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Theorem 2.6

Let X denote a homogeneous Markov chain with transition matrix
P.
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Theorem 2.6

Let X denote a homogeneous Markov chain with transition matrix
P. Then the relation

]P)(Xn-‘rm :J.’Xn = i) = 'Dm(iaj)

holds for all m,n € Ny and /,j € E, with P™(i, ) denoting the
(i,4)th entry of the mth power of the matrix P.
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Let X denote a homogeneous Markov chain with transition matrix
P. Then the relation

]P)(Xn-‘rm :J.’Xn = i) = 'Dm(iaj)

holds for all m,n € Ny and /,j € E, with P™(i, ) denoting the
(i,j)th entry of the mth power of the matrix P. In particular, P°
equals the identity matrix.
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Theorem 2.6

Let X denote a homogeneous Markov chain with transition matrix
P. Then the relation

]P)(Xn-‘rm :J.’Xn = i) = 'Dm(iaj)

holds for all m,n € Ny and /,j € E, with P™(i, ) denoting the
(i,j)th entry of the mth power of the matrix P. In particular, P°
equals the identity matrix.

Proof:

This follows by induction on m.
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Theorem 2.6

Let X denote a homogeneous Markov chain with transition matrix
P. Then the relation

]P)(Xn-‘rm :J.’Xn = i) = 'Dm(iaj)

holds for all m,n € Ny and /,j € E, with P™(i, ) denoting the
(i,j)th entry of the mth power of the matrix P. In particular, P°
equals the identity matrix.

Proof:

This follows by induction on m. For m = 1 the statement holds by
definition of P.
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Theorem 2.6

Let X denote a homogeneous Markov chain with transition matrix
P. Then the relation

]P)(Xn-‘rm :J.’Xn = i) = 'Dm(iaj)

holds for all m,n € Ny and /,j € E, with P™(i, ) denoting the
(i,j)th entry of the mth power of the matrix P. In particular, P°
equals the identity matrix.

Proof:

This follows by induction on m. For m = 1 the statement holds by
definition of P. For m > 1 we can write
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Proof of Theorem 2.6

P (Xpsm = j, Xn = i)
P (X, =)

IP)(Xner :j|Xn = i) =
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Proof of Theorem 2.6

P (Xpsm = j, Xn = i)
P (X, =)

IP)(Xner :j|Xn = i) =

_ Z IF)()<n—|—m :j7Xn+m—1 = k,Xn = /)

keE P(Xn=1)
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Proof of Theorem 2.6

P(Xntm =4, Xn=1)

P (X, =)

_Z n+m—JXn—|—m l—an—/)
P(X,=1)

IP)(Xner :j|Xn = i) =

keE

_Z n+m—./aXn+m 1:/( Xn:i)P(Xnerfl:kaXn:i)
2 Xosm 1=k, Xp = 1) P(Xy = i)
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Proof of Theorem 2.6

P(Xntm =4, Xn=1)

P(Xntm = j1Xn = 1) = P (X, = i)

_Z n+m—JXn—|—m l—an—/)

keE P(Xn=1)

_Z n+m—./aXn+m lszn:i)P(Xnerfl:kaXn:i)

keE Xotm—1 =k, Xn = i) P (X =1)
- ZP(Xn—I—m :j‘Xn-‘rm—l =k, Xy = ’) ' Pmil(’.a k)
keE
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Proof of Theorem 2.6

P(Xntm =4, Xn=1)

P(Xntm = j1Xn = 1) = P (X, = i)

_Z n+m—JXn—|—m l—an—/)

keE P(Xn=1)

_Z n+m—./aXn+m lszn:i)P(Xnerfl:kaXn:i)

keE Xntm—1 =k, Xy =) P(Xn = 1)
= ZP(Xn—I—m :j‘Xn-‘rm—l = k,Xn = ’) : Pmil(’.v k)

keE
= - PN k) = P7(i. j)

keE
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Chapman—Kolmogorov equations

