Chapter 2: Markov Chains

L. Breuer
University of Kent, UK

October 3, 2010

Theorem 2.6

Let \mathcal{X} denote a homogeneous Markov chain with transition matrix P.

Theorem 2.6

Let \mathcal{X} denote a homogeneous Markov chain with transition matrix P. Then the relation

$$
\mathbb{P}\left(X_{n+m}=j \mid X_{n}=i\right)=P^{m}(i, j)
$$

holds for all $m, n \in \mathbb{N}_{0}$ and $i, j \in E$,

Theorem 2.6

Let \mathcal{X} denote a homogeneous Markov chain with transition matrix P. Then the relation

$$
\mathbb{P}\left(X_{n+m}=j \mid X_{n}=i\right)=P^{m}(i, j)
$$

holds for all $m, n \in \mathbb{N}_{0}$ and $i, j \in E$, with $P^{m}(i, j)$ denoting the (i, j) th entry of the m th power of the matrix P.

Theorem 2.6

Let \mathcal{X} denote a homogeneous Markov chain with transition matrix P. Then the relation

$$
\mathbb{P}\left(X_{n+m}=j \mid X_{n}=i\right)=P^{m}(i, j)
$$

holds for all $m, n \in \mathbb{N}_{0}$ and $i, j \in E$, with $P^{m}(i, j)$ denoting the (i, j) th entry of the m th power of the matrix P. In particular, P^{0} equals the identity matrix.

Theorem 2.6

Let \mathcal{X} denote a homogeneous Markov chain with transition matrix P. Then the relation

$$
\mathbb{P}\left(X_{n+m}=j \mid X_{n}=i\right)=P^{m}(i, j)
$$

holds for all $m, n \in \mathbb{N}_{0}$ and $i, j \in E$, with $P^{m}(i, j)$ denoting the (i, j) th entry of the m th power of the matrix P. In particular, P^{0} equals the identity matrix.
Proof:
This follows by induction on m.

Theorem 2.6

Let \mathcal{X} denote a homogeneous Markov chain with transition matrix P. Then the relation

$$
\mathbb{P}\left(X_{n+m}=j \mid X_{n}=i\right)=P^{m}(i, j)
$$

holds for all $m, n \in \mathbb{N}_{0}$ and $i, j \in E$, with $P^{m}(i, j)$ denoting the (i, j) th entry of the m th power of the matrix P. In particular, P^{0} equals the identity matrix.
Proof:
This follows by induction on m. For $m=1$ the statement holds by definition of P.

Theorem 2.6

Let \mathcal{X} denote a homogeneous Markov chain with transition matrix P. Then the relation

$$
\mathbb{P}\left(X_{n+m}=j \mid X_{n}=i\right)=P^{m}(i, j)
$$

holds for all $m, n \in \mathbb{N}_{0}$ and $i, j \in E$, with $P^{m}(i, j)$ denoting the (i, j) th entry of the m th power of the matrix P. In particular, P^{0} equals the identity matrix.
Proof:
This follows by induction on m. For $m=1$ the statement holds by definition of P. For $m>1$ we can write

Proof of Theorem 2.6

$$
\mathbb{P}\left(X_{n+m}=j \mid X_{n}=i\right)=\frac{\mathbb{P}\left(X_{n+m}=j, X_{n}=i\right)}{\mathbb{P}\left(X_{n}=i\right)}
$$

Proof of Theorem 2.6

$$
\begin{aligned}
& \mathbb{P}\left(X_{n+m}=j \mid X_{n}=i\right)=\frac{\mathbb{P}\left(X_{n+m}=j, X_{n}=i\right)}{\mathbb{P}\left(X_{n}=i\right)} \\
& =\sum_{k \in E} \frac{\mathbb{P}\left(X_{n+m}=j, X_{n+m-1}=k, X_{n}=i\right)}{\mathbb{P}\left(X_{n}=i\right)}
\end{aligned}
$$

Proof of Theorem 2.6

$$
\begin{aligned}
& \mathbb{P}\left(X_{n+m}=j \mid X_{n}=i\right)=\frac{\mathbb{P}\left(X_{n+m}=j, X_{n}=i\right)}{\mathbb{P}\left(X_{n}=i\right)} \\
& =\sum_{k \in E} \frac{\mathbb{P}\left(X_{n+m}=j, X_{n+m-1}=k, X_{n}=i\right)}{\mathbb{P}\left(X_{n}=i\right)} \\
& =\sum_{k \in E} \frac{\mathbb{P}\left(X_{n+m}=j, X_{n+m-1}=k, X_{n}=i\right)}{\mathbb{P}\left(X_{n+m-1}=k, X_{n}=i\right)} \frac{\mathbb{P}\left(X_{n+m-1}=k, X_{n}=i\right)}{\mathbb{P}\left(X_{n}=i\right)}
\end{aligned}
$$

Proof of Theorem 2.6

$$
\begin{aligned}
& \mathbb{P}\left(X_{n+m}=j \mid X_{n}=i\right)=\frac{\mathbb{P}\left(X_{n+m}=j, X_{n}=i\right)}{\mathbb{P}\left(X_{n}=i\right)} \\
& =\sum_{k \in E} \frac{\mathbb{P}\left(X_{n+m}=j, X_{n+m-1}=k, X_{n}=i\right)}{\mathbb{P}\left(X_{n}=i\right)} \\
& =\sum_{k \in E} \frac{\mathbb{P}\left(X_{n+m}=j, X_{n+m-1}=k, X_{n}=i\right)}{\mathbb{P}\left(X_{n+m-1}=k, X_{n}=i\right)} \frac{\mathbb{P}\left(X_{n+m-1}=k, X_{n}=i\right)}{\mathbb{P}\left(X_{n}=i\right)} \\
& =\sum_{k \in E} \mathbb{P}\left(X_{n+m}=j \mid X_{n+m-1}=k, X_{n}=i\right) \cdot P^{m-1}(i, k)
\end{aligned}
$$

Proof of Theorem 2.6

$$
\begin{aligned}
& \mathbb{P}\left(X_{n+m}=j \mid X_{n}=i\right)=\frac{\mathbb{P}\left(X_{n+m}=j, X_{n}=i\right)}{\mathbb{P}\left(X_{n}=i\right)} \\
& =\sum_{k \in E} \frac{\mathbb{P}\left(X_{n+m}=j, X_{n+m-1}=k, X_{n}=i\right)}{\mathbb{P}\left(X_{n}=i\right)} \\
& =\sum_{k \in E} \frac{\mathbb{P}\left(X_{n+m}=j, X_{n+m-1}=k, X_{n}=i\right)}{\mathbb{P}\left(X_{n+m-1}=k, X_{n}=i\right)} \frac{\mathbb{P}\left(X_{n+m-1}=k, X_{n}=i\right)}{\mathbb{P}\left(X_{n}=i\right)} \\
& =\sum_{k \in E} \mathbb{P}\left(X_{n+m}=j \mid X_{n+m-1}=k, X_{n}=i\right) \cdot P^{m-1}(i, k) \\
& =\sum_{k \in E} p_{k j} \cdot P^{m-1}(i, k)=P^{m}(i, j)
\end{aligned}
$$

Chapman-Kolmogorov equations

Thus the probabilities for transitions in m steps are given by the m th power of the transition matrix P.

