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Let X, with n € Ny denote random variables on a discrete space
E.
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Let X, with n € Ny denote random variables on a discrete space
E. The sequence X = (X, : n € Np) is called a stochastic chain.
If P is a probability measure for X such that

P(Xnt1 =j|Xo =0, Xn = in) =P (Xny1 = j|Xn =in) (1)

for all ig,...,in,j € E and n € Np,
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Let X, with n € Ny denote random variables on a discrete space
E. The sequence X = (X, : n € Np) is called a stochastic chain.
If P is a probability measure for X such that

P(Xnt1 =j|Xo =0, Xn = in) =P (Xny1 = j|Xn =in) (1)

for all iy,...,in,j € E and n € Ny, then the sequence X shall be
called a Markov chain on E.
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E. The sequence X = (X, : n € Np) is called a stochastic chain.
If P is a probability measure for X such that
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the distribution of X,
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Let X, with n € Ny denote random variables on a discrete space
E. The sequence X = (X, : n € Np) is called a stochastic chain.
If P is a probability measure for X such that

P(Xnt1 =j|Xo =0, Xn = in) =P (Xny1 = j|Xn =in) (1)

for all iy,...,in,j € E and n € Ny, then the sequence X shall be
called a Markov chain on E. The probability measure PP is called
the distribution of X', and E is called the state space of X.
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If the conditional probabilities P (X,+1 = j| X, = i) are
independent of the time index n € Ny,
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If the conditional probabilities P (X,+1 = j| X, = i) are
independent of the time index n € Ny, then we call the Markov
chain X homogeneous
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If the conditional probabilities P (X,+1 = j| X, = i) are
independent of the time index n € Ny, then we call the Markov
chain X homogeneous and denote

pij =P (Xnt1 = j|Xn =)

forall i,j € E.
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If the conditional probabilities P (X,+1 = j| X, = i) are
independent of the time index n € Ny, then we call the Markov
chain X homogeneous and denote

pij =P (Xnt1 = j|Xn =)

for all i,j € E. The probability p;; is called transition probability
from state / to state j.
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If the conditional probabilities P (X,+1 = j| X, = i) are
independent of the time index n € Ny, then we call the Markov
chain X homogeneous and denote

pij =P (Xnt1 = j|Xn =)

for all i,j € E. The probability p;; is called transition probability
from state i to state j. The matrix P := (pj;); .. shall be called
transition matrix of the chain X.

ij€e
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If the conditional probabilities P (X,+1 = j| X, = i) are
independent of the time index n € Ny, then we call the Markov
chain X homogeneous and denote

pij =P (Xnt1 = j|Xn =)

for all i,j € E. The probability p;; is called transition probability
from state i to state j. The matrix P := (pj); .. shall be called
transition matrix of the chain X. Condition {j ) is referred to as

the Markov property.
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Example 2.1
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Example 2.1

If (X5 : n € Np) are random variables on a discrete space E, which
are stochastically independent and identically distributed (shortly:
iid),
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Example 2.1

If (X5 : n € Np) are random variables on a discrete space E, which
are stochastically independent and identically distributed (shortly:
iid), then the chain X = (X, : n € Np) is a homogeneous Markov
chain.
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Example 2.2: Discrete Random Walk
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Example 2.2: Discrete Random Walk

Set E =7
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Example 2.2: Discrete Random Walk

Set E :=Z and let (S, : n € N) be a sequence of iid random
variables with values in Z and distribution .
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Example 2.2: Discrete Random Walk

Set E :=Z and let (S, : n € N) be a sequence of iid random

variables with values in Z and distribution 7. Define Xy := 0 and
Xn:=3 p_q Sk forall neN.
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Example 2.2: Discrete Random Walk

Set E :=Z and let (S, : n € N) be a sequence of iid random
variables with values in Z and distribution 7. Define Xy := 0 and
Xn =3 p_q Sk for all n € N. Then the chain X = (X, : n € Np)
is a homogeneous Markov chain with transition probabilities

pij = Tj—i-
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Example 2.2: Discrete Random Walk

Set E :=Z and let (S, : n € N) be a sequence of iid random
variables with values in Z and distribution 7. Define Xy := 0 and
Xn =3 p_q Sk for all n € N. Then the chain X = (X, : n € Np)
is a homogeneous Markov chain with transition probabilities

pjj = mj—;. This chain is called discrete random walk.
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Example 2.3: Bernoulli process
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Example 2.3: Bernoulli process

Set E := Ny and choose any parameter 0 < p < 1.
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Example 2.3: Bernoulli process

Set E := Ny and choose any parameter 0 < p < 1. The definitions
Xo := 0 as well as

{m j=i+1
pPij == . .
1—p, j=1i

for i € Ny
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Example 2.3: Bernoulli process

Set E := Ny and choose any parameter 0 < p < 1. The definitions
Xo := 0 as well as

{m j=i+1
pPij == . .
1—p, j=1i

for i € Ny determine a homogeneous Markov chain
XZ(X,,Z”EN()).
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Example 2.3: Bernoulli process

Set E := Ny and choose any parameter 0 < p < 1. The definitions
Xo := 0 as well as

{m j=i+1
pPij == . .
1—p, j=1i

for i € Ny determine a homogeneous Markov chain
X = (X, :neNp). Itis called Bernoulli process with parameter

p.
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Stochastic Matrix

Let P denote the transition matrix of a Markov chain on E.

