
∑

n=0

tn

n!
G n

)

G = eG ·tG
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Proof of theorem 3.7 (contd.)

Furthermore, it is obvious that

GeG ·t = G

∞
∑

n=0

tn

n!
G n =

(

∞
∑

n=0

tn

n!
G n

)

G = eG ·tG

and thus P(t) = eG ·t is a solution of Kolmogorov’s forward and
backward equations.
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Proof of theorem 3.7 (contd.)

Furthermore, it is obvious that

GeG ·t = G

∞
∑

n=0

tn

n!
G n =

(

∞
∑

n=0

tn

n!
G n

)

G = eG ·tG

and thus P(t) = eG ·t is a solution of Kolmogorov’s forward and
backward equations. Uniqueness of the solution follows from the
initial condition

P(0) = I
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Remarks

Hence the generator of a Markov process uniquely determines all
its transition matrices.
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Remarks

Hence the generator of a Markov process uniquely determines all
its transition matrices. This can also be seen from the definition, if
we agree (without loss of generality) upon the convention pii = 0
for all i ∈ E .
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Remarks

Hence the generator of a Markov process uniquely determines all
its transition matrices. This can also be seen from the definition, if
we agree (without loss of generality) upon the convention pii = 0
for all i ∈ E . Then the parameters for the definition of the Markov
process can be recovered by

λi = −gii and pij =
gij

−gii

for all i 6= j ∈ E .
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Initial distribution

As in the discrete time case of Markov chains, Markov processes
are not completely determined by their transition probability
matrices only.
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Initial distribution

As in the discrete time case of Markov chains, Markov processes
are not completely determined by their transition probability
matrices only. The missing link to a complete characterisation
again is given by the initial distribution π
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Initial distribution

As in the discrete time case of Markov chains, Markov processes
are not completely determined by their transition probability
matrices only. The missing link to a complete characterisation
again is given by the initial distribution π with

πi = P(Y0 = X0 = i)

for all i ∈ E .
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Theorem 3.8: Finite–dimensional marginal distributions

For a Markov process Y with initial distribution π and time
instances 0 < t1 < . . . < tn, n ∈ N,
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Theorem 3.8: Finite–dimensional marginal distributions

For a Markov process Y with initial distribution π and time
instances 0 < t1 < . . . < tn, n ∈ N, the equation

P(Yt1 = j1, . . . ,Ytn = jn)

=
∑

i∈E

πiPi ,j1(t1)Pj1,j2(t2 − t1) . . .Pjn−1,jn(tn − tn−1)

holds for all j1, . . . , jn ∈ E .
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Theorem 3.8: Finite–dimensional marginal distributions

For a Markov process Y with initial distribution π and time
instances 0 < t1 < . . . < tn, n ∈ N, the equation

P(Yt1 = j1, . . . ,Ytn = jn)

=
∑

i∈E

πiPi ,j1(t1)Pj1,j2(t2 − t1) . . .Pjn−1,jn(tn − tn−1)

holds for all j1, . . . , jn ∈ E .

Proof: as an exercise (induction on n, use the Markov property)
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