Chapman-Kolmogorov equations

Thus the probabilities for transitions in m steps are given by the m th power of the transition matrix P. The rule $P^{m+n}=P^{m} P^{n}$ for the multiplication of matrices

Chapman-Kolmogorov equations

Thus the probabilities for transitions in m steps are given by the m th power of the transition matrix P. The rule $P^{m+n}=P^{m} P^{n}$ for the multiplication of matrices and theorem 2.6 lead to the decompositions

$$
\mathbb{P}\left(X_{m+n}=j \mid X_{0}=i\right)=\sum_{k \in E} \mathbb{P}\left(X_{m}=k \mid X_{0}=i\right) \cdot \mathbb{P}\left(X_{n}=j \mid X_{0}=k\right)
$$

Chapman-Kolmogorov equations

Thus the probabilities for transitions in m steps are given by the m th power of the transition matrix P. The rule $P^{m+n}=P^{m} P^{n}$ for the multiplication of matrices and theorem 2.6 lead to the decompositions

$$
\mathbb{P}\left(X_{m+n}=j \mid X_{0}=i\right)=\sum_{k \in E} \mathbb{P}\left(X_{m}=k \mid X_{0}=i\right) \cdot \mathbb{P}\left(X_{n}=j \mid X_{0}=k\right)
$$

which are known as the Chapman-Kolmogorov equations.

Stopping times

Let τ denote a random variable with values in $\mathbb{N}_{0} \cup\{\infty\}$,

Stopping times

Let τ denote a random variable with values in $\mathbb{N}_{0} \cup\{\infty\}$, such that the condition

$$
\mathbb{P}(\tau \leq n \mid \mathcal{X})=\mathbb{P}\left(\tau \leq n \mid X_{0}, \ldots, X_{n}\right)
$$

holds for all $n \in \mathbb{N}_{0}$.

Stopping times

Let τ denote a random variable with values in $\mathbb{N}_{0} \cup\{\infty\}$, such that the condition

$$
\mathbb{P}(\tau \leq n \mid \mathcal{X})=\mathbb{P}\left(\tau \leq n \mid X_{0}, \ldots, X_{n}\right)
$$

holds for all $n \in \mathbb{N}_{0}$. Such a random variable is called a (discrete) stopping time for \mathcal{X}.

Theorem 2.7: Strong Markov property

Let \mathcal{X} denote a Markov chain and τ a stopping time for \mathcal{X} with $\mathbb{P}(\tau<\infty)=1$.

Theorem 2.7: Strong Markov property

Let \mathcal{X} denote a Markov chain and τ a stopping time for \mathcal{X} with $\mathbb{P}(\tau<\infty)=1$. Then the relation

$$
\mathbb{P}\left(X_{\tau+m}=j \mid X_{0}=i_{0}, \ldots, X_{\tau}=i_{\tau}\right)=\mathbb{P}\left(X_{m}=j \mid X_{0}=i_{\tau}\right)
$$

holds for all $m \in \mathbb{N}$ and $i_{0}, \ldots, i_{\tau}, j \in E$.

Proof of theorem 2.7

$$
\mathbb{P}\left(X_{\tau+m}=j \mid X_{0}=i_{0}, \ldots, X_{\tau}=i_{\tau}\right)
$$

Proof of theorem 2.7

$$
\begin{aligned}
& \mathbb{P}\left(X_{\tau+m}=j \mid X_{0}=i_{0}, \ldots, X_{\tau}=i_{\tau}\right) \\
& =\sum_{n=0}^{\infty} \mathbb{P}\left(\tau=n, X_{\tau+m}=j \mid X_{0}=i_{0}, \ldots, X_{n}=i_{n}\right)
\end{aligned}
$$

Proof of theorem 2.7

$$
\begin{aligned}
& \mathbb{P}\left(X_{\tau+m}=j \mid X_{0}=i_{0}, \ldots, X_{\tau}=i_{\tau}\right) \\
& =\sum_{n=0}^{\infty} \mathbb{P}\left(\tau=n, X_{\tau+m}=j \mid X_{0}=i_{0}, \ldots, X_{n}=i_{n}\right) \\
& =\sum_{n=0}^{\infty} \mathbb{P}\left(X_{n+m}=j \mid \tau=n, X_{0}=i_{0}, \ldots, X_{n}=i_{n}\right) \\
& \quad \times \mathbb{P}\left(\tau=n \mid X_{0}=i_{0}, \ldots, X_{n}=i_{n}\right)
\end{aligned}
$$

Proof of theorem 2.7

$$
\begin{aligned}
& \mathbb{P}\left(X_{\tau+m}=j \mid X_{0}=i_{0}, \ldots, X_{\tau}=i_{\tau}\right) \\
& =\sum_{n=0}^{\infty} \mathbb{P}\left(\tau=n, X_{\tau+m}=j \mid X_{0}=i_{0}, \ldots, X_{n}=i_{n}\right) \\
& =\sum_{n=0}^{\infty} \mathbb{P}\left(X_{n+m}=j \mid \tau=n, X_{0}=i_{0}, \ldots, X_{n}=i_{n}\right) \\
& \quad \times \mathbb{P}\left(\tau=n \mid X_{0}=i_{0}, \ldots, X_{n}=i_{n}\right) \\
& =\sum_{n=0}^{\infty} \mathbb{P}\left(X_{n+m}=j \mid \tau=n, X_{n}=i_{n}\right) \cdot \mathbb{P}(\tau=n \mid \mathcal{X})
\end{aligned}
$$