L. Breuer Chapter 2: Markov Chains



Stochastic Matrix

Let P denote the transition matrix of a Markov chain on E. Then
as an immediate consequence of its definition we obtain pj; € [0, 1]
foralli,je E
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Stochastic Matrix

Let P denote the transition matrix of a Markov chain on E. Then
as an immediate consequence of its definition we obtain pj; € [0, 1]
forall i,j € E and ZjeEp,-j =1forall i€ E.
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Stochastic Matrix

Let P denote the transition matrix of a Markov chain on E. Then
as an immediate consequence of its definition we obtain pj; € [0, 1]

forall i,j € E and ZJ-GE pij = 1 for all i € E. A matrix P with
these properties is called a stochastic matrix on E.
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Theorem 2.4

Let X denote a homogeneous Markov chain on E with transition
matrix P.
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Theorem 2.4

Let X denote a homogeneous Markov chain on E with transition
matrix P. Then the relation

IP)(Xn—H =J1,-- s Xntm :jm|Xn = i) =Piji " Pim—1m

holds for all n € Ng, me N, and i, 1,...,jm € E.
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Theorem 2.4

Let X denote a homogeneous Markov chain on E with transition
matrix P. Then the relation

IP)(Xn—H =J1,-- s Xntm :jm|Xn = i) =Piji " Pim—1m

holds for all n € Ng, me N, and i, j1,...,jm € E.
Proof:
This follows by induction on m.
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Theorem 2.4

Let X denote a homogeneous Markov chain on E with transition
matrix P. Then the relation

IP)(Xn—H =J1,-- s Xntm :jm|Xn = i) =Piji " Pim—1m

holds for all n € No, me€ N, and i, j1,...,jm € E.

Proof:

This follows by induction on m. For m = 1 the statement holds by
definition of P.
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Theorem 2.4

Let X denote a homogeneous Markov chain on E with transition
matrix P. Then the relation

IP)(Xn—H =J1,-- s Xntm :jm|Xn = i) =Piji " Pim—1m

holds for all n € No, me€ N, and i, j1,...,jm € E.

Proof:

This follows by induction on m. For m = 1 the statement holds by
definition of P. For m > 1 we can write
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Proof of theorem 2.4

IP)()<"’-|-1 :.j17 B 7Xn+m :jm|X” = I)

_ IP)()<n—‘,-1 :jly--'7Xn+m :jmaxn - i)
P(X, = i)
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Proof of theorem 2.4

IP)()<"’-|-1 :.j17 B 7Xn+m :jm|X” = I)
_ IP)()<n—‘,-1 :jly--'7Xn+m :jmaxn - i)
P (X, = i)
_ IED()<n—|—1:./'15"-7)<n-i-m:J.ma)<n:i)
IP)()<n—‘,-1 :jly cee 7Xn+m—1 :jm—laXn = i)

XP(Xn—i-l =J1,- o Xngm—1 = Jm-1, Xn = i)
P(X, =)
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Proof of theorem 2.4

IP)()<"’-|-1 :.j17 B 7Xn+m :jm|X” = I)
_ IP)()<n—‘,-1 :jly--'7Xn+m :jmaxn - i)
P (X, = i)
_ IED()<n—|—1:./'15"-7)<n-i-m:J.ma)<n:i)
IP)()<n—‘,-1 :jly cee 7Xn+m—1 :jm—laXn = i)

XP(Xn—i-l =J1,- o Xngm—1 = Jm-1, Xn = i)
P(X, =)

= IP)()<n—‘,-m :J.m’Xn = i7XI‘H-1 :_jlu v 7Xn+m—1 :jm—l)

Xp’ajl et pjm72a.jm71
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Proof of theorem 2.4

IP)()<"’-|-1 :.j17 B 7Xn+m :jm|X” = I)
_ IP)()<n—‘,-1 :jly--'7Xn+m :jmaxn - i)
P (X, = i)
_ IED()<n—|—1:./'15"-7)<n-i-m:J.ma)<n:i)
IP)()<n—‘,-1 :jly cee 7Xn+m—1 :jm—laXn = i)

XP(Xn—i-l =J1,- o Xngm—1 = Jm-1, Xn = i)
P(X, =)

= IP)()<n—‘,-m :J.m’Xn = i7XI‘H-1 :_jlu v 7Xn+m—1 :jm—l)

Xp’ajl et pjm72a.jm71

= ijn71ajm : pi7j1 Tt pjm727jm71
because of the induction hypothesis and the Markov property.
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