Chapter 2: Markov Chains

L. Breuer University of Kent, UK

October 23, 2013

▲ 문 ▶ | ▲ 문 ▶

Let \mathcal{X} denote a Markov chain with state space E.

< 注→ < 注→

Let \mathcal{X} denote a Markov chain with state space E. Let π denote a probability measure on E.

《문》 《문》

Let \mathcal{X} denote a Markov chain with state space E. Let π denote a probability measure on E. If $\mathbb{P}(X_0 = i) = \pi_i$ implies $\mathbb{P}(X_n = i) = \pi_i$ for all $n \in \mathbb{N}$ and $i \in E$,

• • = • • = •

Let \mathcal{X} denote a Markov chain with state space E. Let π denote a probability measure on E. If $\mathbb{P}(X_0 = i) = \pi_i$ implies $\mathbb{P}(X_n = i) = \pi_i$ for all $n \in \mathbb{N}$ and $i \in E$, then π is called a **stationary distribution** for \mathcal{X} .

ヨット イヨット イヨッ

Let \mathcal{X} denote a Markov chain with state space E. Let π denote a probability measure on E. If $\mathbb{P}(X_0 = i) = \pi_i$ implies $\mathbb{P}(X_n = i) = \pi_i$ for all $n \in \mathbb{N}$ and $i \in E$, then π is called a **stationary distribution** for \mathcal{X} . If π is a stationary distribution, then $c \cdot \pi$ for any $c \ge 0$ is called a **stationary measure**.

Let \mathcal{X} denote a Markov chain with state space E and transition matrix P.

Let \mathcal{X} denote a Markov chain with state space E and transition matrix P. Further, let π denote a probability distribution on E with $\pi P = \pi$,

• E • • E •

Let \mathcal{X} denote a Markov chain with state space E and transition matrix P. Further, let π denote a probability distribution on E with $\pi P = \pi$, i.e.

$$\pi_j = \sum_{i \in E} \pi_i \rho_{ij}$$
 and $\sum_{j \in E} \pi_j = 1$

for all $j \in E$.

Let \mathcal{X} denote a Markov chain with state space E and transition matrix P. Further, let π denote a probability distribution on E with $\pi P = \pi$, i.e.

$$\pi_j = \sum_{i \in E} \pi_i p_{ij}$$
 and $\sum_{j \in E} \pi_j = 1$

for all $j \in E$. Then π is a stationary distribution for X.

• • = • • = •

Let \mathcal{X} denote a Markov chain with state space E and transition matrix P. Further, let π denote a probability distribution on E with $\pi P = \pi$, i.e.

$$\pi_j = \sum_{i \in E} \pi_i p_{ij}$$
 and $\sum_{j \in E} \pi_j = 1$

for all $j \in E$. Then π is a stationary distribution for X. If π is a stationary distribution for \mathcal{X} , then $\pi P = \pi$ holds.

• • = • • = •

Let $\mathbb{P}(X_0 = i) = \pi_i$ for all $i \in E$.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Let $\mathbb{P}(X_0 = i) = \pi_i$ for all $i \in E$. Then $\mathbb{P}(X_n = i) = \mathbb{P}(X_0 = i)$ for all $n \in \mathbb{N}$ and $i \in E$ follows by induction on n.

回 と く ヨ と く ヨ と

Let $\mathbb{P}(X_0 = i) = \pi_i$ for all $i \in E$. Then $\mathbb{P}(X_n = i) = \mathbb{P}(X_0 = i)$ for all $n \in \mathbb{N}$ and $i \in E$ follows by induction on n. The case n = 1 holds by assumption,

白 ト く ヨ ト く ヨ ト

Let $\mathbb{P}(X_0 = i) = \pi_i$ for all $i \in E$. Then $\mathbb{P}(X_n = i) = \mathbb{P}(X_0 = i)$ for all $n \in \mathbb{N}$ and $i \in E$ follows by induction on n. The case n = 1 holds by assumption, and the induction step follows by induction hypothesis and the Markov property.

白 と く ヨ と く ヨ と

Let $\mathbb{P}(X_0 = i) = \pi_i$ for all $i \in E$. Then $\mathbb{P}(X_n = i) = \mathbb{P}(X_0 = i)$ for all $n \in \mathbb{N}$ and $i \in E$ follows by induction on n. The case n = 1 holds by assumption, and the induction step follows by induction hypothesis and the Markov property. The last statement is obvious.

向下 イヨト イヨト

$$P = \begin{pmatrix} 0.8 & 0.2 & 0 & 0 \\ 0.2 & 0.8 & 0 & 0 \\ 0 & 0 & 0.4 & 0.6 \\ 0 & 0 & 0.6 & 0.4 \end{pmatrix}$$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

$$P = \begin{pmatrix} 0.8 & 0.2 & 0 & 0 \\ 0.2 & 0.8 & 0 & 0 \\ 0 & 0 & 0.4 & 0.6 \\ 0 & 0 & 0.6 & 0.4 \end{pmatrix}$$

Then $\pi = (0.5, 0.5, 0, 0)$,

・ 回 ト ・ ヨ ト ・ ヨ ト

$$P = \begin{pmatrix} 0.8 & 0.2 & 0 & 0 \\ 0.2 & 0.8 & 0 & 0 \\ 0 & 0 & 0.4 & 0.6 \\ 0 & 0 & 0.6 & 0.4 \end{pmatrix}$$

Then $\pi = (0.5, 0.5, 0, 0), \pi' = (0, 0, 0.5, 0.5)$

回 と く ヨ と く ヨ と

$$P = \begin{pmatrix} 0.8 & 0.2 & 0 & 0 \\ 0.2 & 0.8 & 0 & 0 \\ 0 & 0 & 0.4 & 0.6 \\ 0 & 0 & 0.6 & 0.4 \end{pmatrix}$$

Then $\pi = (0.5, 0.5, 0, 0)$, $\pi' = (0, 0, 0.5, 0.5)$ as well as any linear combination of them are stationary distributions for \mathcal{X} .

(4回) (4回) (4回)

$$P = \begin{pmatrix} 0.8 & 0.2 & 0 & 0 \\ 0.2 & 0.8 & 0 & 0 \\ 0 & 0 & 0.4 & 0.6 \\ 0 & 0 & 0.6 & 0.4 \end{pmatrix}$$

Then $\pi = (0.5, 0.5, 0, 0)$, $\pi' = (0, 0, 0.5, 0.5)$ as well as any linear combination of them are stationary distributions for \mathcal{X} . This shows that a stationary distribution does not need to be unique.

向下 イヨト イヨト

The transition matrix of a Bernoulli process has the structure

$$P = \begin{pmatrix} 1-p & p & 0 & 0 & \dots \\ 0 & 1-p & p & 0 & \ddots \\ 0 & 0 & 1-p & p & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots \end{pmatrix}$$

-∢ ≣ ≯

The transition matrix of a Bernoulli process has the structure

$$P = \begin{pmatrix} 1-p & p & 0 & 0 & \dots \\ 0 & 1-p & p & 0 & \ddots \\ 0 & 0 & 1-p & p & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots \end{pmatrix}$$

Hence $\pi P = \pi$ implies first

$$\pi_0 \cdot (1-p) = \pi_0 \quad \Rightarrow \quad \pi_0 = 0$$

since 0 .

The transition matrix of a Bernoulli process has the structure

$$P = \begin{pmatrix} 1-p & p & 0 & 0 & \dots \\ 0 & 1-p & p & 0 & \ddots \\ 0 & 0 & 1-p & p & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots \end{pmatrix}$$

Hence $\pi P = \pi$ implies first

$$\pi_0 \cdot (1-p) = \pi_0 \quad \Rightarrow \quad \pi_0 = 0$$

since $0 . Assume that <math>\pi_n = 0$ for any $n \in \mathbb{N}_0$.

