Chapter 2: Markov Chains

L. Breuer
University of Kent, UK

September 28, 2010

Definition-1

Definition-1

Let X_{n} with $n \in \mathbb{N}_{0}$ denote random variables on a discrete space E.

Definition-1

Let X_{n} with $n \in \mathbb{N}_{0}$ denote random variables on a discrete space E. The sequence $\mathcal{X}=\left(X_{n}: n \in \mathbb{N}_{0}\right)$ is called a stochastic chain.

Definition-1

Let X_{n} with $n \in \mathbb{N}_{0}$ denote random variables on a discrete space E. The sequence $\mathcal{X}=\left(X_{n}: n \in \mathbb{N}_{0}\right)$ is called a stochastic chain. If \mathbb{P} is a probability measure for \mathcal{X} such that

$$
\begin{equation*}
\mathbb{P}\left(X_{n+1}=j \mid X_{0}=i_{0}, \ldots, X_{n}=i_{n}\right)=\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i_{n}\right) \tag{1}
\end{equation*}
$$

for all $i_{0}, \ldots, i_{n}, j \in E$ and $n \in \mathbb{N}_{0}$,

Definition-1

Let X_{n} with $n \in \mathbb{N}_{0}$ denote random variables on a discrete space E. The sequence $\mathcal{X}=\left(X_{n}: n \in \mathbb{N}_{0}\right)$ is called a stochastic chain. If \mathbb{P} is a probability measure for \mathcal{X} such that

$$
\begin{equation*}
\mathbb{P}\left(X_{n+1}=j \mid X_{0}=i_{0}, \ldots, X_{n}=i_{n}\right)=\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i_{n}\right) \tag{1}
\end{equation*}
$$

for all $i_{0}, \ldots, i_{n}, j \in E$ and $n \in \mathbb{N}_{0}$, then the sequence \mathcal{X} shall be called a Markov chain on E.

Definition-1

Let X_{n} with $n \in \mathbb{N}_{0}$ denote random variables on a discrete space E. The sequence $\mathcal{X}=\left(X_{n}: n \in \mathbb{N}_{0}\right)$ is called a stochastic chain. If \mathbb{P} is a probability measure for \mathcal{X} such that

$$
\begin{equation*}
\mathbb{P}\left(X_{n+1}=j \mid X_{0}=i_{0}, \ldots, X_{n}=i_{n}\right)=\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i_{n}\right) \tag{1}
\end{equation*}
$$

for all $i_{0}, \ldots, i_{n}, j \in E$ and $n \in \mathbb{N}_{0}$, then the sequence \mathcal{X} shall be called a Markov chain on E. The probability measure \mathbb{P} is called the distribution of \mathcal{X},

Definition-1

Let X_{n} with $n \in \mathbb{N}_{0}$ denote random variables on a discrete space E. The sequence $\mathcal{X}=\left(X_{n}: n \in \mathbb{N}_{0}\right)$ is called a stochastic chain. If \mathbb{P} is a probability measure for \mathcal{X} such that

$$
\begin{equation*}
\mathbb{P}\left(X_{n+1}=j \mid X_{0}=i_{0}, \ldots, X_{n}=i_{n}\right)=\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i_{n}\right) \tag{1}
\end{equation*}
$$

for all $i_{0}, \ldots, i_{n}, j \in E$ and $n \in \mathbb{N}_{0}$, then the sequence \mathcal{X} shall be called a Markov chain on E. The probability measure \mathbb{P} is called the distribution of \mathcal{X}, and E is called the state space of \mathcal{X}.

Definition-2

If the conditional probabilities $\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i_{n}\right)$ are independent of the time index $n \in \mathbb{N}_{0}$,

Definition-2

If the conditional probabilities $\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i_{n}\right)$ are independent of the time index $n \in \mathbb{N}_{0}$, then we call the Markov chain \mathcal{X} homogeneous

Definition-2

If the conditional probabilities $\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i_{n}\right)$ are independent of the time index $n \in \mathbb{N}_{0}$, then we call the Markov chain \mathcal{X} homogeneous and denote

$$
p_{i j}:=\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i\right)
$$

for all $i, j \in E$.

Definition-2

If the conditional probabilities $\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i_{n}\right)$ are independent of the time index $n \in \mathbb{N}_{0}$, then we call the Markov chain \mathcal{X} homogeneous and denote

$$
p_{i j}:=\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i\right)
$$

for all $i, j \in E$. The probability $p_{i j}$ is called transition probability from state i to state j.

