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Theorem 2.6

Let X denote a homogeneous Markov chain with transition matrix
P.

Then the relation

P(Xn+m = j |Xn = i) = Pm(i , j)

holds for all m, n ∈ N0 and i , j ∈ E , with Pm(i , j) denoting the
(i , j)th entry of the mth power of the matrix P. In particular, P0

equals the identity matrix.
Proof:
This follows by induction on m. For m = 1 the statement holds by
definition of P. For m > 1 we can write
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Proof of Theorem 2.6

P(Xn+m = j |Xn = i) =
P (Xn+m = j ,Xn = i)

P (Xn = i)

=
∑
k∈E

P (Xn+m = j ,Xn+m−1 = k,Xn = i)

P (Xn = i)

=
∑
k∈E

P (Xn+m = j ,Xn+m−1 = k,Xn = i)

P (Xn+m−1 = k ,Xn = i)

P (Xn+m−1 = k,Xn = i)

P (Xn = i)

=
∑
k∈E

P (Xn+m = j |Xn+m−1 = k ,Xn = i) · Pm−1(i , k)

=
∑
k∈E

pkj · Pm−1(i , k) = Pm(i , j)
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Chapman–Kolmogorov equations

Thus the probabilities for transitions in m steps are given by the
mth power of the transition matrix P.

The rule Pm+n = PmPn for
the multiplication of matrices and theorem 2.6 lead to the
decompositions

P(Xm+n = j |X0 = i) =
∑
k∈E

P(Xm = k|X0 = i)·P(Xn = j |X0 = k)

which are known as the Chapman–Kolmogorov equations.
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Stopping times

Let τ denote a random variable with values in N0 ∪ {∞},

such
that the condition

P(τ ≤ n|X ) = P(τ ≤ n|X0, . . . ,Xn)

holds for all n ∈ N0. Such a random variable is called a (discrete)
stopping time for X .
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Theorem 2.7: Strong Markov property

Let X denote a Markov chain and τ a stopping time for X with
P(τ <∞) = 1.

Then the relation

P(Xτ+m = j |X0 = i0, . . . ,Xτ = iτ ) = P(Xm = j |X0 = iτ )

holds for all m ∈ N and i0, . . . , iτ , j ∈ E .
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Proof of theorem 2.7

P(Xτ+m = j |X0 = i0, . . . ,Xτ = iτ )

=
∞∑
n=0

P(τ = n,Xτ+m = j |X0 = i0, . . . ,Xn = in)

=
∞∑
n=0

P(Xn+m = j |τ = n,X0 = i0, . . . ,Xn = in)

×P(τ = n|X0 = i0, . . . ,Xn = in)

=
∞∑
n=0

P(Xn+m = j |τ = n,Xn = in) · P(τ = n|X )

=
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n=0

P(τ = n|X ) · P(Xm = j |X0 = iτ )
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Classification of states

Let X denote a Markov chain with state space E and transition
matrix P.

We call a state j ∈ E accessible from a state i ∈ E if
there is a number m ∈ N0 with P(Xm = j |X0 = i) > 0. This
relation shall be denoted by i → j . If for two states i , j ∈ E the
relations i → j and j → i hold, then i and j are said to
communicate, in notation i ↔ j .
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Theorem 2.8

The relation ↔ of communication between states is an equivalence
relation.

Proof:
Because of P0 = I , communication is reflexive. Symmetry holds by
definition. Thus it remains to show transitivity. For this, assume
i ↔ j and j ↔ k for three states i , j , k ∈ E . This means that there
are numbers m, n ∈ N0 with Pm(i , j) > 0 and Pn(j , k) > 0. Hence,
by the Chapman–Kolmogorov equation, we obtain

P(Xm+n = k |X0 = i) =
∑
h∈E

P(Xm = h|X0 = i)·P(Xn = k|X0 = h)

≥ P(Xm = j |X0 = i) · P(Xn = k|X0 = j) > 0

which proves i → k. The remaining proof of k → i is completely
analogous.
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Communication classes

Because of this result and the countability, we can divide the state
space E of a Markov chain into a partition of countably many
equivalence classes with respect to the communication of states.