Thus the probabilities for transitions in m steps are given by the
mth power of the transition matrix P.
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Chapman—Kolmogorov equations

Thus the probabilities for transitions in m steps are given by the
mth power of the transition matrix P. The rule PMT" = pmpn for
the multiplication of matrices and theorem 2.6 lead to the
decompositions

P(Xmin=jlXo = i) => P(Xm=k|Xo = i)P(X, = j|Xo = k)
keE
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Chapman—Kolmogorov equations

Thus the probabilities for transitions in m steps are given by the
mth power of the transition matrix P. The rule PMT" = pmpn for
the multiplication of matrices and theorem 2.6 lead to the
decompositions

P(Xmin=ilXo = 1) =Y P(Xm = k|Xo = i)-P(X, = j|Xo = k)
keE

which are known as the Chapman—Kolmogorov equations.
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Stopping times

Let 7 denote a random variable with values in No U {o0},
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Stopping times

Let 7 denote a random variable with values in Ny U {oo}, such
that the condition

P(r < n|X) =P(r < n|Xo, ..., X»)

holds for all n € Np.
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Stopping times

Let 7 denote a random variable with values in Ny U {oo}, such
that the condition

P(r < n|X) =P(r < n|Xo, ..., X»)

holds for all n € Ng. Such a random variable is called a (discrete)
stopping time for X.
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Theorem 2.7: Strong Markov property

Let X denote a Markov chain and 7 a stopping time for X with
P(r < o0) = 1.
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Theorem 2.7: Strong Markov property

Let X denote a Markov chain and 7 a stopping time for X with
P(7 < o0) = 1. Then the relation

P(Xram =1 Xo = oy, Xr = i) = P(Xpn = j| Xo = ir)

holds for all m € N and iy, ...,ir,j € E.
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Proof of theorem 2.7

P(Xyim = j|Xo = ioy ..., Xy = i)
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Proof of theorem 2.7

P(Xyim = j|Xo = ioy ..., Xy = i)

o0
= P(r=n0Xesm=jXo=lt, .., Xn = i)
n=0
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Proof of theorem 2.7

P(Xrtm = j|1Xo = ioy ..., Xr = i)
= P(r=n0Xesm=jXo=lt, .., Xn = i)
n=0

= P(Xotm=jlT=nXo=lo, ..., Xo = in)
n=0
XP(T = n|X0 = i(),. .. ,Xn = in)
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Proof of theorem 2.7

P(Xrtm = j|1Xo = ioy ..., Xr = i)
= P(r=n0Xesm=jXo=lt, .., Xn = i)
n=0

= P(Xotm=jlT=nXo=lo, ..., Xo = in)
n=0
XP(T = n|X0 = i(),. .. ,Xn = in)

i
o
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Proof of theorem 2.7

P(Xrtm = j|1Xo = ioy ..., Xr = i)
= P(r=n0Xesm=jXo=lt, .., Xn = i)
n=0

= P(Xotm=jlT=nXo=lo, ..., Xo = in)
n=0
XP(T = n|X0 = i(),. .. ,Xn = in)
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Classification of states

Let X denote a Markov chain with state space E and transition
matrix P.
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Classification of states

Let X denote a Markov chain with state space E and transition
matrix P. We call a state j € E accessible from a state i € E if
there is a number m € Ny with P(Xp,, = j|Xo = i) > 0.
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Classification of states

Let X denote a Markov chain with state space E and transition
matrix P. We call a state j € E accessible from a state i € E if
there is a number m € Ny with P(X,,, = j|Xo = i) > 0. This
relation shall be denoted by i — ;.
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Let X denote a Markov chain with state space E and transition
matrix P. We call a state j € E accessible from a state i € E if
there is a number m € Ny with P(X,,, = j|Xo = i) > 0. This
relation shall be denoted by i — j. If for two states /,j € E the
relations i — j and j — i hold,
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Classification of states

