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Stationary Distributions

Let X denote a Markov chain with state space E .

Let π denote a
probability measure on E . If P(X0 = i) = πi implies
P(Xn = i) = πi for all n ∈ N and i ∈ E , then π is called a
stationary distribution for X . If π is a stationary distribution,
then c · π for any c ≥ 0 is called a stationary measure.
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Theorem 2.18

Let X denote a Markov chain with state space E and transition
matrix P.

Further, let π denote a probability distribution on E
with πP = π, i.e.

πj =
∑
i∈E

πipij and
∑
j∈E

πj = 1

for all j ∈ E . Then π is a stationary distribution for X . If π is a
stationary distribution for X , then πP = π holds.
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Proof of theorem 2.18

Let P(X0 = i) = πi for all i ∈ E .

Then P(Xn = i) = P(X0 = i) for
all n ∈ N and i ∈ E follows by induction on n. The case n = 1
holds by assumption, and the induction step follows by induction
hypothesis and the Markov property. The last statement is obvious.

L. Breuer Chapter 2: Markov Chains



Proof of theorem 2.18

Let P(X0 = i) = πi for all i ∈ E . Then P(Xn = i) = P(X0 = i) for
all n ∈ N and i ∈ E follows by induction on n.

The case n = 1
holds by assumption, and the induction step follows by induction
hypothesis and the Markov property. The last statement is obvious.

L. Breuer Chapter 2: Markov Chains



Proof of theorem 2.18

Let P(X0 = i) = πi for all i ∈ E . Then P(Xn = i) = P(X0 = i) for
all n ∈ N and i ∈ E follows by induction on n. The case n = 1
holds by assumption,

and the induction step follows by induction
hypothesis and the Markov property. The last statement is obvious.

L. Breuer Chapter 2: Markov Chains



Proof of theorem 2.18

Let P(X0 = i) = πi for all i ∈ E . Then P(Xn = i) = P(X0 = i) for
all n ∈ N and i ∈ E follows by induction on n. The case n = 1
holds by assumption, and the induction step follows by induction
hypothesis and the Markov property.

The last statement is obvious.

L. Breuer Chapter 2: Markov Chains



Proof of theorem 2.18

Let P(X0 = i) = πi for all i ∈ E . Then P(Xn = i) = P(X0 = i) for
all n ∈ N and i ∈ E follows by induction on n. The case n = 1
holds by assumption, and the induction step follows by induction
hypothesis and the Markov property. The last statement is obvious.

L. Breuer Chapter 2: Markov Chains



Example 2.19

Let the transition matrix of a Markov chain X be given by

P =


0.8 0.2 0 0
0.2 0.8 0 0
0 0 0.4 0.6
0 0 0.6 0.4



Then π = (0.5, 0.5, 0, 0), π′ = (0, 0, 0.5, 0.5) as well as any linear
combination of them are stationary distributions for X . This shows
that a stationary distribution does not need to be unique.
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Example 2.20: Bernoulli process

The transition matrix of a Bernoulli process has the structure

P =


1− p p 0 0 . . .

0 1− p p 0
. . .

0 0 1− p p
. . .

...
. . .

. . .
. . .

. . .



Hence πP = π implies first

π0 · (1− p) = π0 ⇒ π0 = 0

since 0 < p < 1. Assume that πn = 0 for any n ∈ N0. This and
the condition πP = π further imply for πn+1

πn · p + πn+1 · (1− p) = πn+1 ⇒ πn+1 = 0

which completes an induction argument proving πn = 0 for all
n ∈ N0. Hence the Bernoulli process does not have a stationary
distribution.
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Example 2.21

The solution of πP = π and
∑

j∈E πj = 1 is unique for

P =

(
1− p p
p 1− p

)
with 0 < p < 1.

Thus there are transition matrices which have
exactly one stationary distribution.
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Theorem 2.22

A transient Markov chain (i.e. a Markov chain with transient
states only) has no stationary distribution.