Definition-2

If the conditional probabilities $\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i_{n}\right)$ are independent of the time index $n \in \mathbb{N}_{0}$, then we call the Markov chain \mathcal{X} homogeneous and denote

$$
p_{i j}:=\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i\right)
$$

for all $i, j \in E$. The probability $p_{i j}$ is called transition probability from state i to state j. The matrix $P:=\left(p_{i j}\right)_{i, j \in E}$ shall be called transition matrix of the chain \mathcal{X}.

Definition-2

If the conditional probabilities $\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i_{n}\right)$ are independent of the time index $n \in \mathbb{N}_{0}$, then we call the Markov chain \mathcal{X} homogeneous and denote

$$
p_{i j}:=\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i\right)
$$

for all $i, j \in E$. The probability $p_{i j}$ is called transition probability from state i to state j. The matrix $P:=\left(p_{i j}\right)_{i, j \in E}$ shall be called transition matrix of the chain \mathcal{X}. Condition (1) is referred to as the Markov property.

Example 2.1

L. Breuer

Example 2.1

If $\left(X_{n}: n \in \mathbb{N}_{0}\right)$ are random variables on a discrete space E, which are stochastically independent and identically distributed (shortly: iid),

Example 2.1

If $\left(X_{n}: n \in \mathbb{N}_{0}\right)$ are random variables on a discrete space E, which are stochastically independent and identically distributed (shortly: iid), then the chain $\mathcal{X}=\left(X_{n}: n \in \mathbb{N}_{0}\right)$ is a homogeneous Markov chain.

Example 2.2: Discrete Random Walk

Example 2.2: Discrete Random Walk

Set $E:=\mathbb{Z}$

Example 2.2: Discrete Random Walk

Set $E:=\mathbb{Z}$ and let $\left(S_{n}: n \in \mathbb{N}\right)$ be a sequence of iid random variables with values in \mathbb{Z} and distribution π.

Example 2.2: Discrete Random Walk

Set $E:=\mathbb{Z}$ and let $\left(S_{n}: n \in \mathbb{N}\right)$ be a sequence of iid random variables with values in \mathbb{Z} and distribution π. Define $X_{0}:=0$ and $X_{n}:=\sum_{k=1}^{n} S_{k}$ for all $n \in \mathbb{N}$.

Example 2.2: Discrete Random Walk

Set $E:=\mathbb{Z}$ and let $\left(S_{n}: n \in \mathbb{N}\right)$ be a sequence of iid random variables with values in \mathbb{Z} and distribution π. Define $X_{0}:=0$ and $X_{n}:=\sum_{k=1}^{n} S_{k}$ for all $n \in \mathbb{N}$. Then the chain $\mathcal{X}=\left(X_{n}: n \in \mathbb{N}_{0}\right)$ is a homogeneous Markov chain

Example 2.2: Discrete Random Walk

Set $E:=\mathbb{Z}$ and let $\left(S_{n}: n \in \mathbb{N}\right)$ be a sequence of iid random variables with values in \mathbb{Z} and distribution π. Define $X_{0}:=0$ and $X_{n}:=\sum_{k=1}^{n} S_{k}$ for all $n \in \mathbb{N}$. Then the chain $\mathcal{X}=\left(X_{n}: n \in \mathbb{N}_{0}\right)$ is a homogeneous Markov chain with transition probabilities $p_{i j}=\pi_{j-i}$.

Example 2.2: Discrete Random Walk

Set $E:=\mathbb{Z}$ and let $\left(S_{n}: n \in \mathbb{N}\right)$ be a sequence of iid random variables with values in \mathbb{Z} and distribution π. Define $X_{0}:=0$ and $X_{n}:=\sum_{k=1}^{n} S_{k}$ for all $n \in \mathbb{N}$. Then the chain $\mathcal{X}=\left(X_{n}: n \in \mathbb{N}_{0}\right)$ is a homogeneous Markov chain with transition probabilities $p_{i j}=\pi_{j-i}$. This chain is called discrete random walk.

Example 2.3: Bernoulli process

Example 2.3: Bernoulli process

Set $E:=\mathbb{N}_{0}$ and choose any parameter $0<p<1$.