Let X denote a Markov chain with state space E and transition
matrix P. We call a state j € E accessible from a state i € E if
there is a number m € Ny with P(X,,, = j|Xo = i) > 0. This
relation shall be denoted by i — j. If for two states /,j € E the
relations i — j and j — i hold, then / and j are said to
communicate,
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Classification of states

Let X denote a Markov chain with state space E and transition
matrix P. We call a state j € E accessible from a state i € E if
there is a number m € Ny with P(X,,, = j|Xo = i) > 0. This
relation shall be denoted by i — j. If for two states /,j € E the
relations i — j and j — i hold, then / and j are said to
communicate, in notation i <> J.
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Theorem 2.8

The relation <+ of communication between states is an equivalence
relation.
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Theorem 2.8

The relation <+ of communication between states is an equivalence
relation.

Proof:
Because of P% = /, communication is reflexive.
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Theorem 2.8

The relation <+ of communication between states is an equivalence
relation.

Proof:

Because of P = /, communication is reflexive. Symmetry holds by
definition.
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Theorem 2.8

The relation <+ of communication between states is an equivalence
relation.

Proof:

Because of P = /, communication is reflexive. Symmetry holds by
definition. Thus it remains to show transitivity.
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Theorem 2.8

The relation <+ of communication between states is an equivalence
relation.

Proof:

Because of P = /, communication is reflexive. Symmetry holds by
definition. Thus it remains to show transitivity. For this, assume

i <> j and j +> k for three states /,j, k € E.
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Theorem 2.8

The relation <+ of communication between states is an equivalence
relation.

Proof:

Because of P = /, communication is reflexive. Symmetry holds by
definition. Thus it remains to show transitivity. For this, assume

i <+ j and j <> k for three states i/, j, k € E. This means that there
are numbers m, n € Ng with P™(i,j) > 0 and P"(j, k) > 0.
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Theorem 2.8

The relation <+ of communication between states is an equivalence
relation.

Proof:

Because of P = /, communication is reflexive. Symmetry holds by
definition. Thus it remains to show transitivity. For this, assume

i <+ j and j <> k for three states i/, j, k € E. This means that there
are numbers m, n € Ng with P™(i,j) > 0 and P"(j, k) > 0. Hence,
by the Chapman—Kolmogorov equation, we obtain

P(Xmin = k|Xo = 1) = > P(Xm = h|Xo = i)-P(X, = k|Xo = h)
heE
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Theorem 2.8

The relation <+ of communication between states is an equivalence
relation.

Proof:

Because of P = /, communication is reflexive. Symmetry holds by
definition. Thus it remains to show transitivity. For this, assume

i <+ j and j <> k for three states i/, j, k € E. This means that there
are numbers m, n € Ng with P™(i,j) > 0 and P"(j, k) > 0. Hence,
by the Chapman—Kolmogorov equation, we obtain

P(Xmin = k|Xo = 1) = > P(Xm = h|Xo = i)-P(X, = k|Xo = h)
heE

> P(Xm = j|Xo = i) - P(Xp = k|Xo = j) > 0
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Theorem 2.8

The relation <+ of communication between states is an equivalence
relation.

Proof:

Because of P = /, communication is reflexive. Symmetry holds by
definition. Thus it remains to show transitivity. For this, assume

i <+ j and j <> k for three states i/, j, k € E. This means that there
are numbers m, n € Ng with P™(i,j) > 0 and P"(j, k) > 0. Hence,
by the Chapman—Kolmogorov equation, we obtain

P(Xmin = k|Xo = 1) = > P(Xm = h|Xo = i)-P(X, = k|Xo = h)
heE

> P(Xm = j|Xo = i) - P(Xp = k|Xo = j) > 0

which proves i — k.
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Theorem 2.8

The relation <+ of communication between states is an equivalence
relation.