Proof:

Assume that πP = π holds for some distribution π. Further
let E = N without loss of generality. Choose any state m ∈ N with
πm > 0. Since

∑∞
n=1 πn = 1 is bounded, there is an index M > m

such that
∑∞

n=M πn < πm. Set ε := πm −
∑∞

n=M πn. By theorem
2.17, there is an index N ∈ N such that PN(i ,m) < ε for all
i ≤ M. Then the stationarity of π implies

πm =
∞∑
i=1

πiP
N(i ,m) =

M−1∑
i=1

πiP
N(i ,m) +

∞∑
i=M

πiP
N(i ,m)

< ε+
∞∑

i=M

πi = πm

which is a contradiction.
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Positive / Null Recurrence

Define

Ni (n) :=
n∑

k=0

I{Xk=i}

as the number of visits to state i until time n.

Further define for a
recurrent state i ∈ E the mean time of return

mi := E(τi |X0 = i)

By definition mi > 0 for all i ∈ E . A recurrent state i ∈ E with
mi <∞ will be called positive recurrent, otherwise i is called
null recurrent.
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Elementary renewal theorem

The elementary renewal theorem (which will be proven in chapter
4) states that

lim
n→∞

E(Ni (n)|X0 = j)

n
=

1

mi

for all recurrent i ∈ E

and independently of j ∈ E provided j ↔ i ,
with the convention of 1/∞ := 0. Thus the asymptotic rate of
visits to a recurrent state is determined by the mean recurrence
time of this state.
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Theorem 2.23

Positive recurrence and null recurrence are class properties with
respect to the relation of communication between states.

Proof:
Assume that i ↔ j for two states i , j ∈ E and i is null recurrent.
Thus there are numbers m, n ∈ N with Pn(i , j) > 0 and
Pm(j , i) > 0. Because of the representation
E(Ni (k)|X0 = i) =

∑k
l=0 P

l(i , i), we obtain
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∑k
l=0 P
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Proof of theorem 2.23 (contd.)

0 = lim
k→∞

∑k
l=0 P

l(i , i)

k

≥ lim
k→∞

∑k−m−n
l=0 P l(j , j)

k
· Pn(i , j)Pm(j , i)

= lim
k→∞

k −m − n

k
·
∑k−m−n

l=0 P l(j , j)

k −m − n
· Pn(i , j)Pm(j , i)

= lim
k→∞

∑k
l=0 P

l(j , j)

k
· Pn(i , j)Pm(j , i)

=
Pn(i , j)Pm(j , i)

mj

and thus mj =∞, which signifies the null recurrence of j .
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Theorem 2.24

Let i ∈ E be positive recurrent and define the mean first visit time
mi := E(τi |X0 = i).

Then a stationary distribution π is given by

πj := m−1i ·
∞∑
n=0

P(Xn = j , τi > n|X0 = i)

for all j ∈ E . In particular, πi = m−1i and πk = 0 for all states k
outside of the communication class belonging to i .
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Proof of theorem 2.24

First of all, π is a probability measure

since

∑
j∈E

∞∑
n=0

P(Xn = j , τi > n|X0 = i) =
∞∑
n=0

∑
j∈E

P(Xn = j , τi > n|X0 = i)

=
∞∑
n=0

P(τi > n|X0 = i) = mi

The particular statements in the theorem are obvious from the
definition of π and the fact that a recurrent communication class is
closed.
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Proof of theorem 2.24 (contd.)

The stationarity of π is shown as follows.

First we obtain

πj = m−1i ·
∞∑
n=0

P(Xn = j , τi > n|X0 = i)

= m−1i ·
∞∑
n=1

P(Xn = j , τi ≥ n|X0 = i)

= m−1i ·
∞∑
n=1

P(Xn = j , τi > n − 1|X0 = i)

since X0 = Xτi = i in the conditioning set {X0 = i}. Further,
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Proof of theorem 2.24 (contd.)

P(Xn = j , τi > n − 1|X0 = i) =
P(Xn = j , τi > n − 1,X0 = i)

P(X0 = i)

=
∑
k∈E

P(Xn = j ,Xn−1 = k , τi > n − 1,X0 = i)

P(X0 = i)

=
∑
k 6=i

P(Xn = j ,Xn−1 = k , τi > n − 1,X0 = i)

P(Xn−1 = k , τi > n − 1,X0 = i)

×P(Xn−1 = k , τi > n − 1,X0 = i)

P(X0 = i)

=
∑
k∈E

pkjP(Xn−1 = k , τi > n − 1|X0 = i)
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Proof of theorem 2.24 (contd.)