Any such equivalence class shall be called communication class.
A communication class C ⊂ E that does not allow access to states
outside itself, i.e. for which the implication

i → j , i ∈ C ⇒ j ∈ C

holds, is called closed. If a closed equivalence class consists only
of one state, then this state shall be called absorbing. If a Markov
chain has only one communication class, i.e. if all states are
communicating, then it is called irreducible. Otherwise it is called
reducible.
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Examples

Example 2.9: Let X denote a discrete random walk (see example
2.2) with the specification π1 = p and π−1 = 1− p for some
parameter 0 < p < 1.

Then X is irreducible.

Example 2.10: The Bernoulli process (see example 2.3) with
non–trivial parameter 0 < p < 1 is reducible. Every state i ∈ N0

forms an own communication class. None of these is closed, thus
there are no absorbing states.
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First visit times

Define τj as the stopping time of the first visit to the state j ∈ E ,
i.e.

τj := min{n ∈ N : Xn = j}

Denote the distribution of τj by

Fk(i , j) := P(τj = k |X0 = i)

for all i , j ∈ E and k ∈ N.
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Lemma 2.12

For all states i , j ∈ E

Fk(i , j) =

{
pij , k = 1∑

h 6=j pihFk−1(h, j), k ≥ 2

Proof:
For k = 1, the definition yields

F1(i , j) = P(τj = 1|X0 = i) = P(X1 = j |X0 = i) = pij

for all i , j ∈ E .
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Proof of lemma 2.12

For k ≥ 2, conditioning upon X1 yields

Fk(i , j) = P(X1 6= j , . . . ,Xk−1 6= j ,Xk = j |X0 = i)

=
∑
h 6=j

P(X1 = h|X0 = i)

×P(X2 6= j , . . . ,Xk−1 6= j ,Xk = j |X0 = i ,X1 = h)

=
∑
h 6=j

pih · P(X1 6= j , . . . ,Xk−2 6= j ,Xk−1 = j |X0 = h)

=
∑
h 6=j

pihFk−1(h, j)

L. Breuer Chapter 2: Markov Chains



Proof of lemma 2.12

For k ≥ 2, conditioning upon X1 yields

Fk(i , j) = P(X1 6= j , . . . ,Xk−1 6= j ,Xk = j |X0 = i)

=
∑
h 6=j

P(X1 = h|X0 = i)

×P(X2 6= j , . . . ,Xk−1 6= j ,Xk = j |X0 = i ,X1 = h)

=
∑
h 6=j

pih · P(X1 6= j , . . . ,Xk−2 6= j ,Xk−1 = j |X0 = h)

=
∑
h 6=j

pihFk−1(h, j)

L. Breuer Chapter 2: Markov Chains



Proof of lemma 2.12

For k ≥ 2, conditioning upon X1 yields

Fk(i , j) = P(X1 6= j , . . . ,Xk−1 6= j ,Xk = j |X0 = i)

=
∑
h 6=j

P(X1 = h|X0 = i)

×P(X2 6= j , . . . ,Xk−1 6= j ,Xk = j |X0 = i ,X1 = h)

=
∑
h 6=j

pih · P(X1 6= j , . . . ,Xk−2 6= j ,Xk−1 = j |X0 = h)

=
∑
h 6=j

pihFk−1(h, j)

L. Breuer Chapter 2: Markov Chains



Proof of lemma 2.12

For k ≥ 2, conditioning upon X1 yields

Fk(i , j) = P(X1 6= j , . . . ,Xk−1 6= j ,Xk = j |X0 = i)

=
∑
h 6=j

P(X1 = h|X0 = i)

×P(X2 6= j , . . . ,Xk−1 6= j ,Xk = j |X0 = i ,X1 = h)

=
∑
h 6=j

pih · P(X1 6= j , . . . ,Xk−2 6= j ,Xk−1 = j |X0 = h)

=
∑
h 6=j

pihFk−1(h, j)

L. Breuer Chapter 2: Markov Chains



Probability of ever visiting a state

Now define

fij := P(τj <∞|X0 = i) =
∞∑
k=1

Fk(i , j)

for all i , j ∈ E ,

which represents the probability of ever visiting
state j after beginning in state i . Summing up over all k ∈ N in
the formula of Lemma 2.12 leads to

fij = pij +
∑
h 6=j

pihfhj

for all i , j ∈ E . The proof is left as an exercise.
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Total number of visits

Define

Nj :=
∞∑
n=0

I{Xn=j}

where I denotes the indicator function, i.e.