Proof:

Because of P = /, communication is reflexive. Symmetry holds by
definition. Thus it remains to show transitivity. For this, assume

i <+ j and j <> k for three states i/, j, k € E. This means that there
are numbers m, n € Ng with P™(i,j) > 0 and P"(j, k) > 0. Hence,
by the Chapman—Kolmogorov equation, we obtain

P(Xmin = k|Xo = 1) = > P(Xm = h|Xo = i)-P(X, = k|Xo = h)
heE
> P(Xm =j|Xo=1)-P(X, = k|Xo=j) >0

which proves i — k. The remaining proof of k — i is completely
analogous.
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Communication classes

Because of this result and the countability, we can divide the state
space E of a Markov chain into a partition of countably many
equivalence classes with respect to the communication of states.
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Communication classes

Because of this result and the countability, we can divide the state
space E of a Markov chain into a partition of countably many
equivalence classes with respect to the communication of states.
Any such equivalence class shall be called communication class.
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Communication classes

Because of this result and the countability, we can divide the state
space E of a Markov chain into a partition of countably many
equivalence classes with respect to the communication of states.
Any such equivalence class shall be called communication class.
A communication class C C E that does not allow access to states
outside itself, i.e.
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Communication classes

Because of this result and the countability, we can divide the state
space E of a Markov chain into a partition of countably many
equivalence classes with respect to the communication of states.
Any such equivalence class shall be called communication class.
A communication class C C E that does not allow access to states
outside itself, i.e. for which the implication

i—j, iecC = jecC

holds,
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Communication classes

Because of this result and the countability, we can divide the state
space E of a Markov chain into a partition of countably many
equivalence classes with respect to the communication of states.
Any such equivalence class shall be called communication class.
A communication class C C E that does not allow access to states
outside itself, i.e. for which the implication

i—j, iecC = jecC

holds, is called closed.
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Communication classes

Because of this result and the countability, we can divide the state
space E of a Markov chain into a partition of countably many
equivalence classes with respect to the communication of states.
Any such equivalence class shall be called communication class.
A communication class C C E that does not allow access to states
outside itself, i.e. for which the implication

i—j, iecC = jecC

holds, is called closed. If a closed equivalence class consists only
of one state, then this state shall be called absorbing.
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Communication classes

Because of this result and the countability, we can divide the state
space E of a Markov chain into a partition of countably many
equivalence classes with respect to the communication of states.
Any such equivalence class shall be called communication class.
A communication class C C E that does not allow access to states
outside itself, i.e. for which the implication

i—j, iecC = jecC

holds, is called closed. If a closed equivalence class consists only
of one state, then this state shall be called absorbing. If a Markov
chain has only one communication class, i.e.
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Communication classes

Because of this result and the countability, we can divide the state
space E of a Markov chain into a partition of countably many
equivalence classes with respect to the communication of states.
Any such equivalence class shall be called communication class.
A communication class C C E that does not allow access to states
outside itself, i.e. for which the implication

i—j, iecC = jecC

holds, is called closed. If a closed equivalence class consists only
of one state, then this state shall be called absorbing. If a Markov
chain has only one communication class, i.e. if all states are
communicating, then it is called irreducible.
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Communication classes

Because of this result and the countability, we can divide the state
space E of a Markov chain into a partition of countably many
equivalence classes with respect to the communication of states.
Any such equivalence class shall be called communication class.
A communication class C C E that does not allow access to states
outside itself, i.e. for which the implication

i—j, iecC = jecC

holds, is called closed. If a closed equivalence class consists only
of one state, then this state shall be called absorbing. If a Markov
chain has only one communication class, i.e. if all states are
communicating, then it is called irreducible. Otherwise it is called
reducible.
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Example 2.9: Let X denote a discrete random walk (see example
2.2) with the specification m; = p and m_; = 1 — p for some
parameter 0 < p < 1.
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Example 2.9: Let X denote a discrete random walk (see example
2.2) with the specification m; = p and m_; = 1 — p for some
parameter 0 < p < 1. Then X is irreducible.
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Example 2.9: Let X denote a discrete random walk (see example
2.2) with the specification m; = p and m_; = 1 — p for some
parameter 0 < p < 1. Then X is irreducible.