Proof of theorem 2.7

$$
\begin{aligned}
& \mathbb{P}\left(X_{\tau+m}=j \mid X_{0}=i_{0}, \ldots, X_{\tau}=i_{\tau}\right) \\
& =\sum_{n=0}^{\infty} \mathbb{P}\left(\tau=n, X_{\tau+m}=j \mid X_{0}=i_{0}, \ldots, X_{n}=i_{n}\right) \\
& =\sum_{n=0}^{\infty} \mathbb{P}\left(X_{n+m}=j \mid \tau=n, X_{0}=i_{0}, \ldots, X_{n}=i_{n}\right) \\
& \quad \times \mathbb{P}\left(\tau=n \mid X_{0}=i_{0}, \ldots, X_{n}=i_{n}\right) \\
& =\sum_{n=0}^{\infty} \mathbb{P}\left(X_{n+m}=j \mid \tau=n, X_{n}=i_{n}\right) \cdot \mathbb{P}(\tau=n \mid \mathcal{X}) \\
& = \\
& \sum_{n=0}^{\infty} \mathbb{P}(\tau=n \mid \mathcal{X}) \cdot \mathbb{P}\left(X_{m}=j \mid X_{0}=i_{\tau}\right)
\end{aligned}
$$

Classification of states

Let \mathcal{X} denote a Markov chain with state space E and transition matrix P.

Classification of states

Let \mathcal{X} denote a Markov chain with state space E and transition matrix P. We call a state $j \in E$ accessible from a state $i \in E$

Classification of states

Let \mathcal{X} denote a Markov chain with state space E and transition matrix P. We call a state $j \in E$ accessible from a state $i \in E$ if there is a number $m \in \mathbb{N}_{0}$ with $P\left(X_{m}=j \mid X_{0}=i\right)>0$.

Classification of states

Let \mathcal{X} denote a Markov chain with state space E and transition matrix P. We call a state $j \in E$ accessible from a state $i \in E$ if there is a number $m \in \mathbb{N}_{0}$ with $P\left(X_{m}=j \mid X_{0}=i\right)>0$. This relation shall be denoted by $i \rightarrow j$.

Classification of states

Let \mathcal{X} denote a Markov chain with state space E and transition matrix P. We call a state $j \in E$ accessible from a state $i \in E$ if there is a number $m \in \mathbb{N}_{0}$ with $P\left(X_{m}=j \mid X_{0}=i\right)>0$. This relation shall be denoted by $i \rightarrow j$. If for two states $i, j \in E$ the relations $i \rightarrow j$ and $j \rightarrow i$ hold,

Classification of states

Let \mathcal{X} denote a Markov chain with state space E and transition matrix P. We call a state $j \in E$ accessible from a state $i \in E$ if there is a number $m \in \mathbb{N}_{0}$ with $P\left(X_{m}=j \mid X_{0}=i\right)>0$. This relation shall be denoted by $i \rightarrow j$. If for two states $i, j \in E$ the relations $i \rightarrow j$ and $j \rightarrow i$ hold, then i and j are said to communicate,

Classification of states

Let \mathcal{X} denote a Markov chain with state space E and transition matrix P. We call a state $j \in E$ accessible from a state $i \in E$ if there is a number $m \in \mathbb{N}_{0}$ with $P\left(X_{m}=j \mid X_{0}=i\right)>0$. This relation shall be denoted by $i \rightarrow j$. If for two states $i, j \in E$ the relations $i \rightarrow j$ and $j \rightarrow i$ hold, then i and j are said to communicate, in notation $i \leftrightarrow j$.

Theorem 2.8

The relation \leftrightarrow of communication between states is an equivalence relation.

Theorem 2.8

The relation \leftrightarrow of communication between states is an equivalence relation.
Proof:
Because of $P^{0}=I$, communication is reflexive.

Theorem 2.8

The relation \leftrightarrow of communication between states is an equivalence relation.
Proof:
Because of $P^{0}=I$, communication is reflexive. Symmetry holds by definition.

Theorem 2.8

The relation \leftrightarrow of communication between states is an equivalence relation.
Proof:
Because of $P^{0}=I$, communication is reflexive. Symmetry holds by definition. Thus it remains to show transitivity.

Theorem 2.8

The relation \leftrightarrow of communication between states is an equivalence relation.
Proof:
Because of $P^{0}=I$, communication is reflexive. Symmetry holds by definition. Thus it remains to show transitivity. For this, assume $i \leftrightarrow j$ and $j \leftrightarrow k$ for three states $i, j, k \in E$.

Theorem 2.8

The relation \leftrightarrow of communication between states is an equivalence relation.
Proof:
Because of $P^{0}=I$, communication is reflexive. Symmetry holds by definition. Thus it remains to show transitivity. For this, assume $i \leftrightarrow j$ and $j \leftrightarrow k$ for three states $i, j, k \in E$. This means that there are numbers $m, n \in \mathbb{N}_{0}$ with $P^{m}(i, j)>0$ and $P^{n}(j, k)>0$.

Theorem 2.8

The relation \leftrightarrow of communication between states is an equivalence relation.
Proof:
Because of $P^{0}=I$, communication is reflexive. Symmetry holds by definition. Thus it remains to show transitivity. For this, assume $i \leftrightarrow j$ and $j \leftrightarrow k$ for three states $i, j, k \in E$. This means that there are numbers $m, n \in \mathbb{N}_{0}$ with $P^{m}(i, j)>0$ and $P^{n}(j, k)>0$. Hence, by the Chapman-Kolmogorov equation, we obtain

$$
\mathbb{P}\left(X_{m+n}=k \mid X_{0}=i\right)=\sum_{h \in E} \mathbb{P}\left(X_{m}=h \mid X_{0}=i\right) \cdot \mathbb{P}\left(X_{n}=k \mid X_{0}=h\right)
$$

Theorem 2.8

The relation \leftrightarrow of communication between states is an equivalence relation.
Proof:
Because of $P^{0}=I$, communication is reflexive. Symmetry holds by definition. Thus it remains to show transitivity. For this, assume $i \leftrightarrow j$ and $j \leftrightarrow k$ for three states $i, j, k \in E$. This means that there are numbers $m, n \in \mathbb{N}_{0}$ with $P^{m}(i, j)>0$ and $P^{n}(j, k)>0$. Hence, by the Chapman-Kolmogorov equation, we obtain

$$
\begin{aligned}
& \mathbb{P}\left(X_{m+n}=k \mid X_{0}=i\right)=\sum_{h \in E} \mathbb{P}\left(X_{m}=h \mid X_{0}=i\right) \cdot \mathbb{P}\left(X_{n}=k \mid X_{0}=h\right) \\
& \geq \mathbb{P}\left(X_{m}=j \mid X_{0}=i\right) \cdot \mathbb{P}\left(X_{n}=k \mid X_{0}=j\right)>0
\end{aligned}
$$

