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Definition-1

Let Xn with n ∈ N0 denote random variables on a discrete space
E . The sequence X = (Xn : n ∈ N0) is called a stochastic chain.
If P is a probability measure for X such that

P (Xn+1 = j |X0 = i0, . . . ,Xn = in) = P (Xn+1 = j |Xn = in) (1)

for all i0, . . . , in, j ∈ E and n ∈ N0, then the sequence X shall be
called a Markov chain on E . The probability measure P is called
the distribution of X , and E is called the state space of X .
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Definition-2

If the conditional probabilities P (Xn+1 = j |Xn = in) are
independent of the time index n ∈ N0,

then we call the Markov
chain X homogeneous and denote

pij := P (Xn+1 = j |Xn = i)

for all i , j ∈ E . The probability pij is called transition probability
from state i to state j . The matrix P := (pij)i ,j∈E shall be called
transition matrix of the chain X . Condition (1) is referred to as
the Markov property.
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Example 2.1

If (Xn : n ∈ N0) are random variables on a discrete space E , which
are stochastically independent and identically distributed (shortly:
iid), then the chain X = (Xn : n ∈ N0) is a homogeneous Markov
chain.
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Example 2.2: Discrete Random Walk

Set E := Z and let (Sn : n ∈ N) be a sequence of iid random
variables with values in Z and distribution π. Define X0 := 0 and
Xn :=

∑n
k=1 Sk for all n ∈ N. Then the chain X = (Xn : n ∈ N0)

is a homogeneous Markov chain with transition probabilities
pij = πj−i . This chain is called discrete random walk.
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Example 2.3: Bernoulli process

Set E := N0 and choose any parameter 0 < p < 1. The definitions
X0 := 0 as well as

pij :=

{
p, j = i + 1

1− p, j = i

for i ∈ N0 determine a homogeneous Markov chain
X = (Xn : n ∈ N0). It is called Bernoulli process with parameter
p.
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Stochastic Matrix

Let P denote the transition matrix of a Markov chain on E .

Then
as an immediate consequence of its definition we obtain pij ∈ [0, 1]
for all i , j ∈ E and

∑
j∈E pij = 1 for all i ∈ E . A matrix P with

these properties is called a stochastic matrix on E .
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Theorem 2.4

Let X denote a homogeneous Markov chain on E with transition
matrix P.

Then the relation

P (Xn+1 = j1, . . . ,Xn+m = jm|Xn = i) = pi ,j1 · . . . · pjm−1,jm

holds for all n ∈ N0, m ∈ N, and i , j1, . . . , jm ∈ E .
Proof:
This follows by induction on m. For m = 1 the statement holds by
definition of P. For m > 1 we can write
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Proof of theorem 2.4

P(Xn+1 = j1, . . . ,Xn+m = jm|Xn = i)

=
P (Xn+1 = j1, . . . ,Xn+m = jm,Xn = i)

P (Xn = i)

=
P (Xn+1 = j1, . . . ,Xn+m = jm,Xn = i)

P (Xn+1 = j1, . . . ,Xn+m−1 = jm−1,Xn = i)

×P (Xn+1 = j1, . . . ,Xn+m−1 = jm−1,Xn = i)

P (Xn = i)

= P (Xn+m = jm|Xn = i ,Xn+1 = j1, . . . ,Xn+m−1 = jm−1)

×pi ,j1 · . . . · pjm−2,jm−1

= pjm−1,jm · pi ,j1 · . . . · pjm−2,jm−1

because of the induction hypothesis and the Markov property.
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