Hence we obtain

πj = m−1i ·
∞∑
n=1

∑
k∈E

pkjP(Xn−1 = k , τi > n − 1|X0 = i)

=
∑
k∈E

pkj ·m−1i

∞∑
n=0

P(Xn = k , τi > n|X0 = i)

=
∑
k∈E

πkpkj

which completes the proof.
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Theorem 2.25

Let X denote an irreducible, positive recurrent Markov chain.

Then X has a unique stationary distribution.

Proof:
Existence has been shown in theorem 2.24. Uniqueness of the
stationary distribution can be seen as follows. Let π denote the
stationary distribution as constructed in theorem 2.24 and i the
positive recurrent state that served as recurrence point for π.
Further, let ν denote any stationary distribution for X . Then there
is a state j ∈ E with νj > 0 and a number m ∈ N with
Pm(j , i) > 0, since X is irreducible.
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Proof of theorem 2.25 (contd.)

Consequently we obtain

νi =
∑
k∈E

νkP
m(k , i) ≥ νjPm(j , i) > 0

Hence we can multiply ν by a factor c > 0 such that
c · νi = πi = 1/mi . Denote ν̃ := c · ν, i.e. ν̃k := c · νk for all k ∈ E .
Let P̃ denote the transition matrix P without the ith column, i.e.
P̃ = (p̃hk)h,k∈E with

p̃hk =

{
phk , k 6= i

0, k = i

Denote further the Dirac measure on i by δi , i.e.

δik =

{
1, k = i

0, k 6= i
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c · νi = πi = 1/mi . Denote ν̃ := c · ν, i.e. ν̃k := c · νk for all k ∈ E .
Let P̃ denote the transition matrix P without the ith column, i.e.
P̃ = (p̃hk)h,k∈E with

p̃hk =

{
phk , k 6= i

0, k = i

Denote further the Dirac measure on i by δi , i.e.
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{
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Proof of theorem 2.25 (contd.)

Then the stationary distribution π can be represented by

π = m−1i · δ
i
∞∑
n=0

P̃n

We first claim that

mi ν̃ = δi + mi ν̃P̃

This is clear for the entry ν̃i and easily seen for ν̃k with k 6= i
because in this case

(ν̃P̃)k = c · (νP)k = c · νk = ν̃k
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Proof of theorem 2.25 (contd.)

Now we can proceed with the same argument to see that

mi ν̃ = δi + (δi + mi ν̃P̃)P̃ = δi + δi P̃ + mi ν̃P̃
2 = . . .

= δi
∞∑
n=0

P̃n = miπ

Hence ν̃ already is a probability measure and thus c = 1. This
yields ν = ν̃ = π and thus the statement.
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Theorem 2.27

Let X denote an irreducible, positive recurrent Markov chain.

Then the stationary distribution π of X is given by

πj = m−1j =
1

E(τj |X0 = j)

for all j ∈ E .

Proof:
Since all states in E are positive recurrent, the construction in
theorem 2.24 can be pursued for any inital state j . This yields
πj = m−1j for all j ∈ E . The statement now follows from the
uniqueness of the stationary distribution.
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Theorem 2.28

For an irreducible, positive recurrent Markov chain,

the stationary
probability πj of a state j coincides with its asymptotic rate of
recurrence, i.e.

lim
n→∞

E(Nj(n)|X0 = i)

n
= πj

for all j ∈ E and independently of i ∈ E . Further, if an asymptotic
distribution pj = limn→∞ P(Xn = j) for all j ∈ E does exist, then it
coincides with the stationary distribution. In particular, it is
independent of the initial distribution of X .
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Proof of theorem 2.28

The first statement immediately follows from the elementary
renewal theorem.