Theorem 2.8

The relation \leftrightarrow of communication between states is an equivalence relation.
Proof:
Because of $P^{0}=I$, communication is reflexive. Symmetry holds by definition. Thus it remains to show transitivity. For this, assume $i \leftrightarrow j$ and $j \leftrightarrow k$ for three states $i, j, k \in E$. This means that there are numbers $m, n \in \mathbb{N}_{0}$ with $P^{m}(i, j)>0$ and $P^{n}(j, k)>0$. Hence, by the Chapman-Kolmogorov equation, we obtain

$$
\begin{aligned}
& \mathbb{P}\left(X_{m+n}=k \mid X_{0}=i\right)=\sum_{h \in E} \mathbb{P}\left(X_{m}=h \mid X_{0}=i\right) \cdot \mathbb{P}\left(X_{n}=k \mid X_{0}=h\right) \\
& \geq \mathbb{P}\left(X_{m}=j \mid X_{0}=i\right) \cdot \mathbb{P}\left(X_{n}=k \mid X_{0}=j\right)>0
\end{aligned}
$$

which proves $i \rightarrow k$.

Theorem 2.8

The relation \leftrightarrow of communication between states is an equivalence relation.
Proof:
Because of $P^{0}=I$, communication is reflexive. Symmetry holds by definition. Thus it remains to show transitivity. For this, assume $i \leftrightarrow j$ and $j \leftrightarrow k$ for three states $i, j, k \in E$. This means that there are numbers $m, n \in \mathbb{N}_{0}$ with $P^{m}(i, j)>0$ and $P^{n}(j, k)>0$. Hence, by the Chapman-Kolmogorov equation, we obtain

$$
\begin{aligned}
& \mathbb{P}\left(X_{m+n}=k \mid X_{0}=i\right)=\sum_{h \in E} \mathbb{P}\left(X_{m}=h \mid X_{0}=i\right) \cdot \mathbb{P}\left(X_{n}=k \mid X_{0}=h\right) \\
& \geq \mathbb{P}\left(X_{m}=j \mid X_{0}=i\right) \cdot \mathbb{P}\left(X_{n}=k \mid X_{0}=j\right)>0
\end{aligned}
$$

which proves $i \rightarrow k$. The remaining proof of $k \rightarrow i$ is completely analogous.

Communication classes

Because of this result and the countability, we can divide the state space E of a Markov chain into a partition of countably many equivalence classes with respect to the communication of states.

Communication classes

Because of this result and the countability, we can divide the state space E of a Markov chain into a partition of countably many equivalence classes with respect to the communication of states. Any such equivalence class shall be called communication class.

Communication classes

Because of this result and the countability, we can divide the state space E of a Markov chain into a partition of countably many equivalence classes with respect to the communication of states. Any such equivalence class shall be called communication class. A communication class $C \subset E$ that does not allow access to states outside itself, i.e.

Communication classes

Because of this result and the countability, we can divide the state space E of a Markov chain into a partition of countably many equivalence classes with respect to the communication of states. Any such equivalence class shall be called communication class. A communication class $C \subset E$ that does not allow access to states outside itself, i.e. for which the implication

$$
i \rightarrow j, \quad i \in C \quad \Rightarrow \quad j \in C
$$

holds,

Communication classes

Because of this result and the countability, we can divide the state space E of a Markov chain into a partition of countably many equivalence classes with respect to the communication of states. Any such equivalence class shall be called communication class. A communication class $C \subset E$ that does not allow access to states outside itself, i.e. for which the implication

$$
i \rightarrow j, \quad i \in C \quad \Rightarrow \quad j \in C
$$

holds, is called closed.

Communication classes

Because of this result and the countability, we can divide the state space E of a Markov chain into a partition of countably many equivalence classes with respect to the communication of states. Any such equivalence class shall be called communication class. A communication class $C \subset E$ that does not allow access to states outside itself, i.e. for which the implication

$$
i \rightarrow j, \quad i \in C \quad \Rightarrow \quad j \in C
$$

holds, is called closed. If a closed equivalence class consists only of one state, then this state shall be called absorbing.

Communication classes

Because of this result and the countability, we can divide the state space E of a Markov chain into a partition of countably many equivalence classes with respect to the communication of states. Any such equivalence class shall be called communication class. A communication class $C \subset E$ that does not allow access to states outside itself, i.e. for which the implication

$$
i \rightarrow j, \quad i \in C \quad \Rightarrow \quad j \in C
$$

holds, is called closed. If a closed equivalence class consists only of one state, then this state shall be called absorbing. If a Markov chain has only one communication class, i.e.

Communication classes

Because of this result and the countability, we can divide the state space E of a Markov chain into a partition of countably many equivalence classes with respect to the communication of states. Any such equivalence class shall be called communication class. A communication class $C \subset E$ that does not allow access to states outside itself, i.e. for which the implication

$$
i \rightarrow j, \quad i \in C \quad \Rightarrow \quad j \in C
$$

holds, is called closed. If a closed equivalence class consists only of one state, then this state shall be called absorbing. If a Markov chain has only one communication class, i.e. if all states are communicating, then it is called irreducible.

Communication classes

Because of this result and the countability, we can divide the state space E of a Markov chain into a partition of countably many equivalence classes with respect to the communication of states. Any such equivalence class shall be called communication class. A communication class $C \subset E$ that does not allow access to states outside itself, i.e. for which the implication

$$
i \rightarrow j, \quad i \in C \quad \Rightarrow \quad j \in C
$$

holds, is called closed. If a closed equivalence class consists only of one state, then this state shall be called absorbing. If a Markov chain has only one communication class, i.e. if all states are communicating, then it is called irreducible. Otherwise it is called reducible.

Examples

Example 2.9: Let \mathcal{X} denote a discrete random walk (see example 2.2) with the specification $\pi_{1}=p$ and $\pi_{-1}=1-p$ for some parameter $0<p<1$.

Examples

Example 2.9: Let \mathcal{X} denote a discrete random walk (see example 2.2) with the specification $\pi_{1}=p$ and $\pi_{-1}=1-p$ for some parameter $0<p<1$. Then \mathcal{X} is irreducible.

Examples

Example 2.9: Let \mathcal{X} denote a discrete random walk (see example 2.2) with the specification $\pi_{1}=p$ and $\pi_{-1}=1-p$ for some parameter $0<p<1$. Then \mathcal{X} is irreducible.