Example 2.10: The Bernoulli process (see example 2.3) with
non—trivial parameter 0 < p < 1 is reducible.
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Example 2.9: Let X denote a discrete random walk (see example
2.2) with the specification m; = p and m_; = 1 — p for some
parameter 0 < p < 1. Then X is irreducible.

Example 2.10: The Bernoulli process (see example 2.3) with

non—trivial parameter 0 < p < 1 is reducible. Every state i € Ny
forms an own communication class.
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Example 2.9: Let X denote a discrete random walk (see example
2.2) with the specification m; = p and m_; = 1 — p for some
parameter 0 < p < 1. Then X is irreducible.

Example 2.10: The Bernoulli process (see example 2.3) with

non—trivial parameter 0 < p < 1 is reducible. Every state i € Ny
forms an own communication class. None of these is closed,
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Example 2.9: Let X denote a discrete random walk (see example
2.2) with the specification m; = p and m_; = 1 — p for some
parameter 0 < p < 1. Then X is irreducible.

Example 2.10: The Bernoulli process (see example 2.3) with
non—trivial parameter 0 < p < 1 is reducible. Every state i € Ny
forms an own communication class. None of these is closed, thus
there are no absorbing states.
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First visit times

Define 7; as the stopping time of the first visit to the state j € E,
i.e.

L. Breuer Chapter 2: Markov Chains



First visit times

Define 7; as the stopping time of the first visit to the state j € E,
i.e.

7 :=min{n e N: X, =}
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First visit times

Define 7; as the stopping time of the first visit to the state j € E,
i.e.

7 :=min{n e N: X, =}
Denote the distribution of 7; by
Fic(i,j) = B(7j = k|Xo = 1)

forall i,j € E and k € N.
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Lemma 2.12

For all states i,j € E

Fili )= 427 . =l
> hzj PinFr—1(h.j), k=2
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Lemma 2.12

For all states i,j € E

Fili )= 427 . =l
> hzj PinFr—1(h.j), k=2

Proof:
For k = 1, the definition yields

Fi(i,j) = P(7; = 1|1 Xo = i) = P(X1 = j| Xo = i) = pjj

forall i,j € E.
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Proof of lemma 2.12

For k > 2, conditioning upon Xj yields

Fe(ij) =P(Xv #j, ..., Xkc1 # J, X = j| Xo = 1)
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Proof of lemma 2.12

For k > 2, conditioning upon Xj yields

Fe(ij) =P(Xv #j, ..., Xkc1 # J, X = j| Xo = 1)

=) P(X1=h|Xo =)
h#j

X]P(X2 #j)"')Xk—l #.LX/( :J’XO = i7X1 = h)

L. Breuer Chapter 2: Markov Chains



Proof of lemma 2.12

For k > 2, conditioning upon Xj yields

Fe(ij) =P(Xv #j, ..., Xkc1 # J, X = j| Xo = 1)

=) P(X1=h|Xo =)
h#j

X]P(X2 #j)"')Xk—l #.LX/( :J’XO = i7X1 = h)

= Zpih P(Xy £, X2 # J, X1 = j1 Xo = h)
h#j
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Proof of lemma 2.12

For k > 2, conditioning upon Xj yields

Fe(ij) =P(Xv #j, ..., Xkc1 # J, X = j| Xo = 1)

=) P(X1=h|Xo =)
h#j

X]P(X2 #j)"')Xk—l #.LX/( :J’XO = i7X1 = h)

= Zpih P(Xy £, X2 # J, X1 = j1 Xo = h)
h#j

= pinFi-1(h,))
hi

L. Breuer Chapter 2: Markov Chains



Probability of ever visiting a state

Now define
fi =P(1j < ool Xo=1) = ZFk(i’j)
k=1

forall i,j € E,
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Probability of ever visiting a state