For the second statement, it suffices to employ
E(Nj(n)|X0 = i) =

∑n
l=0 P

l(i , j). If an asymptotic distribution
does exist, then for any initial distribution ν we obtain

pj = lim
n→∞

(νPn)j =
∑
i∈E

νi lim
n→∞

Pn(i , j)

=
∑
i∈E

νi lim
n→∞

∑n
l=0 P

l(i , j)

n
=
∑
i∈E

νiπj

= πj
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Example

Let X denote a Markov chain with transition matrix

P =

(
0 1
1 0

)

Then X has no asymptotic distribution, but a stationary
distribution, namely π = (1/2, 1/2).
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Theorem 2.31

An irreducible Markov chain with finite state space F is positive
recurrent.

Proof:
For all n ∈ N and i ∈ F we have∑

j∈F
Pn(i , j) = 1

Hence it is not possible that limn→∞ Pn(i , j) = 0 for all j ∈ F .
Thus there is one state h ∈ F such that

∞∑
n=0

Pn(i , h) = rih = fihrhh =∞

which means by corollary 2.15 that h is recurrent and by
irreducibility that the chain is recurrent.
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Proof of theorem 2.31

If the chain were null recurrent,

then according to the elementary
renewal theorem

lim
n→∞

1

n

n∑
k=1

Pk(i , j) = 0

would hold for all j ∈ F , independently of i because of
irreducibility. But this would imply that

lim
n→∞

Pn(i , j) = 0

for all j ∈ F , which contradicts our first observation in this proof.
Hence the chain must be positive recurrent.
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The Geo/Geo/1 queue in discrete time

Choose any parameters 0 < p, q < 1. Let the arrival process be
distributed as a Bernoulli process with parameter p and the service
times (Sn : n ∈ N0) be iid according to the geometric distribution
with parameter q.
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Theorem 2.34 (memoryless property)

Let S be distributed geometrically with parameter q,

i.e. let
P(S = k) = (1− q)k−1q for all k ∈ N. Then
P(S = k|S > k − 1) = q, independently of k .

Proof:

P(S = k |S > k − 1) =
P(S = k ,S > k − 1)

P(S > k − 1)

=
P(S = k)

P(S > k − 1)

=
(1− q)k−1q

(1− q)k−1
= q
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(1− q)k−1
= q
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The Geo/Geo/1 queue as a Markov chain

Let Qn denote the number of users in the system at time n ∈ N0.

Then the state space is E = N0.
The transition probabilities are p01 := p, p00 := 1− p, and

pij :=


p(1− q), j = i + 1

pq + (1− p)(1− q), j = i

q(1− p), j = i − 1

for i ≥ 1.
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Transition matrix

Thus the transition matrix is triagonal,

i.e.

P =


1− p p 0 . . .

q(1− p) pq + (1− p)(1− q) p(1− q)
. . .

0 q(1− p) pq + (1− p)(1− q)
. . .

...
. . .

. . .
. . .


Abbreviate p′ := p(1− q) and q′ := q(1− p).
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Stationarity condition for the Geo/Geo/1 queue

Then the condition πP = π

means

π0 = π0(1− p) + π1q
′

π1 = π0p + π1(1− p − q′) + π2q
′

and

πn = πn−1p
′ + πn(1− (p′ + q′)) + πn+1q

′

for all n ≥ 2.
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Stationary distribution - 1

We try the geometric form

πn+1 = πn · r

for all n ≥ 1, with 0 < r < 1.

Then stationarity yields

0 = πnp
′ − πnr(p′ + q′) + πnr

2q′

= πn
(
p′ − r(p′ + q′) + r2q′

)
and hence r = p′/q′ < 1 ⇐⇒ p < q. Further,

π1 = π0
p

q′
= π0

ρ

1− p

with ρ := p/q,
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Stationary distribution - 2

and

π2 =
1

q′
(
π1(p′ + q′)− π0p

)

=
1

q′

(
p

q′
(p′ + q′)− p

)
π0

= π0
p

q′

(
p′ + q′

q′
− 1

)

= π1
p′

q′
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Stationary distribution - 3

Normalisation of π yields

1 =
∞∑
n=0

πn = π0

(
1 +

p

q′

∞∑
n=1

(
p′

q′

)n−1
)

and hence

π0 =

(
1 +

p

q′

∞∑
n=1

(
p′

q′

)n−1
)−1

= 1− ρ

Verify this as an exercise!
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