Example 2.10: The Bernoulli process (see example 2.3) with non-trivial parameter $0<p<1$ is reducible.

Examples

Example 2.9: Let \mathcal{X} denote a discrete random walk (see example 2.2) with the specification $\pi_{1}=p$ and $\pi_{-1}=1-p$ for some parameter $0<p<1$. Then \mathcal{X} is irreducible.

Example 2.10: The Bernoulli process (see example 2.3) with non-trivial parameter $0<p<1$ is reducible. Every state $i \in \mathbb{N}_{0}$ forms an own communication class.

Examples

Example 2.9: Let \mathcal{X} denote a discrete random walk (see example 2.2) with the specification $\pi_{1}=p$ and $\pi_{-1}=1-p$ for some parameter $0<p<1$. Then \mathcal{X} is irreducible.

Example 2.10: The Bernoulli process (see example 2.3) with non-trivial parameter $0<p<1$ is reducible. Every state $i \in \mathbb{N}_{0}$ forms an own communication class. None of these is closed,

Examples

Example 2.9: Let \mathcal{X} denote a discrete random walk (see example 2.2) with the specification $\pi_{1}=p$ and $\pi_{-1}=1-p$ for some parameter $0<p<1$. Then \mathcal{X} is irreducible.

Example 2.10: The Bernoulli process (see example 2.3) with non-trivial parameter $0<p<1$ is reducible. Every state $i \in \mathbb{N}_{0}$ forms an own communication class. None of these is closed, thus there are no absorbing states.

First visit times

Define τ_{j} as the stopping time of the first visit to the state $j \in E$, i.e.

First visit times

Define τ_{j} as the stopping time of the first visit to the state $j \in E$, i.e.

$$
\tau_{j}:=\min \left\{n \in \mathbb{N}: X_{n}=j\right\}
$$

First visit times

Define τ_{j} as the stopping time of the first visit to the state $j \in E$, i.e.

$$
\tau_{j}:=\min \left\{n \in \mathbb{N}: X_{n}=j\right\}
$$

Denote the distribution of τ_{j} by

$$
\begin{aligned}
& \qquad F_{k}(i, j):=\mathbb{P}\left(\tau_{j}=k \mid X_{0}=i\right) \\
& \text { for all } i, j \in E \text { and } k \in \mathbb{N} \text {. }
\end{aligned}
$$

Lemma 2.12

For all states $i, j \in E$

$$
F_{k}(i, j)= \begin{cases}p_{i j}, & k=1 \\ \sum_{h \neq j} p_{i h} F_{k-1}(h, j), & k \geq 2\end{cases}
$$

Lemma 2.12

For all states $i, j \in E$

$$
F_{k}(i, j)= \begin{cases}p_{i j}, & k=1 \\ \sum_{h \neq j} p_{i h} F_{k-1}(h, j), & k \geq 2\end{cases}
$$

Proof:
For $k=1$, the definition yields

$$
F_{1}(i, j)=\mathbb{P}\left(\tau_{j}=1 \mid X_{0}=i\right)=\mathbb{P}\left(X_{1}=j \mid X_{0}=i\right)=p_{i j}
$$

for all $i, j \in E$.

Proof of lemma 2.12

For $k \geq 2$, conditioning upon X_{1} yields

$$
F_{k}(i, j)=\mathbb{P}\left(X_{1} \neq j, \ldots, X_{k-1} \neq j, X_{k}=j \mid X_{0}=i\right)
$$

Proof of lemma 2.12

For $k \geq 2$, conditioning upon X_{1} yields

$$
\begin{aligned}
& F_{k}(i, j)=\mathbb{P}\left(X_{1} \neq j, \ldots, X_{k-1} \neq j, X_{k}=j \mid X_{0}=i\right) \\
& =\sum_{h \neq j} \mathbb{P}\left(X_{1}=h \mid X_{0}=i\right) \\
& \quad \times \mathbb{P}\left(X_{2} \neq j, \ldots, X_{k-1} \neq j, X_{k}=j \mid X_{0}=i, X_{1}=h\right)
\end{aligned}
$$

Proof of lemma 2.12

For $k \geq 2$, conditioning upon X_{1} yields

$$
\begin{aligned}
& F_{k}(i, j)=\mathbb{P}\left(X_{1} \neq j, \ldots, X_{k-1} \neq j, X_{k}=j \mid X_{0}=i\right) \\
& =\sum_{h \neq j} \mathbb{P}\left(X_{1}=h \mid X_{0}=i\right) \\
& \quad \times \mathbb{P}\left(X_{2} \neq j, \ldots, X_{k-1} \neq j, X_{k}=j \mid X_{0}=i, X_{1}=h\right) \\
& =\sum_{h \neq j} p_{i h} \cdot \mathbb{P}\left(X_{1} \neq j, \ldots, X_{k-2} \neq j, X_{k-1}=j \mid X_{0}=h\right)
\end{aligned}
$$

Proof of lemma 2.12

For $k \geq 2$, conditioning upon X_{1} yields

$$
\begin{aligned}
& F_{k}(i, j)=\mathbb{P}\left(X_{1} \neq j, \ldots, X_{k-1} \neq j, X_{k}=j \mid X_{0}=i\right) \\
& =\sum_{h \neq j} \mathbb{P}\left(X_{1}=h \mid X_{0}=i\right) \\
& \quad \times \mathbb{P}\left(X_{2} \neq j, \ldots, X_{k-1} \neq j, X_{k}=j \mid X_{0}=i, X_{1}=h\right) \\
& =\sum_{h \neq j} p_{i h} \cdot \mathbb{P}\left(X_{1} \neq j, \ldots, X_{k-2} \neq j, X_{k-1}=j \mid X_{0}=h\right) \\
& =\sum_{h \neq j} p_{i h} F_{k-1}(h, j)
\end{aligned}
$$

Probability of ever visiting a state

Now define

$$
f_{i j}:=\mathbb{P}\left(\tau_{j}<\infty \mid X_{0}=i\right)=\sum_{k=1}^{\infty} F_{k}(i, j)
$$

for all $i, j \in E$,

Probability of ever visiting a state

Now define

$$
f_{i j}:=\mathbb{P}\left(\tau_{j}<\infty \mid X_{0}=i\right)=\sum_{k=1}^{\infty} F_{k}(i, j)
$$

for all $i, j \in E$, which represents the probability of ever visiting state j after beginning in state i.