Now define
fi =P(1j < ool Xo=1) = ZFk(i’j)
k=1

for all i,j € E, which represents the probability of ever visiting
state j after beginning in state J.
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Probability of ever visiting a state

Now define
fi =P(1j < ool Xo=1) = ZFk(i’j)
k=1

for all i,j € E, which represents the probability of ever visiting
state j after beginning in state i. Summing up over all k € N in
the formula of Lemma 2.12 leads to

fi = pj+ Y Pinfaj
hi

forall i,j € E.
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Probability of ever visiting a state

Now define
fi =P(1j < ool Xo=1) = ZFk(i’j)
k=1

for all i,j € E, which represents the probability of ever visiting
state j after beginning in state i. Summing up over all k € N in
the formula of Lemma 2.12 leads to

fi = pj+ Y Pinfaj
hi

for all i,j € E. The proof is left as an exercise.
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Total number of visits

Define

Ni = Iy
n=0
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Total number of visits

Define

Ni = Iy
n=0

where I denotes the indicator function, i.e.
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Total number of visits

Define

o0
N = Tix,—j
n=0
where I denotes the indicator function, i.e.

1, if Ais true
Ia:= A
0, if Ais false
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Total number of visits

Define

o0
N = Tix,—j
n=0
where I denotes the indicator function, i.e.

1, if Ais true
Ia:= A
0, if Ais false

This is the random variable of the total number of visits to the
state j € E.
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Let X denote a Markov chain with state space E. Then
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Theorem 2.13

Let X denote a Markov chain with state space E. Then
P(N; = m|Xo = j) = £ (1 — fy)

for me N,
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Theorem 2.13

Let X denote a Markov chain with state space E. Then
P(N; = m|Xo = j) = £ (1 — fy)

for me N, and for i # j
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Theorem 2.13

Let X denote a Markov chain with state space E. Then
P(N; = m[Xo = j) = £ 1(1 - f)

for me N, and for i # j

1—f m=20

fETI1—f), m>1
JJ

MMZW%ZOZ{
Uy =
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Proof of theorem 2.13

Define Tj(l) =T

L. Breuer Chapter 2: Markov Chains



Proof of theorem 2.13

Define Tj(l) :=7j and 7'j(k+1) = min{n > 7'j(k) : Xp = j} for all

ke N,
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Proof of theorem 2.13

Define Tj(l) :=7j and 7'j(k+1) = min{n > 7'j(k) : Xp = j} for all

k € N, with the convention that min() = co.
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k € N, with the convention that min ) = co. Note that 7'J-(k) =00

("

implies T =00 for all I > k.
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k € N, with the convention that min ) = co. Note that 7'J-(k) =00

("

implies T =00 for all I > k.

Then the sequence (7'J-(k) . k € N) is a sequence of stopping times.
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Proof of theorem 2.13

Define Tj(l) :=7; and 7'j(k+1) = min{n > Tj(k) : Xp = j} for all

k € N, with the convention that min ) = co. Note that 7'J-(k) =00

("

implies T =00 for all I > k.

Then the sequence (7'J-(k) . k € N) is a sequence of stopping times.
Further,

Ms () < oobn{z™ = oo} on {Xo =}

N =m} = {ﬂf—l{q(k) < oo} {7 =00} on {Xo #j}
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Proof of theorem 2.13

Define Tj(l) = Tj and 7?/'(k+1) = min{n > 7}(/() :

X, =j} for all
k € N, with the convention that min () = co. Note that 7'J-(k) =00

implies 7'J-(I) = oo for all | > k.