The transition matrix of a Bernoulli process has the structure

$$P = \begin{pmatrix} 1-p & p & 0 & 0 & \dots \\ 0 & 1-p & p & 0 & \ddots \\ 0 & 0 & 1-p & p & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots \end{pmatrix}$$

Hence $\pi P = \pi$ implies first

$$\pi_0 \cdot (1-p) = \pi_0 \quad \Rightarrow \quad \pi_0 = 0$$

since $0 . Assume that <math>\pi_n = 0$ for any $n \in \mathbb{N}_0$. This and the condition $\pi P = \pi$ further imply for π_{n+1}

$$\pi_n \cdot p + \pi_{n+1} \cdot (1-p) = \pi_{n+1} \quad \Rightarrow \quad \pi_{n+1} = 0$$

The transition matrix of a Bernoulli process has the structure

$$P = \begin{pmatrix} 1-p & p & 0 & 0 & \dots \\ 0 & 1-p & p & 0 & \ddots \\ 0 & 0 & 1-p & p & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots \end{pmatrix}$$

Hence $\pi P = \pi$ implies first

$$\pi_0 \cdot (1-p) = \pi_0 \quad \Rightarrow \quad \pi_0 = 0$$

since $0 . Assume that <math>\pi_n = 0$ for any $n \in \mathbb{N}_0$. This and the condition $\pi P = \pi$ further imply for π_{n+1}

$$\pi_n \cdot p + \pi_{n+1} \cdot (1-p) = \pi_{n+1} \quad \Rightarrow \quad \pi_{n+1} = 0$$

which completes an induction argument proving $\pi_n = 0$ for all $n \in \mathbb{N}_0$.

The transition matrix of a Bernoulli process has the structure

$$P = \begin{pmatrix} 1-p & p & 0 & 0 & \dots \\ 0 & 1-p & p & 0 & \ddots \\ 0 & 0 & 1-p & p & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots \end{pmatrix}$$

Hence $\pi P = \pi$ implies first

$$\pi_0 \cdot (1-p) = \pi_0 \quad \Rightarrow \quad \pi_0 = 0$$

since $0 . Assume that <math>\pi_n = 0$ for any $n \in \mathbb{N}_0$. This and the condition $\pi P = \pi$ further imply for π_{n+1}

$$\pi_n \cdot p + \pi_{n+1} \cdot (1-p) = \pi_{n+1} \quad \Rightarrow \quad \pi_{n+1} = 0$$

which completes an induction argument proving $\pi_n = 0$ for all $n \in \mathbb{N}_0$. Hence the Bernoulli process does not have a stationary distribution.

The solution of $\pi P = \pi$ and $\sum_{j \in E} \pi_j = 1$ is unique for

$$P = \begin{pmatrix} 1-p & p \\ p & 1-p \end{pmatrix}$$

with 0 .

・ 回 ト ・ ヨ ト ・ ヨ ト

The solution of $\pi P = \pi$ and $\sum_{j \in E} \pi_j = 1$ is unique for

$$P = \begin{pmatrix} 1-p & p \\ p & 1-p \end{pmatrix}$$

with 0 . Thus there are transition matrices which have exactly one stationary distribution.

個 と く ヨ と く ヨ と …

A **transient Markov chain** (i.e. a Markov chain with transient states only) has no stationary distribution.

Proof:

★ 문 → ★ 문 →

A **transient Markov chain** (i.e. a Markov chain with transient states only) has no stationary distribution.

Proof: Assume that $\pi P = \pi$ holds for some distribution π .

A **transient Markov chain** (i.e. a Markov chain with transient states only) has no stationary distribution.

Proof: Assume that $\pi P = \pi$ holds for some distribution π . Further let $E = \mathbb{N}$ without loss of generality.

A **transient Markov chain** (i.e. a Markov chain with transient states only) has no stationary distribution.

Proof: Assume that $\pi P = \pi$ holds for some distribution π . Further let $E = \mathbb{N}$ without loss of generality. Choose any state $m \in \mathbb{N}$ with $\pi_m > 0$.

A **transient Markov chain** (i.e. a Markov chain with transient states only) has no stationary distribution.

Proof: Assume that $\pi P = \pi$ holds for some distribution π . Further let $E = \mathbb{N}$ without loss of generality. Choose any state $m \in \mathbb{N}$ with $\pi_m > 0$. Since $\sum_{n=1}^{\infty} \pi_n = 1$ is bounded, there is an index M > m such that $\sum_{n=M}^{\infty} \pi_n < \pi_m$.

A **transient Markov chain** (i.e. a Markov chain with transient states only) has no stationary distribution.

Proof: Assume that $\pi P = \pi$ holds for some distribution π . Further let $E = \mathbb{N}$ without loss of generality. Choose any state $m \in \mathbb{N}$ with $\pi_m > 0$. Since $\sum_{n=1}^{\infty} \pi_n = 1$ is bounded, there is an index M > msuch that $\sum_{n=M}^{\infty} \pi_n < \pi_m$. Set $\varepsilon := \pi_m - \sum_{n=M}^{\infty} \pi_n$.

A **transient Markov chain** (i.e. a Markov chain with transient states only) has no stationary distribution.

Proof: Assume that $\pi P = \pi$ holds for some distribution π . Further let $E = \mathbb{N}$ without loss of generality. Choose any state $m \in \mathbb{N}$ with $\pi_m > 0$. Since $\sum_{n=1}^{\infty} \pi_n = 1$ is bounded, there is an index M > msuch that $\sum_{n=M}^{\infty} \pi_n < \pi_m$. Set $\varepsilon := \pi_m - \sum_{n=M}^{\infty} \pi_n$. By theorem 2.17, there is an index $N \in \mathbb{N}$ such that $P^N(i, m) < \varepsilon$ for all $i \leq M$.

Theorem 2.22

A **transient Markov chain** (i.e. a Markov chain with transient states only) has no stationary distribution.

Proof: Assume that $\pi P = \pi$ holds for some distribution π . Further let $E = \mathbb{N}$ without loss of generality. Choose any state $m \in \mathbb{N}$ with $\pi_m > 0$. Since $\sum_{n=1}^{\infty} \pi_n = 1$ is bounded, there is an index M > msuch that $\sum_{n=M}^{\infty} \pi_n < \pi_m$. Set $\varepsilon := \pi_m - \sum_{n=M}^{\infty} \pi_n$. By theorem 2.17, there is an index $N \in \mathbb{N}$ such that $P^N(i, m) < \varepsilon$ for all $i \leq M$. Then the stationarity of π implies

$$\pi_m = \sum_{i=1}^{\infty} \pi_i P^N(i, m) = \sum_{i=1}^{M-1} \pi_i P^N(i, m) + \sum_{i=M}^{\infty} \pi_i P^N(i, m)$$
$$< \varepsilon + \sum_{i=M}^{\infty} \pi_i = \pi_m$$

which is a contradiction.

$$N_i(n) := \sum_{k=0}^n \mathbb{I}_{\{X_k=i\}}$$

as the number of visits to state i until time n.