IA :=

{
1, if A is true

0, if A is false

This is the random variable of the total number of visits to the
state j ∈ E .
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Theorem 2.13

Let X denote a Markov chain with state space E . Then

P(Nj = m|X0 = j) = f m−1jj (1− fjj)

for m ∈ N, and for i 6= j

P(Nj = m|X0 = i) =

{
1− fij , m = 0

fij f
m−1
jj (1− fjj), m ≥ 1
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Proof of theorem 2.13

Define τ
(1)
j := τj

and τ
(k+1)
j := min{n > τ

(k)
j : Xn = j} for all

k ∈ N, with the convention that min ∅ =∞. Note that τ
(k)
j =∞

implies τ
(l)
j =∞ for all l > k.

Then the sequence (τ
(k)
j : k ∈ N) is a sequence of stopping times.

Further,

{Nj = m} =

{⋂m−1
k=1 {τ

(k)
j <∞} ∩ {τ (m)

j =∞} on {X0 = j}⋂m
k=1{τ

(k)
j <∞} ∩ {τ (m+1)

j =∞} on {X0 6= j}

=

{⋂m−1
k=1 {τ

(k)
j − τ (k−1)j <∞} ∩ {τ (m)

j − τ (m−1)j =∞}, X0 = j⋂m
k=1{τ

(k)
j − τ (k−1)j <∞} ∩ {τ (m+1)

j − τ (m)
j =∞}, X0 6= j

with τ
(0)
j := 0.
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Proof of theorem 2.13 (contd.)

The strong Markov property yields for X0 = i

P(τ
(k)
j − τ (k−1)j <∞) =

{
fij , k = 1

fjj , k > 1

and independence of the events {τ (k)j − τ (k−1)j <=∞},
k = 1, . . . ,m + 1.
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Corollary 2.14

Summing over all m ∈ N in the above theorem leads to

P(Nj <∞|X0 = j) =

{
1, fjj < 1

0, fjj = 1

i.e. depending on fjj there are almost surely infinitely many visits to
a state j ∈ E .
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Recurrence / Transience

This result gives rise to the following definitions:

A state j ∈ E is
called recurrent if fjj = 1 and transient otherwise. Further define
the potential matrix R = (rij)i ,j∈E of the Markov chain by its
entries

rij := E(Nj |X0 = i) =
∞∑
n=0

Pn(i , j)

for all i , j ∈ E .
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Corollary 2.15

For all i , j ∈ E the relations

rjj = (1− fjj)
−1 and rij = fij rjj

hold,

with the conventions 0−1 :=∞ and 0 · ∞ := 0 included. In
particular, the expected number rjj of visits to the state j ∈ E is
finite if j is transient and infinite if j is recurrent.
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Theorem 2.16

Recurrence and transience of states are class properties with
respect to the relation ↔.

Furthermore, a recurrent
communication class is always closed.

Proof:
Assume that i ∈ E is transient and i ↔ j . Then there are numbers
m, n ∈ N with 0 < Pm(i , j) ≤ 1 and 0 < Pn(j , i) ≤ 1. The
inequalities

∞∑
k=0

Pk(i , i) ≥
∞∑
h=0

Pm+h+n(i , i) ≥ Pm(i , j)Pn(j , i)
∞∑
k=0

Pk(j , j)

now imply rjj <∞. According to corollary 2.15 this means that j
is transient, too.
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Proof of theorem 2.16 (contd.)

If j is recurrent,

then the same inequalities lead to

rii ≥ Pm(i , j)Pn(j , i)rjj =∞

which signifies that i is recurrent, too. Since the above arguments
are symmetric in i and j , the proof of the first statement is
complete.

For the second statement assume that i ∈ E belongs to a
communication class C ⊂ E and pij > 0 for some state j ∈ E \ C .
Then

fii = pii +
∑
h 6=i

pihfhi ≤ 1− pij < 1

since fji = 0 (otherwise i ↔ j). Thus i is transient, which proves
the second statement.
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Theorem 2.17

If the state j ∈ E is transient, then limn→∞ Pn(i , j) = 0,

regardless
of the initial state i ∈ E .

Proof:
If the state j is transient, then

rjj = (1− fjj)
−1 <∞

by corollary 2.15. Further, by the same corollary,

rij = fij rjj <∞

Since rij =
∑∞

n=0 P
n(i , j), the statement follows.
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