Then the sequence (7'J-(k) . k € N) is a sequence of stopping times.
Further,

et < ooy n{rf™ =00} on {Xo =}

th = m = {ﬂk—l{fjk < oo} n{r {me2) _ oo} on {Xo #j}

J

mkzl{j"’ 7 < oo} N {r] {mt1) M=o}, Xo#)

{m { () TJk 1) <oo}ln {T(m) Fm=1) _ oo}, Xo=j
J

with 7'1-(0) = 0.
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Proof of theorem 2.13 (contd.)

The strong Markov property yields for Xp =i

_ fi, k=1
IP’(T-(k) — kD ) =< "
J J fjj k>1
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Proof of theorem 2.13 (contd.)

The strong Markov property yields for Xp =i

_ fi, k=1
IP’(T-(k) — kD ) =< "
J J fjj k>1

and independence of the events {q(k) — k) = oo},

J
k=1,....m+1.
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Corollary 2.14

Summing over all m € N in the above theorem leads to
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Corollary 2.14

Summing over all m € N in the above theorem leads to

1, f,j<1

P(N; < Xo=Jj)=
(N; < ool Xo = J) {07 i
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Corollary 2.14

Summing over all m € N in the above theorem leads to

1, f,j<1

P(N; < Xo=Jj)=
(N; < ool Xo = J) {07 i

i.e. depending on fj; there are almost surely infinitely many visits to
a state j € E.
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Recurrence / Transience

This result gives rise to the following definitions:
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This result gives rise to the following definitions: A state j € E is
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This result gives rise to the following definitions: A state j € E is
called recurrent if f; = 1 and transient otherwise. Further define
the potential matrix R = (r;); jce of the Markov chain
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Recurrence / Transience

This result gives rise to the following definitions: A state j € E is
called recurrent if f; = 1 and transient otherwise. Further define
the potential matrix R = (r;;); jce of the Markov chain by its

entries
o
= B = ) = 3 P(iJ)
n=0
forall i,j € E.
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Corollary 2.15

For all i, j € E the relations
-1
rj = (1= 1;) and = fyr

hold,
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Corollary 2.15

For all i, j € E the relations
-1
rj = (1= 1;) and = fyr

hold, with the conventions 07! := 0o and 0 - 0o := 0 included.
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Corollary 2.15

For all i, j € E the relations
-1
rj = (1= 1;) and = fyr

hold, with the conventions 07! := 0o and 0 - 0o := 0 included. In
particular, the expected number rj; of visits to the state j € E is
finite if j is transient
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Corollary 2.15

For all i, j € E the relations
-1
rj = (1= 1;) and = fyr

hold, with the conventions 07! := 0o and 0 - 0o := 0 included. In
particular, the expected number rj; of visits to the state j € E is
finite if j is transient and infinite if j is recurrent.
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Recurrence and transience of states are class properties with
respect to the relation .
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Theorem 2.16

Recurrence and transience of states are class properties with
respect to the relation <. Furthermore, a recurrent
communication class is always closed.
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Recurrence and transience of states are class properties with
respect to the relation <. Furthermore, a recurrent
communication class is always closed.

Proof:
Assume that 7 € E is transient and i < j.
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Theorem 2.16

Recurrence and transience of states are class properties with
respect to the relation <. Furthermore, a recurrent
communication class is always closed.

Proof:

Assume that i € E is transient and i <> j. Then there are numbers
m,n € N with 0 < P"(i,j) <1and 0 < P"(j,i) <1.
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Theorem 2.16

Recurrence and transience of states are class properties with
respect to the relation <. Furthermore, a recurrent
communication class is always closed.

Proof:
Assume that i € E is transient and i <> j. Then there are numbers

m,n € N with 0 < P"(i,j) <1land 0 < P"(j,i) <1. The
inequalities

ZPk(IIZi PmEhEN Y > P(i, j)P (), i ZPI‘]_/
— h=0

now imply rj; < oco.

L. Breuer Chapter 2: Markov Chains



Theorem 2.16

Recurrence and transience of states are class properties with
respect to the relation <. Furthermore, a recurrent
communication class is always closed.