・ロン ・回と ・ヨン・

$$N_i(n) := \sum_{k=0}^n \mathbb{I}_{\{X_k=i\}}$$

as the number of visits to state i until time n. Further define for a recurrent state $i \in E$ the mean time of return

$$m_i := \mathbb{E}(\tau_i | X_0 = i)$$

æ

- 4 回 > - 4 回 > - 4 回 >

$$N_i(n) := \sum_{k=0}^n \mathbb{I}_{\{X_k=i\}}$$

as the number of visits to state i until time n. Further define for a recurrent state $i \in E$ the mean time of return

$$m_i := \mathbb{E}(\tau_i | X_0 = i)$$

By definition $m_i > 0$ for all $i \in E$.

$$N_i(n) := \sum_{k=0}^n \mathbb{I}_{\{X_k=i\}}$$

as the number of visits to state i until time n. Further define for a recurrent state $i \in E$ the mean time of return

$$m_i := \mathbb{E}(\tau_i | X_0 = i)$$

By definition $m_i > 0$ for all $i \in E$. A recurrent state $i \in E$ with $m_i < \infty$ will be called **positive recurrent**,

$$N_i(n) := \sum_{k=0}^n \mathbb{I}_{\{X_k=i\}}$$

as the number of visits to state i until time n. Further define for a recurrent state $i \in E$ the mean time of return

$$m_i := \mathbb{E}(\tau_i | X_0 = i)$$

By definition $m_i > 0$ for all $i \in E$. A recurrent state $i \in E$ with $m_i < \infty$ will be called **positive recurrent**, otherwise *i* is called **null recurrent**.

$$\lim_{n\to\infty}\frac{\mathbb{E}(N_i(n)|X_0=j)}{n}=\frac{1}{m_i}$$

for all recurrent $i \in E$

- ∢ ≣ ▶

$$\lim_{n\to\infty}\frac{\mathbb{E}(N_i(n)|X_0=j)}{n}=\frac{1}{m_i}$$

for all recurrent $i \in E$ and independently of $j \in E$ provided $j \leftrightarrow i$,

$$\lim_{n\to\infty}\frac{\mathbb{E}(N_i(n)|X_0=j)}{n}=\frac{1}{m_i}$$

for all recurrent $i \in E$ and independently of $j \in E$ provided $j \leftrightarrow i$, with the convention of $1/\infty := 0$.

$$\lim_{n\to\infty}\frac{\mathbb{E}(N_i(n)|X_0=j)}{n}=\frac{1}{m_i}$$

for all recurrent $i \in E$ and independently of $j \in E$ provided $j \leftrightarrow i$, with the convention of $1/\infty := 0$. Thus the asymptotic rate of visits to a recurrent state is determined by the mean recurrence time of this state.

同 と く ヨ と く ヨ と

Proof: Assume that $i \leftrightarrow j$ for two states $i, j \in E$

Proof: Assume that $i \leftrightarrow j$ for two states $i, j \in E$ and i is null recurrent.

Proof: Assume that $i \leftrightarrow j$ for two states $i, j \in E$ and i is null recurrent. Thus there are numbers $m, n \in \mathbb{N}$ with $P^n(i, j) > 0$ and $P^m(j, i) > 0$.

Proof:

Assume that $i \leftrightarrow j$ for two states $i, j \in E$ and i is null recurrent. Thus there are numbers $m, n \in \mathbb{N}$ with $P^n(i, j) > 0$ and $P^m(j, i) > 0$. Because of the representation $\mathbb{E}(N_i(k)|X_0 = i) = \sum_{l=0}^k P^l(i, i)$, we obtain

$$0 = \lim_{k \to \infty} \frac{\sum_{l=0}^{k} P^{l}(i, i)}{k}$$

→ 御 → → 注 → → 注 →

$$0 = \lim_{k \to \infty} \frac{\sum_{l=0}^{k} P^{l}(i, i)}{k}$$

$$\geq \lim_{k \to \infty} \frac{\sum_{l=0}^{k-m-n} P^l(j,j)}{k} \cdot P^n(i,j) P^m(j,i)$$

→ 御 → → 注 → → 注 →

$$0 = \lim_{k \to \infty} \frac{\sum_{l=0}^{k} P^{l}(i, i)}{k}$$

$$\geq \lim_{k \to \infty} \frac{\sum_{l=0}^{k-m-n} P^l(j,j)}{k} \cdot P^n(i,j) P^m(j,i)$$

$$= \lim_{k \to \infty} \frac{k - m - n}{k} \cdot \frac{\sum_{l=0}^{k - m - n} P^l(j, j)}{k - m - n} \cdot P^n(i, j) P^m(j, i)$$

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

$$0 = \lim_{k \to \infty} \frac{\sum_{l=0}^{k} P^{l}(i, i)}{k}$$

$$\geq \lim_{k \to \infty} \frac{\sum_{l=0}^{k-m-n} P^l(j,j)}{k} \cdot P^n(i,j) P^m(j,i)$$

$$= \lim_{k \to \infty} \frac{k - m - n}{k} \cdot \frac{\sum_{l=0}^{k - m - n} P^l(j, j)}{k - m - n} \cdot P^n(i, j) P^m(j, i)$$

$$= \lim_{k \to \infty} \frac{\sum_{l=0}^{k} P^{l}(j,j)}{k} \cdot P^{n}(i,j) P^{m}(j,i)$$

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

$$0 = \lim_{k \to \infty} \frac{\sum_{l=0}^{k} P^{l}(i,i)}{k}$$

$$\geq \lim_{k \to \infty} \frac{\sum_{l=0}^{k-m-n} P^{l}(j,j)}{k} \cdot P^{n}(i,j)P^{m}(j,i)$$

$$= \lim_{k \to \infty} \frac{k-m-n}{k} \cdot \frac{\sum_{l=0}^{k-m-n} P^{l}(j,j)}{k-m-n} \cdot P^{n}(i,j)P^{m}(j,i)$$

$$= \lim_{k \to \infty} \frac{\sum_{l=0}^{k} P^{l}(j,j)}{k} \cdot P^{n}(i,j)P^{m}(j,i)$$

$$= \frac{P^{n}(i,j)P^{m}(j,i)}{m_{j}}$$

$$0 = \lim_{k \to \infty} \frac{\sum_{l=0}^{k} P^{l}(i, i)}{k}$$

$$\geq \lim_{k \to \infty} \frac{\sum_{l=0}^{k-m-n} P^{l}(j, j)}{k} \cdot P^{n}(i, j) P^{m}(j, i)$$

$$= \lim_{k \to \infty} \frac{k-m-n}{k} \cdot \frac{\sum_{l=0}^{k-m-n} P^{l}(j, j)}{k-m-n} \cdot P^{n}(i, j) P^{m}(j, i)$$

$$= \lim_{k \to \infty} \frac{\sum_{l=0}^{k} P^{l}(j, j)}{k} \cdot P^{n}(i, j) P^{m}(j, i)$$

$$= \frac{P^{n}(i, j) P^{m}(j, i)}{m_{j}}$$

and thus $m_j = \infty$, which signifies the null recurrence of j.

< ≣ >

Let $i \in E$ be positive recurrent and define the mean first visit time $m_i := \mathbb{E}(\tau_i | X_0 = i).$

・ロン ・回 と ・ヨン ・ヨン

Let $i \in E$ be positive recurrent and define the mean first visit time $m_i := \mathbb{E}(\tau_i | X_0 = i)$. Then a stationary distribution π is given by

$$\pi_j := m_i^{-1} \cdot \sum_{n=0}^{\infty} \mathbb{P}(X_n = j, \tau_i > n | X_0 = i)$$

for all $j \in E$.

個 と く ヨ と く ヨ と …

Let $i \in E$ be positive recurrent and define the mean first visit time $m_i := \mathbb{E}(\tau_i | X_0 = i)$. Then a stationary distribution π is given by

$$\pi_j := m_i^{-1} \cdot \sum_{n=0}^{\infty} \mathbb{P}(X_n = j, \tau_i > n | X_0 = i)$$

for all $j \in E$. In particular, $\pi_i = m_i^{-1}$

伺 とう ヨン うちょう

Let $i \in E$ be positive recurrent and define the mean first visit time $m_i := \mathbb{E}(\tau_i | X_0 = i)$. Then a stationary distribution π is given by

$$\pi_j := m_i^{-1} \cdot \sum_{n=0}^{\infty} \mathbb{P}(X_n = j, \tau_i > n | X_0 = i)$$

for all $j \in E$. In particular, $\pi_i = m_i^{-1}$ and $\pi_k = 0$ for all states k outside of the communication class belonging to *i*.