Probability of ever visiting a state

Now define

$$
f_{i j}:=\mathbb{P}\left(\tau_{j}<\infty \mid X_{0}=i\right)=\sum_{k=1}^{\infty} F_{k}(i, j)
$$

for all $i, j \in E$, which represents the probability of ever visiting state j after beginning in state i. Summing up over all $k \in \mathbb{N}$ in the formula of Lemma 2.12 leads to

$$
f_{i j}=p_{i j}+\sum_{h \neq j} p_{i h} f_{h j}
$$

for all $i, j \in E$.

Probability of ever visiting a state

Now define

$$
f_{i j}:=\mathbb{P}\left(\tau_{j}<\infty \mid X_{0}=i\right)=\sum_{k=1}^{\infty} F_{k}(i, j)
$$

for all $i, j \in E$, which represents the probability of ever visiting state j after beginning in state i. Summing up over all $k \in \mathbb{N}$ in the formula of Lemma 2.12 leads to

$$
f_{i j}=p_{i j}+\sum_{h \neq j} p_{i h} f_{h j}
$$

for all $i, j \in E$. The proof is left as an exercise.

Total number of visits

Define

$$
N_{j}:=\sum_{n=0}^{\infty} \mathbb{I}_{\left\{X_{n}=j\right\}}
$$

Total number of visits

Define

$$
N_{j}:=\sum_{n=0}^{\infty} \mathbb{I}_{\left\{X_{n}=j\right\}}
$$

where \mathbb{I} denotes the indicator function, i.e.

Total number of visits

Define

$$
N_{j}:=\sum_{n=0}^{\infty} \mathbb{I}_{\left\{X_{n}=j\right\}}
$$

where \mathbb{I} denotes the indicator function, i.e.

$$
\mathbb{I}_{A}:= \begin{cases}1, & \text { if } A \text { is true } \\ 0, & \text { if } A \text { is false }\end{cases}
$$

Total number of visits

Define

$$
N_{j}:=\sum_{n=0}^{\infty} \mathbb{I}_{\left\{X_{n}=j\right\}}
$$

where \mathbb{I} denotes the indicator function, i.e.

$$
\mathbb{I}_{A}:= \begin{cases}1, & \text { if } A \text { is true } \\ 0, & \text { if } A \text { is false }\end{cases}
$$

This is the random variable of the total number of visits to the state $j \in E$.

Theorem 2.13

Let \mathcal{X} denote a Markov chain with state space E. Then

Theorem 2.13

Let \mathcal{X} denote a Markov chain with state space E. Then

$$
\mathbb{P}\left(N_{j}=m \mid X_{0}=j\right)=f_{j j}^{m-1}\left(1-f_{j j}\right)
$$

for $m \in \mathbb{N}$,

Theorem 2.13

Let \mathcal{X} denote a Markov chain with state space E. Then

$$
\mathbb{P}\left(N_{j}=m \mid X_{0}=j\right)=f_{j j}^{m-1}\left(1-f_{j j}\right)
$$

for $m \in \mathbb{N}$, and for $i \neq j$

Theorem 2.13

Let \mathcal{X} denote a Markov chain with state space E. Then

$$
\mathbb{P}\left(N_{j}=m \mid X_{0}=j\right)=f_{j j}^{m-1}\left(1-f_{j j}\right)
$$

for $m \in \mathbb{N}$, and for $i \neq j$

$$
\mathbb{P}\left(N_{j}=m \mid X_{0}=i\right)= \begin{cases}1-f_{i j}, & m=0 \\ f_{i j} f_{j j}^{m-1}\left(1-f_{j j}\right), & m \geq 1\end{cases}
$$

Proof of theorem 2.13

Define $\tau_{j}^{(1)}:=\tau_{j}$

Proof of theorem 2.13

Define $\tau_{j}^{(1)}:=\tau_{j}$ and $\tau_{j}^{(k+1)}:=\min \left\{n>\tau_{j}^{(k)}: X_{n}=j\right\}$ for all $k \in \mathbb{N}$,

Proof of theorem 2.13

Define $\tau_{j}^{(1)}:=\tau_{j}$ and $\tau_{j}^{(k+1)}:=\min \left\{n>\tau_{j}^{(k)}: X_{n}=j\right\}$ for all $k \in \mathbb{N}$, with the convention that $\min \emptyset=\infty$.

Proof of theorem 2.13

Define $\tau_{j}^{(1)}:=\tau_{j}$ and $\tau_{j}^{(k+1)}:=\min \left\{n>\tau_{j}^{(k)}: X_{n}=j\right\}$ for all $k \in \mathbb{N}$, with the convention that $\min \emptyset=\infty$. Note that $\tau_{j}^{(k)}=\infty$ implies $\tau_{j}^{(I)}=\infty$ for all $I>k$.

Proof of theorem 2.13

Define $\tau_{j}^{(1)}:=\tau_{j}$ and $\tau_{j}^{(k+1)}:=\min \left\{n>\tau_{j}^{(k)}: X_{n}=j\right\}$ for all $k \in \mathbb{N}$, with the convention that $\min \emptyset=\infty$. Note that $\tau_{j}^{(k)}=\infty$ implies $\tau_{j}^{(I)}=\infty$ for all $I>k$.

Then the sequence $\left(\tau_{j}^{(k)}: k \in \mathbb{N}\right)$ is a sequence of stopping times.

Proof of theorem 2.13

Define $\tau_{j}^{(1)}:=\tau_{j}$ and $\tau_{j}^{(k+1)}:=\min \left\{n>\tau_{j}^{(k)}: X_{n}=j\right\}$ for all $k \in \mathbb{N}$, with the convention that $\min \emptyset=\infty$. Note that $\tau_{j}^{(k)}=\infty$ implies $\tau_{j}^{(I)}=\infty$ for all $I>k$.

Then the sequence $\left(\tau_{j}^{(k)}: k \in \mathbb{N}\right)$ is a sequence of stopping times. Further,

$$
\left\{N_{j}=m\right\}= \begin{cases}\bigcap_{k=1}^{m-1}\left\{\tau_{j}^{(k)}<\infty\right\} \cap\left\{\tau_{j}^{(m)}=\infty\right\} & \text { on }\left\{X_{0}=j\right\} \\ \bigcap_{k=1}^{m}\left\{\tau_{j}^{(k)}<\infty\right\} \cap\left\{\tau_{j}^{(m+1)}=\infty\right\} & \text { on }\left\{X_{0} \neq j\right\}\end{cases}
$$

Proof of theorem 2.13

Define $\tau_{j}^{(1)}:=\tau_{j}$ and $\tau_{j}^{(k+1)}:=\min \left\{n>\tau_{j}^{(k)}: X_{n}=j\right\}$ for all $k \in \mathbb{N}$, with the convention that $\min \emptyset=\infty$. Note that $\tau_{j}^{(k)}=\infty$ implies $\tau_{j}^{(I)}=\infty$ for all $I>k$.