Proof:
Assume that i € E is transient and i <> j. Then there are numbers

m,n € N with 0 < P"(i,j) <1land 0 < P"(j,i) <1. The
inequalities

ZPk(IIZi PmEhEN Y > P(i, j)P (), i ZPI‘]_/
— h=0

now imply rj < co. According to corollary 2.15 this means that j
is transient, too.
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Proof of theorem 2.16 (contd.)

If j is recurrent,
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Proof of theorem 2.16 (contd.)

If j is recurrent, then the same inequalities lead to

ri > P™(i,j)P"(j, i)rj = o0
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Proof of theorem 2.16 (contd.)

If j is recurrent, then the same inequalities lead to
rii 2 PT(i,j)P"(, i)rjj = o0

which signifies that / is recurrent, too.
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Proof of theorem 2.16 (contd.)

If j is recurrent, then the same inequalities lead to
rii 2 PT(i,j)P"(, i)rjj = o0

which signifies that / is recurrent, too. Since the above arguments
are symmetric in i and j, the proof of the first statement is
complete.
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Proof of theorem 2.16 (contd.)

If j is recurrent, then the same inequalities lead to
rii 2 PT(i,j)P"(, i)rjj = o0
which signifies that / is recurrent, too. Since the above arguments

are symmetric in i and j, the proof of the first statement is
complete.

For the second statement
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Proof of theorem 2.16 (contd.)

If j is recurrent, then the same inequalities lead to
rii 2 PT(i,j)P"(, i)rjj = o0
which signifies that / is recurrent, too. Since the above arguments

are symmetric in i and j, the proof of the first statement is
complete.

For the second statement assume that i € E belongs to a
communication class C C E and p;; > 0 for some state j € E \ C.
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Proof of theorem 2.16 (contd.)

If j is recurrent, then the same inequalities lead to
rii 2 PT(i,j)P"(, i)rjj = o0

which signifies that / is recurrent, too. Since the above arguments
are symmetric in i and j, the proof of the first statement is
complete.

For the second statement assume that i € E belongs to a
communication class C C E and p;; > 0 for some state j € E \ C.
Then

fi = Pii+ZPihfhi <l-p;<l1
hti

since f; = 0 (otherwise i <+ j).
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Proof of theorem 2.16 (contd.)

If j is recurrent, then the same inequalities lead to
rii 2 PT(i,j)P"(, i)rjj = o0

which signifies that / is recurrent, too. Since the above arguments
are symmetric in i and j, the proof of the first statement is
complete.

For the second statement assume that i € E belongs to a
communication class C C E and p;; > 0 for some state j € E \ C.
Then

fi = Pii+ZPihfhi <l-p;<l1
hti

since fjj = 0 (otherwise i <+ j). Thus i is transient, which proves
the second statement.
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Theorem 2.17

If the state j € E is transient, then lim,_, P"(i,j) =0,
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Theorem 2.17

If the state j € E is transient, then lim,_,o P"(i,j) = 0, regardless
of the initial state / € E.
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Theorem 2.17

If the state j € E is transient, then lim,_,o P"(i,j) = 0, regardless
of the initial state / € E.

Proof:
If the state j is transient, then

rj=(1-f;)7" <oo

by corollary 2.15.
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Theorem 2.17

If the state j € E is transient, then lim,_,o P"(i,j) = 0, regardless
of the initial state / € E.

Proof:
If the state j is transient, then

rj=(1-f;)7" <oo
by corollary 2.15. Further, by the same corollary,

rij = fijrjj < o0
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Theorem 2.17

If the state j € E is transient, then lim,_,o P"(i,j) = 0, regardless
of the initial state / € E.

Proof:
If the state j is transient, then

-1
rj=(1—f;)"" <oo
by corollary 2.15. Further, by the same corollary,
rij = fijrjj < o0

Since rjj = > 72 P"(i, ), the statement follows.
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