- 4 回 ト - 4 回 ト - 4 回 ト

$$\sum_{j \in E} \sum_{n=0}^{\infty} \mathbb{P}(X_n = j, \tau_i > n | X_0 = i) = \sum_{n=0}^{\infty} \sum_{j \in E} \mathbb{P}(X_n = j, \tau_i > n | X_0 = i)$$

回 と く ヨ と く ヨ と

$$\sum_{j \in E} \sum_{n=0}^{\infty} \mathbb{P}(X_n = j, \tau_i > n | X_0 = i) = \sum_{n=0}^{\infty} \sum_{j \in E} \mathbb{P}(X_n = j, \tau_i > n | X_0 = i)$$

$$=\sum_{n=0}^{\infty}\mathbb{P}(\tau_i>n|X_0=i)=m_i$$

回 と く ヨ と く ヨ と

$$\sum_{j \in E} \sum_{n=0}^{\infty} \mathbb{P}(X_n = j, \tau_i > n | X_0 = i) = \sum_{n=0}^{\infty} \sum_{j \in E} \mathbb{P}(X_n = j, \tau_i > n | X_0 = i)$$

$$=\sum_{n=0}^{\infty}\mathbb{P}(\tau_i>n|X_0=i)=m_i$$

The particular statements in the theorem are obvious from the definition of $\boldsymbol{\pi}$

$$\sum_{j \in E} \sum_{n=0}^{\infty} \mathbb{P}(X_n = j, \tau_i > n | X_0 = i) = \sum_{n=0}^{\infty} \sum_{j \in E} \mathbb{P}(X_n = j, \tau_i > n | X_0 = i)$$

$$=\sum_{n=0}^{\infty}\mathbb{P}(\tau_i>n|X_0=i)=m_i$$

The particular statements in the theorem are obvious from the definition of π and the fact that a recurrent communication class is closed.

The stationarity of π is shown as follows.

回 と く ヨ と く ヨ と

The stationarity of $\boldsymbol{\pi}$ is shown as follows. First we obtain

$$\pi_j = m_i^{-1} \cdot \sum_{n=0}^{\infty} \mathbb{P}(X_n = j, \tau_i > n | X_0 = i)$$

回 と く ヨ と く ヨ と

The stationarity of $\boldsymbol{\pi}$ is shown as follows. First we obtain

$$\pi_j = m_i^{-1} \cdot \sum_{n=0}^{\infty} \mathbb{P}(X_n = j, \tau_i > n | X_0 = i)$$

$$= m_i^{-1} \cdot \sum_{n=1}^{\infty} \mathbb{P}(X_n = j, \tau_i \ge n | X_0 = i)$$

回 と く ヨ と く ヨ と

The stationarity of π is shown as follows. First we obtain

$$\pi_j = m_i^{-1} \cdot \sum_{n=0}^{\infty} \mathbb{P}(X_n = j, \tau_i > n | X_0 = i)$$

$$= m_i^{-1} \cdot \sum_{n=1}^{\infty} \mathbb{P}(X_n = j, \tau_i \ge n | X_0 = i)$$

$$=m_i^{-1}\cdot\sum_{n=1}^{\infty}\mathbb{P}(X_n=j,\tau_i>n-1|X_0=i)$$

since $X_0 = X_{\tau_i} = i$ in the conditioning set $\{X_0 = i\}$.

・日・ ・ ヨ・ ・ ヨ・

The stationarity of π is shown as follows. First we obtain

$$\pi_j = m_i^{-1} \cdot \sum_{n=0}^{\infty} \mathbb{P}(X_n = j, \tau_i > n | X_0 = i)$$

$$= m_i^{-1} \cdot \sum_{n=1}^{\infty} \mathbb{P}(X_n = j, \tau_i \ge n | X_0 = i)$$

$$=m_i^{-1}\cdot\sum_{n=1}^{\infty}\mathbb{P}(X_n=j,\tau_i>n-1|X_0=i)$$

since $X_0 = X_{\tau_i} = i$ in the conditioning set $\{X_0 = i\}$. Further,

・日・ ・ ヨ ・ ・ ヨ ・

$$\mathbb{P}(X_n = j, \tau_i > n - 1 | X_0 = i) = \frac{\mathbb{P}(X_n = j, \tau_i > n - 1, X_0 = i)}{\mathbb{P}(X_0 = i)}$$

→ 御 → → 注 → → 注 →

$$\mathbb{P}(X_n = j, \tau_i > n - 1 | X_0 = i) = \frac{\mathbb{P}(X_n = j, \tau_i > n - 1, X_0 = i)}{\mathbb{P}(X_0 = i)}$$
$$= \sum_{k \in E} \frac{\mathbb{P}(X_n = j, X_{n-1} = k, \tau_i > n - 1, X_0 = i)}{\mathbb{P}(X_0 = i)}$$

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

$$\begin{split} \mathbb{P}(X_n = j, \tau_i > n - 1 | X_0 = i) &= \frac{\mathbb{P}(X_n = j, \tau_i > n - 1, X_0 = i)}{\mathbb{P}(X_0 = i)} \\ &= \sum_{k \in E} \frac{\mathbb{P}(X_n = j, X_{n-1} = k, \tau_i > n - 1, X_0 = i)}{\mathbb{P}(X_0 = i)} \\ &= \sum_{k \neq i} \frac{\mathbb{P}(X_n = j, X_{n-1} = k, \tau_i > n - 1, X_0 = i)}{\mathbb{P}(X_{n-1} = k, \tau_i > n - 1, X_0 = i)} \\ &\times \frac{\mathbb{P}(X_{n-1} = k, \tau_i > n - 1, X_0 = i)}{\mathbb{P}(X_0 = i)} \end{split}$$

TT () (

. .

・ロン ・回と ・ヨと ・

$$\begin{split} \mathbb{P}(X_n = j, \tau_i > n - 1 | X_0 = i) &= \frac{\mathbb{P}(X_n = j, \tau_i > n - 1, X_0 = i)}{\mathbb{P}(X_0 = i)} \\ &= \sum_{k \in E} \frac{\mathbb{P}(X_n = j, X_{n-1} = k, \tau_i > n - 1, X_0 = i)}{\mathbb{P}(X_0 = i)} \\ &= \sum_{k \neq i} \frac{\mathbb{P}(X_n = j, X_{n-1} = k, \tau_i > n - 1, X_0 = i)}{\mathbb{P}(X_{n-1} = k, \tau_i > n - 1, X_0 = i)} \\ &\times \frac{\mathbb{P}(X_{n-1} = k, \tau_i > n - 1, X_0 = i)}{\mathbb{P}(X_0 = i)} \\ &= \sum_{k \in E} p_{kj} \mathbb{P}(X_{n-1} = k, \tau_i > n - 1 | X_0 = i) \end{split}$$

< 口 > < 回 > < 回 > < 回 > < 回 > <

Hence we obtain

$$\pi_j = m_i^{-1} \cdot \sum_{n=1}^{\infty} \sum_{k \in E} p_{kj} \mathbb{P}(X_{n-1} = k, \tau_i > n-1 | X_0 = i)$$

▲御▶ ▲理▶ ▲理▶

Hence we obtain

$$\pi_j = m_i^{-1} \cdot \sum_{n=1}^{\infty} \sum_{k \in E} p_{kj} \mathbb{P}(X_{n-1} = k, \tau_i > n-1 | X_0 = i)$$

$$=\sum_{k\in E}p_{kj}\cdot m_i^{-1}\sum_{n=0}^{\infty}\mathbb{P}(X_n=k,\tau_i>n|X_0=i)$$

▲御▶ ▲理▶ ▲理▶

Hence we obtain

$$\pi_j = m_i^{-1} \cdot \sum_{n=1}^{\infty} \sum_{k \in E} p_{kj} \mathbb{P}(X_{n-1} = k, \tau_i > n-1 | X_0 = i)$$

$$=\sum_{k\in E}p_{kj}\cdot m_i^{-1}\sum_{n=0}^{\infty}\mathbb{P}(X_n=k,\tau_i>n|X_0=i)$$

$$=\sum_{k\in E}\pi_k p_{kj}$$

which completes the proof.