Then the sequence $\left(\tau_{j}^{(k)}: k \in \mathbb{N}\right)$ is a sequence of stopping times. Further,

$$
\begin{aligned}
& \left\{N_{j}=m\right\}= \begin{cases}\bigcap_{k=1}^{m-1}\left\{\tau_{j}^{(k)}<\infty\right\} \cap\left\{\tau_{j}^{(m)}=\infty\right\} & \text { on }\left\{X_{0}=j\right\} \\
\bigcap_{k=1}^{m}\left\{\tau_{j}^{(k)}<\infty\right\} \cap\left\{\tau_{j}^{(m+1)}=\infty\right\} & \text { on }\left\{X_{0} \neq j\right\}\end{cases} \\
& = \begin{cases}\bigcap_{k=1}^{m-1}\left\{\tau_{j}^{(k)}-\tau_{j}^{(k-1)}<\infty\right\} \cap\left\{\tau_{j}^{(m)}-\tau_{j}^{(m-1)}=\infty\right\}, \quad X_{0}=j \\
\bigcap_{k=1}^{m}\left\{\tau_{j}^{(k)}-\tau_{j}^{(k-1)}<\infty\right\} \cap\left\{\tau_{j}^{(m+1)}-\tau_{j}^{(m)}=\infty\right\}, \quad X_{0} \neq j\end{cases}
\end{aligned}
$$

with $\tau_{j}^{(0)}:=0$.

Proof of theorem 2.13 (contd.)

The strong Markov property yields for $X_{0}=i$

$$
\mathbb{P}\left(\tau_{j}^{(k)}-\tau_{j}^{(k-1)}<\infty\right)= \begin{cases}f_{i j}, & k=1 \\ f_{j j}, & k>1\end{cases}
$$

Proof of theorem 2.13 (contd.)

The strong Markov property yields for $X_{0}=i$

$$
\mathbb{P}\left(\tau_{j}^{(k)}-\tau_{j}^{(k-1)}<\infty\right)= \begin{cases}f_{i j}, & k=1 \\ f_{j j}, & k>1\end{cases}
$$

and independence of the events $\left\{\tau_{j}^{(k)}-\tau_{j}^{(k-1)}<=\infty\right\}$, $k=1, \ldots, m+1$.

Corollary 2.14

Summing over all $m \in \mathbb{N}$ in the above theorem leads to

Corollary 2.14

Summing over all $m \in \mathbb{N}$ in the above theorem leads to

$$
\mathbb{P}\left(N_{j}<\infty \mid X_{0}=j\right)= \begin{cases}1, & f_{j j}<1 \\ 0, & f_{j j}=1\end{cases}
$$

Corollary 2.14

Summing over all $m \in \mathbb{N}$ in the above theorem leads to

$$
\mathbb{P}\left(N_{j}<\infty \mid X_{0}=j\right)= \begin{cases}1, & f_{j j}<1 \\ 0, & f_{j j}=1\end{cases}
$$

i.e. depending on $f_{j j}$ there are almost surely infinitely many visits to a state $j \in E$.

Recurrence / Transience

This result gives rise to the following definitions:

Recurrence / Transience

This result gives rise to the following definitions: A state $j \in E$ is called recurrent if $f_{j j}=1$

Recurrence / Transience

This result gives rise to the following definitions: A state $j \in E$ is called recurrent if $f_{j j}=1$ and transient otherwise.

Recurrence / Transience

This result gives rise to the following definitions: A state $j \in E$ is called recurrent if $f_{j j}=1$ and transient otherwise. Further define the potential matrix $R=\left(r_{i j}\right)_{i, j \in E}$ of the Markov chain

Recurrence / Transience

This result gives rise to the following definitions: A state $j \in E$ is called recurrent if $f_{j j}=1$ and transient otherwise. Further define the potential matrix $R=\left(r_{i j}\right)_{i, j \in E}$ of the Markov chain by its entries

$$
r_{i j}:=\mathbb{E}\left(N_{j} \mid X_{0}=i\right)=\sum_{n=0}^{\infty} P^{n}(i, j)
$$

for all $i, j \in E$.

Corollary 2.15

For all $i, j \in E$ the relations

$$
r_{j j}=\left(1-f_{j j}\right)^{-1} \quad \text { and } \quad r_{i j}=f_{i j} r_{j j}
$$

hold,

Corollary 2.15

For all $i, j \in E$ the relations

$$
r_{j j}=\left(1-f_{j j}\right)^{-1} \quad \text { and } \quad r_{i j}=f_{i j} r_{j j}
$$

hold, with the conventions $0^{-1}:=\infty$ and $0 \cdot \infty:=0$ included.

Corollary 2.15

For all $i, j \in E$ the relations

$$
r_{j j}=\left(1-f_{j j}\right)^{-1} \quad \text { and } \quad r_{i j}=f_{i j} r_{j j}
$$

hold, with the conventions $0^{-1}:=\infty$ and $0 \cdot \infty:=0$ included. In particular, the expected number $r_{j j}$ of visits to the state $j \in E$ is finite if j is transient

Corollary 2.15

For all $i, j \in E$ the relations

$$
r_{j j}=\left(1-f_{j j}\right)^{-1} \quad \text { and } \quad r_{i j}=f_{i j} r_{j j}
$$

hold, with the conventions $0^{-1}:=\infty$ and $0 \cdot \infty:=0$ included. In particular, the expected number $r_{j j}$ of visits to the state $j \in E$ is finite if j is transient and infinite if j is recurrent.

Theorem 2.16

Recurrence and transience of states are class properties with respect to the relation \leftrightarrow.

Theorem 2.16

Recurrence and transience of states are class properties with respect to the relation \leftrightarrow. Furthermore, a recurrent communication class is always closed.

Theorem 2.16

Recurrence and transience of states are class properties with respect to the relation \leftrightarrow. Furthermore, a recurrent communication class is always closed.

Proof:
Assume that $i \in E$ is transient and $i \leftrightarrow j$.

Theorem 2.16

Recurrence and transience of states are class properties with respect to the relation \leftrightarrow. Furthermore, a recurrent communication class is always closed.