Example 2.3: Bernoulli process

Set $E:=\mathbb{N}_{0}$ and choose any parameter $0<p<1$. The definitions $X_{0}:=0$ as well as

$$
p_{i j}:= \begin{cases}p, & j=i+1 \\ 1-p, & j=i\end{cases}
$$

for $i \in \mathbb{N}_{0}$

Example 2.3: Bernoulli process

Set $E:=\mathbb{N}_{0}$ and choose any parameter $0<p<1$. The definitions $X_{0}:=0$ as well as

$$
p_{i j}:= \begin{cases}p, & j=i+1 \\ 1-p, & j=i\end{cases}
$$

for $i \in \mathbb{N}_{0}$ determine a homogeneous Markov chain $\mathcal{X}=\left(X_{n}: n \in \mathbb{N}_{0}\right)$.

Example 2.3: Bernoulli process

Set $E:=\mathbb{N}_{0}$ and choose any parameter $0<p<1$. The definitions $X_{0}:=0$ as well as

$$
p_{i j}:= \begin{cases}p, & j=i+1 \\ 1-p, & j=i\end{cases}
$$

for $i \in \mathbb{N}_{0}$ determine a homogeneous Markov chain $\mathcal{X}=\left(X_{n}: n \in \mathbb{N}_{0}\right)$. It is called Bernoulli process with parameter p.

Stochastic Matrix

Let P denote the transition matrix of a Markov chain on E.

Stochastic Matrix

Let P denote the transition matrix of a Markov chain on E. Then as an immediate consequence of its definition we obtain $p_{i j} \in[0,1]$ for all $i, j \in E$

Stochastic Matrix

Let P denote the transition matrix of a Markov chain on E. Then as an immediate consequence of its definition we obtain $p_{i j} \in[0,1]$ for all $i, j \in E$ and $\sum_{j \in E} p_{i j}=1$ for all $i \in E$.

Stochastic Matrix

Let P denote the transition matrix of a Markov chain on E. Then as an immediate consequence of its definition we obtain $p_{i j} \in[0,1]$ for all $i, j \in E$ and $\sum_{j \in E} p_{i j}=1$ for all $i \in E$. A matrix P with these properties is called a stochastic matrix on E.

Theorem 2.4

Let \mathcal{X} denote a homogeneous Markov chain on E with transition matrix P.

Theorem 2.4

Let \mathcal{X} denote a homogeneous Markov chain on E with transition matrix P. Then the relation

$$
\mathbb{P}\left(X_{n+1}=j_{1}, \ldots, X_{n+m}=j_{m} \mid X_{n}=i\right)=p_{i, j_{1}} \cdot \ldots \cdot p_{j_{m-1}, j_{m}}
$$

holds for all $n \in \mathbb{N}_{0}, m \in \mathbb{N}$, and $i, j_{1}, \ldots, j_{m} \in E$.

Theorem 2.4

Let \mathcal{X} denote a homogeneous Markov chain on E with transition matrix P. Then the relation

$$
\mathbb{P}\left(X_{n+1}=j_{1}, \ldots, X_{n+m}=j_{m} \mid X_{n}=i\right)=p_{i, j_{1}} \cdot \ldots \cdot p_{j_{m-1}, j_{m}}
$$

holds for all $n \in \mathbb{N}_{0}, m \in \mathbb{N}$, and $i, j_{1}, \ldots, j_{m} \in E$.
Proof:
This follows by induction on m.

Theorem 2.4

Let \mathcal{X} denote a homogeneous Markov chain on E with transition matrix P. Then the relation

$$
\mathbb{P}\left(X_{n+1}=j_{1}, \ldots, X_{n+m}=j_{m} \mid X_{n}=i\right)=p_{i, j_{1}} \cdot \ldots \cdot p_{j_{m-1}, j_{m}}
$$

holds for all $n \in \mathbb{N}_{0}, m \in \mathbb{N}$, and $i, j_{1}, \ldots, j_{m} \in E$.
Proof:
This follows by induction on m. For $m=1$ the statement holds by definition of P.