→ Ξ → < Ξ →</p>

A ₽

Let ${\mathcal X}$ denote an irreducible, positive recurrent Markov chain.

▲圖▶ ▲屋▶ ▲屋▶

Let ${\mathcal X}$ denote an irreducible, positive recurrent Markov chain. Then ${\mathcal X}$ has a unique stationary distribution.

▲ 문 ▶ | ▲ 문 ▶

Let ${\mathcal X}$ denote an irreducible, positive recurrent Markov chain. Then ${\mathcal X}$ has a unique stationary distribution.

Proof: Existence has been shown in theorem 2.24.

3 × 4 3 ×

Let $\mathcal X$ denote an irreducible, positive recurrent Markov chain. Then $\mathcal X$ has a unique stationary distribution.

Proof:

Existence has been shown in theorem 2.24. Uniqueness of the stationary distribution can be seen as follows.

Let $\mathcal X$ denote an irreducible, positive recurrent Markov chain. Then $\mathcal X$ has a unique stationary distribution.

Proof:

Existence has been shown in theorem 2.24. Uniqueness of the stationary distribution can be seen as follows. Let π denote the stationary distribution as constructed in theorem 2.24

Let $\mathcal X$ denote an irreducible, positive recurrent Markov chain. Then $\mathcal X$ has a unique stationary distribution.

Proof:

Existence has been shown in theorem 2.24. Uniqueness of the stationary distribution can be seen as follows. Let π denote the stationary distribution as constructed in theorem 2.24 and *i* the positive recurrent state that served as recurrence point for π .

Let $\mathcal X$ denote an irreducible, positive recurrent Markov chain. Then $\mathcal X$ has a unique stationary distribution.

Proof:

Existence has been shown in theorem 2.24. Uniqueness of the stationary distribution can be seen as follows. Let π denote the stationary distribution as constructed in theorem 2.24 and *i* the positive recurrent state that served as recurrence point for π . Further, let ν denote any stationary distribution for \mathcal{X} .

Let $\mathcal X$ denote an irreducible, positive recurrent Markov chain. Then $\mathcal X$ has a unique stationary distribution.

Proof:

Existence has been shown in theorem 2.24. Uniqueness of the stationary distribution can be seen as follows. Let π denote the stationary distribution as constructed in theorem 2.24 and *i* the positive recurrent state that served as recurrence point for π . Further, let ν denote any stationary distribution for \mathcal{X} . Then there is a state $j \in E$ with $\nu_j > 0$

Let \mathcal{X} denote an irreducible, positive recurrent Markov chain. Then \mathcal{X} has a unique stationary distribution.

Proof:

Existence has been shown in theorem 2.24. Uniqueness of the stationary distribution can be seen as follows. Let π denote the stationary distribution as constructed in theorem 2.24 and *i* the positive recurrent state that served as recurrence point for π . Further, let ν denote any stationary distribution for \mathcal{X} . Then there is a state $j \in E$ with $\nu_j > 0$ and a number $m \in \mathbb{N}$ with $P^m(j, i) > 0$,

通 と く ヨ と く ヨ と

Let \mathcal{X} denote an irreducible, positive recurrent Markov chain. Then \mathcal{X} has a unique stationary distribution.

Proof:

Existence has been shown in theorem 2.24. Uniqueness of the stationary distribution can be seen as follows. Let π denote the stationary distribution as constructed in theorem 2.24 and *i* the positive recurrent state that served as recurrence point for π . Further, let ν denote any stationary distribution for \mathcal{X} . Then there is a state $j \in E$ with $\nu_j > 0$ and a number $m \in \mathbb{N}$ with $P^m(j, i) > 0$, since \mathcal{X} is irreducible.

• • = • • = •

Consequently we obtain

$$\nu_i = \sum_{k \in E} \nu_k P^m(k, i) \ge \nu_j P^m(j, i) > 0$$

回 と く ヨ と く ヨ と

Consequently we obtain

$$\nu_i = \sum_{k \in E} \nu_k P^m(k, i) \ge \nu_j P^m(j, i) > 0$$

Hence we can multiply ν by a factor c > 0 such that $c \cdot \nu_i = \pi_i = 1/m_i$.

通 と く ヨ と く ヨ と

Consequently we obtain

$$\nu_i = \sum_{k \in E} \nu_k P^m(k, i) \ge \nu_j P^m(j, i) > 0$$

Hence we can multiply ν by a factor c > 0 such that $c \cdot \nu_i = \pi_i = 1/m_i$. Denote $\tilde{\nu} := c \cdot \nu$,

▶ < 토▶ < 토▶

Consequently we obtain

$$\nu_i = \sum_{k \in E} \nu_k P^m(k, i) \ge \nu_j P^m(j, i) > 0$$

Hence we can multiply ν by a factor c > 0 such that $c \cdot \nu_i = \pi_i = 1/m_i$. Denote $\tilde{\nu} := c \cdot \nu$, i.e. $\tilde{\nu}_k := c \cdot \nu_k$ for all $k \in E$.

- - E + - E +

Consequently we obtain

$$\nu_i = \sum_{k \in E} \nu_k P^m(k, i) \ge \nu_j P^m(j, i) > 0$$

Hence we can multiply ν by a factor c > 0 such that $c \cdot \nu_i = \pi_i = 1/m_i$. Denote $\tilde{\nu} := c \cdot \nu$, i.e. $\tilde{\nu}_k := c \cdot \nu_k$ for all $k \in E$. Let \tilde{P} denote the transition matrix P without the *i*th column, i.e. $\tilde{P} = (\tilde{p}_{hk})_{h,k\in E}$ with

$$\tilde{p}_{hk} = \begin{cases} p_{hk}, & k \neq i \\ 0, & k = i \end{cases}$$

Consequently we obtain

$$\nu_i = \sum_{k \in E} \nu_k P^m(k, i) \ge \nu_j P^m(j, i) > 0$$

Hence we can multiply ν by a factor c > 0 such that $c \cdot \nu_i = \pi_i = 1/m_i$. Denote $\tilde{\nu} := c \cdot \nu$, i.e. $\tilde{\nu}_k := c \cdot \nu_k$ for all $k \in E$. Let \tilde{P} denote the transition matrix P without the *i*th column, i.e. $\tilde{P} = (\tilde{p}_{hk})_{h,k\in E}$ with

$$\tilde{p}_{hk} = \begin{cases} p_{hk}, & k \neq i \\ 0, & k = i \end{cases}$$

Denote further the Dirac measure on i by δ^{i} , i.e.

$$\delta_k^i = \begin{cases} 1, & k = i \\ 0, & k \neq i \end{cases}$$

Then the stationary distribution π can be represented by

$$\pi = m_i^{-1} \cdot \delta^i \sum_{n=0}^{\infty} \tilde{P}^n$$

白 ト く ヨ ト く ヨ ト

$$\pi = m_i^{-1} \cdot \delta^i \sum_{n=0}^{\infty} \tilde{P}^n$$

We first claim that

$$m_i \tilde{\nu} = \delta^i + m_i \tilde{\nu} \tilde{P}$$

同 と く き と く き と

$$\pi = m_i^{-1} \cdot \delta^i \sum_{n=0}^{\infty} \tilde{P}^n$$

We first claim that

$$m_i \tilde{\nu} = \delta^i + m_i \tilde{\nu} \tilde{P}$$

This is clear for the entry $\tilde{\nu}_i$

- ∢ ⊒ →

$$\pi = m_i^{-1} \cdot \delta^i \sum_{n=0}^{\infty} \tilde{P}^n$$

We first claim that

$$m_i \tilde{\nu} = \delta^i + m_i \tilde{\nu} \tilde{P}$$

This is clear for the entry $\tilde{\nu}_i$ and easily seen for $\tilde{\nu}_k$ with $k \neq i$