Proof:

Assume that $i \in E$ is transient and $i \leftrightarrow j$. Then there are numbers $m, n \in \mathbb{N}$ with $0<P^{m}(i, j) \leq 1$ and $0<P^{n}(j, i) \leq 1$.

Theorem 2.16

Recurrence and transience of states are class properties with respect to the relation \leftrightarrow. Furthermore, a recurrent communication class is always closed.

Proof:

Assume that $i \in E$ is transient and $i \leftrightarrow j$. Then there are numbers $m, n \in \mathbb{N}$ with $0<P^{m}(i, j) \leq 1$ and $0<P^{n}(j, i) \leq 1$. The inequalities

$$
\sum_{k=0}^{\infty} P^{k}(i, i) \geq \sum_{h=0}^{\infty} P^{m+h+n}(i, i) \geq P^{m}(i, j) P^{n}(j, i) \sum_{k=0}^{\infty} P^{k}(j, j)
$$

now imply $r_{j j}<\infty$.

Theorem 2.16

Recurrence and transience of states are class properties with respect to the relation \leftrightarrow. Furthermore, a recurrent communication class is always closed.

Proof:

Assume that $i \in E$ is transient and $i \leftrightarrow j$. Then there are numbers $m, n \in \mathbb{N}$ with $0<P^{m}(i, j) \leq 1$ and $0<P^{n}(j, i) \leq 1$. The inequalities

$$
\sum_{k=0}^{\infty} P^{k}(i, i) \geq \sum_{h=0}^{\infty} P^{m+h+n}(i, i) \geq P^{m}(i, j) P^{n}(j, i) \sum_{k=0}^{\infty} P^{k}(j, j)
$$

now imply $r_{j j}<\infty$. According to corollary 2.15 this means that j is transient, too.

Proof of theorem 2.16 (contd.)

If j is recurrent,

Proof of theorem 2.16 (contd.)

If j is recurrent, then the same inequalities lead to

$$
r_{i i} \geq P^{m}(i, j) P^{n}(j, i) r_{j j}=\infty
$$

Proof of theorem 2.16 (contd.)

If j is recurrent, then the same inequalities lead to

$$
r_{i i} \geq P^{m}(i, j) P^{n}(j, i) r_{j j}=\infty
$$

which signifies that i is recurrent, too.

Proof of theorem 2.16 (contd.)

If j is recurrent, then the same inequalities lead to

$$
r_{i i} \geq P^{m}(i, j) P^{n}(j, i) r_{j j}=\infty
$$

which signifies that i is recurrent, too. Since the above arguments are symmetric in i and j, the proof of the first statement is complete.

Proof of theorem 2.16 (contd.)

If j is recurrent, then the same inequalities lead to

$$
r_{i i} \geq P^{m}(i, j) P^{n}(j, i) r_{j j}=\infty
$$

which signifies that i is recurrent, too. Since the above arguments are symmetric in i and j, the proof of the first statement is complete.

For the second statement

Proof of theorem 2.16 (contd.)

If j is recurrent, then the same inequalities lead to

$$
r_{i i} \geq P^{m}(i, j) P^{n}(j, i) r_{j j}=\infty
$$

which signifies that i is recurrent, too. Since the above arguments are symmetric in i and j, the proof of the first statement is complete.

For the second statement assume that $i \in E$ belongs to a communication class $C \subset E$ and $p_{i j}>0$ for some state $j \in E \backslash C$.

Proof of theorem 2.16 (contd.)

If j is recurrent, then the same inequalities lead to

$$
r_{i i} \geq P^{m}(i, j) P^{n}(j, i) r_{j j}=\infty
$$

which signifies that i is recurrent, too. Since the above arguments are symmetric in i and j, the proof of the first statement is complete.

For the second statement assume that $i \in E$ belongs to a communication class $C \subset E$ and $p_{i j}>0$ for some state $j \in E \backslash C$. Then

$$
f_{i i}=p_{i i}+\sum_{h \neq i} p_{i h} f_{h i} \leq 1-p_{i j}<1
$$

since $f_{j i}=0$ (otherwise $i \leftrightarrow j$).

Proof of theorem 2.16 (contd.)

If j is recurrent, then the same inequalities lead to

$$
r_{i i} \geq P^{m}(i, j) P^{n}(j, i) r_{j j}=\infty
$$

which signifies that i is recurrent, too. Since the above arguments are symmetric in i and j, the proof of the first statement is complete.

For the second statement assume that $i \in E$ belongs to a communication class $C \subset E$ and $p_{i j}>0$ for some state $j \in E \backslash C$. Then

$$
f_{i i}=p_{i i}+\sum_{h \neq i} p_{i h} f_{h i} \leq 1-p_{i j}<1
$$

since $f_{j i}=0$ (otherwise $i \leftrightarrow j$). Thus i is transient, which proves the second statement.

Theorem 2.17

If the state $j \in E$ is transient, then $\lim _{n \rightarrow \infty} P^{n}(i, j)=0$,

Theorem 2.17

If the state $j \in E$ is transient, then $\lim _{n \rightarrow \infty} P^{n}(i, j)=0$, regardless of the initial state $i \in E$.

Theorem 2.17

If the state $j \in E$ is transient, then $\lim _{n \rightarrow \infty} P^{n}(i, j)=0$, regardless of the initial state $i \in E$.

Proof:
If the state j is transient, then

$$
r_{j j}=\left(1-f_{j j}\right)^{-1}<\infty
$$

by corollary 2.15 .

Theorem 2.17

If the state $j \in E$ is transient, then $\lim _{n \rightarrow \infty} P^{n}(i, j)=0$, regardless of the initial state $i \in E$.

Proof:
If the state j is transient, then

$$
r_{j j}=\left(1-f_{j j}\right)^{-1}<\infty
$$

by corollary 2.15 . Further, by the same corollary,

$$
r_{i j}=f_{i j} r_{j j}<\infty
$$

Theorem 2.17

If the state $j \in E$ is transient, then $\lim _{n \rightarrow \infty} P^{n}(i, j)=0$, regardless of the initial state $i \in E$.

Proof:
If the state j is transient, then

$$
r_{j j}=\left(1-f_{j j}\right)^{-1}<\infty
$$

by corollary 2.15 . Further, by the same corollary,

$$
r_{i j}=f_{i j} r_{j j}<\infty
$$

Since $r_{i j}=\sum_{n=0}^{\infty} P^{n}(i, j)$, the statement follows.