Theorem 2.4

Let \mathcal{X} denote a homogeneous Markov chain on E with transition matrix P. Then the relation

$$
\mathbb{P}\left(X_{n+1}=j_{1}, \ldots, X_{n+m}=j_{m} \mid X_{n}=i\right)=p_{i, j_{1}} \cdot \ldots \cdot p_{j_{m-1}, j_{m}}
$$

holds for all $n \in \mathbb{N}_{0}, m \in \mathbb{N}$, and $i, j_{1}, \ldots, j_{m} \in E$.
Proof:
This follows by induction on m. For $m=1$ the statement holds by definition of P. For $m>1$ we can write

Proof of theorem 2.4

$$
\begin{aligned}
& \mathbb{P}\left(X_{n+1}=j_{1}, \ldots, X_{n+m}=j_{m} \mid X_{n}=i\right) \\
& =\frac{\mathbb{P}\left(X_{n+1}=j_{1}, \ldots, X_{n+m}=j_{m}, X_{n}=i\right)}{\mathbb{P}\left(X_{n}=i\right)}
\end{aligned}
$$

Proof of theorem 2.4

$$
\begin{aligned}
& \mathbb{P}\left(X_{n+1}=j_{1}, \ldots, X_{n+m}=j_{m} \mid X_{n}=i\right) \\
& =\frac{\mathbb{P}\left(X_{n+1}=j_{1}, \ldots, X_{n+m}=j_{m}, X_{n}=i\right)}{\mathbb{P}\left(X_{n}=i\right)} \\
& =\frac{\mathbb{P}\left(X_{n+1}=j_{1}, \ldots, X_{n+m}=j_{m}, X_{n}=i\right)}{\mathbb{P}\left(X_{n+1}=j_{1}, \ldots, X_{n+m-1}=j_{m-1}, X_{n}=i\right)} \\
& \quad \times \frac{\mathbb{P}\left(X_{n+1}=j_{1}, \ldots, X_{n+m-1}=j_{m-1}, X_{n}=i\right)}{\mathbb{P}\left(X_{n}=i\right)}
\end{aligned}
$$

Proof of theorem 2.4

$$
\begin{aligned}
& \mathbb{P}\left(X_{n+1}=j_{1}, \ldots, X_{n+m}=j_{m} \mid X_{n}=i\right) \\
& = \\
& =\frac{\mathbb{P}\left(X_{n+1}=j_{1}, \ldots, X_{n+m}=j_{m}, X_{n}=i\right)}{\mathbb{P}\left(X_{n}=i\right)} \\
& =\frac{\mathbb{P}\left(X_{n+1}=j_{1}, \ldots, X_{n+m}=j_{m}, X_{n}=i\right)}{\mathbb{P}\left(X_{n+1}=j_{1}, \ldots, X_{n+m-1}=j_{m-1}, X_{n}=i\right)} \\
& \quad \times \frac{\mathbb{P}\left(X_{n+1}=j_{1}, \ldots, X_{n+m-1}=j_{m-1}, X_{n}=i\right)}{\mathbb{P}\left(X_{n}=i\right)} \\
& =\mathbb{P}\left(X_{n+m}=j_{m} \mid X_{n}=i, X_{n+1}=j_{1}, \ldots, X_{n+m-1}=j_{m-1}\right) \\
& \quad \times p_{i, j_{1}} \cdot \ldots \cdot p_{j_{m-2}, j_{m-1}}
\end{aligned}
$$

Proof of theorem 2.4

$$
\begin{aligned}
& \mathbb{P}\left(X_{n+1}=j_{1}, \ldots, X_{n+m}=j_{m} \mid X_{n}=i\right) \\
& =\frac{\mathbb{P}\left(X_{n+1}=j_{1}, \ldots, X_{n+m}=j_{m}, X_{n}=i\right)}{\mathbb{P}\left(X_{n}=i\right)} \\
& =\frac{\mathbb{P}\left(X_{n+1}=j_{1}, \ldots, X_{n+m}=j_{m}, X_{n}=i\right)}{\mathbb{P}\left(X_{n+1}=j_{1}, \ldots, X_{n+m-1}=j_{m-1}, X_{n}=i\right)} \\
& \quad \times \frac{\mathbb{P}\left(X_{n+1}=j_{1}, \ldots, X_{n+m-1}=j_{m-1}, X_{n}=i\right)}{\mathbb{P}\left(X_{n}=i\right)} \\
& =\mathbb{P}\left(X_{n+m}=j_{m} \mid X_{n}=i, X_{n+1}=j_{1}, \ldots, X_{n+m-1}=j_{m-1}\right) \\
& \quad \times p_{i, j_{1}} \cdot \ldots \cdot p_{j_{m-2}, j_{m-1}} \\
& =p_{j_{m-1}, j_{m}} \cdot p_{i, j_{1}} \cdot \ldots \cdot p_{j_{m-2}, j_{m-1}}
\end{aligned}
$$

because of the induction hypothesis and the Markov property.