ヨット イヨット イヨッ

$$\pi = m_i^{-1} \cdot \delta^i \sum_{n=0}^{\infty} \tilde{P}^n$$

We first claim that

$$m_i \tilde{\nu} = \delta^i + m_i \tilde{\nu} \tilde{P}$$

This is clear for the entry $\tilde{\nu}_i$ and easily seen for $\tilde{\nu}_k$ with $k \neq i$ because in this case

$$(\tilde{\nu}\tilde{P})_k = c \cdot (\nu P)_k = c \cdot \nu_k = \tilde{\nu}_k$$

向下 イヨト イヨト

$$m_i\tilde{\nu} = \delta^i + (\delta^i + m_i\tilde{\nu}\tilde{P})\tilde{P} = \delta^i + \delta^i\tilde{P} + m_i\tilde{\nu}\tilde{P}^2 = \dots$$

- ∢ ≣ ▶

$$m_i\tilde{\nu} = \delta^i + (\delta^i + m_i\tilde{\nu}\tilde{P})\tilde{P} = \delta^i + \delta^i\tilde{P} + m_i\tilde{\nu}\tilde{P}^2 = \dots$$

$$=\delta^{i}\sum_{n=0}^{\infty}\tilde{P}^{n}=m_{i}\pi$$

- ∢ ≣ ▶

$$m_i\tilde{\nu} = \delta^i + (\delta^i + m_i\tilde{\nu}\tilde{P})\tilde{P} = \delta^i + \delta^i\tilde{P} + m_i\tilde{\nu}\tilde{P}^2 = \dots$$

$$=\delta^{i}\sum_{n=0}^{\infty}\tilde{P}^{n}=m_{i}\pi$$

Hence $\widetilde{\nu}$ already is a probability measure

$$m_i\tilde{\nu} = \delta^i + (\delta^i + m_i\tilde{\nu}\tilde{P})\tilde{P} = \delta^i + \delta^i\tilde{P} + m_i\tilde{\nu}\tilde{P}^2 = \dots$$

$$=\delta^{i}\sum_{n=0}^{\infty}\tilde{P}^{n}=m_{i}\pi$$

Hence $\tilde{\nu}$ already is a probability measure and thus c = 1.

$$m_i\tilde{\nu} = \delta^i + (\delta^i + m_i\tilde{\nu}\tilde{P})\tilde{P} = \delta^i + \delta^i\tilde{P} + m_i\tilde{\nu}\tilde{P}^2 = \dots$$

$$=\delta^{i}\sum_{n=0}^{\infty}\tilde{P}^{n}=m_{i}\pi$$

Hence $\tilde{\nu}$ already is a probability measure and thus c = 1. This yields $\nu = \tilde{\nu} = \pi$ and thus the statement.

Let \mathcal{X} denote an irreducible, positive recurrent Markov chain.

イロト イヨト イヨト イヨト

Let \mathcal{X} denote an irreducible, positive recurrent Markov chain. Then the stationary distribution π of \mathcal{X} is given by

$$\pi_j = m_j^{-1} = \frac{1}{\mathbb{E}(\tau_j | X_0 = j)}$$

for all $j \in E$.

個 と く ヨ と く ヨ と

Let $\mathcal X$ denote an irreducible, positive recurrent Markov chain. Then the stationary distribution π of $\mathcal X$ is given by

$$\pi_j = m_j^{-1} = \frac{1}{\mathbb{E}(\tau_j | X_0 = j)}$$

for all $j \in E$.

Proof: Since all states in E are positive recurrent,

Let $\mathcal X$ denote an irreducible, positive recurrent Markov chain. Then the stationary distribution π of $\mathcal X$ is given by

$$\pi_j = m_j^{-1} = \frac{1}{\mathbb{E}(\tau_j | X_0 = j)}$$

for all $j \in E$.

Proof:

Since all states in E are positive recurrent, the construction in theorem 2.24 can be pursued for any initial state j.

Let $\mathcal X$ denote an irreducible, positive recurrent Markov chain. Then the stationary distribution π of $\mathcal X$ is given by

$$\pi_j = m_j^{-1} = \frac{1}{\mathbb{E}(\tau_j | X_0 = j)}$$

for all $j \in E$.

Proof:

Since all states in *E* are positive recurrent, the construction in theorem 2.24 can be pursued for any initial state *j*. This yields $\pi_j = m_j^{-1}$ for all $j \in E$.

Let $\mathcal X$ denote an irreducible, positive recurrent Markov chain. Then the stationary distribution π of $\mathcal X$ is given by

$$\pi_j = m_j^{-1} = \frac{1}{\mathbb{E}(\tau_j | X_0 = j)}$$

for all $j \in E$.

Proof:

Since all states in *E* are positive recurrent, the construction in theorem 2.24 can be pursued for any initial state *j*. This yields $\pi_j = m_j^{-1}$ for all $j \in E$. The statement now follows from the uniqueness of the stationary distribution.

For an irreducible, positive recurrent Markov chain,

・ロン ・回と ・ヨン・

æ

- ∢ ≣ >

$$\lim_{n\to\infty}\frac{\mathbb{E}(N_j(n)|X_0=i)}{n}=\pi_j$$

for all $j \in E$

- ∢ ≣ >

$$\lim_{n\to\infty}\frac{\mathbb{E}(N_j(n)|X_0=i)}{n}=\pi_j$$

for all $j \in E$ and independently of $i \in E$.

- ∢ ⊒ ⊳

$$\lim_{n\to\infty}\frac{\mathbb{E}(N_j(n)|X_0=i)}{n}=\pi_j$$

for all $j \in E$ and independently of $i \in E$. Further, if an asymptotic distribution $p_j = \lim_{n \to \infty} \mathbb{P}(X_n = j)$ for all $j \in E$ does exist,

(E) < E)</p>

$$\lim_{n\to\infty}\frac{\mathbb{E}(N_j(n)|X_0=i)}{n}=\pi_j$$

for all $j \in E$ and independently of $i \in E$. Further, if an asymptotic distribution $p_j = \lim_{n\to\infty} \mathbb{P}(X_n = j)$ for all $j \in E$ does exist, then it coincides with the stationary distribution.

向下 イヨト イヨト

$$\lim_{n\to\infty}\frac{\mathbb{E}(N_j(n)|X_0=i)}{n}=\pi_j$$

for all $j \in E$ and independently of $i \in E$. Further, if an asymptotic distribution $p_j = \lim_{n\to\infty} \mathbb{P}(X_n = j)$ for all $j \in E$ does exist, then it coincides with the stationary distribution. In particular, it is independent of the initial distribution of \mathcal{X} .

向下 イヨト イヨト

The first statement immediately follows from the elementary renewal theorem.

(4回) (1日) (日)

æ

The first statement immediately follows from the elementary renewal theorem. For the second statement, it suffices to employ $\mathbb{E}(N_j(n)|X_0 = i) = \sum_{l=0}^{n} P^l(i,j).$

伺 ト イヨト イヨト

The first statement immediately follows from the elementary renewal theorem. For the second statement, it suffices to employ $\mathbb{E}(N_j(n)|X_0 = i) = \sum_{l=0}^{n} P^l(i,j)$. If an asymptotic distribution does exist,

ヨット イヨット イヨッ

The first statement immediately follows from the elementary renewal theorem. For the second statement, it suffices to employ $\mathbb{E}(N_j(n)|X_0 = i) = \sum_{l=0}^{n} P^l(i,j)$. If an asymptotic distribution does exist, then for any initial distribution ν we obtain

$$p_j = \lim_{n \to \infty} (\nu P^n)_j = \sum_{i \in E} \nu_i \lim_{n \to \infty} P^n(i,j)$$

The first statement immediately follows from the elementary renewal theorem. For the second statement, it suffices to employ $\mathbb{E}(N_j(n)|X_0 = i) = \sum_{l=0}^{n} P^l(i,j)$. If an asymptotic distribution does exist, then for any initial distribution ν we obtain

$$p_j = \lim_{n \to \infty} (\nu P^n)_j = \sum_{i \in E} \nu_i \lim_{n \to \infty} P^n(i,j)$$

$$=\sum_{i\in E}\nu_i\lim_{n\to\infty}\frac{\sum_{l=0}^n P^l(i,j)}{n}=\sum_{i\in E}\nu_i\pi_j$$

The first statement immediately follows from the elementary renewal theorem. For the second statement, it suffices to employ $\mathbb{E}(N_j(n)|X_0 = i) = \sum_{l=0}^{n} P^l(i,j)$. If an asymptotic distribution does exist, then for any initial distribution ν we obtain

$$p_j = \lim_{n \to \infty} (\nu P^n)_j = \sum_{i \in E} \nu_i \lim_{n \to \infty} P^n(i,j)$$

$$= \sum_{i \in E} \nu_i \lim_{n \to \infty} \frac{\sum_{l=0}^n P^l(i,j)}{n} = \sum_{i \in E} \nu_i \pi_j$$

 $= \pi_j$

Let ${\mathcal X}$ denote a Markov chain with transition matrix

$$P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

æ

Let ${\mathcal X}$ denote a Markov chain with transition matrix

$$P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Then \mathcal{X} has no asymptotic distribution,

- 4 回 ト - 4 回 ト - 4 回 ト

æ

Let ${\mathcal X}$ denote a Markov chain with transition matrix

$$P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Then \mathcal{X} has no asymptotic distribution, but a stationary distribution, namely $\pi = (1/2, 1/2)$.

白 ト く ヨ ト く ヨ ト

Theorem 2.31

An irreducible Markov chain with finite state space F is positive recurrent.

・ロン ・回と ・ヨン ・ヨン

æ

Proof: For all $n \in \mathbb{N}$ and $i \in F$ we have

$$\sum_{j\in F} P^n(i,j) = 1$$

回 と く ヨ と く ヨ と

æ

Proof: For all $n \in \mathbb{N}$ and $i \in F$ we have

$$\sum_{j\in F} P^n(i,j) = 1$$

Hence it is not possible that $\lim_{n\to\infty} P^n(i,j) = 0$ for all $j \in F$.

同 と く き と く き と

3

Proof: For all $n \in \mathbb{N}$ and $i \in F$ we have

$$\sum_{j\in F} P^n(i,j) = 1$$

Hence it is not possible that $\lim_{n\to\infty} P^n(i,j) = 0$ for all $j \in F$. Thus there is one state $h \in F$ such that

$$\sum_{n=0}^{\infty} P^n(i,h) = r_{ih} = f_{ih}r_{hh} = \infty$$

Proof: For all $n \in \mathbb{N}$ and $i \in F$ we have

$$\sum_{j\in F} P^n(i,j) = 1$$

Hence it is not possible that $\lim_{n\to\infty} P^n(i,j) = 0$ for all $j \in F$. Thus there is one state $h \in F$ such that

$$\sum_{n=0}^{\infty} P^n(i,h) = r_{ih} = f_{ih}r_{hh} = \infty$$

which means by corollary 2.15 that h is recurrent

Proof: For all $n \in \mathbb{N}$ and $i \in F$ we have

$$\sum_{j\in F} P^n(i,j) = 1$$

Hence it is not possible that $\lim_{n\to\infty} P^n(i,j) = 0$ for all $j \in F$. Thus there is one state $h \in F$ such that

$$\sum_{n=0}^{\infty} P^n(i,h) = r_{ih} = f_{ih}r_{hh} = \infty$$

which means by corollary 2.15 that h is recurrent and by irreducibility that the chain is recurrent.

Proof: For all $n \in \mathbb{N}$ and $i \in F$ we have

$$\sum_{j\in F} P^n(i,j) = 1$$

Hence it is not possible that $\lim_{n\to\infty} P^n(i,j) = 0$ for all $j \in F$. Thus there is one state $h \in F$ such that

$$\sum_{n=0}^{\infty} P^n(i,h) = r_{ih} = f_{ih}r_{hh} = \infty$$

which means by corollary 2.15 that h is recurrent and by irreducibility that the chain is recurrent.

Proof of theorem 2.31

If the chain were null recurrent,

- - 4 回 ト - 4 回 ト

æ

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n P^k(i,j)=0$$

would hold for all $j \in F$,

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n P^k(i,j)=0$$

would hold for all $j \in F$, independently of *i* because of irreducibility.

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n P^k(i,j)=0$$

would hold for all $j \in F$, independently of i because of irreducibility. But this would imply that

$$\lim_{n\to\infty}P^n(i,j)=0$$

for all $j \in F$,

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n P^k(i,j)=0$$

would hold for all $j \in F$, independently of *i* because of irreducibility. But this would imply that

$$\lim_{n\to\infty}P^n(i,j)=0$$

for all $j \in F$, which contradicts our first observation in this proof.

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n P^k(i,j)=0$$

would hold for all $j \in F$, independently of i because of irreducibility. But this would imply that

$$\lim_{n\to\infty}P^n(i,j)=0$$

for all $j \in F$, which contradicts our first observation in this proof. Hence the chain must be positive recurrent.

The Geo/Geo/1 queue in discrete time

回 と く ヨ と く ヨ と

Choose any parameters 0 < p, q < 1.

同 と く ヨ と く ヨ と

Choose any parameters 0 < p, q < 1. Let the arrival process be distributed as a Bernoulli process with parameter p

• • = • • = •

Choose any parameters 0 < p, q < 1. Let the arrival process be distributed as a Bernoulli process with parameter p and the service times $(S_n : n \in \mathbb{N}_0)$ be iid

A B K A B K

Choose any parameters 0 < p, q < 1. Let the arrival process be distributed as a Bernoulli process with parameter p and the service times $(S_n : n \in \mathbb{N}_0)$ be iid according to the geometric distribution with parameter q.

Let S be distributed geometrically with parameter q,

Let S be distributed geometrically with parameter q, i.e. let $\mathbb{P}(S = k) = (1 - q)^{k-1}q$ for all $k \in \mathbb{N}$.

個 と く ヨ と く ヨ と

Let S be distributed geometrically with parameter q, i.e. let $\mathbb{P}(S = k) = (1 - q)^{k-1}q$ for all $k \in \mathbb{N}$. Then $\mathbb{P}(S = k | S > k - 1) = q$,

Let S be distributed geometrically with parameter q, i.e. let $\mathbb{P}(S = k) = (1 - q)^{k-1}q$ for all $k \in \mathbb{N}$. Then $\mathbb{P}(S = k | S > k - 1) = q$, independently of k.

Let S be distributed geometrically with parameter q, i.e. let $\mathbb{P}(S = k) = (1 - q)^{k-1}q$ for all $k \in \mathbb{N}$. Then $\mathbb{P}(S = k | S > k - 1) = q$, independently of k.

Proof:

$$\mathbb{P}(S=k|S>k-1)=rac{\mathbb{P}(S=k,S>k-1)}{\mathbb{P}(S>k-1)}$$

Let S be distributed geometrically with parameter q, i.e. let $\mathbb{P}(S = k) = (1 - q)^{k-1}q$ for all $k \in \mathbb{N}$. Then $\mathbb{P}(S = k | S > k - 1) = q$, independently of k.

Proof:

$$\mathbb{P}(S=k|S>k-1)=rac{\mathbb{P}(S=k,S>k-1)}{\mathbb{P}(S>k-1)}$$
 $\mathbb{P}(S=k)$

$$=\frac{1}{\mathbb{P}(S>k-1)}$$

Let S be distributed geometrically with parameter q, i.e. let $\mathbb{P}(S = k) = (1 - q)^{k-1}q$ for all $k \in \mathbb{N}$. Then $\mathbb{P}(S = k | S > k - 1) = q$, independently of k.

Proof:

$$\mathbb{P}(S=k|S>k-1)=\frac{\mathbb{P}(S=k,S>k-1)}{\mathbb{P}(S>k-1)}$$

$$egin{aligned} &= rac{\mathbb{P}(S=k)}{\mathbb{P}(S>k-1)} \ &= rac{(1-q)^{k-1}q}{(1-q)^{k-1}} = q \end{aligned}$$

Let Q_n denote the number of users in the system at time $n \in \mathbb{N}_0$.

★ 문 ► ★ 문 ►

Let Q_n denote the number of users in the system at time $n \in \mathbb{N}_0$. Then the state space is $E = \mathbb{N}_0$.

個 と く ヨ と く ヨ と

Let Q_n denote the number of users in the system at time $n \in \mathbb{N}_0$. Then the state space is $E = \mathbb{N}_0$.

The transition probabilities are $p_{01} := p$, $p_{00} := 1 - p$,

Let Q_n denote the number of users in the system at time $n \in \mathbb{N}_0$. Then the state space is $E = \mathbb{N}_0$.

The transition probabilities are $p_{01} := p$, $p_{00} := 1 - p$, and

$$p_{ij} := egin{cases} p(1-q), & j=i+1 \ pq+(1-p)(1-q), & j=i \ q(1-p), & j=i-1 \end{cases}$$

for $i \geq 1$.

ヨット イヨット イヨッ

Thus the transition matrix is triagonal,

< □ > < □ > < □ > < □ > < □ > .

Thus the transition matrix is triagonal, i.e.

$$P = egin{pmatrix} 1-p & p & 0 & \ldots \ q(1-p) & pq+(1-p)(1-q) & p(1-q) & \ddots \ 0 & q(1-p) & pq+(1-p)(1-q) & \ddots \ dots & \ddots & \ddots & \ddots \end{pmatrix}$$

イロン イヨン イヨン イヨン

Thus the transition matrix is triagonal, i.e.

$$P = egin{pmatrix} 1-p & p & 0 & \ldots \ q(1-p) & pq+(1-p)(1-q) & p(1-q) & \ddots \ 0 & q(1-p) & pq+(1-p)(1-q) & \ddots \ dots & \ddots & \ddots & \ddots \end{pmatrix}$$

Abbreviate p' := p(1-q) and q' := q(1-p).

同 とくほ とくほと

Stationarity condition for the Geo/Geo/1 queue

Then the condition $\pi P = \pi$

回 と く ヨ と く ヨ と

Then the condition $\pi P = \pi$ means

$$\pi_0 = \pi_0(1-p) + \pi_1 q'$$

白 ト く ヨ ト く ヨ ト

Then the condition $\pi P = \pi$ means

$$\pi_0 = \pi_0(1-p) + \pi_1 q'$$

$$\pi_1 = \pi_0 p + \pi_1 (1 - p - q') + \pi_2 q'$$

白 ト く ヨ ト く ヨ ト

Then the condition $\pi P = \pi$ means

$$\pi_0 = \pi_0(1-p) + \pi_1 q'$$

$$\pi_1 = \pi_0 p + \pi_1 (1 - p - q') + \pi_2 q'$$

and

$$\pi_n = \pi_{n-1}p' + \pi_n(1 - (p' + q')) + \pi_{n+1}q'$$

for all $n \ge 2$.

We try the geometric form

 $\pi_{n+1} = \pi_n \cdot r$

for all $n \ge 1$, with 0 < r < 1.

We try the geometric form

$$\pi_{n+1} = \pi_n \cdot r$$

for all $n \ge 1$, with 0 < r < 1. Then stationarity yields

$$0 = \pi_n p' - \pi_n r(p' + q') + \pi_n r^2 q'$$

We try the geometric form

$$\pi_{n+1} = \pi_n \cdot r$$

for all $n \ge 1$, with 0 < r < 1. Then stationarity yields

$$0 = \pi_n p' - \pi_n r(p' + q') + \pi_n r^2 q'$$

$$=\pi_n\left(p'-r(p'+q')+r^2q'\right)$$

We try the geometric form

$$\pi_{n+1} = \pi_n \cdot r$$

for all $n \ge 1$, with 0 < r < 1. Then stationarity yields

$$0 = \pi_n p' - \pi_n r(p' + q') + \pi_n r^2 q'$$

$$=\pi_n\left(p'-r(p'+q')+r^2q'\right)$$

and hence r = p'/q'

個 と く ヨ と く ヨ と

We try the geometric form

$$\pi_{n+1} = \pi_n \cdot r$$

for all $n \ge 1$, with 0 < r < 1. Then stationarity yields

$$0 = \pi_n p' - \pi_n r(p' + q') + \pi_n r^2 q'$$

$$=\pi_n\left(p'-r(p'+q')+r^2q'
ight)$$
 and hence $r=p'/q'<1\iff p< q.$

回 と く ヨ と く ヨ と

We try the geometric form

$$\pi_{n+1} = \pi_n \cdot r$$

for all $n \ge 1$, with 0 < r < 1. Then stationarity yields

$$0 = \pi_n p' - \pi_n r(p' + q') + \pi_n r^2 q'$$

$$=\pi_n\left(p'-r(p'+q')+r^2q'\right)$$

and hence $r = p'/q' < 1 \iff p < q$. Further,

$$\pi_1 = \pi_0 \frac{\rho}{q'} = \pi_0 \frac{\rho}{1-\rho}$$

with $\rho := p/q$,

御 と く ぼ と く ほ と …

and

$$\pi_2=rac{1}{q'}\left(\pi_1(p'+q')-\pi_0p
ight)$$

and

$$egin{aligned} \pi_2 &= rac{1}{q'} \left(\pi_1 (p' + q') - \pi_0 p
ight) \ &= rac{1}{q'} \left(rac{p}{q'} (p' + q') - p
ight) \pi_0 \end{aligned}$$

and

$$egin{aligned} \pi_2 &= rac{1}{q'} \left(\pi_1 (p'+q') - \pi_0 p
ight) \ &= rac{1}{q'} \left(rac{p}{q'} (p'+q') - p
ight) \pi_0 \ &= \pi_0 rac{p}{q'} \left(rac{p'+q'}{q'} - 1
ight) \end{aligned}$$

and

$$\pi_{2} = \frac{1}{q'} \left(\pi_{1}(p'+q') - \pi_{0}p \right)$$
$$= \frac{1}{q'} \left(\frac{p}{q'}(p'+q') - p \right) \pi_{0}$$
$$= \pi_{0} \frac{p}{q'} \left(\frac{p'+q'}{q'} - 1 \right)$$
$$= \pi_{1} \frac{p'}{q'}$$

→ 御 → → 注 → → 注 →

Normalisation of π yields

$$1 = \sum_{n=0}^{\infty} \pi_n = \pi_0 \left(1 + \frac{p}{q'} \sum_{n=1}^{\infty} \left(\frac{p'}{q'} \right)^{n-1} \right)$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Normalisation of π yields

$$1 = \sum_{n=0}^{\infty} \pi_n = \pi_0 \left(1 + \frac{p}{q'} \sum_{n=1}^{\infty} \left(\frac{p'}{q'} \right)^{n-1} \right)$$

and hence

$$\pi_0 = \left(1 + rac{p}{q'} \sum_{n=1}^{\infty} \left(rac{p'}{q'}
ight)^{n-1}
ight)^{-1} = 1 -
ho$$

(4回) (1日) (日)

Normalisation of π yields

$$1 = \sum_{n=0}^{\infty} \pi_n = \pi_0 \left(1 + \frac{p}{q'} \sum_{n=1}^{\infty} \left(\frac{p'}{q'} \right)^{n-1} \right)$$

and hence

$$\pi_0 = \left(1 + rac{p}{q'} \sum_{n=1}^{\infty} \left(rac{p'}{q'}
ight)^{n-1}
ight)^{-1} = 1 -
ho$$

Verify this as an exercise!